高等数学同济第七版上册知识点总结归纳

合集下载

高等数学同济第七版上册笔记

高等数学同济第七版上册笔记

高等数学同济第七版上册笔记
高等数学同济第七版上册笔记:
一、第1章函数及其图象。

1、函数:定义域、值域和定义域与值域、函数的唯一性、函数的表示式。

2、一元函数:一元函数关系、函数增减性及极值、函数的单调性。

3、二元函数:一般性函数定义、定义域及值域、函数变换、矩阵运算。

4、函数的图象:函数的图象的判断、函数的图象的绘制和性质。

二、第2章一次函数。

1、一次函数的斜率:斜率的定义、斜率的性质、斜率的应用。

2、一次函数的判别式:一次函数的判别式的性质。

3、一次函数的图象:一次函数的图象的对称性、一次函数的图象的性质。

4、一次函数的运算:一次函数的加法、减法、乘法、除法、幂次。

三、第3章线性函数。

1、线性函数的法则:线性函数的性质、线性函数的图象。

2、线性变换:线性变换的定义和性质。

3、矩阵的运算:矩阵的定义和性质、矩阵的加法和乘法、矩阵的乘方。

四、第4章二次函数。

1、二次函数的性质:二次函数的判定、二次函数的标准形式。

2、二次函数的图象:二次函数的图象的判断和绘制、二次函数的图象的性质。

3、二次函数的运算:二次函数的加法、减法和乘法。

4、二次函数的拟合:二次函数的拟合问题、最小二乘法。

数学笔记-同济第七版高数(上)-第二章-导数与微分-函数的微分

数学笔记-同济第七版高数(上)-第二章-导数与微分-函数的微分

数学笔记-同济第七版高数(上)-第二章-导数与微分-函数的微分一、定义y=f(x),(x∈D), x0∈D, x0+Δx∈DΔy=f(x0+Δx)-f(x0)若Δy=AΔx+o(Δx),称y=f(x)在x=x0可微意思是Δy若能表示为一个常数乘以Δx和一个Δx的高阶无穷小的和,就称y=f(x)在x=x0可微称AΔx为y=f(x)在x=x0这点的微分dy|x=x0=AΔx=Adx, dx也是微分二、Notes1、可导 <=> 可微证明:“=>”:设lim(Δx->0)f(x)=A则Δy/Δx=A+α, α->0(Δx->0)Δy=AΔx+Δxα,lim(Δx->0)[Δxα/Δx]=0,即Δxα=o(Δx)所以Δy=AΔx+o(Δx)所以y=f(x)在x=x0点可微“<=”:设Δy=AΔx+o(Δx)Δy/Δx=A+o(Δx)/Δx因为lim(Δx->0)[o(Δx)/Δx]=0所以Δy/Δx=A+α, α->0, (Δx->0)所以y=f(x)在x=x0点可导2、y=f(x),x=x0,Δy=AΔx+o(Δx),则A为f'(x0),A为该点导数3、y=f(x),x=x0,Δy=AΔx+o(Δx),则(dy|x=x0)=AΔx=f'(x0)Δx=f'(x0)dx若y=f(x)可导,dy=df(x)=f'(x)dx如:d(x^3)=(x^3)'dx=3x^2dxd(e^3x)=3e^3xdxx^2dx=d(1/3*x^3+C)1/(1+x^2)*dx=d(arctanx+C)4、若y=f(x)在x=x0可微,则:Δy=f'(x0)Δx+o(Δx), dy|x=x0 = f'(x0)dx=> Δy-dy=o(Δx)5、设y=f(x)在x=x0可微,则dy=f'(x)Δxf'(x)为y=f(x)在x=x0对应点的斜率三、微分的几大工具1、公式d(c)=0d(x^n)=nx^(n-1)dxd(a^x)=a^x*lna*dxd(sinx)=cosxdx, d(cosx)=-sinxdxd(loga(x))=1/(xlna)*dx......2、四则d(u±v)=du±dvd(uv)=dudvd(u/v)=(vdu-udv)/v^23、复合y=f(u)(1)dy=f'(u)du(2)若u=g(x), dy=f'(u)du=f'(u)g'(x)dx四、近似计算设y=f(x)在x=x0可微Δy=f(x0+Δx)-f(x0)=f'(x0)Δx+o(Δx)=>Δy≈f'(x0)Δx=>f(x0+Δx)≈f(x0)+f'(x0)Δx。

新版高等数学(同济第七版)上册-知识点总结-新版-精选.pdf

新版高等数学(同济第七版)上册-知识点总结-新版-精选.pdf

高等数学(同济第七版)上册-知识点总结第一章函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim x g x f 且lx g x f )()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以 f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。

