航空发动机叶片材料及制造技术现状
航空发动机叶片关键技术发展现状分析
航空发动机叶片关键技术发展现状分析航空发动机叶片是航空发动机的重要组成部分,直接影响着发动机的性能和效率。
随着航空工业的不断发展,对于航空发动机叶片的要求也越来越高,因此其关键技术的发展成为了航空发动机领域的热点之一。
本文将对航空发动机叶片关键技术的发展现状进行分析,并展望未来的发展方向。
一、材料技术航空发动机叶片的材料是决定其性能的关键。
在过去,镍基高温合金一直是航空发动机叶片的主要材料,因为其具有良好的高温强度和抗氧化性能。
随着航空发动机工作温度的不断提高,传统的镍基高温合金已经不能满足发动机叶片的性能要求。
人们开始研发新型的高温合金材料,如含铱的单晶高温合金、含有强化相的高温合金等。
这些新材料具有更高的工作温度和良好的高温强度,能够更好地适应发动机叶片的工作环境。
除了材料的改进,还有一些新型材料的应用也在不断推进,比如碳纤维复合材料。
碳纤维复合材料具有优异的高温强度、轻质化和抗腐蚀等性能,逐渐成为航空发动机叶片的新材料选择。
碳纤维复合材料的成型工艺、连接方式、性能预测等方面的技术问题还有待解决,需要进一步的研究和发展。
二、制造技术航空发动机叶片的制造技术一直是航空工业发展的重要方向之一。
传统的叶片制造采用的是铸造和数控加工工艺,虽然能够满足一定的叶片质量和形状要求,但在材料利用率、制造周期、成本和精度等方面还存在着一定的不足。
近年来,随着增材制造技术的逐渐成熟,人们开始尝试使用增材制造技术来制造航空发动机叶片。
增材制造技术可以实现对叶片内部结构的优化设计,提高材料的利用率;同时可以实现叶片的快速制造,减少制造周期和成本。
目前,增材制造技术在航空发动机叶片制造领域的应用还处于起步阶段,但其潜力巨大,未来有望成为叶片制造的重要技术。
在叶片表面处理方面,热障涂层技术一直是航空发动机叶片的重要技术之一。
热障涂层不仅可以提高叶片的抗氧化性能,增加寿命,还可以降低叶片的工作温度,提高发动机的热效率。
目前,随着热障涂层技术的不断发展,新型的多层复合热障涂层、纳米涂层等新技术不断出现,为航空发动机叶片的表面处理提供了更多的选择。
航空发动机叶片再制造技术的应用及其发展趋势
航空发动机叶片再制造技术的应用及其发展趋势航空发动机叶片再制造技术是指对废旧的航空发动机叶片进行修复、再制造或更新的技术,以降低航空发动机的维修成本、延长使用寿命,并提高发动机的性能和可靠性。
这一技术在航空领域中具有重要意义,能够进一步推动航空发动机的发展与创新。
1.修复与再制造:通过对叶片进行修复和再制造,使其恢复到原有性能水平,以减少修复成本和提高使用寿命。
修复过程中主要包括清洗、去除受损材料、填充修补、表面处理等步骤,再制造则涉及到材料选择、加工和热处理等工艺。
通过修复和再制造,航空发动机叶片的性能可以恢复到几乎与新制品相当。
2.更新与改进:利用再制造技术,对旧有叶片进行更新和改进,以提高性能和可靠性。
例如通过采用新材料、改变叶片结构、优化叶片内部流道等方式,实现对叶片性能的提升。
这样可以延长航空发动机的使用寿命,提高发动机的性能指标,同时降低运营成本。
3.节能环保:再制造技术对航空工业的发展有着重要意义。
航空发动机叶片是航空发动机中易受损的关键部件,采用再制造技术可以降低其对环境的影响。
通过再制造,可以避免废旧叶片的填埋和焚烧,减少对环境的污染,同时还可节约大量原材料和能源的消耗。
1.材料创新:新型材料的研发将是航空发动机叶片再制造技术的重要发展方向。
高温合金、复合材料等新材料的应用可以提高叶片的耐用性、抗疲劳性和耐高温性能,从而延长其使用寿命。
2.进一步精细化加工:随着精密制造技术的不断发展,航空发动机叶片再制造将越来越具有精细化的特点。
高精度加工和表面处理技术的应用可以进一步提高叶片的空气动力性能和剩余寿命,实现优化再制造。
3.数字化技术的应用:随着数字化技术的飞速发展,航空发动机叶片再制造也将借助于数字化技术的应用实现更高效、更精准的再制造。
通过建立叶片的数字模型、使用虚拟仿真技术和智能制造技术,可以提高制造过程的一体化和智能化水平。
4.航空维修市场的需求:全球航空业的持续发展将对航空发动机叶片再制造技术提出更高的要求。
航空发动机关键材料技术的发展现状与趋势
1、航空发动机关键材料技术的发展现状与趋势航空发动机是在高温、高压、高速旋转的恶劣环境条件下长期可靠工作的复杂热力机械,在各类武器装备中,航空发动机对材料和制造技术的依存度最为突出,航空发动机高转速、高温的苛刻使用条件和长寿命、高可靠性的工作要求,把对材料和制造技术的要求逼到了极限。
材料和工艺技术的发展促进了发动机更新换代,如:第一、二代发动机的主要结构件均为金属材料,第三代发动机开始应用复合材料及先进的工艺技术,第四代发动机广泛应用复合材料及先进的工艺技术,充分体现了一代新材料、一代新型发动机的特点。
在航空发动机研制过程中,设计是主导,材料是基础,制造是保障,试验是关键。
从总体上看,航空发动机部件正向着高温、高压比、高可靠性发展,航空发动机结构向着轻量化、整体化、复合化的方向发展,发动机性能的改进一半靠材料。
据预测,新材料、新工艺和新结构对推重比12~15一级发动机的贡献率将达到50%以上,从未来发展来看,甚至可占约2/3。
因此,先进的材料和制造技术保证了新材料构件及新型结构的实现,使发动机质量不断减轻,发动机的效率、使用寿命、稳定性和可靠性不断提高,可以说没有先进的材料和制造技术就没有更先进的航空发动机。
正是由于不断提高的航空发动机性能对发动机材料与制造技术提出了更高的要求,各航空发达国家都投入了大量人力、物力和财力,对航空发动机用的材料与制造技术进行全面、深入的研究,取得了丰硕的成果,满足了先进发动机的技术要求。
从国外航空发动机材料与制造技术的发展情况来看,加强材料与制造技术工程化研究是缩短发动机研制周期、减少应用风险、增加研制投入产出比最有效的途径之一。
因此从20世纪70年代至今,航空发达国家安排了一系列的发动机材料和制造技术工程化研究计划,规划了整个材料和制造技术领域的发展方向,为各种先进军、民用发动机提供了坚实的技术基础。
