低压断路器中的限流新技术
低压断路器
发展趋势
低压断路器将向大容量、高性能和智能化方
向发展。限流技术和灭弧技术使低压断路器的短路分断能力
不断提高。缩短选择性保护时间,可以降低电气设备动稳定
和热稳定要求,实现全范围选择性保护,从根本上避免低压
配电系统越级跳闸和故障级断路器正常分断后上级断路器同
时分闸的问题。微处理器的应用使低压断路器具有智能保护
⑥按有无限流作用分为限流式和非限流式。限流式断路器带有电动斥力快速脱扣机构,分断时间短.电路发生短路时,短路电流还没有上升到址大值,断路器触头已分断,它对短路电流有限流作用,大大减轻了短路电流对电气设备产生的破坏作用。非限流式断路器无法限制短路电流的增长,承受短路电流时间长,因此分断能力低。另外,低压断路器还可以按传动方式、脱扣器种类等分类。
结构
低压断路器由触头系统、灭弧系统、过电流脱扣器、操动机构、框架或外壳及附件等组成。触头系统用于通断电路,并在接通位置时承载电流。有的低压断路接通位置时承载主电路电流,前者仅用于在接通位置时承载主电路电流,后者用于通断电路是产生并承受电弧。
灭弧系统用于熄灭触头电弧,该电弧在触头通断电流时产生的。
工作原理
图片
图1 三级低压断路器原理示意图
1-主触头;2传动杆;3锁扣;
4-分励脱扣器;5-失电压脱扣器;
6-过电流脱扣器;7一分渐禅赞
图1所示为一个三极低压断路器原理示意图。断路器的主触头。串联于三相电路并处于接通状态,传动杆由锁扣传动杆由锁扣传动杆由锁扣钩住,分断弹簧受到拉伸。当电路电流超过一定时过电流脱扣器的衔铁吸合,顶杆向上运动将锁扣顶开,分断弹簧使触头分断。当电路电压降低至一定值时,失电压脱扣器的衔铁释放,将锁扣向上顶开,使触头分断。分励脱扣器由控制电源供电,可以根据操作人员的令或其他信号使线圈通电,其铁芯向上运动并驱动断路器触头分断。
智能断路器中的漏电和接地保护原理及应用分析(1)
此文章枪手代写的并且没有付费,严重侵害版权,客户要用就会告的其没工作智能断路器中的塑壳断路器MCCB的原理及应用分析【摘要】随着计算机技术的普及,出现了智能断路器。
智能断路器具有很多优点,其中主要就有漏电保护和接地保护。
本文主要分析了智能断路器中的漏电和接地保护的应用原理及应用,希望能为广大读者解惑。
【关键词】智能断路器;矢量和;漏电保护;接地保护1.引言在配电网络系统中,为了避免电力系统的损失,使用了低压断路器。
低压断路器能够减少电力系统的损害。
但随着经济的发展和计算机技术的普及,就开始出现了智能断路器。
智能断路器比传统的低压电路器性能好,可供测量的参数种类多,它不仅可以完成传统的低压断路器对低压配电网络和用电设备提供的短路保护、过载保护、欠压和单相接地保护,还提供遥调、遥测、遥信、遥控此“四遥”功能。
其中,智能断路器中漏电保护原理和接地保护原理相似,只是两者测量的范围、精度不同而已,但两者均是测量三极断路器和四极断路器的矢量和。
智能断路器可分为框架断路器、塑壳断路器、漏电断路器和六氟化断路器,但从结构、性能又分为万能式断路器和塑壳断路器。
在使用智能断路器时,也应根据保护的要求不一样而选择不同的断路器。
智能断路器额定电流为630~5000A,智能断路器在使用过程中,机器就一直出于预备贮藏能量位置。
一旦断路器发出合闸命令,断路器就能瞬间合闸。
2.塑壳断路器的分析及发展前景塑壳断路器在民用建筑设计中应用广泛,塑壳断路器能够在高电流中超过跳脱后自动的切断电流,它将一种塑料作为绝缘体充当装置的外壳,大型的塑壳断路器常常会有跳脱感应器,断路器分类多种多样,有空气断路、惰性气体分类、油断路。
塑壳断路器又称为装置性断路器,所有的辅助零件全都密封于塑料壳内,正因如此,工作人员才无法检查与修理塑壳断路器。
