故障录波器与故障波形分析复习进程
故障录波介绍
中性点经接地电阻接地方式
接地变压器结构与一般 三相芯式变压器相似。T0 为接地变压器,铁芯为三 相三柱式,每个铁芯上有 两个匝数相等,绕向相同 的绕组,每相上面一个绕 组与下面一个绕组反极性 串联,并将每相下面一个 绕组的首端连在一起作为 中性点,组成曲折形的星 形接线。二次绕组视工程 需要决定是否配置。
接地变零序保护误动、拒动探讨
防范措施 (3)35kV母线并列运行时,不得同时投入两条母线的接 地变。
感谢您的聆听
故障录波在线查看
【波形设置】选项
故障的起始时刻
故障录波在线查看
高度 长度
故障的起始时刻
故障录波离线分析软件
三 典型波形识别
故障录波分析-三相短路电压
故障录波分析-三相短路低压侧电流
0.052s故障开始
0.18s故障结束
故障录波分析-三相短路高压侧电流
故障录波分析-两相短路低压侧电流
故障录波分析-两相短路低压侧电流
实际波形分析-案例 1 保护动作信息
1号接地变保护测控信息
实际波形分析-案例 1 1号接地变零序电流波形
实际波形分析-案例 1
原因分析 直接原因:35kV I段母线所带风机线路上一台配电变压
器A相高压侧引线折断,搭接至变压器本体导致A相接 地故障。 根本原因:35kV I段母线所带风机线路未配置零序电流 互感器,未设置零序电流保护。
五 零序保护误动、拒动探讨
接地变零序保护误动、拒动探讨
(一)两条线路同相接地的电流叠加
当一条线路经高阻接地,由于故障电流小,保护不能动
作;此后,另一条线路又经高阻接地,线路的故障电流也未
达到保护动作值,两条线路同时发生高阻接地等值电路为: 图中,R1 、R2 分别为故障线 路1、线路2的接地过渡电阻; Il1 、IL2 分别为故障线路1、线 路2的零序电流;IR 为流过接 地变的零序电流;XCΣ 、Xb 分 别为线路对地电容、接地变压 器的电抗值;R为接地电阻值。
故障录波装置基础知识讲解
一、故障录波器的作用
(3)对断路器存在的问题给以真实记录,如断路器的拒动、跳跃、断相 和切断空载电流的能力等,均可从故障录波图上分析出来,以便改进。
(4)为检修工作提供依据。例如按断路器切除故障次数进行检修是规程 规定的。但从故障录波分析发现,有时单相接地故障发生在不同相别, 切除故障电流并未集中在断路器的同一相,因此断路器检修工作,应 根据录波实际情况而定,可减少检修次数。
门的数据区中。
(4) (4))将记录的故障数据通过以太网送至分析管理层。
五、数据采集单元
2、数据采集单元的结构
数据采集单元一般由信 号输入电路、主处理器电 路、GPS电路、电源电路 等组成。
(1) 信号输入电路
信号输入电路是模拟量和开关量输入的信号调理部分,它 的作用是将电压互感器和电流互感器或其它设备传来模拟信号 及开关量信号进行准确、合适的转换,再送交主处理器电路进 行采样处理。
(1)模拟量、开关量分别处理后再送至CPU插件、提高 了抗干扰能力,易实现多CPU结构。
(2)多CPU结构提高了装置的可靠性,某个CPU的损坏 不会影响到别的CPU。
(3)总线不外引,加强了抗干扰能力。 (4)使装置的容量可灵活配置。
五、数据采集单元
1、数据采集单元的功能 数据采集单元主要实现以下功能:
(2)保护装置动作不正常(包括误动、拒动、动
2
作信号异常而造成误判断)。
(3)事故过程中,现场人员忙于处理事故,记 录不全,有时次序颠倒,反映情况不真等。
3
一、故障录波器的作用
2、为查找故障点提供依据 3.积累运行经验,提高运行水平
故障录波器与故障波形分析_图文
二、故障录波器之功能
2、电力系统元件发生不明原因跳闸
利用故障录波器记录下来的电流 电压量判断出是否无故障跳闸
查明原因, 马上恢复
送电
二、故障录波器之功能
3、继电保护装置有不正确动作行为
继电保护装置误动造成无故障跳闸 系统有故障但保护装置拒动 系统有故障但保护动作行为不符合预先设计
故障录波器与故障波形分析_图文.pptx
