离子交换树脂受到污染的原因
阳离子交换树脂的污染及复苏方法研究_张翠玲
收稿日期:2006-11-08基金项目:甘肃省自然科学基金项目(20577018)阳离子交换树脂的污染及复苏方法研究张翠玲,郝火凡,赵保卫,欧乙成(兰州交通大学环境与市政工程学院,甘肃兰州 730070)摘 要: 研究了不同浓度的铁离子、亚铁离子和油类物质对树脂污染的影响程度.同时采用 盐酸一食盐一亚硫酸钠 复苏法对污染树脂的复苏进行了探讨.结果表明:在相同时间内,树脂的污染程度随污染物浓度的增加而增大;同浓度的铁离子对树脂的影响比亚铁离子要大;复苏效果总体较好,亚铁离子污染树脂的复苏效果最好,铁离子次之,油类最差.关键词: 阳离子交换树脂;污染;复苏;交换容量中图分类号: TQ 460 文献标识码: A 文章编号:1004-0366(2007)04-0071-03A Study on Pollution and Recovery of Cation Exchanges ResinZH ANG Cu-i ling,H A O H uo -fan,ZH A O Bao -w ei,OU Y-i cheng(S chool of Env ir onmental Science and M unicip al Engineer ing ,L anz hou J iaoto ng Univ er s ity ,Lanz hou 730070,China)Abstract: T he impacts of po llution of different concentrations of iron,fer rous iro n and o il on the resin material ar e investig ing H C-l NaC-l N a 2SO 3 recovery metho d,the po llutied resin recovery is dis -cussed.Results show that in the equal time,the extent of po llution increases with the co ncentration of po-l lutants ;the im pact of po llution of iron o n the resin is larger than that of the ferrous ions w ith the same concentration.The recovery is beetter as a w hole.T he recovery of ferrous io n po llution r ecovery is the best,and that o f ir on ion pollutio n is beltter than that of oil.Key words: cation ex chang e resin;pollutio n;reco ver y;exchange capacity 离子交换树脂是一类带有功能基的网状结构的高分子化合物,其结构由3部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子.离子交换树脂通常制成珠状的小颗粒,多数通用的树脂产品的有效粒径在0.4mm ~0.6m m 之间,活性基团一般都处在树脂网孔内,外来离子必须进入网孔内才能进行离子交换.离子交换树脂具有强稳定的化学性质,母体本身不与酸、碱起作用.阳离子交换树脂是指分子中含有酸性基团的离子交换树脂,它在水及其他极性溶剂中发生溶胀,能在水中离解出H +而使溶液呈酸性[1].树脂离解后余下的负电基团,如R -COO -(R 为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用.一些阳离子被吸附的顺序如下:Fe 3+>A l 3+>Pb 2+>Ca 2+>M g 2+>K +>Na +>H +[2].自从1935年亚当斯(A dams)和霍姆斯(H olm es)研究合成了第1批离子交换树脂 聚酚醛系强酸性阳离子交换树脂和聚苯胺醛系弱碱性阴离子交换树脂以来,尤其是20世纪70年代以后,离子交换树脂的合成及应用技术得到了长足发展.