(3)l = 1,称f (x)与g(x)是等价无穷小,记以 f (x) ~ g(x) 2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1-cos x ~ 2/2^x ,xe -1 ~ x ,)1ln(x ~ x ,1)1(x ~ x二.求极限的方法1.两个准则准则 1.单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤h (x )若A x h A x g )(lim ,)(lim ,则Ax f )(lim 2.两个重要公式公式11sin limx x x公式2ex xx /10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332n n nnnxxo n xx x xxx o n x x x x e)(!2)1(...!4!21cos 2242nnnx o n xxxx )()1(...32)1ln(132nnn x o n xxxxx )(!))1()...(1(...!2)1(1)1(2nnx o xn n xx x )(12)1( (5)3arctan 1212153n n n xo n xxxxx 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0x f x x,0)(lim 0x F x x;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则这个定理说明:当)()(limx F x f xx 存在时,)()(limx F x f xx 也存在且等于)()(limx F x f xx ;当)()(limx F x f x x为无穷大时,)()(limx F x f xx 也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L ospital )法则.型未定式定理2 设函数)(x f 、)(x F 满足下列条件:(1))(lim 0x f xx ,)(lim 0x F xx ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则注:上述关于0x x时未定式型的洛必达法则,对于x 时未定式型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“”型的未定式,其它的未定式须先化简变形成“00”或“”型才能运用该法则;)()(lim)()(limx F x f x F x f x xx x)()(lim)()(lim 0x F x f x F x f x xxx(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim0'00x f xx f x x f x (如果存在)7.利用定积分定义求极限基本格式11)()(1limdx x f n kf nnk n(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x)的间断点。

同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 函数与极限(圣才出品

同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 函数与极限(圣才出品

(2)有界性
如果数列{xn}收敛,则数列{xn}一定有界。
①有界数列:存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
②无界数列:不存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
(3)保号性
如果
lim
n
xn
a
,且
a>0(或
a<0),则存在正整数
N>0,当
n>N
时,都有
xn>0
(4)初等函数
5 类基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
二、数列的极限
1.数列极限的定义
数列{xn}收敛于
a⇔
lim
n
xn
a
⇔∀ε>0,∃正整数
N,当
n>N
时,有|xn-a|<ε。
数列{xn}是发散⇔
lim
n
xn
不存在。
2.收敛数列的性质
(1)唯一性
如果数列{xn}收敛,则它的极限唯一。
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 1 章 函数与极限
1.1 复习笔记
一、映射与函数 1.函数 (1)函数的性质(见表 1-1)
表 1-1 函数的性质
(2)反函数与复合函数 ①反函数的特点 a.函数 f 和反函数 f-1 的单调性一致。 b.f 的图像和 f-1 的图像关于直线 y=x 对称。 ②复合函数 g 与 f 能构成复合函数 f°g 的条件是:f 的定义域与 g 的值域的交集不能为空集。 (3)函数的运算 设函数 f(x),g(x)的定义域为 Df,Dg,且定义域有交集为 D,则可定义这两个函
②如果数列{xn}有两个子数列收敛于不同的极限,则数列{xn}是发散的。

高等数学(同济第七版)(上册)-知识点

高等数学(同济第七版)(上册)-知识点
推论:如果函数f ( x) 在闭区间[ a,b] 上连续,且f ( a) 与f ( b) 异号,则在( a,b) 内至少存在一个点ξ ,使得f ( ξ ) = 0这个推论也称为零点定理
WORD 格式可编辑版
...
第二章 导数与微分 一.基本概念
1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导。
∈[ a,b] ,有公式

, 称为拉格朗日余项 上面展开式称为以0(x) 为中心的n 阶泰勒公式。当 x0 =0 时,也称为n阶麦克劳林
WORD 格式可编辑版
...
公式。 常用公式( 前8个)
WORD 格式可编辑版
...
五.导数的应用
一.基本知识 设函数f ( x) 在 x0 处可导,且 x0 为f ( x) 的一个极值点,则 f '(x0) 0 。 我们称x 满足 f '(x0) 0 的 x0 称为 f (x) 的驻点,可导函数的极值点一定是驻点, 反之不然。极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。
二.求导公式
三.常见求导
WORD 格式可编辑版
...
1. 复合函数运算法则 2. 由参数方程确定函数的运算法则
设x =( t) ,y =(t) 确定函数y = y( x) ,其中'(t),'(t) 存在,且'(t) ≠ 0,则 dy '(t)
dx '(t) 3. 反函数求导法则 设y = f ( x) 的反函数x = g( y) ,两者皆可导,且f ′( x) ≠ 0 则 g'( y) 1 1 ( f '(x) 0)
2. 第二充分条件
f (x) 在 x0 处二阶可导,且 f (x0) 0 ,f (x0 ) 0 ,则①若 f (x0 ) 0 , 则 x0 为极大值点;②若 f (x0 ) 0 ,则 x0 为极小值点.

