分式的加减乘除混合运算
北京版数学八年级上册《分式加减乘除的混合运算》教学设计2
北京版数学八年级上册《分式加减乘除的混合运算》教学设计2一. 教材分析《分式加减乘除的混合运算》是北京版数学八年级上册的教学内容。
本节课主要让学生掌握分式加减乘除的混合运算的计算法则,能够熟练进行相关的计算。
教材通过具体的例题和练习题,帮助学生理解和掌握运算规则,提高运算能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式的加减乘除基本运算,对于分式的概念和性质有一定的了解。
但部分学生在运算过程中,可能会出现对运算规则理解不深、运算顺序混乱等问题。
因此,在教学过程中,需要关注学生的运算习惯和思维方式,引导学生理清运算思路,提高运算正确率。
三. 教学目标1.理解分式加减乘除的混合运算的计算法则。
2.能够熟练进行分式加减乘除的混合运算。
3.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.重点:分式加减乘除的混合运算的计算法则。
2.难点:熟练运用计算法则,正确进行分式加减乘除的混合运算。
五. 教学方法1.讲授法:讲解分式加减乘除的混合运算的计算法则,引导学生理解运算规则。
2.示例教学法:通过具体的例题,展示运算过程,引导学生模仿和理解。
3.练习法:设计不同难度的练习题,让学生进行练习,巩固所学知识。
4.小组讨论法:学生进行小组讨论,分享运算心得,互相学习,提高运算能力。
六. 教学准备1.PPT课件:制作包含知识点、例题和练习题的PPT课件。
2.练习题:准备分式加减乘除的混合运算的练习题,包括基础题和提高题。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)通过复习分式的加减乘除基本运算,引导学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(10分钟)讲解分式加减乘除的混合运算的计算法则,让学生理解并掌握运算规则。
3.操练(10分钟)展示PPT课件中的例题,引导学生按照计算法则进行运算,并及时给予讲解和指导。
4.巩固(10分钟)让学生独立完成PPT课件中的练习题,检测学生对计算法则的掌握程度,并对学生的错误进行讲解和纠正。
人教版-数学-八年级上册-人教数学 分式的加减乘除混合运算 教案
(1)(x+y)2· +
(2)
(3)
(4) - ·
教学设计:
教学
环节
教学活动过程
思考与
调整
活动内容
师生行为
预习
交流
通过回顾分式的加法、减法、乘法和除法法则,帮助学生回顾这些法则的得出过程,为本节的混合运算奠定基础,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
学习重点
分式的加、减、乘、除混合运算的顺序。
学习难点
1、分式的加、减、乘、除混合运算。
2、分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
3、灵活运用添括号,去括号法则
教具学具
小黑板、三角板等
预习作业
1.分式的乘除法法则是
2.分式的加减法法则是
3.回顾小学所的数的混合运算的顺序是:先,再,然后,遇有括号,先算。从而类比得到分式的混合运算法则。
展示例题,让学生动手计算,教师巡视、指导、及时纠正错误。
在独立探究Байду номын сангаас基础上,学生分组交流与研讨,并汇总解决问题的方法。
学生观察、思考、交流,教师深入学生当中,参与活动,倾听学生交流并适时的进行点拨。
检测
反馈
1.计算:
(1)
(2)
2.计算 ,并求出当 -1的值.
3.课堂上,李老师出了这样一道题:
已知 ,求代数式 的值。
例3:已知x+ =3,求下列各式的值:
(1)x2+ ;(2 。
分析:观察已知条件和所求式,可将所求的式进行分解因式,将已知条件整体代入,第(2)题是先求它的倒数值,可以将x2+ =7直接代入,求得它的值。此外对于已知条件x+ =3,可以变形为x2-3x+1=0,也可以变形为 =1,在后两种表达形式下,要能熟练地将它转化为x+ =3。
人教版数学八年级上册分式的加减乘除混合运算课件
4.解:
4a 2 a2
a
8a 2
a a
1 1
a a
1 1
4a(a 2)
4a
(a 2)(a 1) (a 1)(a 1)
4a (a 1)(a 1)
(a 1)
4a
a1
仔细观察题目的结构特点,灵活运用运 算律,适当运用计算技巧,可简化运算,提 高速度,优化解题。
人教版数学八年级上册分式的加减乘 除混合 运算课 件
2
2a-2b 3a+3b
-
a2 a2 -b2
a. b
例2 计算:
(1) m+2+
5
2-m
2m-4 ; 3-m
(2) xx2-+22x
-
x-1
x2
-4
x+4
x-4 . x
分式的混合运算:关键是要正 确的使用相应的运算法则和运算顺 序;正确的使用运算律,尽量简化 运算过程;结果必须化为最简。
y
2 3 x
2
1 3x
1
•
x
x
y
2• x x y
2x x y
人教版数学八年级上册分式的加减乘 除混合 运算课 件
人教版数学八年级上册分式的加减乘 除混合 运算课 件
2.
(m
2 n)3
1 m
1 n
m2
1 2mn
n2
1 m2
1 n2
mn
m3n3
人教版数学八年级上册分式的加减乘 除混合 运算课 件
4a b2
= 4a2 - 4(a a-b) b(2 a-b) b(2 a-b)
= 4a2 -4(a a-b)= 4a2 -4a2+4ab
分式的加减乘除混合运算课件PPT
1
答乙:工甲程工队程一队天一完天成完这成项这工项程工的程_的______n______1____________,, 两队共同工作一天完成这项工程的 n 3
_________(_1_____1__.) n n3
bd
bd
三、例题学习,提高认知
例 计算 :
(1)5x x2
3y y2
2x x2 y2
;
解:原式=
(5x
3y) x2 y
2
2
x
3x 3y
= x2 y2
把分子看成一个整体, 先用括号括起来!
=
3(x y) (x y)(x y)
=
3; x y
注意:结果要 化为最简分式!
计算 :
(2)
分母不变, 分子相加减.
分式加减运算的方法思路:
异分母 通分 相加减 转化为
同分母 分母不变 相加减 转化为
分子(整式)
相加减
分式加减运算的注意事项:
(1)分母是多项式时,能分解因式的要先分解因 式;(2)分子相加减时,如果分子是一个多项式, 要将分子看成一个整体,先用括号括起来,再运 算,可减少出现符号错误;(3)分式加减运算的 结果要约分,化为最简分式(或整式).
问题2:2001年,2002年,2003年某地的森林 面积(单位:公顷)分别是S1,S2,S3,2003年 与2002年相比,森林面积增长率提高了多少?