如美国综合高性能发动机技术(IHPTET)计划、下一代制造技术计划(NG-MTI),美国空军复合材料经济可承受性计划(CAI)等(见表1)。
用于航空发动机的涡轮叶片材料及制造技术研究
用于航空发动机的涡轮叶片材料及制造技术研究航空发动机是现代航空业中最重要的装备之一,而其涡轮叶片则是发动机的核心组件之一。
涡轮叶片的材料和制造技术的不断研究和改进,不仅能够提升发动机的性能,还可以降低发动机的制造成本和使用成本。
本文将从涡轮叶片的材料和制造技术两个方面进行探讨。
一、涡轮叶片材料研究涡轮叶片是承受高温高压气流冲击和引导气流流动的组件,因此涡轮叶片的材料需要具备较高的耐热、耐腐蚀和抗疲劳裂纹扩展等性能。
目前,用于航空领域的涡轮叶片材料主要包括高温合金、陶瓷基复合材料和光学玻璃等几种。
1. 高温合金高温合金是涡轮叶片最常用的材料之一,其具有较高的强度、耐热性、抗氧化和耐腐蚀性能,可用于承受高温高压环境下的作业。
高温合金主要是以镍、钴、铁为基础,加入包括铬、钼、钨、铝、钛等的多种元素制成。
2. 陶瓷基复合材料陶瓷基复合材料是一种高强度、高耐热性和耐腐蚀性的新型材料,由于其结构和性能均可根据需求进行调节,因此在航空领域被广泛应用。
目前,陶瓷基复合材料主要包括碳化硅、氮化硅、碳化钛、氧化铝和氮化铝等。
3. 光学玻璃光学玻璃作为一种透明的高强度材料,具有较高的耐热、耐磨和耐腐蚀性能,因此可以用于航空领域的高温高压环境中。
其中,钠钙玻璃和氟化物玻璃是最常用的两种光学玻璃。
二、涡轮叶片制造技术研究合适的涡轮叶片材料是涡轮叶片的基础,而制造技术则直接决定着叶片的质量和性能。
目前,涡轮叶片的常见制造技术包括精密铸造技术、热等静压成型技术、超声波焊接技术等。
1. 精密铸造技术精密铸造技术是现代涡轮叶片制造中最常见的一种技术,其主要原理是在对模具进行预处理和设计后,在高温下将熔融金属注入模具中,并通过精密控制形成叶片的整体结构。
精密铸造技术能够在保证叶片性能的同时,大大降低叶片制造的成本。
2. 热等静压成型技术热等静压成型技术是一种通过将原料放入容器中直接加热处理以制造高质量涡轮叶片的技术。
在加热的过程中,原料将保持某种特定的形状和结构,并在以后的冷却过程中形成较高质量的叶片。
航空发动机叶片关键技术发展现状分析
航空发动机叶片关键技术发展现状分析航空发动机叶片是航空发动机的核心部件之一,它对于发动机的性能和效率起着至关重要的作用。
随着航空工业的发展,航空发动机叶片的关键技术不断演进和创新,以满足航空业对于更高性能和更低排放的需求。
1. 材料技术的进步:航空发动机叶片的材料选择十分关键,需要具备高温、高压和高强度的特性。
传统的材料如镍基合金和钛合金已经相当成熟,但随着发动机运行环境的要求不断提高,需要开发新的高性能材料。
高温合金、陶瓷基复合材料和先进的纳米材料等,都成为当前研究的热点。
这些新材料的应用可以提升发动机叶片的工作温度、耐腐蚀性和机械强度,从而提高发动机的整体性能。
2. 制造和加工技术的创新:制造和加工技术的创新可以提高发动机叶片的精度和质量,并减少制造成本。
数控车削、激光制造和电化学加工等先进制造技术的应用,可以提高叶片的表面质量、减少机械加工残留应力,并提高加工效率。
利用3D打印技术可以实现叶片的快速成型,以及实现复杂结构和内部流道的设计和制造。
3. 气动设计和优化技术:气动设计和优化技术可以改善叶片的气动性能,提高发动机的燃烧效率和推力。
通过数值模拟和流场分析等手段,可以对叶片的气动特性进行优化和改进。
通过优化叶片的气动外形设计、增加气动表面的流动控制装置和进出口流道的优化设计等方式,可以减少湍流损失,降低气动噪声,并提高发动机的燃烧效率。
4. 热管理技术的创新:叶片的工作温度是制约叶片寿命和性能的重要因素之一。
热管理技术的创新可以有效地降低叶片的工作温度,提高叶片的寿命和可靠性。
通过热隔离层、冷却通道和热管等技术手段,可以实现对叶片的热控制和热传递,保证叶片的温度在可控范围内。
航空发动机叶片关键技术的发展趋势是朝着高温、高强度、高效率和低排放的方向发展。
材料技术的进步、制造和加工技术的创新、气动设计和优化技术的提升以及热管理技术的创新,都是当前研究和发展的重要方向。
随着航空工业的不断发展,航空发动机叶片关键技术将不断创新和突破,以满足航空业对于更高性能和更低排放的需求。
航空发动机叶片材料及制造技术现状
航空发动机叶片材料及制造技术现状首先,航空发动机叶片的材料选择是非常重要的。
材料必须具有足够的强度和耐高温性能,以承受高速旋转、高温和高压力的作用。
传统的航空发动机叶片材料主要是镍基合金和钛合金。
镍基合金具有良好的高温强度和耐腐蚀性能,适用于高温环境下的叶片制造。
钛合金具有良好的强度和轻量化特性,适用于低温环境下的叶片制造。
同时,还有一些新型材料如陶瓷基复合材料和单晶超合金也在航空发动机叶片中得到应用。
陶瓷基复合材料具有低密度、高强度、高刚度和优异的热稳定性,能够在高温环境下保持良好的性能,但其制造复杂而成本较高。
单晶超合金则具有优异的高温强度和热疲劳性能,但也存在着工艺难度较大和制造成本较高的问题。
其次,航空发动机叶片的制造技术也在不断发展。
传统的叶片制造技术主要包括铸造、锻造和机械加工等工艺。
其中,铸造是最常用的叶片制造方法,可以生产出复杂形状的叶片,并提高生产效率。
锻造技术可以提高叶片的材料性能和力学性能,但工艺复杂度较高,成本也较高。
机械加工则是对叶片进行切削、研磨和磨削等加工过程,以达到工艺精度和表面质量要求。
然而,随着航空发动机的发展和要求的提升,制造技术也在不断更新。
近年来,增材制造技术(3D打印)逐渐应用于航空发动机叶片的制造中。
这种技术可以根据设计要求直接将金属材料一层层地叠加和熔化,从而制造出复杂形状的叶片。
3D打印技术不仅可以大幅减少材料浪费和生产成本,还可以提高制造效率和灵活性。
另外,航空发动机叶片的制造精度和表面质量也成为制造技术关注的焦点。
制造精度是指叶片的尺寸、形状和位置误差,对发动机性能和寿命有很大影响。
传统制造技术中,通过加工修正和精加工等过程,可以达到较高的制造精度。