而塑壳断路器中最常见的断路器有西门子3VL、施耐德NSX,西门子3VL为标准的分段能力断路器,西门子是国内最受推崇的电子与电气公司,施耐德NSX内置双芯感应器,它传承了NS的所有优点,可以显示所有脱扣单元测量的信息,有极强的限流能力,并且它还能保证持续性用电。
低压直流固态断路器分断特性优化方法研究
低压直流固态断路器分断特性优化方法研究
王海燕;吴自然;钱祺;夏初阳;许海波;林振权
【期刊名称】《电气传动》
【年(卷),期】2024(54)1
【摘要】为提高在直流系统发生短路故障时固态断路器(SSCB)的分断能力,提出一种考虑分断特性的低压直流固态断路器参数多目标优化方法。
首先对短路故障时SSCB的分断流程进行详细分析,通过理论与仿真确定了限流电感LB和金属氧化物压敏电阻的限电压能力系数γ对分断特性的影响。
以分断特性为基础,建立了SSCB的分断冲击性能指标、分断时间指标、能量吸收指标三个优化目标函数,通过多目标粒子群算法对目标函数进行优化,采用结合决策者偏好的逼近于理想解的排序方法对优化方案进行决策。
优化结果表明,在各种决策者偏好下的优化方案,其优化设计后的元件参数LB和γ均能显著提高SSCB的分断性能。
【总页数】9页(P40-47)
【作者】王海燕;吴自然;钱祺;夏初阳;许海波;林振权
【作者单位】温州大学浙江省低压电器工程技术研究中心;温州大学乐清工业研究院;新驰电气集团有限公司
【正文语种】中文
【中图分类】TM561
【相关文献】
1.电动斥力作用下低压断路器分断特性的研究
2.低压交流断路器直流分断能力的计算及校验
3.直流断路器临界负载电流分断特性的研究
4.低压交流断路器直流分断能力的计算及校验
因版权原因,仅展示原文概要,查看原文内容请购买。
限制短路电流的方法
限制短路电流的⽅法⼀、概述在⼤容量发电⼚中,当发电机并联运⾏于发电机电压母线时,其短路电流可能⾼达⼗⼏万甚⾄⼏⼗万安培,这将使母线、断路器等⼀次设备遭受到严重的冲击(发热和电动⼒)。
为了安全,必须加⼤设备型号,⽽⽆法采⽤价格便宜的轻型开关电器和较⼩截⾯的导线,这不仅会使投资⼤为增加,甚⾄会因短路电流太⼤⽽⽆法选到合乎要求的设备。
因此,应当采取某些限制短路电流的措施。
⼆、选择适当的主接线形式和运⾏⽅式1、发电机组采⽤单元接线各发电机和升压变采⽤单元接线⽽不在机端并联运⾏,将⼤⼤减少发电机机端短路的短路电流。
2、环形电⽹开环运⾏在环形电⽹某⼀穿越功率最⼩处开环运⾏,或将发电⼚⾼压母线分裂运⾏,就是将本来并联运⾏的两⼤部分分开运⾏,当然使短路时的阻抗增⼤,短路电流变⼩。
3、并联运⾏的变压器分开运⾏多数降压变电所中装有两台变压器,其低压侧母线常采⽤单母线分段接线,当分段断路器分开运⾏时,会使短路电流⼤为减少。
为保证供电可靠性,分段断路器上可装设“备⽤电源⾃动投⼊装置”,当⼀台变压器故障退出运⾏时,分段断路器能⾃动合闸,恢复对失电母线段及所带出线的供电。
三、装设限流电抗器1、在发电机电压母线上装设分段电抗器装设在发电机电压母线(6kV或10kV)分段处的电抗器能够有效地降低发电机出⼝断路器、母线分段断路器、母线联络断路器以及变压器低压侧断路器(还有连接这些设备的导体)所承受的短路电流。
由于正常通过分段的电流不⼤,可以选较⼤电抗百分数(8%-12%),⽽两段母线间的电压降也不会太⼤,电能损耗也少,因此优先采⽤。
2、在发电机电压电缆出线上装设出线电抗器如图5-21所⽰。
6-10kV出线上短路时,虽然上述母线分段电抗器也能起⼀些限流作⽤,但因其额定电流⼤(约为母线上最⼤⼀台发电机额定电流的50%-80%),电抗有名值较⼩,限制短路电流的能⼒较⼩。
这时,可在出线上装设出线电抗器,以使发电机电压直配线的短路电流限制到轻型廉价的开关所能开断的范围内(如常⽤的SN10-10I型少油断路器开断电流为16kA)。
为什么塑壳断路器没有短时耐受电流,却有短延时保护功能?