答20:0220年03的年森的林森面林积面增积长增率长是率_是_s__2_s__1__s__1_s___3__s____2__s__,2,
分数的加减乘除带混合运算
分数的加减乘除带混合运算在数学学科中,加减乘除是最基本的四则运算,而带混合运算则是将这四种运算符结合起来进行计算的一种运算方式。
本文将重点讨论分数的加减乘除带混合运算的方法及其应用。
一、分数的加法运算分数的加法运算是指将两个或多个分数进行相加的计算过程。
下面以一个具体例子来说明:例1:计算:1/4 + 3/8 + 5/6解答:首先,我们需要将这些分数的分母进行通分,然后再相加。
此处的分母为4、8和6,它们的最小公倍数为24,因此我们将这些分数的分母都改成24的分数形式,得到:(1/4) * (6/6) + (3/8) * (3/3) + (5/6) * (4/4)= 6/24 + 9/24 + 20/24然后,对这些分数进行相加,即可得到最终结果:6/24 + 9/24 + 20/24 = 35/24答案:35/24二、分数的减法运算分数的减法运算是指将两个分数进行相减的计算过程。
下面以一个具体例子来说明:例2:计算:3/4 - 1/3解答:首先,我们需要将这两个分数的分母进行通分,然后再相减。
此处的分母为4和3,它们的最小公倍数为12,因此我们将这两个分数的分母都改成12的分数形式,得到:(3/4) * (3/3) - (1/3) * (4/4)= 9/12 - 4/12然后,对这两个分数进行相减,即可得到最终结果:9/12 - 4/12 = 5/12答案:5/12三、分数的乘法运算分数的乘法运算是指将两个分数相乘的计算过程。
下面以一个具体例子来说明:例3:计算:2/3 * 4/5解答:我们只需要将这两个分数的分子相乘,分母相乘,即可得到最终结果:(2 * 4) / (3 * 5) = 8/15答案:8/15四、分数的除法运算分数的除法运算是指将一个分数除以另一个分数的计算过程。
下面以一个具体例子来说明:例4:计算:3/4 ÷ 2/5解答:我们需要将被除数的分子乘以除数的分母,被除数的分母乘以除数的分子,然后再进行相除,得到最终结果:(3/4) * (5/2) = 15/8答案:15/8五、分数的带混合运算分数的带混合运算是指在一个算式中同时包含加减乘除四种运算符的计算过程。
分式的加减乘除混合运算及分式的化简
分式的加减乘除混合运算及分式的化简
分式的加减乘除混合运算及分式的化简
分式的加减乘除混合运算:
分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。
也可以把除法转化为乘法,再运用乘法运算。
分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。
分式的混合运算:在解答分式的乘除法混合运算时,注意两点,就可以了:
注意运算的顺序:按照从左到右的顺
序依次计算;
注意分式乘除法法则的灵活应用。
15.2.4分式的加减乘除乘方混合运算
思维训练
1.老师布置了一道计算题:计算 (a 2 a2
b2 - b2
a a
b) b
2ab
÷(a - b)(a b)2 -(a+b)的值,其中a=2 014,
b=2 015.小明把a,b错抄成a=2 015,b=2 014,但老师 发现他的答案还是正确的,你认为这是怎么回事?说说 你的理由.
知识运用
解:(1)原式=
a-1-1 (a-2)2 a-1 (a 1)(a-1)
a a
-2 1
(a
1)(a (a 2)2
1)
a a
1 2
当a=-2时,原式=
-2 1 -2-2
1 4
.
(2)原式=
x2 1
xx 1
1 x 1
x 1x 1 x x 1x 1
(1)写出第n个式子. (2)利用(1)中的规律计算:
1 x(x
1) + (x
1 1)(x
2)
+…+ (x
1 2014)(x
2015)
.
智能解答
解:(1)
1 n(n
1) =
1 n
-
n
1
1
(n为正整数)
(2)
1 x(x
1) + (x
1 1)(x
2) +…
+ (x
1 2014)(x
2015)
=
1 x
-
x
1
1+
x
1
1-
分式加减乘除混合运算练习题及答案
分式加减乘除混合运算练习题及答案精品文档分式加减乘除混合运算练习题及答案一.填空: 1.x时,分式x3x?2有意义;当时,分式有意义; x2x?1x2?42.当x= 时,分式2x?51?x2x2?1的值为零;当x 时,分式的值等于零.1?xa2c3aa2?ab?b25b3.如果=2,则=.分式、的最简公分母是;23abbcb2aca?bx?1的值为负数,则x的取值范围是 .3x?2?x2?y2?6.已知x?2009、y?2010,则?x?y????x4?y4??,.??5.若分式二.选择: 1.在111xx1x+y, , ,—4xy , , 中,分式的个数有25?a?xxyA、1个B、2个C、3个D、4个.如果把1 / 10精品文档2y中的x和y都扩大5倍,那么分式的值2x?3yA、扩大5倍B、不变C、缩小5倍D、扩大4倍14xx2?y215x2, ,?x,3.下列各式:?1?x?,其中分式共有个。
5??32xxA、 B、C、4D、54.下列判断中,正确的是A、分式的分子中一定含有字母B、当B=0时,分式C、当A=0时,分式A无意义 BA的值为0 D、分数一定是分式 B5.下列各式正确的是a?xa?1nnann?ayy2?,?a?0?D、? A、 B、? C、? b?xb?1mmamm?axx6.下列各分式中,最简分式是34?x?y?y2?x2x2?y2x2?y2A、 B、 C、D、85x?yx?yxy?xy2x?y7.下列约分正确的是 A、mmx?yy9b3bx?a?b?x?1? B、?1? C、?? D、2 / 10精品文档m?33x?226a?32a?1yb?ay8.下列约分正确的是1A、x63x?yx?y12xy21x2?x B、x?y?0C、x2?xy?x D、4x2y?29.下列分式中,计算正确的是 A、2a?3?2a?3B、a?ba2?b2?1a?b C、2x?y12??1D、2xy?x2?y2?y?x 10.若把分式x?y2xy中的x和y都扩大3倍,那么分式的值A、扩大3倍B、不变C、缩小3倍D、缩小6倍 11.下列各式中,从左到右的变形正确的是若x满足xx?1,则x应为 A、正数 B、非正数 C、负数D、非负数14.已知x?0,1x?12x?115113x等于A、2xB、1 C、6x3 / 10精品文档D、6x15、已知115x?xy?5yx?y?3,则x?xy?y值为A、?72B、72C、27D、?27三.化简: 1.12m2?9?23?m2.a+2,42?a3.2x25y10ya?bb?3y2?6x?21x24.ab?cbc?c?aacx?yx2?y25.1?x?2y?x?2x?2x2?4x2?4xy?4y26.?x27.2x?6x?3?3a9ax?? x?4x?4??? 2b?4b?2b?2. 13a??24 / 10精品文档、9.2m?nmn1?x???10.?1? ??n?mm?nn?m1?xx?1??xx4xx?yx2?y2??11.1? 12.); ?22x?2x?2x?2x?2yx?4xy?4y2?x?3?a2?b2?a2?b2??13. 14.?x?1???2???。
分式的加减法与乘除法
分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。
分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。
在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。
本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。
一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。