阳离子交换树脂目前主要用于:水处理、食品工业、制药工业、合成化学和石油化学工业、环境保护、湿法冶金、原子能、半导体、电子工业等,其中水处理领域离子交换树脂的需求量最大,约占离子交换树脂产量的90%.随着离子交换树脂的广泛使用,树脂的污染及修复问题已受到人们的重视[3,4],经研究发现阳离子交换树脂主要的污染物有水预处理过程残留的混凝剂,水中含有的铁离子、输送管道中腐蚀产生的铁化物,有机物、油类、自来水中残留的余氯第19卷 第4期2007年12月 甘肃科学学报J ournal of Gansu S cien cesVol.19 No.4Dec.2007等.污染后的树脂颜色明显加深,由淡黄色变为棕色、紫红色、甚至近似黑色,交换容量有较大幅度下降,周期产水量随树脂污染程度的加剧而急剧下降.我们以铁离子、亚铁离子、菜籽油为目标污染物,主要研究了阳离子交换树脂的污染程度随溶液中铁离子、亚铁离子、菜籽油浓度的变化关系及其对污染树脂复苏效果的影响.1 实验部分1.1 主要仪器及药品主要仪器有:电动离心沉淀机(A nke T DL-40B),202-1型电热恒温干燥箱(上海实验仪器有限公司),电子天平,电热恒温水浴锅,电导仪,分液漏斗,玻璃离心过滤管,秒表,称量瓶,具塞三角烧瓶.药品包括:强酸性阳离子交换树脂,盐酸,氢氧化钠,甲基红,次甲基蓝,酚酞,甲基橙,无水乙醇,氯化钙,硫酸亚铁,硫酸铁,菜籽油.1.2 污染树脂的制备及测定(1)树脂的预处理 预处理按GB5476-85离子交换树脂预处理方法进行.(2)污染树脂的制备 配制浓度分别为0.25mg/L、0.50mg/L、0.75m g/L、1.00m g/L、1.25mg/L的亚铁离子溶液和浓度分别为0.25mg/L、0.50mg/L、0.75m g/L、1.00m g/L、1.25m g/L的铁离子溶液,各取5mL移入装有200mL阳离子交换树脂的容器中,分别加入500mL的蒸馏水,30 恒温振荡30min后密封静置,30d后测定全交换容量; 各取1mL、2mL、3 mL、4mL、5mL的菜籽油放入装有200m L阳离子交换树脂的容器中,分别加入500mL的蒸馏水, 30 恒温振荡30min后密封静置,30d后测安全交换容量.(3)测定 按GB8144-87阳离子交换树脂交换容量测定方法测定,交换容量越小说明树脂所受的污染越严重.1.3 污染树脂的复苏及效果测定(1)复苏方法 相关研究[5,6]证明 盐酸 食盐 亚硫酸钠 复苏法是修复受污染阳离子树脂比较好的方法,以下采用的是4%的盐酸、4%的食盐和0.08%的亚硫酸钠混合液,取制备好的污染树脂,加人到一定比例的混合液中进行浸泡处理.(2)复苏效果测定 复苏效果通过测定复苏后树脂的全交换容量来衡量,全交换容量越高说明复苏效果越好[7].2 结果与讨论2.1 树脂污染程度与污染物浓度的关系随着污染物浓度(体积)的增加全交换容量逐渐下降;相同浓度条件下,铁离子污染的树脂全交换容量明显低于亚铁离子污染的树脂.由图1和图2所示.图1 树脂全交换容量与铁离子和亚铁离子浓度Fe2+ Fe3+图2 树脂全交换容量与溶液中菜籽油的体积2.2 树脂污染程度与污染物浓度的关系盐酸 食盐 亚硫酸钠 复苏法对铁和油污染的树脂都有较好的复苏效果,绝大多数树脂的全交换容量恢复到了空白的80%以上,树脂的复苏效果随受污染时污染物浓度的增大而略成下降趋势,同时可看出受铁离子污染的树脂复苏效果整体比受亚铁离子污染树脂复苏效果要差.由图3和图4所示.图3 复苏后树脂交换容量与铁的浓度Fe2+ Fe3+72 甘肃科学学报 2007年 第1期图4 复苏后树脂交换容量与油的浓度的关系3 结论随着污染物浓度(体积)的增加树脂全交换容量逐渐下降,时间相同时树脂的污染程度随污染物浓度的增加而增加;相同浓度条件下,铁离子对树脂的影响明显高于亚铁离子对树脂的影响,而且在相同的复苏条件下,亚铁离子污染的树脂的复苏效果优于铁离子污染的树脂的复苏效果[8],所以树脂使用或再生过程中应适当添加还原剂降低铁离子含量,减少铁对树脂的污染.参考文献[1] 武银华.水处理技术的研究进展.[J].广东化工,2004,20(z1):49-50.[2] 王广珠,汪德良,崔焕芳.离子交换树脂使用及诊断技术[J].北京:化学工业出版社,2004.[3] 贾波,周柏青,李芹.阳离子交换树脂的污染与复苏[J].