氧化锆陶瓷概述.

合集下载

氧化锆陶瓷材料

氧化锆陶瓷材料

氧化锆陶瓷材料
氧化锆陶瓷是一种新型的高性能陶瓷材料,具有优异的机械性能、化学稳定性
和生物相容性,因此在医疗、电子、化工等领域有着广泛的应用前景。

首先,氧化锆陶瓷材料具有优异的机械性能。

它的硬度高、强度大、耐磨损,
是传统金属材料的几倍甚至几十倍,因此可以用于制造高负荷、高速度、高精度的机械零部件,如轴承、刀具等。

同时,氧化锆陶瓷的断裂韧性也得到了显著提高,不易发生脆性断裂,具有较好的抗疲劳性能。

其次,氧化锆陶瓷材料具有良好的化学稳定性。

它在常温下对酸、碱等化学物
质具有很好的抵抗能力,不易发生腐蚀和氧化,因此可以用于制造化工设备、热交换器等耐腐蚀材料,延长设备的使用寿命,降低维护成本。

再次,氧化锆陶瓷材料具有优异的生物相容性。

它不会引起人体的排斥反应,
可以与人体组织良好地结合,因此被广泛应用于制造人工关节、牙科修复材料等医疗器械,提高了医疗器械的使用寿命和安全性。

总的来说,氧化锆陶瓷材料具有广阔的应用前景,但也存在着一些挑战和问题。

例如,氧化锆陶瓷的加工难度较大,制造成本较高,且在高温和高应力条件下容易发生相变而导致性能下降。

因此,今后需要进一步研究和改进氧化锆陶瓷材料的制备工艺和性能优化方法,以满足不同领域对材料性能的需求。

综上所述,氧化锆陶瓷材料具有优异的机械性能、化学稳定性和生物相容性,
有着广泛的应用前景,但也面临着一些挑战和问题。

我们期待在未来的研究中,能够进一步发挥其优势,克服其劣势,推动氧化锆陶瓷材料在各个领域的应用和发展。

氧化锆陶瓷硬度hrc

氧化锆陶瓷硬度hrc

氧化锆陶瓷硬度hrc一、氧化锆陶瓷的定义与特性氧化锆陶瓷是一种由氧化锆制成的陶瓷材料。

它具有高温稳定性、耐腐蚀性、高硬度和优异的机械性能等特点。

由于其特殊的晶体结构和化学成分,氧化锆陶瓷可以用于多种领域,如航空航天、医疗器械、电子元器件等。

二、硬度的概念与测试方法硬度是描述材料抵抗外力或其表面抵抗划伤、压痕能力的指标。

常见的硬度测试方法有洛氏硬度(Rockwell Hardness)、维氏硬度(Vickers Hardness)和布氏硬度(Brinell Hardness)等。

其中,洛氏硬度是一种常用的硬度测试方法,通过在材料表面施加一定载荷后,测量在卸载后的残余深度来确定材料的硬度值。

三、氧化锆陶瓷的HRC硬度氧化锆陶瓷的硬度通常用HRC硬度来表示。

HRC是指洛氏硬度中的一种硬度计量标准,其数值越高,表示材料的硬度越大。

氧化锆陶瓷通常具有较高的HRC硬度,一般在60以上,甚至可以达到80左右,远高于一般金属材料的硬度。

四、氧化锆陶瓷硬度的影响因素氧化锆陶瓷的硬度受多种因素的影响。

首先,材料的晶体结构对硬度有重要影响,晶体结构的稳定性越高,材料的硬度越大。

其次,材料的纯度也会影响硬度,纯度越高,杂质越少,材料的硬度越高。

此外,氧化锆陶瓷的制备工艺、烧结温度和时间等因素也会对硬度产生影响。

五、氧化锆陶瓷硬度的应用氧化锆陶瓷由于其高硬度的特性,被广泛应用于各个领域。

在航空航天领域,氧化锆陶瓷可用于制造高温结构件,如涡轮叶片、燃烧室等。

在医疗器械领域,氧化锆陶瓷可用于制作牙科种植体、人工关节等。

在电子元器件领域,氧化锆陶瓷可用于制作电容器、压电陶瓷等。

此外,氧化锆陶瓷还可用于制作刀具、轴承等耐磨件。

氧化锆陶瓷具有较高的HRC硬度,其硬度受晶体结构、纯度、制备工艺等多种因素的影响。

由于其优异的硬度性能,氧化锆陶瓷在航空航天、医疗器械、电子元器件等领域得到广泛应用。

希望通过本文的介绍,读者对氧化锆陶瓷的硬度有更深入的了解。

氧化锆陶瓷

氧化锆陶瓷

11240氧化锆陶瓷编辑白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。

在常压下纯ZrO2共有三种晶态。

氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。

目录1简介2种类特点3粉体制备4生产工艺5应用6增韧方法1简介氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic2种类特点纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。

世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。

在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆(t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化:温度密度单斜(Monoclinic)氧化锆(m-ZrO2) <950℃ 5.65g/cc四方(Tetragonal)氧化锆(t-ZrO2) 1200-2370℃ 6.10g/cc立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc上述三种晶态具有不同的理化特性,在实际应用为获得所需要的晶形和使用性能,通常加入不同类型的稳定剂制成不同类型的氧化锆陶瓷,如部分稳定氧化锆(partially stabilized zirconia,PSZ),当稳定剂为CaO、 MgO、Y2O3时,分别表示为Ca-PSZ、 Mg-PSZ、 Y-PSZ等。