例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。
例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。
例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。
例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。
例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。
例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。
八年级数学上册分式知识点
八年级数学上册分式知识点八年级数学上册分式知识点在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
哪些才是我们真正需要的知识点呢?下面是店铺帮大家整理的八年级数学上册分式知识点,仅供参考,欢迎大家阅读。
八年级数学上册分式知识点1分式知识点1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:分式AB=0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(其中A、B、C是整式),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。
分式的加减乘除乘方混合运算
分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。
分式可以进行加、减、乘、除以及乘方等混合运算。
本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。
一、分式的加法运算分式的加法运算是指将两个分式相加的操作。
要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。
例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。
同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。
例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。
要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。
要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。
例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。
要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。
在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。
人教版八年级数学上册15.2.2.2《分式的混合运算》教案
人教版八年级数学上册15.2.2.2《分式的混合运算》教案一. 教材分析人教版八年级数学上册15.2.2.2《分式的混合运算》一节,主要让学生掌握分式的加减乘除运算规则,以及混合运算的运算顺序。
这一节内容在分式知识体系中占据重要地位,为后续分式方程和不等式的学习打下基础。
教材通过例题和练习,使学生熟练掌握分式混合运算的方法和技巧。
二. 学情分析八年级的学生已经学习了分式的基本概念和运算规则,对分式有了一定的认识。
但学生在混合运算方面,可能会存在运算顺序混乱、对运算规则理解不深等问题。
因此,在教学过程中,需要引导学生理清运算顺序,加深对运算规则的理解。
三. 教学目标1.让学生掌握分式的加减乘除运算规则。
2.培养学生解决分式混合运算问题的能力。
3.提高学生对数学运算的兴趣和自信心。
四. 教学重难点1.重点:分式的加减乘除运算规则,混合运算的运算顺序。
2.难点:理解并运用运算规则解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究分式混合运算的规则。
2.用实例讲解,让学生在实际问题中体会运算规则的应用。
3.运用小组合作学习,培养学生团队合作精神。
4.及时反馈,激发学生学习兴趣。
六. 教学准备1.准备相关例题和练习题,涵盖分式混合运算的各种情况。
2.制作课件,辅助讲解和展示。
3.准备黑板,用于板书关键步骤和结论。
七. 教学过程1. 导入(5分钟)以一个实际问题引入:某商店举行打折活动,原价100元的商品,打8折后售价是多少?让学生尝试用分式混合运算解决这个问题。
2. 呈现(10分钟)讲解分式混合运算的规则,通过PPT展示各种类型的题目,让学生观察和分析,引导学生发现运算规律。
3. 操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4. 巩固(10分钟)学生分组讨论,互相检查答案,教师随机抽取学生回答,检验掌握情况。
5. 拓展(10分钟)让学生举例说明分式混合运算在实际生活中的应用,分享给其他同学。
分式加减乘除混合运算题及答案
分式加减乘除混合运算题及答案
题目1:5÷2+4×7-6=?
答案:5÷2+4×7-6 = 25
题目2:7+2×9-6÷3=?
答案:7+2×9-6÷3 = 25
题目3:8÷2-3×2+7=?
答案:8÷2-3×2+7 = -1
在学习数学的过程中,掌握数学的基本运算至关重要,其中分式加减乘除混合运算是其中一种。
分式加减乘除混合运算,应根据乘除的优先级,优先处理乘除再处理加减。
一、计算优先级
在计算分式加减乘除混合运算时,乘除运算符号的优先级则是比加减
运算符号优先。
也就是在表达式中,需要先参与计算的运算符号是乘除,再是加减。
二、计算步骤
1. 预处理:剔除表达式中的括号;
2. 乘除计算:从左数乘、除运算,计算出结果;
3. 加减计算:从左数加减,计算出结果。
三、实例
例:4+7÷2×5-6=
步骤:预处理:4+7÷2×5-6
乘除计算:4+3.5×5-6
加减计算:4+17.5-6
结果:15.5
显然,如何正确计算分式加减乘除混合运算,需要注意两点:
1. 运算时,需根据乘除的优先级,优先处理乘除再处理加减;
2. 步骤应为:预处理、乘除计算、加减计算,最后确定答案。
四、练习
1. 5÷2+4×7-6=
答案:25
2. 7+2×9-6÷3=
答案:25
3. 8÷2-3×2+7=
答案:-1。
专题21 分式的加减乘除混合运算特训50道-【微专题】2022-2023学年八年级数学下册常考点
专题21 分式的加减乘除混合运算特训50道1. 计算:2244222x x x x x x -+⎛⎫-÷ ⎪+++⎝⎭.2. 化简:(1)2y x y x y y x-+--;(2)1211x x x -⎛⎫-÷ ⎪-⎝⎭.3. 化简:27816333a a a a a -+⎛⎫+-÷ ⎪--⎝⎭.4. 计算:2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭.5. 计算:22ab a b a b b a ab⎛⎫++÷ ⎪--⎝⎭6. 计筫:(1)2a b a a b a b----;(2)22212a b a b a a ab---÷+.7. 化简(1)2223m n m n m n --+-;(2)2344111a a a a a ++⎛⎫-+÷ ⎪++⎝⎭8. 计算:(1)3223222222x x y xy y xy x y x xy y x y+-+---+-;(2)211121m m m m ⎛⎫-÷ ⎪+++⎝⎭.9. 计算:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭.10. 