背景 电网事故的一般处理程序
电网事故判断
电网事故处理
电网事故分析
电网事故分析
现场保护 的动作信 号--来 自于调度 员的汇报
故障录波 器的录波 图
保护装置 内部动作 事件报告 和动作波 行图
继电保护故障信息
内容
一、故障录波器的概念 二、故障录波器的功能 三、故障录波器的原理 四、故障录波器之装置特点 五、故障录波器的主要参数 六、故障录波器的技术分析 七、故障录波器在应用中存在的问题及措施 八、典型故障波形的分析
5.3特殊记录方式
如果出现长期的电压、频率越限或电流振荡,则由S时刻开始沿ABCD时 段顺序录波,并延长D时段,直至所有起动量全部复归或振荡停息。其中频 率值测量精度不劣于± 0.05Hz。
六、故障录波器之技术分析
各种故障情况下的波行特征:
• 单相接地故障,故障相电流和零序电流大小相等 且同相位,故障相电压有一定程度减小,同时有 零序电压出现。
四、故障录波器之装置特点
1、集故障录波与测距、实时监测和电能质 量分析为一体
不定长动态录波和故障测距,测距精度优于2%; 记录系统发生大扰动时的时刻:年、月、日、时、分、秒、毫秒; 记录系统发生大扰动前后各输入量(电流、电压、高频、开关状态等)
故障录波器及继电保护故障信息系统技术培训
录波器记录数据的准确度 。
故障录波器之指标
评价录波器的常稳态用数据指,一标
最大故障电流波般记。不高小录采于样2能周速 力
录波记录时间 率
故障前 重合于故障,
重新开始一
个记录故过程障时
重暂合态成数功据,,经高预采先样 速设率定。的记最录大时记间录0时.2 间后停止秒录波,一
般设定2秒
故障切除后-非全相时期
有子站情况下的录波器接入
华东电力数据网IP地址分配规律
华东500kV变电站仅建设二级网,IP地址为 10.30开头,供保护使用地址的最后一位为 65-123或193-251,65和193一般预留给保 护子站使用。
凡直接跟电力数据网接口的设备(包括保 护管理机、录波器工程师站、串口服务器 以及220kV部分的设备等)都必须使用华东 网调分配的二级网地址
开关量起动:所有保护的跳闸出口信号;所 有开关的副接点变位信号
故障录波器之指标
评价录波器的常用指标
采样速率-采样速率的高低决定了录波器 对高次谐波的记录能力 ,标准规定不低于
5KHz,工程中一般使用3200Hz,即每周波
采样64点。
高档的录波器使用 12位A/D,且每个通
A/D转换器位数-A/D转换器道的使用位一个数决定了
无子站情形下录波器的接入
数据网交换机
220kV 录 波 器 集 中 交 换机
站工录
网卡
程波
师器
HUB
HUB
具有独立网口的录波器设备
也可能是串口服务 器
HUB
其他输出口的录波器
故障录波器接入数据网方案
有保护子站情况下的录波器接入方案 1、每一台录波器均通过网络接入子站交换 机,对于无网络口输出的设备可以通过配 置串口服务器转换为网络口。 2、通过站内子站交换机,将故障录波器接 入到数据网
故障录波识图基础及典故故障波形分析方法
故障录波识图基础及典故故障波形分析方法一、故障录波识图基础知识析录波图的基本方法大体分为下面四个步骤:1、当我们拿到一张录波图后,首先要通过电力系统复合序网所学的知识(查看公众号好干货分享C3文章学习电力系统故障分析基础知识)大致判断系统发生了什么故障,故障持续了多长时间。
2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。
(注意选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。
下面我们来给大家讲一讲如何查看打印版的故障录波波形(当然用录波分析软件CAAP2008X【关注公众号可留言索取录波分析软件及详细使用说明书】分析电子档波形文件更为方便)A、读取事件发生的准确时间(看如下波形)故障持续时间: 故障持续时间为从电流开始变大或电压开始减低开始到故障电流消失或电压恢复正常的时间,如图所示的A 段,故障持续时间为60ms。