由亚稳的t- ZrO2组成的四方氧化锆称之为四方氧化锆多晶体陶瓷(tetragonal zirconia polycrysta,TZP)。

当加入的稳定剂是Y2O3 、CeO2,则分别表示为Y-TZP、Ce-TZP等。

3粉体制备氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。

氧化锆陶瓷

氧化锆陶瓷

抗弯强度 断裂韧性
Mpa
300
1/2
Mpam
4
350
400
700
1100
4.5
5
7
12
硬度
HRA
≥86
≥88
≥89
≥90 88-90
弹性模量 线膨胀系数
GPa
320
-6 X10 /k
350
390
300
220
6.5-11.2
最小可达剩余不平衡度
Gmm/kg
≤0.8
不平衡减少率
≥85%
氧化锆陶瓷是一种新型高技术陶瓷,它与传统的氧化铝陶瓷相比具有以下优点:
1、高强度,高断裂韧性和高硬度
2、优良的耐磨损性能
3、弹性模量和热膨胀系数与金属相近
4、低热导率。 氧化锆陶瓷具有相变增韧和微裂纹增韧,所以有很高的强度和韧性,被誉为“陶 瓷钢”,在所有陶瓷中它的断裂韧性是最高。具有优异的室温机械性能。在此基础上,我们对氧 化锆配方和工艺进行优化,获得了细晶结构的高硬度、高强度和高韧性的氧化锆陶瓷。高硬度、 高强度和高韧性就保证了氧化锆陶瓷比其它传统结构陶瓷具有不可比拟的耐磨性。具有细晶结构 的陶瓷通过加工可以获得很低的表面粗糙度(<0.1u m)。因而减少陶瓷表面的摩擦系数,从而 减少魔擦力,提高拉丝的质量(拉出的丝光滑无毛刺,且不易断丝)。氧化锆的这种细晶结构具 有自润滑作用,在拉丝时会越拉越光。氧化锆陶瓷的弹性模量和热膨胀系数与钢材相近,因而能 有机的与钢件组合成复合拉线轮,不会因受热膨胀不一致而造成损坏或炸裂。 使用证明氧化锆 陶瓷拉线轮是现代高速拉线机的理想配件。
陶瓷材质性能参数(ceramics performance paramcter)

99陶瓷化学成分

99陶瓷化学成分

99陶瓷化学成分
99陶瓷,又称氧化锆陶瓷,其主要化学成分是氧化锆(ZrO2)。

氧化锆陶瓷具有高硬度、高耐磨性、高耐高温性能、化学稳定性好等优点。

除了氧化锆,99陶瓷中还包含少量的氧化钇(Y2O3),以调整陶瓷的性能。

氧化锆陶瓷的制备过程通常包括以下步骤:
1. 采购原料:购买高纯度的氧化锆矿石作为主要原料。

2. 粉碎和混合:将氧化锆矿石进行粉碎,然后与氧化钇等其他原料混合。

混合过程中,加入一定的结合剂(如水玻璃)以提高陶瓷粉体的塑性。

3. 成型:将混合好的陶瓷粉体进行成型,常用的成型方法有注浆成型、压制成型、挤压成型等。

4. 烧结:将成型后的陶瓷件进行高温烧结。

烧结过程中,氧化锆矿石和氧化钇等原料发生化学反应,形成高密度的氧化锆陶瓷。

5. 加工:烧结后的氧化锆陶瓷件进行打磨、抛光等加工工序,
以满足不同的使用要求。

6. 检验和包装:对加工好的氧化锆陶瓷件进行性能检测,确保其质量合格。

合格的陶瓷件进行包装,准备发往市场。

99陶瓷广泛应用于航空航天、化工、电子、医疗等领域,因其优异的性能而受到关注。

二氧化锆陶瓷

二氧化锆陶瓷

中科院15年研发的5千瓦级SOFC
பைடு நூலகம் •
SOFC优点
• 可以获得超过60%效率的高效发电;
• 对燃料的适应性强,能在多种燃料包括碳基燃料的情 况下运行;
• 不需要使用贵金属催化剂; • 使用全固态组件,不存在对漏液、腐蚀的管理问题; • 积木性强,规模和安装地点灵活; • 对环境友好,是21世纪的绿色能源。
二、ZrO2的晶型
在常压下共有单斜、四方和立方三种晶态。 上述三种晶型存在于不同的温度范围,并可以 相互转化:
1170 ℃ 2370 ℃
m-ZrO2
d =
5.65
t-ZrO2
6.10
c-ZrO2
6.27 g/cm 3
三、氧化锆陶瓷分类
部分稳定氧化锆陶瓷(PSZ) 氧化锆陶瓷 四方氧化锆多晶体陶瓷(TZP) 氧化锆(相变)增韧陶瓷(ZTC)
二氧化锆陶瓷
一、概述
• 二氧化锆(ZrO2)陶瓷又称为氧化锆陶瓷,是 一种新型陶瓷材料。 • 颜色:白色(高纯ZrO2); 黄色或灰色(含 少量杂质HfO₂)。 • 化学性质不活泼,且硬度次于金刚石。
• 是耐火材料、高温结构材料、生物材料和电子 材料的重要原料。
• 锆在地壳中的储量超过 Cu、Zn、Sn、Ni 等金属 的储量,资源丰富。 • 含锆矿石:斜锆石(ZrO2),锆英石(ZrO2 ·SiO2)。

部分稳定氧化锆陶瓷(PSZ)
稳定剂
c-ZrO2大晶粒
适宜温度
t-ZrO2小晶粒
t相
c 相
• 形成t、c双相组织结构。 • 可保存到室温。 • 在外力下会诱发 t 相到 m 相的马氏体相变并 伴随体积膨胀。耗散部分能量,抵消了部分外 力从而起到增韧作用,称为应力诱导相变增韧。 • 具有优良的高温热稳定性、低热导率、高强度 和韧性等优良的性能。

氧化锆陶瓷 钇稳定氧化锆

氧化锆陶瓷 钇稳定氧化锆

氧化锆陶瓷钇稳定氧化锆钇稳定氧化锆(Yttria-Stabilized Zirconia,YSZ)是一种重要的氧化锆陶瓷材料。

它由氧化锆(ZrO2)和钇氧化物(Y2O3)按一定比例混合制备而成。

氧化锆陶瓷具有很高的熔点、硬度和化学稳定性,而钇稳定氧化锆则在这些性质的基础上还具有更好的稳定性和导电性能。

钇稳定氧化锆的稳定性来源于钇氧化物的引入。

钇氧化物在氧化锆晶格中形成固溶体,使晶格结构更稳定。

这种稳定性使得钇稳定氧化锆具有较高的抗热震性能和热循环稳定性,能够在高温下长时间使用而不发生晶格破坏。

此外,钇稳定氧化锆还具有优异的化学稳定性,能够耐受强酸、强碱等腐蚀介质的侵蚀。

钇稳定氧化锆的导电性能使其在固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)等高温电化学器件中得到广泛应用。