工业用水与废水,2003,34(5):16-18.[4] 郑成远.离子交换树脂污染的诊断及处理方法[J ].冶金动力,2007,120(2):42-45.[5] 袁锡妹.铁污染阳离子交换树脂的复苏比较及测定[J].腐蚀与防护,2002,23(10):458-459.[6] 贾波,周柏青,李芹.阳离子交换树脂铁污染的复苏研究[J ].热力发电,2004,33(04):20-23[7] 张国珍,宋小三.活性炭吸附T NT 废水实验研究.[J ].甘肃科学学报,2007,19(3):150-153.[8] 武福平.受严重污染的强碱阳树脂复苏实验研究.[J ].甘肃科学学报,2006,18(4):102-105.作者简介:张翠玲,(1973-)女,山东省梁山人,1996年毕业于兰州铁道学院环工系,现任兰州交通大学环境与市政工程学院讲师.73第19卷 张翠玲等:阳离子交换树脂的污染及复苏方法研究。
火电厂水处理阳离子交换树脂污染的原因与复苏
【 关键词 】 火电; 水处理 ; 阳离子换树脂; 污染; 复苏
0 前 言
在火电厂的生产过 程中. 水作 为大部分机械设备 的工作介质和冷 却手段其消耗量非常巨大 我厂化学水处理每天外供 及 自用 除盐水量 在4 0 0 m  ̄ / d左 右 可 见 火 电厂 发 电及 工 艺 用 水 量 之 多 而 火 电 厂 的用 水 质量必须严格要求 . 有的超高压设 备的补 给水甚 至需要接 近纯水水 质 的补 给水 困为补给水质 的达标 与否关系到生产 机械的安全运 行 但 是, 由于火 电厂的水源般都是没有经过处理 的地下水 . 因此 . 必须对 水 进行严格的处理后才能投入火电生产用 目前绝大多数火电厂都是采 用离子交换法 制取 除盐水而作 为离子交换法核 心部件 的阳离 子交换 树脂其性能的好坏将直接影响到电厂设备 的安全 、 高教 的运行 。 因此 , 针对离子交换树脂 在生产过程 中因为化学结构 遭到破坏或者 收到杂 质污染而出现的中毒现象 . 准确 分析其受 到污染 的原 因并 提出相应的 解决办法对火电厂生产运行就显得 非常重要
1 火 电厂 水 处 理 阳 离 子 交换 树 脂 污 染 的 原 因
所谓离子交换树脂 . 就是用 苯乙烯 或者丙烯 酸通 过聚合反应生成 的具有独立三维空间的的立体骨架 . 再 对骨架 导人不 同的化学基团加 以修饰所得 到的物 质. 按 照导入 团得性质可分 为阳高于交换 树脂和 阴 离子 交换树脂两大类 阳离子交换树 脂大都是 向骨架导人 硫酸基 ( 一 s 0 H 1 、 羧基( 一 C O O H ) 或苯酚基( 一 C  ̄ q , O H ) 等酸性基 团 , 在水溶液中能够 电离 出氢离子 . 溶液中的金属离子或其 他阳离 于进行交换 如含有硫 1 . 5 再 生 剂 的污 染 酸基 的阳离子交换树 脂可将其结构式 简单表示 为 R — s O H式 中 R代 再 生 剂 的 污 染 一 般 主要 是 由 于 再 生 剂 的 铁 含 量 超 标 及 再 生 剂 中 表树脂母体其交换机理为 含氯引起 的 有研究表明 : 再生剂中含有 F e 0 、 N a C I O 时会发生化学 2 R— S O 3 H+ C a  ̄ + = ( R— S O 3 ) 2 C a + 2 H 反应 生成高价铁酸盐进而 导致 铁污染且游离 氯会使树脂 的结构发生 水处理系统 中的 阳离子交换树脂 . 可以经过离子交换反应除去水 变化 ( 如溶胀 、 破损及降解等 ) 严重影响树脂 的交换能力 。 中的金属离子等 阳离子 从而为火电厂各种 高压设备 提供合格 的除盐 水 阳离子交换树脂虽然 比阴离子交换树脂要相对稳定 . 但在使用过 2 阳 离子 交换 树 脂 污 染 后 的 复苏 方法 程 中. 或者在运输及存储时也容易因为有害物质的侵入或者结构 的破 首 先. 必须 明确树脂受到 的是何种污染然后才能针对性 的采取 复 坏而受到污染 . 严 重 影 响 阳离 子 交 换 树 脂 的 工 作 性 能 树 脂 污 染 一 般 苏措施 把好水源关 . 树脂 中的污染物主要 与水资源有关系 因此水 资 分为二种氧化剂等污染和树脂交换孔被杂质堵塞或者表面被覆盖 . 交 源成 为防止树脂污染 的一个重要因素 避免直接将井 水被 污染 的其 它 换基 团被 占据产生树脂 中毒 . 