保护动作时间: 保护动作时间是从故障开始到保护出口的时间,即从电流开始变大或电压开始降低,到保护输出触点闭合的时间,如图所示的B 段,保护动作最快时间为15ms。
断路器跳闸时间: 断路器跳闸时间是从保护输出触点闭合到故障电流消失的时间。
如图所示C 段,断路器跳闸时间为45ms。
一般不用断路器位置触点闭合或返回信号。
保护返回时间: 保护返回时间是指故障电流消失时刻到保护输出触点断开的时间,如图所示D 段,保护返回时间为30ms。
重合闸装置出口动作时间: 重合闸装置出口动作时间是从故障消失开始计时到发出重合命令( 重合闸触点闭合) 的时间,如图所示E 段。
图中重合闸动作时间为862ms。
断路器合闸动作时间: 断路器合闸时间是从重合闸输出触点闭合到再次出现负荷电流的时间。
故障录波器波形分析
故障录波器波形分析故障录波器(Fault Recorder)是一种专用的电力系统故障记录设备,广泛应用于电力系统的技术运行和故障分析过程中。
它能够记录和保存电力系统中的各种故障事件的波形数据,为故障的快速分析和解决提供了重要的依据。
故障录波器的波形分析是指对录波器保存的故障事件波形数据进行分析和解读的过程。
通过对波形数据的全面分析,可以从中获得有关故障事件的详细信息,包括故障类型、发生位置、故障时刻、故障电压和电流的变化等等。
这对于电力系统的运行和维护非常重要。
波形分析主要包括以下几个方面:1.故障类型的识别:通过对波形数据的特征分析,可以确定故障事件的类型,如短路、接地故障、电压暂降、电压暂升等。
不同类型的故障具有不同的波形特征,通过对波形数据的分析,可以准确地确定故障类型,为故障的修复提供依据。
2.故障的发生位置和时刻的确定:通过对电流和电压波形的相位和幅值分析,可以确定故障事件的发生位置和发生时刻。
电流和电压波形的相位差可以反映故障发生的位置,而波形的幅值变化可以反映故障的时刻。
通过对波形数据的分析,可以快速准确地确定故障的发生位置和时刻。
3.故障电压和电流的变化规律分析:通过对电流和电压波形的变化规律的分析,可以了解故障电压和电流在故障事件中的变化过程。
这对于了解故障的严重程度和对电力设备的损坏程度有重要的意义,对于故障的修复和设备的保护具有重要的指导作用。
4.波形数据的比较和对比分析:通过对不同事件之间波形数据的比较和对比分析,可以找出故障事件之间的相似之处和不同之处,寻找共性和规律。
这有助于从整体上了解故障事件的特点和规律,为未来类似故障的分析和解决提供经验和参考。
总之,故障录波器的波形分析是电力系统故障处理和分析的重要环节。
通过对波形数据的深入分析和解读,可以准确地确定故障的类型、发生位置和时刻,了解故障电压和电流的变化规律,为故障的修复和设备的保护提供重要依据。
它对于电力系统的安全稳定运行和维护具有重要的意义。
故障录波装置日常检查操作及故障录波图相关知识培训讲解
频率越限和变化率启动; 开关量启动; 手动和遥控启动; 我场NSR2000故障录波测距系统设有“故障录波器 动作”和“故障录波器告警”两块光字牌,启动 “故障录波器动作”的条件为各采集参数启动量越 限;启动“故障录波器告警”的条件为装置电源消 失及装置本身故障。
装置的投退操作步骤 正常情况下NSR2000故障录波测距系统投运操作步 骤如下 1 检查110kV故障录波器屏后工控机电源开关在断 开位置; 2 检查屏后各数据采集单元电源开关在断开位置; 3 检查各电压切换开关位置正确; 4 放上相应故障录波器直流保险; 5 合上110kV故障录波器屏后交流电源开关; 6 合上110kV故障录波器屏后工控机电源开关,并 开启工控机启动按钮,查工控机启动正常; 7 分采集单元电源及信号指示灯正常。
▪ (2)为查找故障点提供依据。 ▪ 由故障录波图可判断故障性质,并根据电流、电压