由于其晶格中的钇离子部分取代了氧化锆晶格的氧离子,导致氧离子缺陷的形成。

这种氧离子缺陷会导致氧离子在晶体中的迁移,从而产生离子导电性。

钇稳定氧化锆的高离子导电性使得其成为固体氧化物燃料电池中的电解质材料,能够在高温下将化学能转化为电能。

除了在高温电化学器件中的应用外,钇稳定氧化锆还广泛用于热障涂层、传感器、陶瓷刀具等领域。

其高熔点和热稳定性使其成为热障涂层材料的理想选择,能够在高温环境下提供有效的隔热保护。

在传感器中,钇稳定氧化锆的导电性能能够被用来检测气体成分、温度等参数变化。

此外,钇稳定氧化锆的高硬度和耐磨性使其成为陶瓷刀具的重要原料,能够在切割、磨削等应用中提供优异的切割效果和耐用性。

钇稳定氧化锆的制备方法有多种,常见的包括固相烧结法、溶胶-凝胶法、等离子体喷涂法等。

其中,固相烧结法是最常用的制备方法之一。

这种方法首先将氧化锆和钇氧化物粉体按一定比例混合,然后通过高温烧结使粉体颗粒结合成致密块体。

溶胶-凝胶法则是通过溶胶-凝胶反应制备钇稳定氧化锆。

这种方法可以得到纯度较高、孔隙度较低的材料。

等离子体喷涂法则是将粉体材料通过等离子体喷涂技术喷涂到基底上,形成涂层。

氧化锆陶瓷性能分析解析

氧化锆陶瓷性能分析解析

氧化锆陶瓷性能分析解析1.力学性能:氧化锆陶瓷具有优异的力学性能,其强度和韧性较高。

高纯度氧化锆陶瓷的强度可达到1200MPa,而传统陶瓷材料(如氧化铝陶瓷)的强度一般在300MPa左右。

氧化锆陶瓷的高强度使其具有抗压、抗弯、抗拉等出色的机械性能,可用于承受高压、高载荷等恶劣环境下的工作。

2.化学性能:氧化锆陶瓷具有良好的化学稳定性,具备抗腐蚀性能。

氧化锆陶瓷在常见酸碱介质中具有良好的稳定性,能够抵抗大多数化学试剂的侵蚀。

此外,氧化锆陶瓷的表面不易附着或吸附其他物质,具备较好的抗粘附性能,能够有效地避免颗粒或液体等物质在表面上发生黏附、堵塞等问题。

3.热性能:氧化锆陶瓷具有良好的热性能,具备高熔点和较小的热膨胀系数。

氧化锆陶瓷的熔点约在2700℃左右,远高于其他常见陶瓷材料。

同时,氧化锆陶瓷的热膨胀系数较低,约为10×10^-6/℃,相比之下,氧化铝陶瓷的热膨胀系数约为8×10^-6/℃。

这种低热膨胀系数使氧化锆陶瓷具有较好的热稳定性,能够在高温环境下保持较好的尺寸稳定性。

4.导电性能:氧化锆陶瓷是一种绝缘材料,具备良好的绝缘性能。

在常规条件下,氧化锆陶瓷的电阻率较高,远远高于金属材料。

这一特性使得氧化锆陶瓷广泛应用于电子器件、高压绝缘和高温绝缘等领域。

此外,氧化锆陶瓷还具有良好的介电性能,在射频领域有广泛的应用。

总体而言,氧化锆陶瓷具有高强度、良好的化学稳定性、优异的热性能和良好的绝缘性能等优点,使其在航空航天、汽车制造、电子器件、生物医学和化工等领域得到广泛应用。

此外,氧化锆陶瓷还具备一定的透光性,能够适应一些特殊的应用场景。

然而,氧化锆陶瓷的生产工艺相对复杂,成本较高,因此在一些应用中还存在一定的局限性。

但随着相关技术的不断进步和发展,氧化锆陶瓷有望在更多领域发挥其独特的优势。

氧化锆是什么材料

氧化锆是什么材料

氧化锆是什么材料
氧化锆,化学式ZrO2,是一种重要的陶瓷材料,具有优异的物理化学性能,
被广泛应用于陶瓷、医疗器械、电子元器件等领域。

它具有高熔点、高硬度、优良的热稳定性和化学稳定性等特点,因此备受工业界的青睐。

首先,氧化锆在陶瓷领域有着重要的应用。

由于其高熔点和优良的热稳定性,
氧化锆被广泛用于制作高温陶瓷,如耐火砖、耐火涂料等。

此外,氧化锆陶瓷还具有优异的机械性能,硬度高、抗压强度大,因此在机械制造领域也有着广泛的应用,如轴承、阀门、刀具等。

其次,氧化锆在医疗器械领域也有着重要的地位。

由于氧化锆具有优良的生物
相容性和化学稳定性,被广泛用于制作人工假体,如人工关节、牙科修复材料等。

相比传统的金属材料,氧化锆具有更好的生物相容性和耐腐蚀性,能够更好地适应人体内环境,减少了人体对异物的排斥反应,因此在医疗器械领域有着广阔的市场前景。

此外,氧化锆还被广泛应用于电子元器件领域。

由于其优良的绝缘性能和化学
稳定性,氧化锆被用作电容器的介质材料,能够在高频和高温环境下保持稳定的电学性能。

同时,氧化锆还被用作电子陶瓷材料,制成的电子陶瓷具有优异的介电性能和压电性能,被广泛应用于电子元器件中。

总的来说,氧化锆是一种具有广泛应用前景的重要材料,其优异的物理化学性
能使其在陶瓷、医疗器械、电子元器件等领域都有着重要的应用。

随着科技的不断进步和人们对材料性能要求的提高,相信氧化锆将会有更广阔的发展空间,为各个领域带来更多的创新和发展。

氧化铝陶瓷 氧化锆陶瓷 氮化硅陶瓷

氧化铝陶瓷 氧化锆陶瓷 氮化硅陶瓷

氧化铝陶瓷、氧化锆陶瓷、氮化硅陶瓷是现代工业中应用较为广泛的特种陶瓷材料,它们具有优异的性能,被广泛用于高温、高压、耐磨、绝缘、耐腐蚀等领域。

下面将对这三种陶瓷材料进行介绍和比较。

一、氧化铝陶瓷1.1 氧化铝陶瓷概述氧化铝陶瓷是由氧化铝粉末制成,在高温下烧结而成的一种陶瓷材料。

它具有高硬度、耐磨、高温稳定性、化学稳定性等优点,被广泛用于制造工具、轴承、夹具、瓷砖等领域。

1.2 氧化铝陶瓷的特性氧化铝陶瓷具有以下特性:(1)高硬度:氧化铝陶瓷的硬度接近于金刚石,具有优异的耐磨性。

(2)高温稳定性:氧化铝陶瓷在高温下仍能保持稳定的物理和化学特性。

(3)化学稳定性:氧化铝陶瓷具有良好的耐腐蚀性,不易受化学腐蚀。

(4)绝缘性能:氧化铝陶瓷具有良好的绝缘性能,被广泛用于电子元件等领域。

1.3 氧化铝陶瓷的应用氧化铝陶瓷被广泛用于制造高速切削工具、陶瓷轴承、导热陶瓷、电子元件等领域。

因其优异的性能,在航空航天、制造业、电子领域有着重要的应用价值。

二、氧化锆陶瓷2.1 氧化锆陶瓷概述氧化锆陶瓷是以氧化锆粉末为主要原料,经过成型、烧结等工艺制成的一种高性能陶瓷材料。

它具有高强度、高韧性、耐磨、耐腐蚀等特点,被广泛用于医疗器械、航空航天及其他领域。

2.2 氧化锆陶瓷的特性氧化锆陶瓷具有以下特性:(1)高强度:氧化锆陶瓷的抗弯强度和抗压强度较高。

(2)高韧性:氧化锆陶瓷在高强度的同时具有较高的韧性,不易发生断裂。

(3)耐磨性:氧化锆陶瓷表面光滑,耐磨性能优秀。

(4)耐腐蚀性:氧化锆陶瓷具有良好的耐腐蚀性,不易受化学物质的侵蚀。

2.3 氧化锆陶瓷的应用氧化锆陶瓷被广泛用于医疗器械、航空航天、化工设备等领域。

其在人工关节、瓷牙、高温热电偶等方面有着重要的应用。

三、氮化硅陶瓷3.1 氮化硅陶瓷概述氮化硅陶瓷是以氮化硅粉末为主要原料,经过成型、烧结等工艺制成的一种高性能陶瓷材料。

它具有高硬度、高强度、高热导率等特点,被广泛用于机械制造、光学工业等领域。

氧化锆陶瓷性能分析解析

氧化锆陶瓷性能分析解析

氧化锆陶瓷性能分析解析
摘要
氧化锆陶瓷具有优良的物理机械性能、耐腐蚀性能和高温热稳定性,
因此被广泛应用于航空航天、船舶、汽车、电子工业、化学工业、冶金和
电力等领域。