导致交换容量下降 . 再生困难。 这种情况 水源直接送入 阳床 一般采用 自来水 . 自来水中没有悬 浮物 , 可以避免 是可 以通过树脂性能恢复 的处理来复苏其机能 但 是前一种情况树脂 污染 . 利用 自来水还有 另外一十优势 . 那 就是可 以提 高树 脂 的工交 降 老化是无法恢 复的 结合火 电厂 的生产工艺和生产过程来看 , 火 电厂 低此对程中的酸碱 消耗量 ; 但是利用 自 来水的管道 , 应该 随时清 理 , 避 水处理 系统 中的阳离子交换树脂容易受到金属离子的污染 、 悬浮物 的 免腐蚀. 机械工作 中所需要 的油脂应避免对水源的污染 污染 和有机物 的污染此外 油脂和阳离子交换树脂再生剂的纯度也 会 铁污染可以采用 1 0 %的盐酸进行 浸泡处理然后 用蒸 馏水 冲洗 反 影 响树脂 的性能 复进行直 至排出的废液 中无 F e 再用碱 沉淀铁 离子然后 调节附 至中 1 . 1 金属 离 子 的污 染 性即可 为预 防阳离子交换树脂的铁污染 . 建议 定期 用 5 %一 l 0 %的热 金属离子 的污染 主要包括铁污染和铝 、 钙污染 阳离子交换树 脂 盐酸溶液浸泡 发生铝 、 钙污染时 , 通常采用 1 0 %的盐酸溶液加络合剂 容易受到铁污染主要 是困为 :火 电厂的水源一般是 地下水或者地 表 对阳树脂进行冲洗 就可达到复苏 的效果 水. 由于环境污染 问题 . 导致水 中金属 离子尤其是铁 离子含量严重 超 有机物污染有两种方法可 以复苏 . 是采用氯化钠和氢氧化钠 按 3 标: 设备的进水管道或 者交换器 内部 受到腐蚀而产 生铁 化物 : 此外 有 比 1的比例配置成 的混合溶液对 被污染的树脂进 行浸泡处理然 后用 的再 生剂也含有少量 的铁杂质 相关学者研究表 明. 铁对 阳离子 交换 盐酸 除去沉 淀物 . 调节 P H即可复苏 阳树 脂 . 二是采用含 次氯酸 钠的 树脂 的污染 主要是 因为 F e “ . 水源 中的铁离子大都 以 F e “ 的形式 存在 , 氢氧化钠溶液处理 但是次氯酸钠 的强氧化性对树 脂有损害使用 时必 其容易与树脂发生交换反应 . 而且 F e “ 非常容易被氧化为 F e . 而F e n 须严格控制浓度和时间 . 处理 次数般不 能超过 两次 在水溶 液中容易形成带正 电荷 的胶体粒子 . 带正 电荷 的胶体会 吸附其 油脂污染采用 5 %的 N a O H溶液 、 或N a O H与 N a , C O 混 合液进行 它杂质进 步形成高价铁化物 而沉积在树脂交换通道 内部 . 从 而堵 塞 阳 清洗 . 也可采用非离子型表面活性剂来复苏 阳树脂 而悬浮物的污染 离子交换树脂 的交换通道 : 另外 , 由于阳离子交换树脂 的吸附作 用 , 悬 利用空气来搅动树脂 . 达到对树脂进 行擦洗 的 目的 . 今儿 复苏树脂 。 再 浮状态的铁化物容 易受到 阳离子 交换 树脂 的吸附作用而在交换 树脂 生剂 的污染 目前 还没有很好 的解决办法 只能通过控制再 生剂 中的 的表 面形成一层铁 化物从而阻止 了水中 的其它 离子与树脂 的交 换反 F e . Na C I 等杂志 的含量来预防污染
发电机组内冷水含铜量超标分析
发电机组内冷水含铜量超标分析作者:吕长春来源:《环球市场》2019年第07期摘要:大型火力发电机组发电机通常采用水一氢一氢冷却方式,即定子水内冷方式,定子表面及转子采用氢气冷却。
对发电机定子内冷水水质要求较高,内冷水含铜量超标,严重威胁发电机安全运行,需对内冷水系统及水源水质进行全面检查,分析发电机内冷水铜离子超标的原因,并采取措施,保证发电机组内冷水水质合格,保证机组安全运行。
关键词:发电机组;内冷水含铜量;超标分析随着大容量发电机组的投入运行,发电机内冷水选用除盐水或凝结水作冷却介质较多,冷却水质对发电机组安全运行是非常重要的,其中内冷水中铜离子含量是衡量定冷水水质指标最重要的指标。
某热电350MW机组采用哈尔滨电机厂生产的QFSN-350-2型汽轮发电机,发电机组定子线圈空心铜导线采用除盐水做为冷却介质。
2013年1月,化验室进行水质检测发现发电机内冷水铜含量由15wg/L升涨至100wg/L,超出规程标准铜离子≤20ug/L的标准,于是对铜离子超标原因进行查找分析。