等录波量的大小计算故障点位置,微机型故障录波 装置可直接测算故障点位置,使巡线范围大大缩小 ,省时、省力,对迅速恢复供电具有重要作用。
▪ (3)帮助正确评价继电保护、自动装置、高压断 路器的工作情况,及时发现这些设备的缺陷,以便 消除事故隐患。
▪ 所以再重申一遍:对于分析录波图,第4条是非常重要的, 对于单相故障,故障相电压超前故障相电流约80度左右;对 于多相故障,则是故障相间电压超前故障相间电流约80度左 右;“80度左右”的概念实际上就是短路阻抗角,也即线路 阻抗角。
32
故障录波装置日常检查操作及故 障录波图相关知识培训讲解
1
一、故障录波装置的作用
▪ 故障录波装置是电力系统十分重要的安全自动装 置之一。由于故障录波装置对提高电力系统的安 全运行水平极为重要,《继电保护和安全自动装 置技术规程》规定:为了分析电力系统故障及继 电保护和安全自动装置在事故过程中的动作情况 ,在主要发电厂、220kV及以上变电站和 110kV重要变电站,应装设故障录波装置。故障 录波装置是一种常年投入运行,监视电力系统运 行状态的自动记录装置。
故障录波器原理及使用相关知识培训讲解
(4)具有完善的智能化打印绘图功能。
打印输出时能够对录波数据进行分析,自动确定绘图比例, 自动选择电气量有变化的部分。打印输出的信息报告内容 包括故障时刻、故障元件、故障地点、故障类型、自动重 合闸动作情况、开关量动作顺序等。
(5)故障录波数据后期处理。
对故障录波后的数据,可在机上用专用的软件进行离线 处理。可对录波数据全过程模拟量的每一部分及开关量 进行放大、缩小、定格、重新排列、打印输出等,还可 利用卡远传录波数据到调度中心进行分析处理。
第三节 故障录波装置的应用 一、故障录波装置的启动
装置的 故障录 波启动
(一)内部启动 (二)外部启动
(一)内部启动
(一)内部启动
1.各相相电压和零序电压突变量启动 规定相电压突变量为△UK≥±5%UN
2.过规压定和零欠序压电启压动突变量为 △U≥±2%UN
3.主变压器中性点电流越限启动
规定变压器中性点电流越限启动值为 4.频3I率0≥越±限1与0%变IN化率启动
1.数据采集任务 数据采集任务是1ms进行一次定时采样及计算,每 次定时采样均进入采样中断服务程序。
2.判断启动任务 分为内部启动和外部启动两种。
故障录波器波形分析
故障录波器波形分析1.转换波形数据:将录波器记录的波形数据转换成图表形式,以便更直观地观察和分析。
2.故障类型判断:通过观察波形,可以判断出故障类型,如短路故障、接地故障、过电压故障等。
3.故障原因分析:根据录波器记录的波形特点,可以分析出故障发生的原因。
例如,如果录波器记录到了电流突变和电压波动,可以判断是由于短路故障或者设备故障引起的。
4.故障位置定位:通过分析故障波形的传播时间和电流电压的大小变化,可以估计故障发生的位置。
例如,通过测量电流和电压的相位差和传播时间,可以利用时差法或半径法进行故障位置的定位。
5.故障后果预测:根据录波器记录的波形,可以对故障后果进行预测。
例如,通过分析电流的大小和变化,可以预测设备是否会损坏,以及故障对电网运行和负荷供应的影响程度。
故障录波器波形分析的优势在于能够提供准确的故障信息和相对精确的故障位置,可以帮助维修人员迅速定位故障点和采取相应的修复措施。
此外,录波器还可以在故障发生的瞬间记录数据,避免了人工分析时可能的遗漏和误判。
然而,故障录波器波形分析也存在一些限制。
首先,必须依赖于高质量的录波器设备和准确的数据采集。
其次,对于复杂的故障,需要综合考虑多个因素才能得出准确的判断结果。
再者,对于一些细微的故障,波形分析可能无法捕捉到相关的特征,需要借助其他手段进行进一步的分析。
总之,故障录波器波形分析是电力系统故障处理中重要的一环,可以帮助维修人员准确快速地定位故障情况,从而提高维修效率。
随着技术的不断发展,故障录波器波形分析的方法和设备也在不断改进和完善,为电力系统的安全运行提供了有力的支持。
故障录波录波图分析word版