本文概括了氧化锆陶瓷的成分、结构特性以及其热物理、力
学和综合性能,以期获得更全面、全面、准确的理解和认知。

关键词:氧化锆;陶瓷;物理性能;力学性能;热物理性能。

1引言
氧化锆陶瓷是一种具有优良物理机械性能、耐腐蚀性能和高温热稳定
性的新型陶瓷材料。

由于其高强度、高硬度、低密度、耐腐蚀、耐磨损、
耐冲击和耐高温等特性,氧化锆陶瓷在航空航天、船舶、汽车、电子工业、化学工业、冶金和电力等领域得到了广泛应用。

它不仅可以用于构筑结构件、制造增强件、制造涂料改善合金,而且可用于制造抗击穿材料、密封
件和装饰陶瓷等。

本文旨在概括氧化锆陶瓷的成分、结构特性以及其热物理、力学和综
合性能,为其应用和发展提供基础性的理解。

2氧化锆陶瓷的成分与结构特性
2.1成分。

氧化锆是什么材料

氧化锆是什么材料

氧化锆是什么材料
氧化锆,又称锆白、锆石粉,是一种重要的功能陶瓷材料,具有优异的物理化
学性能,广泛应用于陶瓷、化工、医疗器械等领域。

那么,氧化锆究竟是什么材料呢?接下来,我们将从其性质、用途和制备方法三个方面来详细介绍。

首先,氧化锆具有高熔点、高硬度、高抗腐蚀性和优异的热电性能。

它的熔点
高达2715摄氏度,硬度达8.5,仅次于金刚石和碳化硼。

因此,氧化锆具有极强的耐高温性能和耐磨损性能,适用于制作高温工具、切削工具和陶瓷刀具等。

此外,氧化锆还具有良好的化学稳定性,能够耐受强酸、强碱的腐蚀,因此在化工领域有着广泛的应用。

其次,氧化锆在医疗器械领域也有着重要的应用。

由于其生物相容性好、抗腐
蚀性强、不易产生过敏反应等特点,氧化锆被广泛用于制作人工假牙、人工关节、骨科植入物等医疗器械,能够有效提高医疗器械的使用寿命和安全性。

最后,氧化锆的制备方法主要包括氧化锆粉末的化学合成和氧化锆陶瓷的烧结
工艺。

化学合成方法是通过化学反应将氧化锆粉末制备出来,而烧结工艺则是将氧化锆粉末在高温下进行加热,使其颗粒之间发生结合,形成致密坚硬的氧化锆陶瓷。

这两种方法各有优劣,具体应用取决于所需产品的性能和用途要求。

综上所述,氧化锆是一种重要的功能陶瓷材料,具有高熔点、高硬度、高抗腐
蚀性和优异的热电性能,广泛应用于陶瓷、化工、医疗器械等领域。

通过对其性质、用途和制备方法的介绍,相信大家对氧化锆这一材料有了更深入的了解。

希望本文能够为大家提供一些参考价值,谢谢阅读!。

氧化锆陶瓷硬度

氧化锆陶瓷硬度

氧化锆陶瓷硬度氧化锆陶瓷是一种新型的高性能工程陶瓷材料,具有高硬度、耐磨性能、高强度和低摩擦系数等优异性能。

氧化锆陶瓷的硬度是其优异性能之一,本文将介绍氧化锆陶瓷硬度的相关知识。

氧化锆陶瓷的硬度较高,通常为9.5 Mohs硬度。

这一硬度值比大多数金属和非金属材料都要高,仅次于金刚石、立方氮化硼和碳化硅等少数材料。

氧化锆陶瓷的高硬度是由其微观结构和化学成分所决定的。

2.1 晶体结构氧化锆陶瓷的硬度与其晶体结构密切相关。

氧化锆陶瓷是一种具有块状双晶结构的多晶体材料,在氧化锆晶体中,锆原子与氧原子呈正六面体构型排列。

锆原子周围的氧原子成立方元素负一离子,这种结构具有非常好的稳定性和强度。

2.2 晶粒尺寸氧化锆陶瓷晶粒的尺寸对其硬度也有一定的影响。

一般来说,晶粒尺寸越小,氧化锆陶瓷的硬度越高。

这是因为粒径较小的晶体,晶界密度较大,而晶界是材料中断裂的最容易传递的路径之一,当材料受到外界的冲击时,晶界会承担更多的应力,从而增加材料的硬度。

2.3 配方设计氧化锆陶瓷的硬度也受到其配方设计的影响。

不同的配方设计会对氧化锆陶瓷的晶体结构和晶界密度产生影响,进而影响材料的硬度。

一般来说,纯度较高、晶粒尺寸较小、晶体结构稳定的氧化锆陶瓷硬度较高。

由于氧化锆陶瓷硬度较高,一般采用有钨刚石压头的显微硬度计来测量其硬度。

在测量时,压头从垂直于样品表面的方向,以一定的速度向样品表面施加一定压力,观察钻石头在样品表面上所留下的印痕,通过计算钻石头压入样品表面的深度,推算氧化锆陶瓷的硬度值。

氧化锆陶瓷的硬度是其优异性能之一,硬度值高,抗磨性能好,广泛应用于高要求的机械、电子、医疗器械等领域中。

在氧化锆陶瓷的制备和应用过程中,应根据具体使用条件来做出针对性的配方设计,以提高其硬度和其它性能指标。

5. 氧化锆陶瓷硬度的提高措施为了进一步提高氧化锆陶瓷的硬度,可以采取多种措施。