很多低压断路器用户,对框架断路器具备短时耐受电流和短延时保护功能是可以理解,但是对于塑壳断路器,特别是限流型塑壳断路器无短时耐受电流,却有短延时保护功能存在疑惑。
一、短时耐受电流和选择性类别短时耐受电流Icw是指断路器在闭合位置承受短路电流热效应和电动力效应一定时间而不损坏的能力。
低压断路器要求承受短时耐受电流值之后,还能成功分断短路电流,所以短时耐受电流参数考核了断路器的短路耐受和短路分断能力。
这种要求与实际应用相符合,比如某框架断路器用于进线断路器,瞬时保护关闭,短延时保护打开,在短路条件下该断路器先承受短路电流一定时间,再分断短路电流。
GB14048.2 低压断路器标准对短时耐受电流的要求如下表3。
对于额定电流小于等于2500A的断路器,其短时耐受电流最小值可以为12In和5kA 的最大者;对于额定电流大于2500A的断路器,其短时耐受电流最小值为30kA。
按是否宣称短时耐受电流参数,低压断路器可以分为:选择性类别B:具有短时耐受电流及相应短延时的断路器,B类断路器的选择性不一定保证一直到断路器的短路极限分断能力,即允许Icw≠Icu,但至少达到表3中的值。
框架断路器基本上都属于B类断路器,且有的断路器宣称Icw=Icu=Ics,具备高耐受和高分断的能力,这种断路器一般可以与下级塑壳短路实现全选择性。
断路器承受短路电流期间,短路电流产生的热效应和电动力效应对触头和导体回路的支撑件都是考验,热效应会导致触头的温度上升,电动力会导致触头斥开或者支撑件变形,都会影响后续的短路分断。
选择性类别A:除了B类以外的所有断路器,可以在短路情况下通过其他方式提供选择性。
塑壳断路器基本上都属于A类断路器,热磁式只具有热过载和短路保护功能,电子式有的具有长延时保护、短延时保护和瞬时保护。
疑问点就在于电子式塑壳断路器没有短时耐受电流宣称,为何会像框架断路器一样具有短路短延时保护功能呢?塑壳断路器的短延时保护与框架断路器的短延时保护有何区别呢?二、框架断路器的短延时保护框架断路器经常作为一级配电的进线或出线断路器,需要与下级塑壳断路器实现选择性配合。
低压断路器
1.42 I c 1.47 I c 1.53 I c 1.7 I c 2.0 I c 2.1 I c 2.2 I c
2016/4/6压断路器的主要技术参数
5. 额定短时耐受电流
断路器的额定短时耐受电流是指断路器 处于闭合状态下,耐受一定持续时间的短 路电流能力。额定短时耐受电流包括要经 受短路电流峰值冲击的电动力作用以及一 定时间的短路电流(周期分量有效值)的热作 用。
2016/4/6 Rockwell Automation 18
2.4 低压断路器
三. 低压断路器的主要技术参数 6. 保护特性
(1)过电流保护特性:断路器的动作时间 t与过电流脱扣器的动作电流I 的关系曲 线,即t=f (I)曲线。 低压断路器过电流保护可具有一段、 两段或三段过电流保护特性,图中曲线 ABCD为两段非选择性保护特性,其中 AB 段为长延时反时限保护特性,用于 过载保护; CD 段为瞬时脱扣器动作特 性。图中曲线 abcdef 为选择性三段保护 特性,其中ab段是过载反时限长延时保 护特性;cd段为短路电流较小时的定时 限短延时特性;ef段则为短路电流较大 时的瞬时动作特性。
2016/4/6 Rockwell Automation 12
2.4 低压断路器
二. 低压断路器的典型结构
2. 装置式断路器
目前,国产装置式断路器有 DZ20 系列和 DZ15 系 列等。与万能式相比较,其特点是触头系统、灭 弧室、操作机构及脱扣器等元件均装在一个塑料 壳体内,具有结构紧凑、体积小、使用安全、价 格低廉及外形美观等优点。 (1)普通装置式断路器:DZ20系列。 (2)限流装置式断路器:DZX10系列。
11
2.4 低压断路器
二. 低压断路器的典型结构
断路器的额定极限和额定运行短路分断能力
一、断路器的额定极限和额定运行短路分断能力用户在设计、选择低压断路器的短路分断能力时,应遵循的基本原则是:断路器的额定短路分断能力³线路可能出现(预期)的短路电流。
国际电工委员会IEC947 - 2和我国等效采用IEC的GB14048.2《低压开关设备和控制设备低压断路器》标准规定的短路分断能力有两种;额定极限短路分断能力Icu和额定运行短路分断能力Ics。