故障录波录波图分析各类故障情形下的波行特点:单相接地故障,故障相电流和零序电流大小相等且同相位,故障相电压有必然程度减小,同时有零序电压显现。
两相之间故障,两个故障相的电流大小相等,方向相反,没有零序电流。
两相接地故障,两个故障相的电流突变增大,但两个电流之间的相位有角度差,转变范围随过渡电阻的不同在60°-180°之间转变,但有零序电流显现。
三相接地故障或不接地故障,三相电流同步增大,没有零序电流和零序电压。
故障进程中的波形特点:➢故障相电流有明显突变增大,电压有必然程度减小,同时有零序电压和零序电流显现➢在故障切除后,电流通道变成一根直线。
若是是线路PT,在线路两头故障均切除后故障相电压变成0,零序电流变得很小或为0,但有专门大的零序电压。
重合成功。
三相电流恢复正常负荷电流,三相电压恢复对称。
依照故障录波图能够取得的信息1、发生故障的电气元件和故障类型2、爱惜动作时刻和故障切除时刻3、故障电流和故障电压4、重合时刻和是不是重合成功5、详细的爱惜动作情形6、完成附属功能(测距、阻抗轨迹、相量和谐波分析等)7、直流是不是正常,是不是接地、短路8、高频是不是发信在咱们的日常生产中常常需要通过录波图来分析电力系统到底发生了什么样的故障?爱惜装置的动作行为是不是正确?二次回路接线是不是正确?CT、PT 极性是不是正确等等问题。
接下来我就先讲一下分析录波图的大体方式:一、当咱们拿到一张录波图后,第一要通过前面所学的知识大致判定系统发生了什么故障,故障持续了多长时刻。
二、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是不是正确,是不是为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确信故障态各相电流电压的相位关系。
(注意选取相位基准时应躲开故障初始及故障终止部份,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、故障录波器之原理
➢故障录波器
用来记录电力系统中电气量和非电气量以 及开关量的自动记录装置,通过记录和监视系 统中模拟量和事件量来对系统中发生的故障和 异常等事件生成故障波形储存并发送至远方主 站,通过分析软件的处理对波形进行分析和计 算,从而对故障性质故障发生点的距离 故障 的严重程度进行准确地判断。
一、故障录波器之概念
➢ 故障录波器是电力系统发生故障及振荡时能自动 记录的一种装置, 它可以记录因短路故障、系统振 荡、频率崩溃、电压崩溃等大扰动引起的系统电 流、电压及其导出量, 如有功、无功以及系统频率 的全过程变化现象。
二、故障录波器之功能
按照电力系统发生故障的不同情况,对应于 录波器的作用主要体现在以下三个方面: ➢ 1、系统发生故障,保护动作正确
五、故障录波器之主要参数
➢3、最大故障电流记录能力 该指标用来保证在系统最大短路电流下
能够完整地记录故障过程,不发生削波, 同时在极小电流时又要能用一定的精度。 该指标有时还影响到录波器启动定值的灵 敏度。
五、故障录波器之主要参数
➢ 4、录波记录时间 故障录波器被触发后,将根据事先设定的录
波时间采集数据、存储数据。这几个时段有:
五、故障录波器之主要参数
➢ 5、录波数据采样及记录方式 ➢ 5.1模拟量采样方式
模拟量采样及记录方式按下图执行:
系统大扰动开始时刻
S
A
B
C
D
t=00.0000 模拟量采样时段顺序
t(s)
A时段:系统大扰动开始前的状态数据,记录时间为40ms~100ms可调。采样频率 10kHz、5kHz、2kHz、1kHz可设。
四、故障录波器之装置特点
➢3、其他
满足电力部部颁标准 模块化结构,硬件设计先进 强大的软件功能 完备的通讯功能和网络功能 抗电磁干扰能力强 准确的系统时间 背插式组屏和USB接口
ห้องสมุดไป่ตู้
五、故障录波器之主要参数
➢1、采样速率