一种方法是通过控制氧化锆陶瓷的烧结温度、烧结时间和烧结压力等参数,来优化晶体结构,提高晶界密度,从而提高硬度。

氧化锆陶瓷球综述

氧化锆陶瓷球综述

概述氧化锆球是氧化锆材料中一类用量很大、应用面很广的产品,除了在氧化锆类陶瓷粉体研磨中大量使用外,在其它电子陶瓷粉料,磁性材料粉料、高技术结构和功能陶瓷粉料、日用陶瓷色料和釉料,化工和各类涂料,机械抛光用粉料,医药和食品粉剂的超细研磨中也发挥了为重要的作用。

氧化锆球就得解决在通常使用温度范围内(0-80℃)的单斜晶系转变成四方晶系的问题,掺杂碱土和稀土氧化物是一种有效的方法,这样就出现了不同的稳定剂,如氧化钇、氧化铈、氧化镁和氧化钙等。

实践证明,氧化钇和氧化铈稳定的氧化锆珠是较理想的研磨介质,具有较高的断裂强度和耐磨性。

常见的几种晶相的氧化锆。

不同的稳定剂、同一种稳定剂不同的量所稳定的氧化锆,晶相结构都不一样。

一、全稳定的氧化锆FSZ(Full Stabilized Zirconia):加8%摩尔比的氧化钇或15%摩尔比的氧化钙可得到正方晶相氧化锆,因此体系不会转变,故称为全稳定的氧化锆FSZ(Full Stabilized Zirconia),或称正方相氧化锆。

主要用作人工宝石、感应头、耐火材料和颜料等。

二、部分稳定的氧化锆PSZ(Partical Stabilized Zirconia):单斜相和正方相呈现这种结构。

因其具有的导热性而通常被用于加热和导热材料。

三、四方相氧化锆TZP(Tetragonal Zirconium Polycrystal) 或TTZ(Tetragonal Toughened Zirconia):加3%摩尔比的氧化钇或约12%摩尔比的氧化铈成为四方晶相氧化锆,此晶相的产品特别适合作研磨材料。

如韩国赛诺氧化锆珠CZY-95(密度≥6.0kg/dm3),CZC-80(密度≥6.2kg/dm3)和耐诺氧化锆球(NanorZr-95B),因它们具有较高的耐压强度和较的磨耗率而成为研磨介质的标杆产品。

陶瓷介质球常见的几种成型工艺1、毫米级氧化锆陶瓷球的制备方法毫米级陶瓷球的制备方法目前,制备毫米级陶瓷球的方法主要有模具压制法、“行星式”滚动法、直接热解法等。

5-氧化锆陶瓷

5-氧化锆陶瓷

氧化锆: 坚如钢,白如雪!
个人用品:氧化锆陶瓷耐磨性好,硬度高,可以抛光 且外观美观,因此 可作为手表带、表壳及其他装饰 部件。陶瓷表源于瑞士雷达表,后来国内有优尼克、 潮州三环和北京建材院下属公司等一些企业开始生产。 目前主要生产表带,以黑和白为主,蓝、金和红等其 他颜色也已开发出来,制备工艺以热压铸和干压为主。
切割应用:在特定的切割应用中, Y-TZP占据了一定的市场
份额,特别是对一些韧性和强度要求不是很高的场合, Y-TZP 刀具得到了极大的发展。例如光纤剪刀、切纸刀、民用刀具和 理发推剪等。其中发展比较成功的是京瓷的民用刀具,经过近 十年的发展已经成为一个国际品牌。
阀类应用:这类应用市场范围广泛。最典型的产品是 氧化锆水阀片。氧化锆主要用于制作油田和化工行业 中用的球阀等。国内有深圳南玻等厂商在生产。工艺 路线主要采用等静压工艺。这类产品加工和成品率非 常重要,部件大,成品率对成本影响很大。
光纤连接器用陶瓷:光纤连接器与光纤跳接线是光纤 网路中应用面最广且需求量最大的光无源器件。但是 目前国际上只有美日等发达国家有技术生产氧化锆插 芯和套筒,其毛坯生产技术在国内还是空白。陶瓷插 芯毛坯由于内含一个0.1mm的小孔,且对尺寸同心度 的要求都很高,因此采用传统的陶瓷材料成型方法难 以制备,只有通过注射成型的方法才有可能。
陶瓷轴承:在陶瓷轴承方面,氧化锆陶瓷相对于氮化 硅陶瓷并不是最好,其主要优势是成本较低。可用于 抗腐蚀、避免污染的场合,如食品工业等。另外一个 领域就是新开发的陶瓷风扇,这大大拓展了氧化锆陶 瓷轴承的应用空间。富士通公司首先推出了陶瓷轴承 风扇,获得了较好的市场响应。
பைடு நூலகம்
轴芯全面采用3nm氧化锆
生物应用:研究表明, 氧化锆在人体口腔中无过敏现 象, 在合理设计的前提下, 可保证使用50年依然坚固. 氧化锆可以用于几乎所有的义齿设计中, 它使牙桥制 做的长度不再有限制- 无论是螺栓固定式或粘接式。 它 也是用于种植牙技术的最好材料。实际上, 氧化锆 全瓷牙已不再是单纯的义意上的义齿, 它更适用于人 们对美的越来越高的追求!