高等数学第七版上册知识点总结

高等数学第七版上册知识点总结

高等数学第七版上册知识点总结一、函数的概念1. 定义域:定义域是指一个函数允许定义的变量的集合。

2. 值域:函数对应的输出值的集合就是函数的值域。

3. 函数的图像:函数的定义图形可以通过函数的值域和定义域构成。

4.函数的性质:函数的单调性、奇偶性、最大值最小值等性质。

二、一元函数的分析1. 一元函数的极限:极限的概念、极限的性质、极限的计算方法。

2. 无穷小量的概念:无穷小量的概念、无穷小量的性质、无穷小量的运算。

3. 无穷级数及极限:无穷级数的概念、无穷级数的性质、极限的概念及极限的计算方法。

4. 函数的求导:导数的概念、求导法则、函数的求导方法。

三、复变函数1. 坐标变换:坐标系的概念、坐标变换的意义及方法。

2. 二元函数:二元函数的定义、图像的意义及特性、二元函数的求导。

3. 二元可变函数:二元可变函数的定义、图像的意义及特性、二元可变函数的极限及求导。

4. 泰勒公式:泰勒公式的定义、泰勒公式的构成、泰勒公式应用。

四、极限和无穷级数1. 函数的极限:函数的极限的定义、求函数极限的基本思想及极限的性质。

2. 无穷级数:无穷级数的定义、无穷级数的性质、无穷级数的收敛性及计算方法。

3. 相称收敛:相称收敛的定义、相称收敛的收敛性及计算方法、相称收敛的性质。

4. 无界和无限近似:无界的概念、无限近似数的意义及计算方法。

五、积分1. 定积分:定积分的定义、定积分的计算方法以及定积分的理论基础。

2. 容积:求容积的意义、容积的定义及容积的计算方法。

3. 不定积分:不定积分的定义、不定积分的计算方法及不定积分的性质。

4. 部分积分:部分积分的定义、部分积分的意义及部分积分的计算方法。

六、微分方程1. 微分方程的概念:微分方程的概念、普通微分方程的分类、普通微分方程的特征。

2. 微分方程的解法:通解的求法、初值问题的解法、定常点的求法、特解的求法。

3. 微分不等式:微分不等式的概念、微分不等式的性质及特点、微分不等式的解法。

高等数学第七版重点汇总

高等数学第七版重点汇总

高等数学第七版重点汇总第一章 函数与极限●极限是函数在某一点x 0处的局部性质,与函数在此处是否有定义无关。

● 有限个无穷小的乘积也是无穷小 ● 常数与无穷小的乘积是无穷小 ●如果limf(x)=A,limg(x)=B,那么1) lim[f(x)±g(x)]=limf(x)±limg(x)=A ±B 2) lim[f(x)·g(x)]=limf(x)·limg(x)=A ·B 3) 若B ≠0,则BAx g x f x g x f ==)(lim )(lim )()(lim 数列也基本适用 ●如果limf(x)存在,而n 是正整数,那么 lim[f(x)]n =[limf(x)]n● 抓大头●当x →∞时,且a 0≠0,b 0≠0,m 和n 为非负整数⎪⎪⎩⎪⎪⎨⎧∞=+⋅⋅⋅+++⋅⋅⋅++∞→--0lim 0110110b a b x b x b a x a x a x nn n m m m m <n m >n m n 当当当= ● 夹逼准则 ●等价无穷小sinx ~x arcsinx ~x 11-+n x ~x tanx ~x arctanx ~x a x -1~a x ln ln(1+x)~x e x -1~x 1-cosx ~221x● 1∞型=e ●如果=αβlim0,β是α的高阶无穷小,记作()αβo =; 如果=αβlim∞,β是α的低阶无穷小; 如果=αβlim c ≠0,β是α的同阶无穷小;如果0≠lim c k =αβ,k >0,β是α的k 阶无穷小;如果=αβlim 1,β是α的等价无穷小,记作α~β.若β是α的同阶无穷小,则()ααβo +=(充要条件) ● 函数连续,()00)(lim x f x f x x =→● 连续则极限存在,极限存在不一定连续 ●间断点: 1) 情况:① 函数在x=x 0处没有定义 ② 在x=x 0处有定义,但)(lim 0x f x x →不存在③ 函数在x=x 0处有定义,)(lim 0x f x x →存在,但()00≠)(lim x f x f x x →2) 分类① 第一类:跳跃 可去 ② 第二类:无穷 震荡 ●基本初等函数在其定义域内都是连续的,包括三角函数x x x x x x csc ,sec ,cot ,tan ,cos ,sin●基本初等函数的反函数在其定义域内都是连续的,包括反三角函数●复合函数连续,且()00x g u =,则()[]()000lim u f x g f x x =→=()[]0x g f●幂指函数连续,且()a x u =lim >0()b x v =lim ,,则b x v a x u =)()(lim● 介值定理(零点定理的推广)设函数()x f y =在闭区间[]b a ,上连续,则在这区间端点处取值不同时,即:()()B b f A a f ==,,且B A ≠。