采样速率的高低决定了录波器对高次谐波的 记录能力,在系统发生故障之初,故障波形的高 次谐波非常严重,因此,为了较真实地记录故障 的暂态过程,录波器要有较高的采样速率。电力 行业标准规定,故障录波器的采样速率应达到5 kHz。但高的采样速率,则要使用较多的存储空 间,同时在进行数据传输时,要花费更长的时间, 这很不利于故障后的快速分析故障。
四、故障录波器之装置特点
➢1、集故障录波与测距、实时监测和电能质 量分析为一体
不定长动态录波和故障测距,测距精度优于2%; 记录系统发生大扰动时的时刻:年、月、日、时、分、秒、毫秒; 记录系统发生大扰动前后各输入量(电流、电压、高频、开关状态等)
的变化过程; 电力系统实时监测,可实时显示电压、电流波形及系统的有功/无功
故障录波器 及典型故障波形分析
故障信息管理系统
➢背景 电网事故的一般处理程序
电网事故判断
电网事故处理
电网事故分析
电网事故分析
现场保护 的动作信 号--来 自于调度 员的汇报
故障录波 器的录波 图
保护装置 内部动作 事件报告 和动作波 行图
继电保护故障信息
内容
✓ 一、故障录波器的概念 ✓ 二、故障录波器的功能 ✓ 三、故障录波器的原理 ✓ 四、故障录波器之装置特点 ✓ 五、故障录波器的主要参数 ✓ 六、故障录波器的技术分析 ✓ 七、故障录波器在应用中存在的问题及措施 ✓ 八、典型故障波形的分析
三、故障录波器之原理
➢动作原理
由电压互感器、电流互感器提供的电流经A/D转换器, 将 模拟量变为数字量, 再送入计算机, 由CPU 处理后存入存储 器, 进行检测计算,探测故障。断路器位置及保护动作情况经 开关量输入接口变成电信号, 再经隔离之后, 成组进入CPU 处理存储。在正常情况下, 对电压电流只进行采集, 对开关 只进行扫描。当有故障发生时,CPU 采集到电流电压突变量, 或过电流、 过电压、零序电流、 开关状态变化等信号时, 启动故障录波。 由于数据采集是连续的, 故可将故障前一定 时段的数据和故障后的全部数据采集, 送入RAM。然后存入磁 盘, 由离线分析程序显示出波形曲线图、 一次/二次录波值 等。
B时段:系统大扰动后初期的状态数据,记录时间200ms~2000ms可调。采样频率同 A段。
C时段:系统大扰动后中期的状态数据,记录时间1.0s~10s可调。数据输出速率1kHz、 0.5kHz、0.25kHz可设。
• 故障前记录时间,这部分录波数据主要是用来进 行故障定位计算时使用。
• 触发时段:这部分录波数据记录的是故障发生的 前期过程,含有较多的暂态分量,故障后进行故 障定位和其他电气量计算使用的主要是这部分数 据。
• 故障后时段:这个时段主要记录系统在故障结束 后系统的情况,这段数据主要关心的是变化过程。
利用故障录波器记录下来的电流电压 量对故障线路进行测距,同时给出能否强 送的依据
二、故障录波器之功能
➢ 2、电力系统元件发生不明原因跳闸
利用故障录波器记录下来的电流 电压量判断出是否无故障跳闸
查明原因, 马上恢复
送电
二、故障录波器之功能
➢3、继电保护装置有不正确动作行为
继电保护装置误动造成无故障跳闸 系统有故障但保护装置拒动 系统有故障但保护动作行为不符合预先设计
功率、相角; 故障分析和电能质量分析; 功角、相角测量; 记录油温、压力等非电气量的变化; 记录保护和其它自动装置的动作情况; 连续慢扫描。
四、故障录波器之装置特点
➢2、录波启动方式
越限启动量优于±2%,突变启动量优于±5%; 任一路模拟量均可设置为突变量启动和越限启动
(含过量和低量启动); 相、序量突变量和越限启动; 开关量变位或上跳变、下跳变启动; 手动及远方启动。
五、故障录波器之主要参数
➢2、A/D 转换位数
A/D 转换器的位数决定了录波器记录 数据的准确度。对于不同位数的A/D 转换器, 在量度同一个幅值的模拟量时,显然高位 数A/D 转换器的每格所代表的值要比低位数 A/D 转换器小,也就是说分辨率比较高,这 样就可以具有较高的精度,保证所有通道 采样的一致性。