氧化锆陶瓷烧结工艺

氧化锆陶瓷烧结工艺

氧化锆陶瓷烧结工艺一、氧化锆陶瓷简介氧化锆陶瓷是一种高温材料,具有优异的物理和化学性能。

它的主要成分是氧化锆(ZrO2),常用于制造高温结构件、电子元器件、生物医学材料等领域。

氧化锆陶瓷具有高强度、高硬度、优异的耐磨性、抗腐蚀性以及良好的绝缘性能等特点,因此在工业中得到了广泛应用。

二、氧化锆陶瓷烧结过程2.1 原料准备氧化锆陶瓷的原料主要包括氧化锆粉、稳定剂、助燃剂和粘结剂。

氧化锆粉是主要成分,稳定剂用于调节晶相结构,助燃剂用于加速烧结过程,粘结剂用于提高成型工艺的可行性。

2.2 成型工艺氧化锆陶瓷的成型工艺通常有压制成型和注塑成型两种方式。

其中,压制成型是将混合好的氧化锆粉末放入模具中,利用机械压力使其成型,生成所需的形状。

注塑成型则是通过将氧化锆粉末与粘结剂混合,形成可注塑的浆料,再将浆料注入到模具中,最后通过热处理将其固化为形状。

2.3 烧结工艺氧化锆陶瓷的烧结工艺是将成型好的氧化锆坯体进行高温处理,使其颗粒结合更加紧密,形成致密的陶瓷。

烧结工艺的目标是同时实现颗粒间的结合和聚结,以及晶粒的长大,从而提高材料的致密度和力学性能。

具体的烧结过程一般包括以下几个阶段:2.3.1 加热阶段在烧结过程中,首先需要将氧化锆坯体温度升至一定程度。

加热温度一般根据不同的烧结工艺和要求进行调节,一般在1000摄氏度以上。

一定温度下,氧化锆颗粒间的结合会发生,同时晶粒也会长大。

烧结工艺主要包括两种方式:自发烧结和压力烧结。

自发烧结是指在无外加压力下进行的烧结过程,而压力烧结则是在烧结过程中施加外加压力,加速颗粒间的结合和晶粒生长。

2.3.3 冷却阶段烧结完成后,需要将烧结好的氧化锆陶瓷坯体进行冷却。

冷却过程需要缓慢进行,以避免因过快的冷却速度引起的热应力损伤。

2.4 后处理工艺烧结完成后,氧化锆陶瓷还需要进行后处理工艺。

后处理工艺通常包括研磨、抛光、清洗等步骤,以获得光滑的表面和精确的尺寸。

三、氧化锆陶瓷烧结工艺的影响因素氧化锆陶瓷的烧结工艺受到多种因素的影响,以下是影响烧结工艺的几个重要因素:3.1 温度温度是烧结工艺中最关键的参数之一。

关节陶瓷类型

关节陶瓷类型

关节陶瓷类型引言:关节陶瓷作为人工关节材料的一种,具有优异的生物相容性和耐磨性,已经成为关节置换手术的首选材料之一。

本文将介绍几种常见的关节陶瓷类型,包括氧化锆陶瓷、氧化铝陶瓷和氧化锆增强氧化铝陶瓷。

一、氧化锆陶瓷氧化锆陶瓷是一种由氧化锆制成的材料,其主要特点是具有高强度和优异的生物相容性。

氧化锆陶瓷的晶粒细小、致密,因此具有较好的耐磨性和抗疲劳性能。

由于其颜色与天然牙齿相似,所以在牙科领域也得到了广泛应用。

氧化锆陶瓷常用于人工关节的球杯部分,其表面光滑度高,能够减少关节摩擦和磨损,从而延长关节寿命。

此外,氧化锆陶瓷具有较好的抗腐蚀性能,能够在体内长期稳定地发挥作用。

二、氧化铝陶瓷氧化铝陶瓷是一种由氧化铝制成的材料,具有优异的耐磨性和生物相容性。

氧化铝陶瓷的晶体结构稳定,能够在较高的温度和压力下保持其性能稳定。

因此,氧化铝陶瓷常用于人工关节的摩擦表面,如人工髋关节和人工膝关节。

氧化铝陶瓷的磨损率低,能够减少关节摩擦产生的磨粒,从而降低关节炎症和疼痛。

与金属材料相比,氧化铝陶瓷具有较低的摩擦系数,能够提供更加平稳的关节运动。

三、氧化锆增强氧化铝陶瓷氧化锆增强氧化铝陶瓷是一种由氧化铝和氧化锆混合制成的复合材料。

由于氧化锆具有高强度和氧化铝具有优异的耐磨性,因此两者的复合材料既具备了高强度又具备了较低的摩擦系数。

氧化锆增强氧化铝陶瓷常用于人工关节的球杯和头部,其优异的力学性能和生物相容性能够保证关节的稳定性和运动性能。

此外,氧化锆增强氧化铝陶瓷的颜色与天然牙齿相似,能够提供更加美观的外观效果。

结论:关节陶瓷作为人工关节的材料,具有优异的生物相容性和耐磨性。

氧化锆陶瓷、氧化铝陶瓷和氧化锆增强氧化铝陶瓷是目前常见的关节陶瓷类型。

选择适合的关节陶瓷类型能够有效延长人工关节的使用寿命,提高患者的生活质量。

随着科技的不断进步和材料的不断创新,相信关节陶瓷在人工关节领域将会得到更广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化锆陶瓷概述摘要:ZrO2 具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质,上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料。