一、发电机内冷水水质要求及质量标准(一)水质要求发电机内冷水水质应符合如下技术要求:(1)有足够的绝缘性能(即较低的电导率),以防止发电机线圈的短路。
(2)对发电机铜导线和内冷水系统无腐蚀性。
(3)不允许发电机内冷水中的杂质在空心导线内结垢,以免降低冷却效果,使发电机线圈超温,导致绝缘老化和失效。
(二)质量标准及要求根据《大型发电机内冷却水质及系统技术要求》(DLT801-2002)的规定,发电机内冷水质量标准如下:内冷水土要水质指标包括pH值、电导率和含铜量。
制定pH值标准是为了阻止发电机定子铜线棒腐蚀。
内冷水pH值较低,一般在6.0~6.8之间,使发电机定子线棒处于热力学不稳定区,(根据Cu-H2O体系的电位pH平衡图)对系统有侵蚀性,铜、铁金属在水中遭受的腐蚀是随着水溶液pH值的降低而增大的[1]铜、铁在pH=8左右为腐蚀的钝化区。
强碱性阴离子交换树脂污染原因分析及复苏工艺研究
强碱性阴离子交换树脂污染原因分析及复苏工艺研究一、离子交换树脂的变质离子交换树脂在水处理系统运行的过程中,由于氧化或降解,树脂结构遭受破坏,这是一种不可逆的树脂的劣化,成为树脂的变质。
(一)阳离子交换树脂的氧化1.阳树脂氧化的原因和现象阳树脂氧化的主要原因是由于水中有氧化剂,如游离氯、硝酸根等,水中重金属离子能起催化作用,当温度高时,树脂受氧化剂浸蚀更为严重,其结果是使树脂交换基团降解和交换骨架断裂,树脂颜色变淡和其体积增大。
2.防止树脂被氧化的方法(1)活性炭过滤用活性炭过滤水进行脱氧是防止树脂被氧化的常用方法,其原理是基于吸附作用,并在被吸附的活性炭表面上进行下面的化学反应。
其反应为:C-+HOCl→CO-+HCl活性炭脱氯是一种简单、经济、行之有效的方法,故得到普通应用。
(2)化学还原法化学还原法是在含有余氯的水中,投加一定量还原剂(如SO2或Na2SO3)进行脱氯。
(3)选用高交联度的大孔阳树脂。
(4)避免使用质量差的盐酸其中含有氧化剂对阳树脂造成危害。
(二)强碱性阴树脂的降解在离子交换水处理系统中,强碱性阴树脂通常是置于阳树脂后使用,一般是遭受水中溶解氧的氧化,以及再生过程中碱中所含的氧化剂(如ClO3-和FeO42-)的氧化,其结果是强碱性季铵基团逐渐降解,但不会发生骨架的断链。
在化学除盐工艺中,强碱性阴树脂的降解主要表现为对中性盐的分解容量,特别是对硅的交换容量下降。
季铵基团受氧化后,按叔、仲、伯胺顺序降解的过程如下:2.防止强碱性阴树脂降解的方法(1)真空除气法通过使用真空除气器,减少阴床进水中的氧含量。
(2)降低再生液中含铁量降低再生液中含铁良,必须认真做好碱液系统中的铁的腐蚀控制。
(3)选用隔膜法生产的烧碱,降低碱液中NaClO3的含量(可降至6~7㎎/L)。
二、离子交换树脂的污染与复苏在离子交换处理系统中,由于水中杂质浸入,至使树脂性能下降,因尚未涉及树脂结构的破坏,故这种劣化现象称树脂的污染。
012 离子交换树脂使用寿命诊断-王广珠
(相关系数r=0.9839) (4-1) 式中 Δ qx——工作交换容量下降率;
x——含水率(取值0.465-0.70)。
含水率 X
图4-1 工作交换容量下降率与含水率之间的关系
根据相关系数检验理论(4)可知,7个试验点的回归数学方程的相关系数只要 r >0.874(α=0.01)就是显著的。因此上述回归方程是合理的。
从表3.5可看出,Ι 型强碱阴树脂使用一年后,全交换容量 下降了约22%,其中强碱基团下降了66%,并有47%转化为弱 碱基团容量。 由于交换基团的降解而引起含水量降低的情况见表3.6 表3.6 使用中因树脂含水量降低情况(氢氧型Ⅰ型强碱树脂)
样品来源 A厂 B厂 C厂 新树脂含水量(%) 49.21 49.21 51.64 旧树脂含水量(%) 34.31 40.46 33.95
二、 离子交换树脂的分类及命名
2、国产例子交换树脂的命名及型号
2.2 型号
二、 离子交换树脂的分类及命名
2、国产例子交换树脂的命名及型号
2.2 型号
对于专用树脂,可在树脂型号后加设备要求的符号,在水处理中浮床、 层床、混床等专用树脂在其型号后分别加有FC、SC、MB符号,见表1.3。
表1.3 树脂专用符号
五、树脂理化性能与工艺性能的关系
1、001×7理化性能劣化与工作交换容量的关系
1.1、含水率和工作交换容量下降率的关系