计算(1)222a b ab a b a b a b+----(2)211121a a a a ⎛⎫-÷ ⎪+++⎝⎭11. 化简:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭12. 化简:21111m m m-⎛⎫+⋅ ⎪-⎝⎭.13. 化简:231122a a a a a +-⎛⎫-+÷ ⎪++⎝⎭14. 化简:2221121x x x x x x ⎛⎫+-+÷ ⎪+++⎝⎭.15. 化简:(1)2111a a a ---(2)2743326m m m m m -⎛⎫--÷ ⎪++⎝⎭16. 化简:35(2)22x x x x -÷+---17. 计算:2241393x x x x -⎛⎫+÷ ⎪+-+⎝⎭.18. 化简:22221244a b a b a b a ab b---÷+++.19. 计算:22211121x x x x x -÷+--+20. 计算:(1)22421x x x--+;(2)222228224x x x x x ⎛⎫+--÷ ⎪--⎝⎭.21. 计算:2221211x x x x x x x-÷+-+--.22. 计算22242⎛⎫-÷ ⎪--+⎝⎭m m m m m m .23. 计算:221(1211x x x x x -÷+-+-.24. 计算(1)11a b a b b a ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭(2)2214422x x x x x x x -÷--+--25. 计算:(1)2343m n n t mt ⎛⎫-÷ ⎪⎝⎭(2)22424412x x x x x x x -+÷--++-26. 计算:42()11x x x x x --+÷--.27. 计算:(1)11x x x+-;(2)()231422a a a ⎛⎫-⋅- ⎪-+⎝⎭.28. 计算22311244a a a a -⎛⎫+÷ ⎪--+⎝⎭.29. 计算:11111a a a a a a+-+⎛⎫+⋅ ⎪-+⎝⎭.30. 计算:(1)3222ab ab ⎛⎫÷ ⎪⎝⎭;(2)2211xy x y x y x y ⎛⎫÷- ⎪-+-⎝⎭.31. 计算:2169122m m m m -+⎛⎫-÷ ⎪--⎝⎭.32. 计算:(1)21111x x x -+-+;(2)22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭.33. 化简22361142x x x x x ++⎛⎫÷- ⎪--⎝⎭.34. 计算:(1)23239x y z ⎛⎫- ⎪⎝⎭(2)221111x x x -⎛⎫-÷ ⎪++⎝⎭35. 分式计算:(1)2211497m m m÷--(2)524223m m m m-⎛⎫++⋅ ⎪--⎝⎭36. 计算(1)22y x x xy y x+--;(2)2244111a a a a a a -+⎛⎫÷-+ ⎪--⎝⎭.37. 计算:532224x x x x -⎛⎫--÷ ⎪++⎝⎭.38. 计算:(1)ac bc a b a b---(2)2221a a ab b b b -+⎛⎫-÷ ⎪⎝⎭39. 计算(1)a b a b a b+÷ ⎪+--⎝⎭(2)2112x x x x ⎛⎫++÷+ ⎪⎝⎭40. 化简:(1)22224224x x x x ++-+--(2)(233x x x --+)2239x xx -÷-41. 计算(1)234332223y y x x x y ----⎛⎫⎛⎫⎛⎫÷⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)4222x x xx x x ⎛⎫-÷ ⎪-+-⎝⎭.42. 计算 :(1)2233(1)(1)xx x ---(2)2122()ab ab a b b a ÷⋅--(3)221()4x xyy x y y ⋅-÷-43. 计算(1)222x x x -++(2)2162844x x x x--÷+44. 化简:(1)2243342x x x x x x +---÷--;(2)2111m m m --÷ ⎪--⎝⎭.45. 计算:(1)232433x x y y ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭;(2)22142a a a ---;(3)22211444a a a a a --÷-+-.46. 化简:2222y y x x y x y xy y ⎛⎫-÷ ⎪--+⎝⎭.47. 计算:(2511a a a a ---)÷41a a -+.48. 计算:2222334422m m m m m m m m ⎛⎫-++÷ ⎪-+--⎝⎭.49. (1)计算:1133a a --+(2)计算:2211x x x x +-⎛⎫+÷ ⎪⎝⎭50. 计算:(1)2a a 1--1a a -;(2)(1+11x -)÷21x x -专题21 分式的加减乘除混合运算特训50道【1题答案】【答案】12x -【解析】【分析】首先运用同分母分式减法法则计算括号内的,再利用分式除法运算法则求解即可.【详解】解:2244222x x x x x x -+⎛⎫-÷ ⎪+++⎝⎭224422x x x x x --+=÷++222244x x x x x -+=⋅+-+2222(2)x x x x -+=⋅+-12x =-.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练运用分式的减法运算法则和乘除运算法则【2题答案】【答案】(1)−1(2)1x x -【解析】【分析】(1)根据同分母分式的减法法则进行计算即可;(2)先计算括号内的,再把除法转换为乘法,再进行约分即可得到答案.【小问1详解】2y x y x y y x-+--2y x y x y x y-=---y xx y-=-=−1;【小问2详解】1211x x x -⎛⎫-÷ ⎪-⎝⎭11=11x x x -⎛⎫- ⎪--⎝⎭2x x -÷2·1x x -=-2x x -1x x =-【点睛】本题主要考查了分式的混合运算,熟练掌握运算法则是解答本题的关键.【3题答案】【答案】44a a +-【解析】【分析】根据分式混合运算法则进行计算即可.【详解】解:27816333a a a a a -+⎛⎫+-÷ ⎪--⎝⎭()22973334a a a a a ⎛⎫--=-⋅ ⎪---⎝⎭()2216334a a a a --=⋅--()()()244334a a a a a +--=⋅--44a a +=-.【点睛】本题主要考查了分式的混合运算,熟练掌握运算法则是解题的关键.【4题答案】【答案】22a -【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:原式()()()222222a a a a a a +-+-=÷++2222a a a +=⨯+-22a =-.【点睛】此题考查了分式的混合运算,熟练掌握公式及运算法则是解本题的关键.【5题答案】【答案】ab 【解析】【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,最后进行约分化简.【详解】解:22a b a b a b b a ab⎛⎫++÷ ⎪--⎝⎭22a b a b a b ab-+=÷-()()a b a b ab a b a b+-=⨯-+ab =.【点睛】本题主要考查分式的混合运算的知识点,通分和约分是解答本题的关键.【6题答案】【答案】(1)2(2)ba b-+【解析】【分析】(1)直接利用同分母分式的减法法则计算即可得到答案;(2)先将第二项利用除法法则变形,约分后,再进行通分,最后根据同分母分式的减法法则计算即可得到答案.