并且由于TZP 陶瓷具有高韧性、抗弯强度和耐磨性,以及优异的隔热性能,甚至其热膨胀系数接近于金属等优点,因此TZP 陶瓷被广泛应用于结构陶瓷领域。

本文介绍了氧化锆的基本性质、氧化锆超细粉体的制备方法、高性能氧化锆陶瓷材料的成型工艺以及其在各领域的应用情况。

关键词:氧化锆;高性能陶瓷;制备;应用1 引言锆在地壳中的储量超过Cu、Zn、Sn、Ni 等金属的储量,资源丰富。

世界上已探明的锆资源约为1900 万吨(以金属锆计),矿石品种约有20 种,主要含有如下几种化合物:(1)二氧化锆(单斜锆及其各种变体);(2)正硅酸锆(锆英石及其各种变体);(3)锆硅酸钠、钙、铁等化合物(异性石、负异性石、锆钻石)。

异性石和负异性石矿中含锆量非常低,无工业价值,因而锆的主要来源为单斜锆矿和锆英石矿,其中以锆英石矿分布广[1]。

纯ZrO2 为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。

单斜ZrO2 密度5.6g/cm3,熔点2715℃。

ZrO2 具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。

上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料,从上个世纪七十年代以来,随着对ZrO2 有了更深刻的了解,人们进一步研究开发ZrO2 作为结构材料和功能材料。

1975 年澳大利亚R.G.Garvie 以CaO 为稳定剂制得部分稳定氧化锆陶瓷(Ca-PSZ),并首次利用ZrO2 马氏体相变的增韧效应提高了韧性和强度,极大的扩展了ZrO2 在结构陶瓷领域的应用[2]。

1973 年美国R.Zechnall,G.Baumarm,H.Fisele 制得ZrO2 电解质氧传感器,此传感器能正确显示汽车发动机的空气、燃料比,1980 年把它应用于钢铁工业。

1982 年日本绝缘子公司和美国Cummins 发动机公司共同开发出ZrO2 节能柴油机缸套。

自此,ZrO2 高性能陶瓷的研究和开发获得了许多进展[3]。

2 ZrO2 晶型转化和稳定化处理在常压下纯ZrO2 共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆(t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化[4]:1170℃2370℃m- ZrO2t- ZrO2 c- ZrO2950℃2370℃ZrO2 四方相与单斜相之间的转变是马氏体相变,由于四方相转变为单斜相时有3~5%的体积膨胀和7~8%的切应变。

因此,纯ZrO2 制品往往在生产过程(从高温到室温的冷却过程)中会发生t-ZrO2转变为m-ZrO2 的相变并伴随着体积变化而产生裂纹,甚至碎裂,因此无多大的工程价值。

但是,当加入适当的稳定剂(如Y2O3,MgO2,CaO,CeO2 等)后,可以降低c-ZrO2→t-ZrO2 与 t-ZrO2→ m-ZrO2 的相变温度,使高温稳定的c-ZrO2和t-ZrO2 相也能在室温下稳定或亚稳定存在。

当加入的稳定剂足够多时,高温稳定的c-ZrO2 可以一直保持到室温不发生相变。

进一步研究发现氧化锆发生马氏体相变时伴随着体积和形状的变化,能吸收能量,减缓裂纹尖端应力集中,阻止裂纹的扩展,提高陶瓷韧性。

因此氧化锆相变增韧陶瓷的研究和应用得到迅速发展。

氧化锆相变增韧陶瓷有三种类型,分别为部分稳定氧化锆陶瓷;四方氧化锆多晶体陶瓷及氧化锆增韧陶瓷[5]:(1)当ZrO2 中稳定剂加入量在某一范围时,高温稳定的c-ZrO2 通过适当温度下时效处理使c-ZrO2 大晶粒(c 相)中析出许多细小纺锤状的t-ZrO2(t 相)晶粒,形成c 相和t 相组成的双相组织结构。

其中 c 相是稳定的而t 相是亚稳定的并一直保存到室温。

在外力诱导下有可能诱发t 相到m 相的马氏体相变并伴随体积膨胀,耗散部分能量、抵消了部分外力从而起到增韧作用,称为应力诱导相变增韧。

这种陶瓷称之为部分稳定氧化锆(partially stabilized zirconia,PSZ),当稳定剂为CaO、MgO、Y2O3 时,分别表示为Ca-PSZ、Mg-PSZ、Y-PSZ 等。

(2)当ZrO2 中稳定剂加入量控制在适当量时可以使t-ZrO2 以亚稳状态稳定保存到室温,那么块体氧化锆陶瓷的组织结构是亚稳的t- ZrO2 细晶组成的四方氧化锆多晶体称之为四方氧化锆多晶体陶瓷(tetragonal zirconia polycrystal,TZP)。

在外力作用下可相变 t-ZrO2 发生相变,增韧不可相变的ZrO2 基体,使陶瓷整体的断裂韧性改善。

当加入的稳定剂是Y2O3、CeO2,则分别表示为Y-TZP、Ce-TZP 等。

(3)如果在不同陶瓷基体中加入一定量的ZrO2 并使亚稳四方氧化锆多晶体均匀的弥散分布在陶瓷基体中,利用氧化锆相变增韧机制使陶瓷的韧性得到明显的改善。

这种氧化锆相变增韧陶瓷称为氧化锆(相变)增韧陶瓷(Zirconia Toughened Ceramics,ZTC)。

如果陶瓷基体是Al2O3、莫来石(Mullite)等,分别表示为ZTA、ZTM 等。

3 ZrO2 超细粉体的制备技术锆英石的主要成分是ZrSiO4,一般均采用各种火法冶金与湿化学法相结合的工艺,即先采用火法冶金工艺将ZrSiO4 破坏,然后用湿化学法将锆浸出,其中间产物一般为氯氧化锆或氢氧化锆,中间产物再经煅烧可制得不同规格、用途的ZrO2 产品,目前国内外采用的加工工艺主要有碱熔法、石灰烧结法、直接氯化法、等离子体法、电熔法和氟硅酸钠法等。