对于001×7强酸性阳离子交换树脂,随着其含水率逐渐增大,工作交 换容量下降值也逐渐增大,当含水率下降到0.7之后,树脂实际上己经软化, 无法测定工作交换容量。 对方程 (4-1) 进行求导,令 d”(ΔqW)/Dx=0 ,求得 x=0.6283。即当含水率 达到0.6283时,工作交换容量下降率随含水率的变化达到最大值,工作交换
离子交换树脂常见难题及解决途径
离子交换树脂常见难题及解决途径离子交换树脂在许多应用中起着重要的作用,但是在使用过程中可能会遇到一些常见的难题。
本文将介绍几个常见的问题,并提供解决途径。
1. 树脂容量不足在一些特定的应用中,离子交换树脂的容量可能不足以应对大量的离子交换需求。
这可能导致树脂处理速度变慢或者无法达到所需的纯度要求。
解决途径- 增加树脂量:增加使用的树脂量可以提高处理速度和纯度。
通过增加树脂的层数或者粒径大小来增加树脂量。
增加树脂量:增加使用的树脂量可以提高处理速度和纯度。
通过增加树脂的层数或者粒径大小来增加树脂量。
- 增加树脂再生频率:树脂的再生频率越高,处理速度就越快。
可以根据具体需求增加再生频率。
增加树脂再生频率:树脂的再生频率越高,处理速度就越快。
可以根据具体需求增加再生频率。
2. 树脂选择错误选择合适的离子交换树脂对于获得理想的交换效果至关重要。
错误的选择可能导致交换效果差或者无法满足处理要求。
解决途径- 检查水质:了解待处理水样的离子成分和浓度,根据需要选择具有适当交换能力的树脂。
检查水质:了解待处理水样的离子成分和浓度,根据需要选择具有适当交换能力的树脂。
- 进行实验室测试:在实验室中进行小规模测试,评估不同树脂的性能,选择最适合的树脂进行应用。
进行实验室测试:在实验室中进行小规模测试,评估不同树脂的性能,选择最适合的树脂进行应用。
3. 树脂污染离子交换树脂可能会受到杂质的污染,影响交换效果和使用寿命。
解决途径- 进行预处理:采用适当的预处理步骤,如过滤或沉淀,可以减少杂质对树脂的污染。
进行预处理:采用适当的预处理步骤,如过滤或沉淀,可以减少杂质对树脂的污染。
- 定期清洗:定期清洗树脂,去除吸附的杂质,恢复树脂的交换能力。
定期清洗:定期清洗树脂,去除吸附的杂质,恢复树脂的交换能力。
4. 树脂结球在使用过程中,离子交换树脂有时候会结球,影响交换效果。
解决途径- 调整操作条件:检查操作条件,如流速、温度和pH值等,以保持树脂的稳定性。
离子交换树脂的原理及应用重点阅读
如何筛分混合的阴阳离子交换树脂离子交换树脂的工作原理及优缺点分析将离子性官能基结合在树脂有机高分子上的材料,称之为“离子交换树脂”. 树脂表面带有磺酸 sulfonic acid 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂.由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中.见下图离子交换树脂上的官能基虽可去除原水 Feed water 中的离子,但随着使用一段时间之后,因官能基的饱和而导致去离子效率的降低,引发水质劣化的缺点.此外,离子交换树脂本身也是有机物质,使用中会受到氧化分解、机械性破裂、担体流出而造成有机物质的溶出.此外,带有电荷的有机物质也会受到离子交换树脂的吸附,使离子交换树脂很容易受到有机物质的污染 Fouling.而有些微生物由於菌体表面带着负电,也会被阳离子交换树脂所吸附,树脂表面因而成为微生物的繁殖场地,造成纯水的污染.在此同时,微生物所产生的代谢产物也会成为有机物质的污染来源.这些都是使用离子交换树脂时,引发水质劣化而不可不注意的地方.通常失去离子去除能力饱和的离子交换树脂,虽然可以经由酸碱药剂的作用来再生,达到重复使用的目的,但若因为有机物质的吸附污染而造成效率不好时,树脂的去除性能就会降低.此外,依再生用化学药剂的品质不同也会有离子交换树脂本身被污染的风险.因此,超纯水系统所使用的离子交换树脂几乎是不能进行再生处理的.离子交换树脂的原理及应用是什么原理离子交换树脂是一种聚合物,带有相应的功能基团.一般情况下,常规的钠离子交换树脂带有大量的钠离子.当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降.