【小问1详解】解:2a b a a b a b----2a b a a b-+=-22a ba b-=-()2a b a b-=-2=;【小问2详解】解:22212a b a b a a ab---÷+()()()21a a b a b a a b a b +-=-⨯+-21a b a b +=-+2a b a b a b a b++=-++2a b a ba b +--=+b a b =-+.【点睛】本题主要考查了分式的混合运算,熟练掌握分式混合运算的法则是解本题的关键.【7题答案】【答案】(1)1m n -; (2)22a a -+.【解析】【分析】(1)根据异分母分式的减法化简即可;(2)根据分式的加减乘除混合运算化简即可.【小问1详解】解:()()222323m n m n m n m n m n m n m n ---=-+-++-()()()()()()23223m n m n m n m n m n m n m n m n -----+==+-+-()()1m n m n m n m n +==+--;【小问2详解】解:()()()22311344111112a a a a a a a a a a --++++⎛⎫-+÷=⋅ ⎪+++⎝⎭+()()()222222a a a a a +--==++.【点睛】本题考查分式的加减乘除混合运算,掌握分式的加减乘除混合运算法则正确化简是解题的关键.【8题答案】【答案】(1)x y -;(2)1m +.【解析】【分析】(1)先分解因式,再进行同分母分式的加减法则运算即可得出结果;(2)先通分,再根据分式的除法法则运算即可得出结果.【小问1详解】解:3223222222x x y xy y xy x y x xy y x y+-+---+-()()()()()2222x x y y x y xy x y x y x yx y -----+=++222x y xy x y x y x y----=()2x y x y --=x y -=;【小问2详解】解:21(1121m m m m -÷+++2121m m m m m ⎛⎫÷ ⎪++⎝⎭=+2211m m m m m⨯++=+1m =+.【点睛】本题考查了分式的加减运算法则,分式混合运算法则,熟记对应法则是解题的关键.【9题答案】【答案】2x x+【解析】【分析】先将括号内的式子相减,再将224x x x --分子、分母分解因式,然后约分即可.【详解】解:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭()()()22121x x x x x x -+-=⋅-- x 2x+=.【点睛】本题考查了分式加减乘除混合运算及提公因式和公式法分解因式,熟练掌握分式化简的运算法则是解决问题的关键【10题答案】【答案】(1)a b -(2)1a +【解析】【分析】(1)根据同分母分式的加减计算法则求解即可;(2)根据分式的混合计算法则进行求解即可.【小问1详解】解:222a b ab a b a b a b +----222a ab b a b-+=-()2a b a b -=-a b =-;【小问2详解】解:211121a a a a ⎛⎫-÷ ⎪+++⎝⎭()21111a a a a +-=÷++()211a a a a+=⋅+1a =+.【点睛】本题主要考查了分式的加减计算,分式的混合计算,熟知分式的相关计算法则是解题的关键.【11题答案】【答案】2a a -【解析】【分析】根据分式的混合运算法则进行计算即可.【详解】解:原式231()(2)(2)(2)(2)(2)a a a a a a a a +-=-÷+-+-+1(2)(2)(2)1a a a a a a -+=⨯+--2a a =-.【点睛】本题考查了分式的混合运算,熟练掌握分式的混合运算法则是解本题的关键.【12题答案】【答案】1m +【解析】【分析】先计算括号内的分式加法,再计算分式的乘法即可得.【详解】解:原式()()111111m m m m m m +-⎛⎫+⋅ ⎪--⎝⎭-=()()111m m m mm =+-⋅-1m =+.【点睛】本题考查了分式的加法与乘法,熟练掌握分式的运算法则是解题关键.【13题答案】【答案】11a a +-【解析】【分析】原式括号中通分并利用同分母分式的加法法则计算,同时利用除法法则变形,再将分子分母分别因式分解,进而约分得到最简结果即可.【详解】解:原式()()()()12322211a a a a a a a a -+⎡⎤++=+⋅⎢⎥+++-⎣⎦()()22232211a a a a a a a a -+-+++=⋅++-()()22111a a a a ++=+-()()()2111a a a +=+-11a a +=-.【点睛】此题考查了分式的混合运算,熟练掌握分式运算法则是解本题的关键.【14题答案】【答案】12x x ++【解析】【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案.【详解】解:原式()()()22112111x x x x x x x +-⎡⎤+=-÷⎢⎥+++⎣⎦()2221112x x x x x +-+=⋅++12x x +=+;【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简.【15题答案】【答案】(1)a +1(2)28m m+【解析】【分析】(1)利用同分母分式的加减法计算,再约分即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到最简结果.【小问1详解】解:2111a a a ---211a a -=-(1)(1)1a a a +-=-=a +1;【小问2详解】解:2743326m m m m m -⎛⎫--÷ ⎪++⎝⎭(3)(3)7(4)32(3)m m m m m m +---=÷++2972(3)3(4)m m m m m --+=⋅+-(4)(4)2(3)3(4)m m m m m m +-+=⋅+-=28m m+.【点睛】本题主要考查了分式的化简,解题的关键是掌握分式混合运算顺序和运算法则.【16题答案】【答案】13x +【解析】【分析】根据分式的减法和除法可以化简题目中的式子.【详解】解:35(2)22x x x x -÷+---=2345()222x x x x x --÷----=23922x x x x --÷--=322(3)(3)x x x x x --⨯-+-=13x +【点睛】此题考查了分式的化简,熟练掌握运算法则是解本题的关键.【17题答案】【答案】23x -【解析】【分析】先算括号内的异分母分式加法,再化除为乘进行化简.【详解】解:原式2(3)43(3)(3)1x x x x x -++=⋅+--2(1)3(3)(3)1x x x x x -+=⋅+--23x =-.【点睛】本题考查分式的化简,熟练掌握最简公分母的寻找规律、因式分解是关键.【18题答案】【答案】-b a b+ 【解析】【详解】解:原式=()()()2212a b a b a b a b a b +--⋅++- =21a b a b +-+ =2a b a b a b a b++-++=b a b -+;【19题答案】【答案】1x 【解析】【分析】先把分子与分母进行因式分解,再把除法转换成乘法进行约分,最后再进行分式的加法运算.【详解】解:22211121x x x x x -÷+--+=221(1)1(1)(1)x x x x x--⨯++-=211(1)x x x x --++=2(1)(1)x x x x --+=1x.【20题答案】【答案】(1)22x x - (2)22x +【解析】【分析】(1)利用提公因式和平方差公式进行计算即可;(2)利用提公因式和平方差公式进行计算即可.【小问1详解】22421x x x--+()()()42111x x x x =-+-+()()()42111x x x x x --=+-()()2211x x x x +=+-22x x=-;【小问2详解】222228224x x x x x ⎛⎫+--÷ ⎪--⎝⎭()()22222228224x x x x x x x +-⎡⎤+=-÷⎢⎥---⎣⎦()()()2222222244x x x x x x +-⎛⎫=⋅ ⎪⎝⎭-+-+()()()22222244x x x x x +-⋅-+=+22x +=.