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。

(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。

高等数学(同济第七版)(上册)_知识点总结

高等数学(同济第七版)(上册)_知识点总结

...高等数学(同济第七版)上册-知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较f(x)设l imf(x)0,limg(x)0且llimg(x)(1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[g(x)],称g(x) 是比f(x)低阶的无穷小。

(2)l≠0,称f(x)与g(x)是同阶无穷小。

(3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x)2.常见的等价无穷小当x→0时sinx~x,tanx~x,arcsinx~x,arccosx~x,1-cosx~x^2/2,xe-1~x,ln(1x)~x,(1x)1~x二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x)≤f(x)≤h(x)若limg(x)A,limh(x)A,则l imf(x)A2.两个重要公式sinx公式11limx0x1/x公式2xelim(1)x03.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次xe 1x2x2!3x3!...nxn!no(x )sinxx3x3!5x5!... (n1)(2nx2n11)!2no(x1)WORD格式可编辑版...cosx12x2!4x4!... (2nxnox2n1)(2n!)ln(1x)x2x23x3... (nxnox n11)(n)(1x)1x (1)2!2x n ox n(1)...((n1))x...(n!)arctanxx3x35x5... (2n1xnox2n11)(2n11)5.洛必达法则定理1设函数f(x)、F(x)满足下列条件:(1)lim()0fxxx0 ,limF(x)0xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limxx0Fx)(f(x)f(x)存在(或为无穷大),则limlimxx0FFx(x)xx()这个定理说明:当f(x)limx0Fxx()存在时,f(x)limxx0Fx()也存在且等于f(x)limxx0F(x);当f(x) limxx()0Fx 为无穷大时,f(x)limx()x0Fx也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(LHospital)法则.型未定式定理2设函数f(x)、F(x)满足下列条件:(1)lim()fxxx0 ,limF(x)xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limx)x0F(x存在(或为无穷大),则f(x)f(x)limlimxx0F(x)x x F(x)注:上述关于x时未定式型的洛必达法则,对于x时未定式型x同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“0”和“”型的未定式,其它的未定式须先化简变形成“0”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限WORD格式可编辑版...f(xx)f(x)00'基本公式()limfx0x0x(如果存在)3.利用定积分定义求极限基本格式1n1klimf()f(x)dxnnnk1(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设x是函数y=f(x)的间断点。

高等数学(同济第七版)上册-知识点汇总

高等数学(同济第七版)上册-知识点汇总

高等数学(同济第七版)上册-知识点汇总————————————————————————————————作者:————————————————————————————————日期:高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。

(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限 基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。

(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 )()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限 基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。

如果f (x )在间断点0x 处的左、右极限都存在,则称0x 是f (x )的第一类间断点。

左右极限存在且相同但不等于该点的函数值为可去间断点。

左右极限不存在为跳跃间断点。

第一类间断点包括可去间断点和跳跃间断点。

(2)第二类间断点第一类间断点以外的其他间断点统称为第二类间断点。

常见的第二类间断点有无穷间断点和振荡间断点。

四.闭区间上连续函数的性质在闭区间[a,b]上连续的函数f (x),有以下几个基本性质。

这些性质以后都要用到。

定理1.(有界定理)如果函数f (x)在闭区间[a,b]上连续,则f (x)必在[a,b]上有界。

定理2.(最大值和最小值定理)如果函数f (x)在闭区间[a,b]上连续,则在这个区间上一定存在最大值M 和最小值m 。

定理3.(介值定理)如果函数f (x)在闭区间[a,b]上连续,且其最大值和最小值分别为M 和m ,则对于介于m和M 之间的任何实数c,在[a,b]上至少存在一个ξ,使得f (ξ ) = c 推论:如果函数f (x)在闭区间[a,b]上连续,且f (a)与f (b)异号,则在(a,b)内至少存在一个点ξ,使得f (ξ ) = 0这个推论也称为零点定理第二章导数与微分一.基本概念1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导。