1. Icu和Ics的定义分别定义如下:Icu为按规定的试验程序所规定条件,不包括断路器继续承载其额定电流能力的分断能力;Ics为按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。
Icu 的试验程序为o t co;Ics的试验程序为o t co t co。
Ics比Icu的试验程序多了一次co。
经过程序试验,能完全分断,熄灭电弧,并无超出规定的损伤,被认为Icu试验通过,而Ics的合格标准,除与Icu相同外,还要增加温升和5%寿命次数的接通、断开额定电压、额定电流的试验,Ics试验条件更苛严。
2. Icu和Ics的关系Icu和Ics都是断路器的一项重要技术性能指标。
从实际情况出发,根据线路保护的需要和断路器的不同结构,IEC947 - 2和GB14048.2确定的Ics有4个或3个值,分别是25%、50%、75%和100%Icu(对A类断路器,即塑料外壳式),或50%、75%和 100%Icu(对B类断路器,即万能式或称框架式)。
断路器制造厂确定其产品的Ics值,凡符合上面标准规定的Icu百分值都是有效的、合格的产品。
万能式断路器的绝大部分(不是所有规格)都是有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护。
因此大多数主干线(包括变压器的出线端)都采用它作主(保护)开关,而塑壳式断路器一般不具备短路短延时功能(仅有过载长延时和短路瞬动的二段保护),不能作选择性保护,它们只能使用于支路。
由于使用(适用)的情况不同,IEC92《船舶电气》标准建议:具有三段保护的万能式断路器,偏重于它的Ics,而大量使用于分支线路的塑壳式断路器,应确保它有足够的Icu。
快速真空断路器在限流技术中的应用
快速真空断路器在限流技术中的应用黄永宁;艾绍贵;李艳军;樊益平;张爽【摘要】针对由于电网规模和单机容量的不断扩大,造成电网短路电流越来越大的问题,采用快速真空断路器技术,快速投入限流电抗器对短路电流进行深度限制,使得电网短路电流大幅度减小。
经电网中压系统大量应用和330 kV线路安装考核验证,结果表明:采用快速真空断路器技术限制电网短路电流,避免了常规限流技术造成的较大运行损耗,实现了电网限流装置结构轻便、造价低廉、运行可靠、维护方便的目标。
%Aiming at the problem of owing to power grid scale and single unit generating power capacity continuous expanding,causing power grid short circuit current augmenting,By using fast vacuum breaker technology,fast switches the current-limiting reactor on to limit short circuit current deeply,reduces power grid short circuit current. Through the wide application of power grid intermediate voltage system and verification of 330 kV line installation,the results show that using fast vacuum breaker technology to limit short circuit current of power grid can avoid larger operating loss bringing of the conventional current limiting technology,realize the aim of portable structure, low cost,reliable operation for current limiting device of power grid.