用传统工艺制备的ZrO2 是ZrO2·8H2O 化合物,是制备ZrO2超细粉和其他ZrO2 制品的原料。

随着高性能陶瓷材料的发展和纳米技术的兴起,制备高纯、超细ZrO2 粉体的技术意义重大,研究其制备应用技术已成为当前的一个热点,现在较为通用的制备技术主要有:3.1 共沉淀法化学共沉淀法[6]和以共沉淀为基础的沉淀乳化法、微乳液沉淀反应法的主要工艺路线是:以适当的碱液如氢氧化钠、氢氧化钾、氨水、尿素等作沉淀剂(控制 pH≈8~9),从 ZrOCl 2·8H 2O 或 Zr(NO 3)4、Y(NO 3)3(作为稳定剂)等盐溶液中沉淀析出含水氧化锆Zr(OH)4 (氢氧化锆凝胶)和 Y(OH)3 (氢氧化钇凝胶),再经过过滤、洗涤、干燥、煅烧(600~900℃)等工序制得钇稳定的氧化锆粉体。

工艺流程图如图 3.1 所示:此法由于设备工艺简单,生产成本低廉,且易于获得纯度较高的纳米级超细粉体,因而被广泛采用。

目前国内大部分氧化锆生产企业,如九江泛美亚、深圳南玻、上海友特、广东宇田等,采用的都是这种方法。

但是共沉淀法的主要缺点是没有解决超细粉体的硬团聚问题,粉体的分散性差,烧结活性低。

沉淀剂锆盐溶液ZrO 2 粉体图 3.1 中和沉淀法工艺流程图3.2 水解沉淀法水解沉淀法分为锆盐水解沉淀和锆醇盐水解沉淀[7,8]两种方法。

(1)锆盐水解沉淀法是长时间地沸腾锆盐溶液,使之水解生成的挥发性酸不断蒸发除去,从而使如下水解反应平衡不断向右移动:ZrOCl 2+(3+n)H 24·nH 2O+2HCl↑ZrO(NO3)2+(3+n)H 24·nH 2O+2HNO 3↑ 然后经过过滤、洗涤、干燥、煅烧等过程制得ZrO 2粉体。

工艺流程图如图3.2所示:~100℃沸腾48小时 锆盐溶液 2 粉体图 3.2 锆盐水解法工艺流程图ZrOCl 2浓度控制在0.2~0.3mol/l 。

此法的优点是操作简便,缺点是反应时间较长(>48小时),耗能较大,所得粉体也存在团聚现象。

(2)锆醇盐水解沉淀法是利用锆醇盐极易水解的特性,在适当 pH 值的水溶液中进行水解得到Zr(OH)4:Zr(OR)4 + 4H 24↓ + 4HOR然后经过过滤、干燥、粉碎、煅烧得到ZrO 2粉体。

工艺流程图如图3.3所示:调节 PH 值 100-120℃800-900℃锆醇盐溶液 2 粉体图3.3 锆醇盐水解法工艺流程图此法的优点是:(1)几乎全为一次粒子,团聚很少;(2)粒子的大小和形状均一;(3) 化学纯度和相结构的单一性好。

缺点是原料制备工艺较为复杂,成本较高。

共沉淀法和水解沉淀法的后工序都是煅烧,其温度越高,则粉体的晶粒度越大,团聚程度越高。

这是由于煅烧升温过程当完成了从非晶态转变为晶态的成核过程以后便开始了晶粒长大阶段,并且晶粒中成晶结构单元的扩散速度随温度升高而增大,相互靠近的颗粒容易形成团聚。

3.3 水热法另一种较常见的方法是水热法[9]:在高压釜内,锆盐(ZrOCl 2)和钇盐(Y(NO 3)3)溶液加入适当化学试剂,在高温 (>200℃)、高压(≈10MPa)下反应直接生成纳米级氧化锆颗粒,形成钇稳定的氧化锆固溶体。

工艺流程图如图3.4所示:70℃ 醇盐溶液 2 粉体图3.4 水热法工艺流程图 反应方程式为:ZrOCl 2 + H 22 + HCl 其反应的机理是:溶液中反应前驱物 Zr(OH)4、Y(OH)3 在水热条件下达到过饱和状态,从而析出溶解度更小、更稳定的 ZrO 2(Y 2O 3)相,二者溶解度之差便是反应进行的驱动力。

优点为粉料粒度极细,可达到纳米级,粒度分布窄,省去了高温煅烧工序,颗粒团聚程度小。

缺点为设备复杂昂贵,反应条件较苛刻,难于实现大规模工业化生产。

3.4 溶胶-凝胶法溶胶-凝胶法[10]是被广泛采用的制备超细粉体的方法。

它是借助于胶体分散体系的制粉方法,形成几十纳米以下的 Zr(OH)4 胶体颗粒的稳定溶胶,再经适当处理形成包含大量水分的凝胶,后经干燥脱水、煅烧制得氧化锆超细粉。

此法的优点:(1)粒度细微,亚微米级或更细;(2) 粒度分布窄;(3)纯度高,化学组成均匀,可达分子或原子尺度;(4)烧成温度比传统方法低400~500℃。

缺点:(1)原料成本高且对环境有污染;(2)处理过程的时间较长;(3)形成胶粒及凝胶过滤、洗涤过程不易控制。

3.5 微乳液法(反胶束法)利用反应物的化学沉淀来制备纳米粉体的方法,具体制备的步骤如下:按制粉要求比例配制一定浓度的锆盐与钇盐水溶液,在恒温摇床中少量多次地将该溶液注入含表面活性剂的有机溶液中,直至有混浊现象出现。

以同样方法制备得氨水的反胶团溶液,然后把两种反胶团溶液在常温下混合、搅拌、沉淀、分离、洗涤、干燥,高温焙烧 2~4h,即得产品。

利用该方法可制得<20nm的含钇的稳定四方相ZrO2 纳米粉,粉体分散性能好,分布窄,但生产过程较复杂,成本也较高。

相关文档
最新文档