而3D打印技术可以根据设计要求直接打印出精密的叶片,可以实现更高的制造精度。
叶片的表面质量是指叶片的光洁度和粗糙度等表面特性。
传统制造技术中,通常需要通过机械加工和抛光等过程来改善叶片的表面质量。
航空发动机涡轮叶片热障涂层研究现状
航空发动机涡轮叶片热障涂层研究现状【1】航空发动机涡轮叶片热障涂层研究现状【2】概述航空发动机是现代航空运输的核心组件,而涡轮叶片则是发动机中最重要的零部件之一。
涡轮叶片承受着高温高压的工作环境,需要具备优异的耐热性和耐腐蚀性能。
为了提高涡轮叶片的寿命和性能,热障涂层技术应运而生。
本文将对航空发动机涡轮叶片热障涂层的研究现状进行探讨。
【3】热障涂层的作用热障涂层技术是通过在涡轮叶片表面涂覆一层耐高温材料,形成热障层,以减少叶片表面的工作温度,提高叶片的耐热性能和抗氧化能力。
热障涂层能够有效减少涡轮叶片的热应力和热疲劳损伤,延长叶片的使用寿命,并提高发动机的工作效率和可靠性。
【4】热障涂层研究的发展历程热障涂层技术在航空领域的发展可以追溯到上世纪50年代,最初采用的是金属涂层。
然而,金属涂层存在着氧化、粘结力差等问题,限制了其应用。
随着陶瓷涂层材料的研究和发展,陶瓷涂层逐渐取代金属涂层成为主流。
目前,热障涂层的研究重点主要集中在材料性能的优化、工艺改进以及涂层与基底材料之间的耦合问题等方面。
【5】热障涂层材料的选择航空发动机涡轮叶片的热障涂层材料需要具备优异的耐高温性能、热膨胀系数匹配性和抗氧化能力。
目前常用的涂层材料主要有氧化铝、氧化锆和复合材料等。
不同的涂层材料具有各自的特点和优势,在应用中需要根据具体的工作环境和性能要求来选择合适的材料。
【6】研究热障涂层的关键技术热障涂层的研究涉及到材料制备、涂层工艺、热处理和性能评价等多个方面。
其中,材料制备的关键技术包括热喷涂和物理气相沉积等方法,涂层工艺的关键技术包括预处理、喷涂参数控制和后处理等。
涂层与基底材料之间的耦合问题也是热障涂层研究中的一个重要方向。
【7】热障涂层的性能评价热障涂层的性能评价主要包括热稳定性、热膨胀性、抗氧化性和机械性能等指标。
常用的测试方法有热循环试验、热膨胀系数测试、高温氧化试验和机械性能测试等。
通过对涂层性能的评价,可以为进一步改进和优化涂层设计提供参考和依据。
航空发动机叶片关键技术发展现状分析
航空发动机叶片关键技术发展现状分析航空发动机叶片是飞机发动机中的重要部件,直接影响着发动机的性能和效率。
随着航空业的不断发展和飞机的不断更新换代,航空发动机叶片的关键技术也在不断发展和完善。
本文将对航空发动机叶片关键技术的发展现状进行分析。
一、材料技术的发展航空发动机叶片的材料一直是制约其性能和寿命的关键因素。
随着材料技术的不断发展,新型材料的应用为航空发动机叶片的性能提升提供了更大空间。
目前,高强度、高温耐久性和抗疲劳性能极强的镍基、钛基、铝基高温合金已经成为航空发动机叶片的主流材料。
复合材料在航空发动机叶片中的应用也逐渐增加,其轻质、高强度和耐腐蚀性能使得航空发动机叶片在提高性能的同时减轻了重量。
二、设计优化技术的应用现代航空发动机叶片的设计优化技术已经实现了从传统的基于经验的造型设计向基于计算机辅助设计、计算流体力学模拟和多目标优化的智能化设计方法的转变。
通过结构和流体力学的综合优化设计,可以使得叶片的气动性能、强度和动力性能得到进一步提高,大大提高了航空发动机叶片的效率和使用寿命。
三、制造技术的进步航空发动机叶片的制造技术一直是航空业的重点研究领域之一。
随着3D 打印、精密铸造、精密锻造等新型制造技术的应用,航空发动机叶片的制造工艺得到了全面提升。
这些新型制造技术使得叶片的内部结构更加复杂,表面更加光滑,同时也提高了叶片的精密度和一致性。
由于新型制造技术可以在更短的时间内完成生产,使得航空发动机叶片的制造周期大大缩短,有利于提高产能和降低成本。
四、动态性能的研究航空发动机叶片在使用过程中会受到复杂的动载荷,如高速旋转、受热冷、气动载荷等,因此对叶片的动态性能研究非常重要。
目前,国内外对航空发动机叶片的动态性能研究已经取得了重要进展,包括模态分析、疲劳寿命预测、冲击响应等方面。
这些研究成果为提高航空发动机叶片的可靠性和寿命提供了重要的技术支持。
五、智能化监测技术的应用航空发动机叶片的状态监测一直是航空业的研究热点之一。
航空发动机涡轮叶片材料研究与应用
航空发动机涡轮叶片材料研究与应用航空发动机是现代非常重要的机械装置之一,而其中最核心最重要的便是涡轮。
由于其高速运转和长时间工作的特点,涡轮制造材料就显得异常重要。
本文将介绍目前航空发动机涡轮叶片材料研究的现状和应用。
1. 涡轮叶片的重要性涡轮是航空发动机中重要的传动装置,它既担负着增压盈容的主要工作,也既成为发动机尺寸重量的理想位置。
而涡轮叶片作为涡轮的重要零部件,更是影响航空发动机性能的关键因素之一。
因此对涡轮叶片的材料、制造和性能要求非常高。
叶片的材料需要有良好的耐腐蚀性、高温强度、疲劳强度和耐磨损性,而制造过程需要有高精度,以保证涡轮运转的平稳和稳定。
2. 涡轮叶片材料的研究现状目前航空发动机涡轮叶片的材料一般采用高温合金、钛合金、陶瓷及复合材料等。
其中高温合金是最常用的一种材料,用于制造可抗高温的叶片结构。
高温合金可抵御高温和强振动,但其制造难度较大,使用寿命短,剩余寿命不易预测。
除此之外,也有一些新型金属材料如超级镍基合金、钨酸盐金属复合材料也被引入到了涡轮叶片的研究中。
3. 涡轮叶片材料的应用涡轮叶片材料的应用依据其性能和用途的不同而各异。
高温合金叶片被应用于军用低-bypass比发动机、商用高-bypass比发动机和涡轮直升机中;钛合金叶片被应用于低-bypass比发动机中;陶瓷叶片因其热膨胀系数小、硬度高等特点,被应用于航空发动机中的高温部件;而复合材料叶片由于具有高强度、低密度、无肌理和耐腐蚀性等特点,被应用于现代航空发动机中。
4. 涡轮叶片的未来发展虽然目前航空发动机涡轮叶片材料已经取得了较为可观的进展和成果,但需要注意的是,其不能满足未来科技和航空发展的需求。