【期刊名称】《宁夏电力》【年(卷),期】2014(000)006【总页数】6页(P18-23)【关键词】快速真空断路器;短路电流深度限制;快速涡流驱动;短路电流过零开断;故障快速识别【作者】黄永宁;艾绍贵;李艳军;樊益平;张爽【作者单位】国网宁夏电力公司电力科学研究院,宁夏银川 750011;国网宁夏电力公司,宁夏银川 750001;安徽伊格瑞德电气设备有限公司,安徽合肥 231131;国网宁夏电力公司电力科学研究院,宁夏银川 750011;国网宁夏电力公司电力科学研究院,宁夏银川 750011【正文语种】中文【中图分类】TM561.2在高、中压电网采用串联限流电抗器等措施来限制短路电流,实现短路电流水平满足开关遮断容量的要求是目前最为有效和通行的限制短路电流的措施。
关于电网短路电流问题以及限制短路电流的改进措施
关于电网短路电流问题以及限制短路电流的改进措施摘要:在电力系统不断发展之后,由于电网机制和电源负载的不断增加,系统容量不断增加,短路电流水平也在不断增加。
如何限制短路电流,研究短路电流水平是电网建设发展中必须考虑的重要的问题。
本文介绍了短路电流的定义,原因和危害;然后,从改变电网结构的角度,我们寻求限制短路电流的措施。
关键词:短路电流;问题;短路电流原因;措施;一、概述随着电力系统的不断发展,变电站容量,城市和工业中心负荷密度不断增加,大容量发电机组不断连接到电网,系统之间的强大互联,必然会突出一个新问题,即全部电力系统的水平电网的短路电流不断增加。
电网中的各种输变电设备,如变电站的开关、变压器、变压器、母线、电线、支撑绝缘子和接地网,都必须满足短路电流增加的要求。
也就是说,短路电流水平的问题。
选择合理的短路电流水平不仅是系统规划和设计问题,而且是一个重要的技术和经济政策问题。
包括电网短路电流水平在内的一些因素包括:短路电流的周期和非周期分量的值,恢复电压的上升陡度,单相接地的短路比电路电流为三相短路电流,以及电网元件之间的统计短路电流值的分布。
这些因素影响断路器的断路性能和设备参数的选择,也与电网结构,中性点接地方式和变电站出线数量有密切关系。
二、电力系统的短路考虑以下几个方面的问题:1.、系统短路电流水平上限值的选择决定了开关设备的分断能力,开关设备和变电站中元件的动态和热稳定性,以及对通信设备和触点的干扰。
和接地网的跨步电压。
目前的水平越高,建设和投资的成本就越高。
2、为保持系统稳定运行和足够的抗干扰能力,系统中的每个中心站必须保持一定的短路电流水平,以保持电源系统短路故障后的稳定性并减少电网中的大负荷波动给其他用户。
有必要保持足够的系统电压稳定性,因此有必要从技术和经济的角度选择合理的短路电流水平。
3、在确定系统短路电流水平时,还需要研究系统结构中的一些问题。
系统结构对短路电流水平有很大影响。
额定极限短路分断能力Icu和额定运行短路分断能力Ics。
额定极限短路分断能力Icu和额定运行短路分断能力Ics。
断路器的额定极限和额定运行短路分断能力分析用户在设计、选择低压断路器的短路分断能力时,应遵循的基本原则是:断路器的额定短路分断能力3线路可能出现(预期)的短路电流。
国际电工委员会IEC947 - 2和我国等效采用IEC的GB14048.2《低压开关设备和控制设备低压断路器》标准规定的短路分断能力有两种;额定极限短路分断能力Icu和额定运行短路分断能力Ics。
1. Icu和Ics的定义分别定义如下:Icu为按规定的试验程序所规定条件,不包括断路器继续承载其额定电流能力的分断能力;Ics为按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。
Icu的试验程序为o t co;Ics的试验程序为o t co t co。
Ics比Icu的试验程序多了一次co。
经过程序试验,能完全分断,熄灭电弧,并无超出规定的损伤,被认为Icu试验通过,而Ics的合格标准,除与Icu相同外,还要增加温升和5%寿命次数的接通、断开额定电压、额定电流的试验,Ics试验条件更苛严。
2. Icu和Ics的关系Icu和Ics都是断路器的一项重要技术性能指标。
从实际情况出发,根据线路保护的需要和断路器的不同结构,IEC947 - 2和GB14048.2确定的Ics有4个或3个值,分别是25%、50%、75%和100%Icu(对A类断路器,即塑料外壳式),或50%、75%和100%Icu(对B类断路器,即万能式或称框架式)。