二.求导公式三.常见求导1.复合函数运算法则2.由参数方程确定函数的运算法则设x =φ(t ),y =)(t ϕ确定函数y = y (x ),其中)('),('t t ϕφ存在,且)('t φ≠ 0,则)(')('t t dx dy φϕ= 3.反函数求导法则设y = f (x )的反函数x = g (y ),两者皆可导,且f ′(x ) ≠ 0 则)0)('())(('1)('1)('≠==x f y g f x f y g 4.隐函数运算法则设y = y (x )是由方程F (x , y ) = 0所确定,求y ′的方法如下:把F (x , y ) = 0两边的各项对x 求导,把y 看作中间变量,用复合函数求导公式计算,然后再解出y ′ 的表达式(允许出现y 变量)5.对数求导法则 (指数类型 如x x y sin =)先两边取对数,然后再用隐函数求导方法得出导数y ′。

对数求导法主要用于:①幂指函数求导数②多个函数连乘除或开方求导数(注意定义域。

关于幂指函数y = [f (x )]g (x ) 常用的一种方法,y = )(ln )(x f x g e 这样就可以直接用复合函数运算法则进行。

6. 求n 阶导数(n ≥ 2,正整数)先求出 y ′, y ′′,…… ,总结出规律性,然后写出y (n ),最后用归纳法证明。

有一些常用的初等函数的n 阶导数公式(1) x n x e y e y ==)(,(2) n x n x a a y a y )(ln ,)(==(3) x y sin =,)2sin()(πn x y n += (4) x y cos =,)2cos()(πn x y n += (5)x y ln =,n n n x n y ----=)!1()1(1)(第三章 微分中值定理与导数应用一 .罗尔定理设函数 f (x )满足(1)在闭区间[a ,b ]上连续;(2)在开区间(a ,b )内可导;(3) f (a ) = f (b ) 则存在ξ ∈(a ,b ),使得f ′(ξ ) = 0二. 拉格朗日中值定理设函数 f (x )满足(1)在闭区间[a ,b ]上连续;(2)在开区间(a ,b )内可导;则存在ξ ∈(a ,b ),使得)(')()(ξf a b a f b f =-- 推论1.若f (x )在(a ,b )内可导,且f ′(x ) ≡ 0,则f (x )在(a ,b )内为常数。

推论2.若f (x ) ,g (x ) 在(a ,b ) 内皆可导,且f ′(x ) ≡ g ′(x ),则在(a ,b )内f (x ) = g (x )+ c ,其中c 为一个常数。

三 .柯西中值定理设函数f (x )和g (x )满足:(1)在闭区间[a ,b ]上皆连续;(2)在开区间(a ,b )内皆可导;且g ′(x ) ≠ 0则存在ξ ∈(a ,b )使得)(')(')()()()(ξξg f a g b g a f b f =--)(b a <<ξ (注:柯西中值定理为拉格朗日中值定理的推广,特殊情形g (x ) = x 时,柯西中值定理就是拉格朗日中值定理。

)四.泰勒公式(①估值②求极限(麦克劳林))定理 1.(皮亚诺余项的n 阶泰勒公式)设f (x)在0 x 处有n 阶导数,则有公式,称为皮亚诺余项定理2(拉格朗日余项的n 阶泰勒公式)设f (x)在包含0 x 的区间(a,b)内有n +1阶导数,在[a,b]上有n阶连续导数,则对x∈[a,b],有公式,,称为拉格朗日余项x=0 时,也称为n阶麦克劳林公式。

上面展开式称为以0(x) 为中心的n 阶泰勒公式。

当常用公式(前8个)五.导数的应用一.基本知识设函数f (x )在0x 处可导,且0x 为f (x )的一个极值点,则0)('0=x f 。

我们称x 满足0)('0=x f 的0x 称为)(x f 的驻点,可导函数的极值点一定是驻点,反之不然。

极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。

极值点判断方法1. 第一充分条件)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.2.第二充分条件)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3.泰勒公式判别法(用的比较少,可以自行百度)二.凹凸性与拐点1.凹凸的定义设f (x )在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有则称f (x)在I 上是凸(凹)的。

相关文档
最新文档