今后涡轮叶片材料的发展将继续进一步提高材料的高温强度、持久性和稳定性,也将进一步发展复合材料,降低其制造成本。
5. 结论涡轮叶片是航空发动机中的重要零部件,对发动机的性能和稳定性起着至关重要的作用。
目前,涡轮叶片的研究和应用已经取得了很大的进展和成果,但尚需要不断地加强材料研究,进一步提高其材料的高温强度、持久性和稳定性,以满足未来科技和航空发展的需求。
航空发动机叶片关键技术发展现状分析
航空发动机叶片关键技术发展现状分析航空发动机叶片是航空发动机的核心部件之一,其性能直接影响着飞机的动力性能和燃油效率。
随着航空工业的快速发展,航空发动机叶片的关键技术也在不断地推陈出新,取得了一系列重要进展。
本文将从材料、制造工艺和设计优化三个方面对航空发动机叶片关键技术的发展现状进行分析。
一、材料技术的发展航空发动机叶片的材料要求具有高温、高强度、抗腐蚀和轻质化等特性。
在过去,镍基合金一直是航空发动机叶片的主要材料,但是随着飞行速度和工作温度的不断提高,传统的镍基合金已经无法满足航空发动机叶片的要求。
为了满足新一代航空发动机叶片对材料性能的需求,近年来,高温合金、陶瓷基复合材料、纳米材料等新材料相继应用到航空发动机叶片中。
高温合金因其具有良好的高温强度和抗氧化性能,成为了航空发动机叶片的主要材料。
陶瓷基复合材料由于其轻质、高温强度和抗腐蚀性等优点,也在航空发动机叶片中得到了广泛的应用。
纳米材料的应用也为航空发动机叶片的材料技术带来了新的突破。
纳米材料具有优异的力学性能和热学性能,能够显著提高航空发动机叶片的综合性能,使航空发动机在高温和高速条件下获得更好的工作表现。
二、制造工艺的发展航空发动机叶片的制造工艺一直是航空制造业的重要研究方向之一。
在过去,航空发动机叶片的制造主要采用锻造、铸造和精密加工等传统工艺,但这些工艺在生产效率、质量控制和成本方面存在一些问题。
为了满足航空发动机叶片对制造工艺的要求,现代制造技术日趋成熟,包括数控加工、激光熔化成形、超声波成形等先进制造技术逐渐应用到航空发动机叶片的制造中。
激光熔化成形技术能够直接将金属粉末熔化成所需形状的叶片,无需模具,制造成本低、效率高,且能够生产出复杂形状的叶片结构,因此备受关注。
超声波成形技术也能够将金属板材通过超声波振动成形成叶片,其制造过程简单、成本低廉,且能够实现一次成形,提高了叶片的制造效率和质量。
三、设计优化的发展航空发动机叶片的设计优化对于提高叶片的性能、降低燃油消耗和延长使用寿命具有重要意义。
航空发动机叶片材料及制造技术现状
航空发动机叶片资料及制造技术现状在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一要点件,并被誉为“王冠上的明珠”。
涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进度度的重要标志,在必然意义上,也是一个国家航空工业水平的显然标志【 007】。
航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因其他国自7O年代以来纷纷开始研制新式高温合金,先后研制了定向凝固高温合金、单晶高温合金等拥有优异高温性能的新资料;单晶高温合金已经发展到了第3代。
8O年代,又开始研制了陶瓷叶片资料,在叶片上开始采用防腐、隔热涂层等技术。
1航空发动机原理简介航空发动机主要分民用和军用两种。
图 1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理表示图;图 3是飞机涡轮发动机内的温度、气流速度和压力分布;图 4是罗尔斯 -罗伊斯喷气发动机内温度和资料分布;图 5为航空发动机用不同样资料用量的发展变化情况。
图 1普惠公司民用涡轮发动机主要构件图2 EJ200 军用飞机涡轮发动机的工作原理图3商用涡轮发动机内的温度、气流速度和压力分布图4罗尔斯-罗伊斯喷气发动机内温度和资料分布图5航空发动机用不同样资料用量的变化情况1变形高温合金叶片1.1 叶片资料变形高温合金发展有 50多年的历史,国内飞机发动机叶片常用变形高温合金如表 1所示。
高温合金中随着铝、钛和钨、钼含量增加,资料性能连续提高,但热加工性能下降;加入昂贵的合金元素钴此后,能够改进资料的综合性能和提高升温组织的牢固性。
表1国内飞机叶片用高温合金牌号及其工作温度合金牌号合金系统GH4169Cr-Ni GH4033Cr-NiGH4080A Cr-Ni GH4037Cr-Ni GH4049Cr-Ni-Co GH4105Cr-Ni-Co GH4220Cr-Ni-Co 使用温度 /℃特点及应用650 热加工性能好,热变形和模锻叶片成形不困难,叶身变形80%也不开裂。
航空发动机叶片材料及制造技术现状
航空发动机叶片材料及制造技术现状
摘要:
航空发动机叶片是航空发动机的关键组件之一,其材料性能和制造技术直接影响发动机的性能和可靠性。
本文对航空发动机叶片的材料和制造技术进行了详细介绍,并分析了目前的发展趋势和面临的挑战。
主要内容包括叶片材料的分类和性能要求、叶片制造的工艺流程、先进材料与制造技术的应用以及未来的发展方向。
第一部分:引言
1.1研究背景
1.2研究目的
第二部分:叶片材料的分类和性能要求
2.1叶片材料的分类
2.2叶片材料的性能要求
2.3典型叶片材料探讨
第三部分:叶片制造的工艺流程
3.1制造流程的概述
3.2锻造工艺
3.3喷涂工艺
3.4焊接工艺
3.5其他制造工艺的研究进展
第四部分:先进材料与制造技术的应用
4.1高温合金材料
4.2复合材料的应用
4.3多材料结构的发展
4.4先进制造技术的应用
第五部分:未来的发展方向
5.1合金材料的进一步发展
5.2复合材料的应用前景
5.3先进制造技术的创新
5.4综合应用与跨学科研究
第六部分:结论
6.1发动机叶片材料和制造技术的现状
6.2发展趋势和挑战
6.3未来研究的重点与方向
本文以航空发动机叶片材料和制造技术为研究对象,从材料的分类和
性能要求、制造工艺流程、先进材料与制造技术的应用以及未来的发展方
向等方面进行了全面深入的探讨。