断路器制造厂确定其产品的Ics值,凡符合上面标准规定的Icu百分值都是有效的、合格的产品。
万能式断路器的绝大部分(不是所有规格)都是有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护。
因此大多数主干线(包括变压器的出线端)都采用它作主(保护)开关,而塑壳式断路器一般不具备短路短延时功能(仅有过载长延时和短路瞬动的二段保护),不能作选择性保护,它们只能使用于支路。
低压断路器的开关电弧与限流技术
低压断路器的开关电弧与限流技术
低压断路器的开关电弧是指在断路器分断电流时,电流通过断路器的接点产生的电弧现象。
开关电弧会导致电弧能量的释放和接点的磨损,同时还会产生电磁干扰和噪音。
为了有效地限制和控制开关电弧,低压断路器通常采用以下限流技术:
1. 弧熔断技术:通过设计断路器的接触材料和结构,使电弧能量能够迅速地熔断,从而实现更快的分断电流。
一般采用弧熔断室或双金属接点等结构。
2. 灭弧技术:通过在断路器设计中引入灭弧装置,如磁力式、气力式或真空灭弧室等,能够迅速将电弧熄灭。
这些装置可以通过压缩气体、磁场或真空环境等方式将电弧受到的能量迅速释放,从而使电弧熄灭。
3. 电弧探测技术:通过在断路器中引入电弧传感器或光纤传感器等装置,能够实时监测电弧的产生和存在,从而实时控制和采取相应的措施进行限流。
一旦检测到电弧,可以通过触发灭弧装置或发送信号给控制系统等方式进行相应的处理。
4. 滤波技术:通过在断路器设计中引入电容、电感等滤波元件,能够对电弧产生的高频成分进行滤波和衰减,从而减小电磁干扰和噪音的产生。
这些技术的综合应用能够有效地限制和控制低压断路器的开关电弧,提高断路器的安全性和可靠性。
选择性保护
选择型低压断路器的技术发展 2010年01月28日由于低压配电系统的用电设备和分支回路的增多,为了保证低压配电线路供电的连续性和可靠性,选择性保护变得越来越重要。
本文介绍近期低压选择型断路器发展的动态,包括:局部选择性提升到全局选择性;低压配电系统的选择性保护范围从电源侧向终端侧延伸;采用机械式短延时的选择性小型断路器。
1 低压配电系统的选择性保护国际电工委员会的IEC标准和我国国家标准按使用类别把断路器分成A类和B类两种类型,其中A类断路器在短路情况下,无明确指明其有选择性保护功能,而B类断路器则明确指明有选择性保护功能,图1表示低压配电系统前后级断路器安装位置(图a)及其保护特性配合(图b)。
选择性保护是指当支路1发生短路时,仅下级支路断路器Q2开断短路电流,而上级开关不动作,这就不会影响其它支路如支路2和3的正常供电,因而选择性保护对提高低压配电系统的工作可靠性有重要作用,当前供电的连续性和可靠性日趋重要,无论是公共场所、生产企业和家庭电气设备,瞬间的断电会造成巨大的损失和生活上的不便,因而低压配电系统的选择性保护技术近年来有很大的进展。
如何实现配电系统上下级断路顺的选择性匹配,这主要决定于两者保护特性的配合,一般上级断路器采用有三段保护特性的选择型B 类断路器。
图1b)为上下级断路器保护特性配合,其中上级主开关Q1具有三段保护特性,即作为线路过载保护的长延时,短路情况下的短延时和瞬时三段保护,而断路器Q2作为下级支路开关,仅具有长延时和短路瞬时两段保护特性。
当支路1短路时,若短路电流为I1,则从图1b)的特性配合来看,短路电流使断路器Q2首先动作,而主开关Q1由于短延时而没有动作,这就保证了其它支路,如支路2和3的可靠供电。
a 两种断路器的按装位置b) 保护特性配合图1 选择性保护的特性配合生产发展和人民生活的提高,低压配电系统的用电设备和分支回路日益增多,选择性保护变得越来越受到人们关注,当前选择性断路器的技术向以下几方面发展:(1)局部选择性提升到全局选择性;(2)低压配电系统的选择性保护范围从电源侧向终端侧延伸;(3)采用机械式短延时脱扣器的选择性小型断路器。
探析低压配电系统的选择性保护技术
探析低压配电系统的选择性保护技术摘要:选择性保护就是指在特殊情况下,配电系统发生故障,两个或两个以上装置协作配合,消除故障,让电路系统正常运转,在这个过程中别的装置自己运行不参与。
也指低压配电系统一个坏了,配电设备有序断开,而不是无序的进行保护。