【点睛】本题考查了分式的混合运算,熟练运用分式运算法则和平方差公式是解题的关键.【21题答案】【答案】1x 【解析】【分析】把原式中的除法转化为乘法,将分子分母经过分解因式、约分把结果化为最简即可.【详解】解:原式()()221111x x x x x x --=⨯+--()21111x x x x x -=⨯+--()()1112x x x x x =+---()11x x x =--1x =.【点睛】本题考查的知识点是分式的混合运算,要注意运算顺序,有括号先算括号里的,有除法的把除法转化为乘法来做,再经过分解因式、约分把结果化为最简.【22题答案】【答案】2m m -【解析】【分析】先将括号内的式子通分,再将分式除法变形为分式乘法,最后约分化简即可.【详解】解:22242⎛⎫-÷ ⎪--+⎝⎭m m m m m m ()()222222m m m m m m m +-=÷+-+()()2222m m m m m+=⋅+-2m m =-.【点睛】本题考查分式的混合运算,掌握分式的运算顺序和运算法则是解题的关键.【23题答案】【答案】1【解析】【分析】先把各个分式的分子、分母因式分解,将原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分即可得到结果.【详解】解:221(1)211x x x x x -÷+-+-2(1)11()(1)11x x x x x x --=÷+---2(1)(1)1x x x x x -=÷--2(1)1(1)x x x x x --=- 1=.【点睛】本题考查了分式的混合运算,熟练掌握运算顺序和每一步的运算法则是解答本题关键.【24题答案】【答案】(1)1a b - (2)12x -【解析】【分析】(1)先计算括号内的分式的加减运算,再把除法转化为乘法,约分后可得结果;(2)先计算除法运算,再计算分式的减法运算即可得到答案.【小问1详解】解:11a b a b b a ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22b a a b ab ab ab ab ⎛⎫⎛⎫=+÷- ⎪ ⎪⎝⎭⎝⎭22a b a b ab ab+-=÷()()a b ab ab a b a b +=+- 1a b=-.【小问2详解】2214422x x x x x x x -÷--+--()222122x x x x x x --=⋅---122-=---x x x x 12-+=-x x x 12x =-.【点睛】本题考查的是分式的混合运算,掌握“分式的混合运算的运算顺序”是解本题的关键.【25题答案】【答案】(1)7169m n t(2)12x -【解析】【分析】(1)先计算乘方,再计算除法即可;(2)先按分式除法法则计算,再按分式减法法则计算即可.【小问1详解】解:原式622169m n n mt t =÷622169m n mt n t =⋅7169m n t=;【小问2详解】解:原式()()()2221222x x x xx x x +-+=⋅-+--122x x x x +=---12x =-.【点睛】本题考查分式混合运算,熟练掌握分式运算法则是解题的关键.【26题答案】【答案】2x +【解析】【分析】先把括号内的式子通分,在运用分式乘除法法则进行解题即可.【详解】解:原式4(1)112x x x x x x -+--=⋅--242x x x x -+-=-(2)(2)2x x x -+=-2x =+.【点睛】本题考查分式的混合运算,掌握运算法则和运算顺序是解题的关键.【27题答案】【答案】(1)1;(2)28a +.【解析】【分析】(1)根据同分母分式的减法法则计算即可;(2)先把()24a -因式分解,再利用乘法分配律计算,然后合并同类项即可求解.【小问1详解】解:11x x x+-11x x+-=x x=1=;【小问2详解】解:()231422a a a ⎛⎫-⋅- ⎪-+⎝⎭()()312222a a a a ⎛⎫=-⋅+- ⎪-+⎝⎭()()()()31222222a a a a a a =⋅+--⋅+--+()()322a a =+--362a a =+-+28a =+.【点睛】本题考查了分式的加减乘除混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【28题答案】【答案】21a a --【解析】【分析】先计算括号内的异分母分式减法,同时将除法化为乘法,将分式的分母分子分解因式,再计算乘法即可.【详解】原式222312244a a a a a a --⎛⎫=+÷ ⎪---+⎝⎭2211244a a a a a +-=÷--+()()()221211a a a a a -+=⨯-+-21a a -=-【点睛】此题考查了分式的混合运算,正确掌握分式的混合运算法则是解题的关键.【29题答案】【答案】41a -【解析】【分析】根据分式的运算法则,先去括号,再算除法.【详解】解:原式()()()()()()221111111a a a a a a a a ⎡⎤+-+=-⋅⎢⎥-+-+⎢⎥⎣⎦()()()()222121111a a a a a a a a⎡⎤++--++⎢⎥=⋅-+⎢⎥⎣⎦()()4111a a a a a +=⋅-+41a =-.【点睛】本题考查分式的混合运算.熟练掌握分式的运算法则,是解题的关键.【30题答案】【答案】(1)24a b (2)2x-【解析】【分析】(1)根据整式的混合运算法则计算即可;(2)根据分式的混合运算法则计算即可.【小问1详解】解:原式23382ab a b =⋅24a b=;【小问2详解】解:原式()()()()22xy x y x y x y x y x y x y x y ⎡⎤-+=÷-⎢⎥-+--+⎢⎥⎣⎦22222xy y x y x y -=÷--22222xy x y x y y-=⋅--2x =-.【点睛】本题考查了整式和分式的混合运算,解题的关键是注意运算顺序.【31题答案】【答案】13m -【解析】【分析】先计算括号内的,再计算除法即可求解.【详解】解:原式()233=22m m m m --÷--()23223m m m m --=⋅--13m =-.【点睛】本题考查分式的混合运算,熟练掌握分式运算法则是解题的关键.【32题答案】【答案】(1)21x + (2)23x x -+【解析】【分析】(1)先将分式211x x --约分变为11x +,然后按照同分母分式加减运算法则进行计算即可;(2)按照分式混合运算法则进行计算即可.【小问1详解】解:21111x x x -+-+()()11111x x x x -++-+=1111x x =+++21x =+;【小问2详解】解:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭()()()2321222x x x x x +++=÷++-()()()222323x x x x x +-+==⋅++23x x -=+.【点睛】本题主要考查了分式混合运算,解题的关键是熟练掌握分式混合运算法则,准确进行计算.【33题答案】【答案】x【解析】【分析】根据分式的混合运算法则进行计算即可.【详解】解:22361142x x x x x ++⎛⎫÷- ⎪--⎝⎭3(2)(1)(2)(2)(2)2x x x x x x x ++--=÷+--3322x x x =÷--3223x x x -=⋅-x=【点睛】本题主要考查了分式的混合运算,熟练掌握分式混合运算的法则是解题的关键.【34题答案】【答案】(1)6249x y z(2)11x x -+【解析】【分析】(1)根据分式的乘方法则计算即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到最简结果.