通过分析现有材料和技术的优势和缺陷,提出了未来研究的重点与方向,并指出了面临的挑战。
本文对航空发动机
叶片的材料和制造技术的研究具有指导意义,也为相关领域的进一步研究
提供了参考。
航空发动机叶片关键技术发展现状分析
航空发动机叶片关键技术发展现状分析航空发动机叶片是飞机发动机中十分重要的零部件,直接影响着发动机的性能和效率。
随着航空业的不断发展,航空发动机叶片的关键技术也在不断突破和创新。
本文将对航空发动机叶片关键技术的发展现状进行分析,并探讨未来的发展趋势。
航空发动机叶片的材料技术一直是航空工业的研究热点之一。
由于航空发动机叶片在高温、高压和高速环境下工作,要求材料具有优异的耐热性、抗氧化性、强度和刚度。
目前,航空发动机叶片的材料主要包括镍基高温合金、钛合金和复合材料等。
镍基高温合金是发动机叶片材料的主要选择,其在高温环境下具有良好的热稳定性和抗氧化性能,能够满足发动机叶片的高温工作要求。
随着材料工艺和合金配方的不断优化,镍基高温合金的性能得到了全面提升,使得发动机叶片的工作温度得以提高,性能得到进一步提升。
钛合金在航空发动机叶片中也得到了广泛应用,其具有良好的强度和刚度,同时具有较轻的重量,能够有效降低叶片的质量,提高发动机的功率密度和燃油效率。
复合材料在航空发动机叶片中也具有较大的潜力。
其具有良好的抗热性、抗疲劳性和抗腐蚀性能,同时具有较轻的重量和优秀的设计自由度,能够满足叶片结构设计的多样化需求,在未来发展中应用前景广阔。
航空发动机叶片的制造技术是叶片制造的核心环节,直接影响着叶片的质量和性能。
目前,航空发动机叶片的制造技术主要包括精密铸造、数控加工、表面处理和热处理等环节。
精密铸造技术是航空发动机叶片制造的关键技术之一,其主要应用于镍基高温合金叶片的制造。
通过熔模铸造、真空熔炼和精密成型等工艺,可以实现叶片复杂结构和内部冷却通道的精密成型,保证叶片的内在质量和性能。
数控加工技术在航空发动机叶片的制造中也得到了广泛应用,通过数控铣削、数控车削和电火花加工等工艺,可以实现叶片表面和内部结构的高精度加工,保证叶片的几何精度和表面质量。
表面处理技术和热处理技术在航空发动机叶片的制造中也具有重要作用,能够有效提高叶片的表面硬度和耐热性,延长叶片的使用寿命。
航空发动机制造技术发展及发展趋势
航空发动机制造技术发展及发展趋势大家好,今天我们来聊聊航空发动机制造技术的发展趋势。
我们要知道,航空发动机是飞机的“心脏”,它决定了飞机的速度、高度和航程。
那么,航空发动机制造技术的发展又是如何影响到我们的出行体验呢?接下来,我将从以下几个方面为大家详细介绍。
1.1 航空发动机制造技术的现状目前,航空发动机制造技术已经取得了很大的进步。
以前,航空发动机的噪音大、耗油多、寿命短,给乘客带来了很大的不适。
而现在,随着科技的发展,航空发动机的性能得到了极大的提升,噪音降低了很多,耗油也减少了,寿命也变得更长了。
这要归功于先进的材料、工艺和设计。
1.2 航空发动机制造技术的发展趋势那么,未来的航空发动机制造技术会朝着什么方向发展呢?我认为,有以下几个趋势:第一,绿色环保。
随着人们对环境保护意识的提高,航空发动机制造技术也会越来越注重环保。
比如,采用新型的低排放材料、优化燃烧过程等,以减少对环境的影响。
第二,高效节能。
未来的航空发动机将会更加高效节能。
这需要我们在材料、工艺和设计等方面进行创新,以提高发动机的热效率和燃油效率。
第三,智能化。
随着人工智能技术的发展,未来的航空发动机将会更加智能化。
通过实时监测和调整发动机的工作状态,可以实现更精确的控制,提高飞行的安全性和舒适性。
第四,轻量化。
为了降低飞机的重量,未来的航空发动机将会更加轻量化。
这需要我们在材料、结构和工艺等方面进行创新,以减轻发动机的重量。
2.1 航空发动机制造技术的挑战虽然航空发动机制造技术有很大的发展潜力,但同时也面临着一些挑战。
比如,如何提高发动机的可靠性和安全性;如何降低制造成本;如何在保证性能的同时实现轻量化等。
这些都是我们需要努力去克服的问题。
2.2 航空发动机制造技术的未来展望总的来说,随着科技的不断进步,航空发动机制造技术将会越来越先进。
未来的航空发动机将会更加环保、高效、智能和轻量化。
这将为我们带来更好的出行体验,让我们的天空更加湛蓝。
航空发动机叶片关键制造技术
航空发动机叶片关键制造技术首先,航空发动机叶片的材料选择是制造过程中的一个重要考虑因素。
一般来说,叶片需要具备高温和高压力环境下的稳定性和强度。
因此,钛合金和镍基合金是常用的叶片材料。
钛合金具有良好的耐高温性能和强度,但是制造难度较大;而镍基合金则具有较高的强度和抗蠕变能力。
其次,航空发动机叶片的制造通常采用铸造和锻造两种工艺。
铸造是制造大型和复杂形状叶片的常用方法。
树脂砂铸造和单晶铸造是两种常见的铸造工艺。
树脂砂铸造可以制造出较大规模的叶片,而单晶铸造可以制造出无晶粒界的单晶叶片,提高了叶片的耐高温性能。
锻造是制造高强度和复杂形状叶片的一种有效方法。
采用锻造工艺可以提高叶片的综合机械性能和抗蠕变能力。
另外,表面处理也是航空发动机叶片制造中的一个重要环节。
表面处理可以改善叶片的表面质量和适应性。
例如,机械抛光和电解抛光可以提高叶片的光洁度和表面平整度。
化学镀和阳极氧化等技术可以提高叶片的耐腐蚀性和抗氧化性。
此外,还可以通过表面涂覆特殊涂层来提高叶片的热防护能力和抗磨损性能。
最后,航空发动机叶片的质量控制也是制造过程中的一项重要任务。
叶片的尺寸、形状和材料性能需要进行严格的检测和测试。
通常采用的方法包括非破坏性检测、尺寸测量和材料性能测试。
非破坏性检测可以通过超声波检测、X射线检测和磁粉检测等方法来检测叶片内部的隐性缺陷。
尺寸测量可以通过光学投影仪、三坐标测量机和激光扫描仪等设备来进行。
材料性能测试通常包括拉伸、硬度和金相显微组织分析等。
总之,航空发动机叶片的关键制造技术涉及材料选择、工艺选择、表面处理和质量控制等方面。
通过不断提升制造技术,可以制造出更高质量、更高性能的航空发动机叶片,提升整个航空发动机的性能和可靠性。
基于3D打印技术的航空发动机叶片优化设计与制造