这种保护措施对配电系统作用非常大,就是指配电系统出现故障短路时,配电设备自己解除故障,减少损失。
关键词:低压配电系统;选择性保护;实施要点一、系统性保护技术配电短路时,系统出现故障,单纯依靠低压配电系统解决不了问题,要通过各项设备整体完成。
1.1机会选择性当配电系统短路时,由于电流非常大,要根据实际情况,找到好的时机进行选择性保护,这种方法叫做机会性选择。
在实际情况下可以这样操作:当电路发生故障,出现短路,这个脱扣器会通过系统自动解扣,不用人工去解扣,这样断路器的触头就会在操作过程中自动断开,电弧经也会在这个过程中根据装置系统熄灭,从而完成断路器切断电源工作。
在发生故障时,需要解扣,但不能立刻去解扣,需要了解电路状况,看短路的严重程度,这些准备好,才能去解扣,这个时间段一定要把握好;电路发生故障以后,查看好故障问题,找到解决方案,再去把断路器断路这个时间叫全分段时间。
所以说机会时机选择很关键,一定要做到稳准。
不能麻痹大意。
在处理故障过程中,要分类处理,对不同的断路器要求用不同方法,这样才能保证安全处理,保证电路的畅通运行。
还有就是按照不同断路器的特点,进行选择,灵活应用,使两种断路器不和重合交叉。
1.2电流选择性因为很多情况下,配电系统容易发生故障,如何处理就要灵活处理,具体情况具体处理。
这样的保护措施是依据脱扣器的的使用分值来判断的,这种方法简单实用,应用于很多断路器,像常见的A类塑壳断路器、B类塑壳断路器等等,要是用这种方法,断路器的数值必须严格要求,数值一定不能错,要不会造成严重后果,不堪设想。
1.3逻辑选择性逻辑选择性,在生活中称之为片区域选择性关联。
在供电系统中零损耗深度限流装置的应用
在供电系统中零损耗深度限流装置的应用摘要:本文结合在供配电系统中新技术零损耗深度限流装置的开发应用,以某变电站1号主变35kV侧配置安装零损耗深度限流装置为例,对新技术装置安装前与安装后的运行状态技术数据、新技术装置工作原理、主变高低压侧绕组受大电流冲击状态、所取得的优良成果展开充分讨论。
主题词:供电系统;零损耗;深度限流;新技术;0.引言在现今供配电网系统中,根据国内外同类专利技术知识产权现状分析;通常习惯上采用串联限流电抗器来限制短路电流,以使变压器耐受短路冲击的能力和断路器遮断容量能够适应系统短路水平。
以变压器为例,变压器抗短路冲击能力差,当变电器低压侧短路时造成内部严重损坏的事故时有发生,已成为影响配电网安全运行的主要问题之一。
而在这些变压器损坏事故中,流过变压器的短路冲击电流很多已达到额定电流的4倍左右。
另外随着系统容量的增加,有些变电所母线短路电流已经接近甚至超过断路器的短路开断能力。
采取有效措施限制短路电流,是维持供配电网安全运行的必要条件。
进入新世纪以来,国内推出了大容量快速开关与限流电抗器并联的限流方案,可以解决限流电抗器带来的巨大电能损耗和对电压质量的影响等问题。
在正常运行时,大容量快速开关将限流电抗器短接,不存在能量损耗和电压降,一旦发生短路故障大容量快速开关在3ms之内将电抗器投入限流。
这种限流方法在用电企业的6~10kV配电网内获得大量应用。
但由于大容量快速开关在每次动作后都需要更换载流桥体、限流熔断器等一次性元件,这不仅增加了运行成本,也给设备的维护带来极大的不便。
近几年来国内外对超导故障限流器开发应用也有相应的进展;国内第一台10kV超导限流器曾于2005年完成挂网试验,但因投资较大,投资额达1700万元,维护成本高,于2006年退出运行。
这种限流装置的参数根本不能满足高压电网的要求,在10~35kV中压电网推广应用的可能性几乎为零。
1.新技术开发应用的优势。
采用快速真空断路器与限流电抗器并联,可以实现零损耗限流,在系统正常运行时快速真空断路器将限流电抗器短接,不存在电能损耗和电压降;当短路发生时,快速真空断路器将限流器快速投入进行限流。
超高速开断短路电流的新设备——DXK1短路电流限流开断器
产品在国家高压电器质量监督检测中心的发电机 回路通过了80 kA大电流开断试验.振荡回路的摸底 试验已达到12 kV/120 kA及20 kV/100 kA的开断能 力.同时通过了其它项目的型式试验.于2005年4 月通过国家电网公司组织的验收。产品在陕西电网进 行了推广应用.取得了良好的运行业绩,产品价格仅 为同类进口产品的1,3.具有显著的经济效益和社会 效益.受到用户的好评。