【小问1详解】解:2233622243939x y x y x y z z z ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭==;【小问2详解】解:221111x x x -⎛⎫-÷ ⎪++⎝⎭2121111x x x x x ++⎛⎫=-⋅ ⎪++-⎝⎭21111x x x x -+⎛⎫=⋅ ⎪+-⎝⎭11x x -=+.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.【35题答案】【答案】(1)7m m -+ (2)26--m 【解析】【分析】(1)根据分式的除法运算法则求解即可;(2)根据分式的混合运算法则求解即可.【小问1详解】2211497m m m÷--()()()1777m m m m =⨯-+-7m m =-+;【小问2详解】524223m m m m-⎛⎫++⋅ ⎪--⎝⎭()222923m m m m-⎛⎫-=⋅ ⎪--⎝⎭()()()332223m m m m m+--=⋅--26m =--【点睛】本题考查的是分式混合运算,熟知分式混合运算的法则是解答此题的关键.【36题答案】【答案】(1)y x x +-(2)22aa -【解析】【分析】(1)根据平方差公式对分式进行化简即可;(2)根据平方差公式和完全平方公式对分式进行化简即可.【小问1详解】解:22y x x xy y x+--()()22y x x x y x x y =---()22y x x x y -=-()()()y x y x x x y -+=-y x x +=-;【小问2详解】解:2244111a a a a a a -+⎛⎫÷-+ ⎪--⎝⎭()()()22211111a a a a a a ⎡⎤--=÷-⎢⎥---⎢⎥⎣⎦()()222121111a a a a a a a -⎛⎫-+=÷- ⎪---⎝⎭()()222211a a a a a a -⎛⎫-=÷- ⎪--⎝⎭()()()22112a a a a a a --=-⨯--22a a -=.【点睛】本题考查了分式的化简,正确的计算是解决本题的关键.【37题答案】【答案】26x +【解析】【分析】先把括号内通分化简,再把除法转化为乘法约分化简.【详解】解:原式24532224x x x x x ⎛⎫--=-÷ ⎪+++⎝⎭293224x x x x --=÷++()()()332232x x x x x +-+=⨯+-26x =+【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【38题答案】【答案】(1)c (2)1b a-【解析】【分析】(1)根据分式的加减法则进行计算即可;(2)先算括号里的,根据除法法则把除法变乘法,利用完全平方公式将分母因式分解,最后约分化简即可.【小问1详解】解:原式ac bca b-=-()a b c a b-=- c =.【小问2详解】解:原式2()b a b b a b -=⨯-1b a =-.【点睛】本题考查了解分式方程,分式的加减法则的应用,能熟记知识点的内容是解此题的关键.【39题答案】【答案】(1)2a b+ (2)11x +【解析】【分析】(1)将括号内通分,括号外除法改为乘法,再整理约分即可;(2)将括号内通分,再利用完全平方公式整理,最后将除法改为乘法并约分即可.【小问1详解】解:11a a b a b a b⎛⎫+÷ ⎪+--⎝⎭)())(()(a b a b a b a a b a b -=+⨯--++21aa ab =⨯+2a b=+;【小问2详解】解:2112x x x x ⎛⎫++÷+ ⎪⎝⎭2121x x x x x+++=÷21(1)x x x x +=⨯+11x =+.【点睛】本题考查分式的化简.掌握分式的混合运算法则是解题关键.【40题答案】【答案】(1)22x x -+; (2)9x-【解析】【分析】(1)先通分化为同分母分式加减法,进而即可求解;(2)先算括号里分式的减法,再把除法化为乘法,进而即可求解.【小问1详解】解:22 224224xx x x++-+--=()()2222 22224 444 x x xx x x-++----+=()()22222244x x xx----++=22444 x xx---=() ()()2222xx x---+=22xx-+;【小问2详解】解:2223339x x x xx x⎛⎫---÷⎪+-⎝⎭=22229339 x x x x x x⎛⎫---÷⎪+-⎝⎭=()()()33 933x xx x x+--⋅+-=9 x -.【点睛】本题主要考查分式的混合运算,熟练掌握通分和约分以及分式的混合运算法则是关键.【41题答案】【答案】(1)1015x y;(2)12x-+.【解析】【分析】(1)先乘方,再根据分式的乘除法求解即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果即可.【小问1详解】解:234332223y y x x x y ----⎛⎫⎛⎫⎛⎫÷⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6984612y y x x x y---=÷⋅6684912y x x x y y ---=⋅⋅1015x y =;【小问2详解】解:4222x x x x x x⎛⎫-÷ ⎪-+-⎝⎭22224(2)(2)(2)(2)2x x x x x x x x x x⎡⎤+-=-÷⎢⎥+-+--⎣⎦4(2)(2)(2)4x x x x x--=⋅+-12x =-+.【点睛】本题考查了分式的化简,正确对分式进行通分、约分是关键.【42题答案】【答案】(1)31x - (2)1a b- (3)4()x y x y -【解析】【分析】(1)根据分式的减法运算进行计算即可求解;(2)根据分式的乘除法进行计算即可求解;(3)根据分式的加减乘除法进行计算即可求解.【小问1详解】解:2233(1)(1)x x x ---()2331x x -=-()()2311x x -=-31x =-;【小问2详解】解:2122()ab ab a b b a ÷⋅--()2122a b ab ab a b -=⨯⨯-1a b=-;【小问3详解】解:221(4x x y y x y y ⋅-÷-22414x x y x y y y=⨯-⨯-()()2244x x x y y x y --=-()4xy y x y =-.【点睛】本题考查了分式的混合运算,掌握分式的性质是解题的关键.【43题答案】【答案】(1)42x + (2)2x【解析】【分析】(1)先通分,再计算即可;(2)先因式分解,除法改为乘法,再约分即可;【小问1详解】解:222x x x -++2(2)2(2)222x x x x x x x ++=-++++222224x x x x x --++=+42x =+;【小问2详解】2162844x x x x--÷+(4)(4)442(4)x x x x x -+=⨯+-2x =.【点睛】本题考查了分式的混合运算.掌握分式的混合运算法则是解题关键.【44题答案】【答案】(1)22x -+ (2)12m m+-【解析】【分析】(1)先把除法变乘法,再进行分式的混合运算;(2)先把整式化成分式的形式,再进行分式的混合运算.【小问1详解】解:原式=()()2432223x x x x x x x +--⋅+---=()()24222x x x x x +-+--=()()()24222x x x x x +-++- =()()()2222x x x --+- 22x =-+;【小问2详解】解:原式()()2111112m m m m m m +-⎛⎫+-⋅ ⎪-⎝⎭=()()()2211112m m m m m m--+-⋅-=()()11112m m m m+-⋅-=12m m +-.【点睛】本题考查了分式的混合运算,熟练掌握分式运算法则是解题的关键.