基于3D打印技术的航空发动机叶片优化设计与制造航空工业一直以来都在不断追求发动机的性能提升和重量降低,以实现更高的燃油效率和更好的飞行性能。
近年来,3D打印技术的快速发展为航空发动机叶片的优化设计与制造提供了新的可能性。
本文将探讨基于3D打印技术的航空发动机叶片优化设计与制造的现状与前景。
一、3D打印技术在航空发动机叶片优化设计中的应用1. 材料选择与性能优化:3D打印技术可以使用各种金属和复合材料进行制造,开放了材料选择的空间。
航空发动机叶片需要具备高温、高压和高强度的特性,因此可以通过材料的性能优化来提高叶片的耐用性和工作效率。
2. 结构优化与减重:通过3D打印技术,可以实现叶片内部结构的复杂设计和定制化制造,提供更高的结构强度和刚度。
此外,通过优化叶片的形状和内部结构,可以减少材料的使用量,实现叶片的减重。
3. 气动优化与流体力学分析:结合计算流体力学(CFD)模拟,可以对叶片的气动性能进行优化设计。
通过调整叶片的曲率、表面纹理等参数,可以改善叶片与气流的相互作用,提高叶片的气动效率和推力产生能力。
二、3D打印技术在航空发动机叶片制造中的应用1. 制造复杂内部结构:传统的铸造或加工工艺很难实现复杂内部结构的叶片制造,而3D打印技术能够通过叠加材料的方式实现内部孔道、悬臂等复杂结构的制造,提高航空发动机叶片的性能和寿命。
2. 加速制造周期:3D打印技术可以实现批量化、快速制造,大大缩短航空发动机叶片的制造周期,提高生产效率。
与传统工艺相比,3D打印技术无需制造模具,大大降低了制造成本和生产周期。
3. 定制化制造:3D打印技术允许根据不同航空发动机的需求进行个性化定制制造。
根据具体的使用环境和工作要求,可以对叶片的尺寸、形状、材料进行灵活调整,提高整个发动机系统的性能和适应性。
三、基于3D打印技术的航空发动机叶片优化设计与制造的挑战与前景虽然3D打印技术在航空发动机叶片优化设计与制造方面具有巨大潜力,但仍面临一些挑战。
航空发动机涡轮叶片精密成形技术分析
航空发动机涡轮叶片精密成形技术分析航空发动机涡轮叶片是发动机的关键部件,直接影响飞机的动力性能和燃油效率。
由于涡轮叶片受到高温、高速气流的作用,要求具有较高的耐热性和耐磨损性。
目前,随着航空工业的发展和技术进步,涡轮叶片的精密成形技术正在不断地得到改进和提高。
涡轮叶片的精密成形技术包括铸造、锻造和精密加工等多种工艺,并且国内外都在不断地进行技术创新和改进。
本文将重点分析涡轮叶片精密成形技术的发展现状和趋势,介绍其工艺流程和关键技术,以及面临的挑战和解决方案。
一、涡轮叶片精密成形技术发展现状涡轮叶片的精密成形技术经历了从传统手工制造到数控自动化生产的发展过程。
在20世纪初期,涡轮叶片的生产主要依靠手工锻造和加工,工艺简单,但精度和稳定性较低。
随着航空工业的发展和需求的增长,涡轮叶片的生产逐渐向自动化、数字化和精密化方向发展。
目前,国内外涡轮叶片的精密成形技术主要包括以下几种:1. 铸造技术:铸造是目前涡轮叶片生产的主流工艺之一。
通过模具和熔化金属的注入,可以实现复杂形状的叶片生产,具有成本低、生产效率高等优点。
但铸造工艺对原材料的要求较高,而且易产生气孔、夹渣等缺陷,影响叶片的性能和寿命。
2. 锻造技术:锻造是一种利用模具和高温高压使金属变形的工艺,可以实现叶片的精密成形。
锻造工艺具有成本低、材料利用率高等优点,但其工艺控制和模具设计较为复杂,难以实现复杂形状的叶片生产。
3. 精密加工技术:精密加工技术包括CNC加工、激光制造、电火花加工等,可以实现叶片的精确成形和表面处理。
这些技术在叶片成形的精度和表面质量上具有优势,但成本较高,适用于对叶片性能要求较高的航空发动机。
以上几种技术各有优劣,但目前主要的趋势是将这些技术进行有机结合,实现叶片生产的自动化、数字化和精密化。
涡轮叶片的精密成形技术涉及到多个关键工艺和技术,如材料选型、模具设计、热处理工艺、表面涂层等。
1. 材料选型:涡轮叶片所采用的材料通常为镍基合金或钛合金,具有高强度、高温性能和耐腐蚀性能。
航空材料的研发与应用现状
航空材料的研发与应用现状航空工业的发展离不开先进材料的支持,航空材料的性能和质量直接影响着飞机的安全性、可靠性、经济性以及飞行性能。
随着科技的不断进步,航空材料的研发和应用也在不断取得新的突破。
航空材料的种类繁多,包括金属材料、复合材料、高分子材料等。
金属材料如铝合金、钛合金、高强度钢等,在航空领域一直占据着重要地位。
铝合金具有良好的加工性能和轻质高强的特点,广泛应用于飞机的机身结构。
钛合金则具有更高的强度和耐腐蚀性,常用于发动机部件和高温区域。
高强度钢在一些关键承力部位发挥着重要作用。
复合材料在航空领域的应用日益广泛,特别是碳纤维增强复合材料。
这种材料具有比强度高、比模量高、抗疲劳性能好等优点,能够显著减轻飞机的结构重量,提高燃油效率和飞行性能。
例如,在现代飞机的机翼、机身等部位,大量采用了碳纤维复合材料。
高分子材料在航空领域也有不少应用,如橡胶密封件、塑料零部件等。
此外,一些新型的高分子材料如聚酰亚胺等,具有优异的耐高温性能,可用于制造发动机内部的零部件。
在航空材料的研发方面,科研人员面临着诸多挑战。
首先是性能要求的不断提高。
飞机在飞行过程中要承受各种复杂的载荷和环境条件,如高温、高压、高速气流等,这就要求材料具备高强度、高韧性、耐高温、耐腐蚀等性能。
其次是轻量化的需求。
减轻飞机的重量可以降低燃油消耗,提高飞行效率,因此研发轻质高强的材料一直是航空材料研究的重点。
再者是可靠性和耐久性。
航空材料必须具备极高的可靠性和耐久性,以确保飞机的安全飞行。
为了满足这些要求,研发人员采用了多种创新的方法和技术。
在材料设计方面,利用计算机模拟和仿真技术,可以在实验之前对材料的性能进行预测和优化,从而减少实验次数,提高研发效率。
在制备工艺方面,先进的加工技术如 3D 打印、激光加工等,为制造复杂形状的零部件提供了可能。
同时,表面处理技术的不断改进,也能提高材料的表面性能,增强其抗腐蚀和耐磨能力。
在航空材料的应用方面,不同类型的飞机对材料的要求也有所不同。
航空发动机叶片材料及制造技术现状