快速隔离器1和特种高压限流熔断器2在电气上 是并联的.由于前者的主回路电阻仅为后者的数百分
万方数据
图2 DXKl限流器外形
各部分的动作时序如图3所示。图中,实线为预 期短路电流,阴影部分为限流后的实际短路电流:图 中:0~£。为电子控制器响应时间,£。~£:为快速隔离器
㈨幢旧旧旧旧圜 2006,No.3·月刊
(4)具有联动和远传动作信号功能。限流器动作 后的联动接点可用于断路器的跳闸或闭锁.防止非全 相运行和进行远方报警。
(5)安装方式灵活、更换备品方便。
5 DXKl限流器在电力系统的典型应用
5.1 由DXKl旁路限流电抗器。构成零损耗限流装置 由通用限流电抗器与DXKl并联而成.其接线见
图5、应用实例照片见图6。
0概述
近年来.我国电力系统的短路电流水平随着电源
目前限制短路电流的主要措施有:采用限流电抗 器、采用高阻抗变压器或改变运行方式。这些方法的 主要缺点是增加能耗、降低电能质量、降低了供电能 力及供电可靠性。所以研制和应用可以限制电力系统 特大短路电流、并可将其超高速开断的新型设备(简 称限流器或FCL:Fault Cun伽【t Limiter)是电力工业 发展的必然。是电力企业和大电力用户的迫切要求, 也是国内外的热门话题.
浅谈低压断路器的限流作用及选择性
d srb t n s se . iti u i y tm o
Ke o d :cr u tb e ke ;s l ci iy;c s a i g p o e t n y W r s ic i r a r ee tv t a c d n r tc i o
1 概 述 .
随着 我国 国民经济 的飞速发 展, 上用户配 电 新 所越 来越多 , 电要 求也越 来越 高。低 压断路器是 用 直接 面 向广大 电力 用户 的重要设备 , 压断路器 如 低 何选 用 得安 全 、 济 、 经 合理 显得 尤 为重要 。在 设 计 低 压配 电系统时 , 应注意 低压断路 器的选 择性和 级 联保 护性 。
Ab t a t sr c :Th r il nto u e h u r n i tn U c in o r w — v la e Cic i Br a e nd t e e a tce i r d c s t e c re tlmii g f n to n Io — o t g r u t e k r a h
p a tc ls l to s r c ia o u i n .Th th s v r o d r f r nc O i p o e t e r la i t ,s lc iiy a e y o o v la e a a e y g o e e e e t m r v h eib l y ee tv t ,s f t flw o tg i
低压断路器三段式保护原理
低压断路器三段式保护原理
低压断路器是工业和民用电气系统中常见的一种电器设备,它
的主要作用是在电路发生短路、过载或其他故障时,及时切断电源,保护电气设备和人身安全。
为了更好地实现对电路的保护,低压断
路器通常采用三段式保护原理,即短路保护、过载保护和地漏保护。
首先是短路保护。
当电路发生短路时,电流会急剧增加,这可
能会对电气设备造成严重损坏,甚至引发火灾等安全事故。
为了应
对这种情况,低压断路器内部通常设置有热释放器或磁性释放器,
当电路中的电流超过设定值时,这些释放器会迅速作用,切断电源,从而实现短路保护。
其次是过载保护。
在电气设备长时间运行过程中,如果电流超
过了设备的额定工作电流,就会造成过载,导致设备过热甚至损坏。
为了避免这种情况的发生,低压断路器内部通常设置有过载保护装置,当电流超过额定值时,这些装置会自动切断电源,保护设备免
受损坏。
最后是地漏保护。
地漏是指电路中发生的对地绝缘故障,会导
致电流通过人体流向地面,造成触电事故。
为了防止这种情况的发
生,低压断路器通常还设置有地漏保护装置,当电路出现对地绝缘
故障时,这些装置会迅速切断电源,保护人身安全。
综上所述,低压断路器的三段式保护原理能够有效保护电气设
备和人身安全,是电气系统中不可或缺的重要部分。
在实际应用中,我们需要根据具体的电路特点和要求,选择合适的低压断路器,并
合理设置保护参数,以确保电路的安全可靠运行。