【45题答案】【答案】(1)316y x (2)12a + (3)222a a a +--【解析】【分析】(1)先平方和立方运算,根据除以一个数等于乘以这个数的倒数,化简即可求得结果;(2)根据平方差公式通分,运算进行化简即可求得结果;(3)根据完全平方公式、平方差公式和除法法则进行运算即可求得结果.【小问1详解】解:原式=2323464927x x y y ÷=2323427964x y y x ⨯=316y x;【小问2详解】解:原式=()()()()222222a a a a a a +--+-+=()()2222a a a a ---+=()()222a a a --+=12a +;【小问3详解】解:原式=()()()()()2221112a a a a a a +--⨯+--=()()221a a a +-+=222a a a +--.【点睛】本题考查了完全平方式、平方差公式、分式的减法与除法,熟练掌握运算法则是解题的关键.【46题答案】【答案】2y x y-【解析】【分析】先通分算括号内的减法,同时将除法变成乘法,然后把分子、分母能因式分解的进行因式分解,最后约分即可.【详解】解:原式()()()()()()2y x y y x y y x y x y x y x y x ⎡⎤++=-⋅⎢⎥-+-+⎢⎥⎣⎦()()()y x y xyx y x y x +=⋅-+2y x y=-.【点睛】本题考查分式的化简,解题的关键是掌握分式的运算法则.【47题答案】【答案】1a a -【解析】【分析】先算括号内的分式减法,然后计算括号外的分式除法即可.【详解】解:254111a a a a a a -⎛⎫-÷ ⎪--+⎝⎭=()()()151114a a a a a a a +-++-- =()()()41114a a a a a a -++-- =1a a -.【点睛】本题考查分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.【48题答案】【答案】1m【解析】【分析】先计算括号内的分式加法,再计算分式的除法即可得.【详解】解:原式()()()2233222m m m m m m m ⎡⎤-+=+÷⎢⎥---⎢⎥⎣⎦()32223m m m m m m -⎛⎫=+⋅ ⎪--+⎝⎭()3223m m m m m +-=⋅-+1m=.【点睛】本题考查了分式的加法与除法,熟练掌握分式的运算法则是解题关键.【49题答案】【答案】(1)269a - (2)21x -【解析】【分析】(1)利用异分母分式加减法法则,进行计算即可解答;(2)先利用异分母分式加减法法则计算括号里,再算括号外,即可解答.【详解】解:(1)1133a a --+()()3333a a a a +-+=-+ ()()633a a =+-=269a -;(2)2211x x x x +-⎛⎫+÷ ⎪⎝⎭2x x x++=•()()11x x x +- ()21x x +=•()()11xx x +- 21x =-.【点睛】本题考查了分式的混合运算,熟练掌握因式分解是解题的关键.【50题答案】【答案】(1)a(2)x +1【解析】【分析】根据分式的四则混合运算和化简可以求得.【小问1详解】解:原式=21a a a --,=(1)1a a a --,=a ;【小问2详解】解:原式=(1)(1)1x x xx x+-´-,=1x .【点睛】本题考查了分式的四则混合运算和化简,熟练的掌握分式运算是解决此题的关键.。
分式的加减乘除混合运算
例2.计算:
1.
2 3x
x
2
y
x y 3x
x
y
x
x
y
分析与解:
巧用分配律
原式
2 3 x
x
2
y
x y 3x
(x
y )
•
x
x
y
2 3x
2
1 3x
1
•
x
x
y
2• x x y
2x x y
2.
(m
2
n)3
1 m
1 n
m2
1 2mn
n2
1 m2
1 n2
mn
m3n3
例1.(1) ( a 2b )3 •( c )2 • ( bc )4 c ab a
解:(1)原式 (a 2b)3 • c2 • (bc)4
(c)3 (ab)2
a4
分子、分 母分别乘 方
a6b3 c2 b4c4 ••
c3 a2b2 a4 b5c3
(2)( a
b)3
a2 (
b2
)2
2a
ab3
分析与解:原式
(m
2
n)3
mn mn
(m
1
n)2
m2 m
n2 n2 2
m3n3 mn
(m
2
n)2
1 mn
(m
1
n)2
m2 n2 m2n2
m3n3 mn
2mn m2 n2 mn (m n)2 (m n)2 m n
2mn m2 n2 mn (m n)2 m n mn
(a b)3 • a2b6 8a3 (a2 b2 )2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.2分式的加减乘除混合运算教学设计
一、教学目标
1 、理解、掌握分式加减乘除混合运算法则;
2、培养同学们对分式的运算能力
二、重点难点
重点:运用分式的加减乘除法则进行运算;
难点:异分母分式的加减运算
三、教学过程
(一)回顾练习
c
a 12
b
c b 8a 7)1(22-1x 11x 1x x )2(2++--- 解 (1)原式=33
22222122424a b a b c a b c -
332221224a b a b c -=
(2)原式=3232222111
11x x x x x x x x x ++----+---
221x x =- 归纳1 分式混合运算的顺序:先乘方,再乘除,后加减。
巩固练习1
2
231()()b a b a b a a b a b ÷-÷--
解:原式=22
23()()b b b a b a a a a b •-•-- 3233b b a a
=-
32
3b b a -=
例2.计算:
35(2)22x x x x -÷+---
解:原式=
()()2235222x x x x x x +-⎡⎤-÷-⎢⎥---⎣⎦ 23922x x x x --=÷--
()
322(3)3x x x x x --=•-+- ()()3(3)3x x x --=+-
13x =-+
归纳2 分式混合运算的顺序:
先乘方,再乘除,后加减。
如果有括号,先进行括号里的运算。
巩固练习2 计算下列各题
解(1)原式=()()()21131113x x x x x x -+-•++-+
1111x x x -=-++
21x x -=+ (2)原式=
()()22352422x x x x x x -+⎡⎤-÷-⎢⎥---⎣⎦ 239242x x x x --=÷--
221331+1121x x x x x x ++-÷--+())2x 2x 5(4x 23x 2---÷--)(22211232442x x x x x x -÷--+-()()212114111x x x x x x +⎛⎫⎛⎫⋅-- ⎪ ⎪+-+⎝⎭⎝⎭
()
()()()322233x x x x x --=•-+-
126x =-+
(3)原式=()()()2222222x x x x x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣
⎦ ()()22222x x x x --=
•-
12x =-
(4)原式=
()()()()()22141111111x x x x x x x x x x ⎡⎤++-•--⎢⎥+-+-+⎣⎦
()()()()()4121111x x x x x x -=-+-+-
224421x x x --=-
(三)能力展现 计算下列各题
4(1)22a a +-+
22
2299(2)369x x x x x x x +--+++
参考答案: ()212a a +()1223x +
四、课堂小结
1、类比方法的运用
2、分式除法一般都转化为乘法,其实质是约分过程;
3、异分母分式加减过程的关键是通分。
五、作业布置
课本P25 :第18、12题。