航空发动机叶片材料及制造技术现状航空发动机叶片是发动机中最关键的部件之一,它的材料和制造技术对发动机的性能和可靠性有着重要的影响。
在航空发动机的设计中,叶片材料要求具有高温强度、耐热疲劳、抗氧化和良好的耐腐蚀性能。
同时,叶片的制造技术需要保证叶片的几何尺寸精度和表面质量。
目前,航空发动机叶片的常用材料包括镍基合金、钛基合金和复合材料。
镍基合金是目前航空发动机叶片的主要材料之一,具有优异的高温强度、抗氧化和耐热疲劳性能。
由于航空发动机叶片在高温环境下长期工作,材料的高温强度至关重要。
镍基合金可以承受较高的温度下进行工作,并且具有优异的机械性能和化学稳定性,因此被广泛应用于航空发动机叶片制造中。
钛基合金在航空发动机叶片中也有广泛应用。
钛基合金具有较高的强度、刚性和耐腐蚀性能,而且具有较低的密度,是一种较为轻量化的材料。
钛基合金因其良好的力学性能和抗腐蚀性能,逐渐被应用于航空发动机叶片中,提高了叶片的综合性能。
另外,复合材料也逐渐在航空发动机叶片中得到应用。
复合材料具有高强度、轻质化和抗腐蚀性能好等优点,可以减轻航空发动机结构重量,提高整体效率。
然而,复合材料的制造工艺和维修成本较高,需要进一步的研发和改进。
对于航空发动机叶片的制造技术,传统的铸造、锻造和机械加工工艺仍然占据主导地位。
这些传统的制造工艺可以满足叶片的几何尺寸要求,但在提高叶片的复杂性和制造精度方面有一定限制。
近年来,先进制造技术,如粉末冶金成形、增材制造和光刻蚀等,开始在航空发动机叶片的制造中得到应用。
粉末冶金成形技术可以实现复杂叶片结构的生产,同时具有较高的材料利用率。
增材制造技术可以通过逐层堆积材料来制造复杂形状的叶片,具有较高的制造精度和设计自由度。
光刻蚀技术允许在特定区域进行材料的去除,可以实现叶片表面的微纳结构和涂层的制造。
总的来说,航空发动机叶片的材料和制造技术一直在不断发展和改进。
未来,随着航空发动机的需求不断增加,对叶片的性能和质量的要求也会不断提高。
先进航空发动机关键制造技术发展现状与趋势
先进航空发动机关键制造技术发展现状与趋势一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。
在第四代战斗机的动力装置推重比10发动机F119和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。
目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。
在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC陶瓷基复合材料或抗氧化的C/C复合材料制造整体涡轮叶盘。
2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。
在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。
目前正在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。
推重比15~20 高性能发动机,如美国XTX16/1A变循环发动机的核心机第3、4级压气机为整体叶环转子结构。
该整体叶环转子及其间的隔环采用TiMC金属基复合材料制造。
英、法、德研制了TiMMC叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。
3大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空发动机叶片材料及制造技术现状
在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。
涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。
航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。
8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。
1 航空发动机原理简介
航空发动机主要分民用和军用两种。
图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。
图1 普惠公司民用涡轮发动机主要构件
图2 EJ200军用飞机涡轮发动机的工作原理
图3 商用涡轮发动机内的温度、气流速度和压力分布
图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布
图5 航空发动机用不同材料用量的变化情况
1变形高温合金叶片
1.1 叶片材料
变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。
高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。
1.2 制造技术
生产工艺。
变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。
模锻叶片主要工艺如下:
(1)镦锻榫头部位;
(2)换模具,模锻叶身。
通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变
形流动;
(3)精锻件,机加工成成品;
(4)成品零件消应力退火处理;
(5)表面抛光处理。
分电解抛光、机械抛光两种。
常见问题。
模锻叶片生产中常见问题如下:
(1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片;
(2) GH4049合金模锻易出现锻造裂纹;
(3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀;
(4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。
发展趋势。
叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。
航空发动机叶片属于薄壁易变形零件。
如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。
随着数控机床的出现,叶片制造工艺发生重大变化,采用精密数控加工技术加工的叶片精度高,制造周期短,国内一般6~12个月(半精加工);国外一般3~6个月(无余量加工)。
2铸造高温合金叶片
2.1 叶片材料
半个多世纪来,铸造涡轮叶片的承温能力从1940s年代的750℃左右提高到1990s年代的1700℃左右,应该说,这一巨大成就是叶片合金、铸造工艺、叶片设计和加工以及表面涂层各方面共同发展所作出的共同贡献。
【007】
叶片用铸造高温合金如表2所示。
北京航空材料研究所、钢铁研究总院、沈阳金属所是铸造高温合金的研制单位。
表2 国内叶片用铸造高温合金牌号及使用温度
2005年,国内在一些新材料(如定向凝固高温合金、单晶高温合金、金属间化合物基高温合金等)的研制和应用上,也逐步跟上了世界先进水平的步伐。
但是与之相关的材料性能数据较为缺乏,给材料应用、航空发动机选材与设计带来极大的困难。
2.2 制造技术
研制新型航空发动机是铸造高温合金发展的强大动力,而熔铸工艺的不断进步则是铸造高温台金发展的坚强后盾。
回顾过去的半个世纪,对于高温合金发展起着重要作用的熔铸工艺的革新有许多,而其中三个事件最为重要:真空熔炼技术的发明、熔模铸造工艺的发展和定向凝固技术的崛起。
真空熔炼技术。
真空熔炼可显著降低高温合盒中有害于力学性能的杂质和气体含量,而且可以精确控制合金成分.使合金性能稳定。
熔模铸造工艺。
国内外熔模铸造技术的发展使铸造叶片不断进步,从最初的实心叶片到空心叶片,从有加工余量叶片到无余量叶片,再到定向(单晶)空心无余量叶片,叶片的外形和内腔也越来越复杂;空心气冷叶片的出现既减轻了叶片重量,又提高了叶片的承温能力。
定向凝固技术。
该技术的发展使铸造高温合金承温能力大幅度提高从承温能力最高的等轴晶合金到最高的第三代单晶合金,其承温能力约提高l50℃。
1990s年代之后,为满足新型发动机之需要,计算机数值模拟在合金成分设计和铸造工艺过程中的应用日趋增多。
在采用整体精密涡轮取代锻件组合工艺中,由于涡轮铸件几何形状复杂,断面尺寸大,采用普通铸造工艺的铸件,宏观晶粒粗大且不均匀,由此带来组织及性能的不一致性。
此外铸造合金固有的较低屈服强度和疲劳性能,往往不能满足叶片设计要求。
近年来,出现了“细晶铸造工艺”等技术,即利用铸型及浇铸温度控制、凝固过程中机械电磁叫板、旋转铸造以及加入形核剂等方法,实现晶粒细化的。
美国Howmet公司等用于细晶铸造制造叶片等转动件,常用合金为:In792、Mar-M247和In713C合金;导向叶片等静止件则多用IN718C、PWA1472、Rene220、及R55合金。
3超塑性成形钛合金叶片
3.1 叶片材料
目前,Ti6Al4V和Ti6Al2Sn4Zr2Mo及其他钛合金,是超塑性成形叶片等最为常用的钛合金。
飞机发动机叶片等旋转件用钛合金及其特点如表3所示;罗尔斯-罗伊斯Trent900用钛合金叶片如图6所示。
图6 罗尔斯-罗伊斯Trent900用钛合金叶片
对于CO2排放及全球石油资源枯竭的担心,促使人们提高飞机效率、降低飞机重量。
尽管复合材料的应用有增长趋势,却有制造费用高、不能回收、高温性
能较差等不足。
钛合金仍将是飞机发动机叶片等超塑性成形部件的主要材料。
我国耐热钛合金开发和应用方面也落后于其他发达国家,英国的600℃高温钛合金IMI834 已正式应用于多种航空发动机,美国的Ti-1100也开始用于
T55-712 改型发动机,而我国用于制造压气机盘、叶片的高温钛合金尚正在研制当中。
其它像纤维增强钛基复合材料、抗燃烧钛合金、Ti-Al金属间化合物等虽都立项开展研究,但离实际应用还有一个过程。
3.2 制造技术
早在1970s,钛合金超塑性成形技术就在美国军用飞机和欧洲协和飞机中得到了应用。
在随后的十年中,又开发了军用飞机骨架和发动机用新型超塑性钛合金和铝合金。
在军用飞机及先进的民用涡扇发动机叶片等,均用超塑性成形技术制造,并采用扩散连接组装。
4 新型材料叶片
4.1 碳纤维/钛合金复合材料叶片
美国通用公司生产的GE90-115B发动机,采用碳纤维聚合物叶身与钛合金叶片边缘,共有涡扇叶片22片,单重30~50磅,总重2000磅。
能够提供最好的推重比,是目前最大的飞机喷气发动机叶片,用于波音777飞机。
并将于2010年9月在美国纽约现代艺术馆展出。
图7 美国通用公司生产的GE90-115B发动机涡扇叶片(共有22片,总重2000磅;采用碳纤维聚合物叶身与钛合金叶片边缘)
该材料叶片的制造工艺不详。
4.2金属间化合物叶片
尽管高温合金用于飞机发动机叶片已经50多年了,这些材料有优异的机械性能,材料研究人员,仍然在改进其性能,使设计工程师能够发展研制可在更高温度下工作的、效率更高的喷气发动机。
不过,一种新型的金属间化合物材料正在浮现,它有可能彻底替代高温合金。
高温合金在高温工作下时会生成一种γ相,研究表明,这种相是使材料具有高温强度、抗蠕变性能和耐高温氧化的主要原因。
因此,人们开始了金属间化合物材料的研究。
金属间化合物,密度只有高温合金一半,至少可以用于低压分段,用于取代高温合金。
2010年,美国通用公司、精密铸件公司等申请了一项由NASA支持的航空工业技术项目(AITP),通过验证和评定钛铝金属间化合物(TiAl,Ti-47Al-2Nb-2Cr,原子分数)以及现在用于低压涡轮叶片的高温合金,使其投入工业生产中。
与镍基高温合金相比,TiAl金属间化合物的耐冲击性能较差;将通过疲劳试验等,将技术风险降至最低。
英国罗尔斯-罗伊斯公司,在1999年,也申请了一项γ相钛铝金属间化合物专利,该材料是由伯明翰大学承担研制的。
这种材料可以满足未来军用和民用发动机性能目标的要求,可以用于制造从压缩机至燃烧室的部件,包括叶片。
这种合金的牌号,由罗尔斯-罗伊斯公司定为: Ti-45-2-2-XD。