硬水就变为软水,这是软化水设备的工作过程.当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”.由于实际工作的需要,软化水设备的标准工作流程主要包括:工作有时叫做产水,下同、反洗、吸盐再生、慢冲洗置换、快冲洗五个过程.不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程.任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的其中,全自动软化水设备会增加盐水重注过程.反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证.反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走.这个过程一般需要5-15分钟左右.吸盐再生:即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入只要进水有一定的压力即可.在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响.慢冲洗置换:在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换.这个过程一般与吸盐的时间相同,即30分钟左右.快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水.一般情况下,快冲洗过程为5-15分钟. 应用1水处理水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除.目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等.2食品工业离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上.例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆.离子交换树脂在食品工业中的消耗量仅次于水处理.3制药行业制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用.链霉素的开发成功即是突出的例子.近年还在中药提成等方面有所研究.4合成化学和石油化学工业在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应.用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多.如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等.甲基叔丁基醚MTBE的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅.5环境保护离子交换树脂已应用在许多非常受关注的环境保护问题上.目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用.如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等.6湿法冶金及其他离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属.其他补充:离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂.但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用.近年国内外生产的树脂品种达数百种,年产量数十万吨.在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低虽然一次投入费用较大.以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的.离子交换技术的开发和应用还在迅速发展之中.离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志.膜分离技术在糖业的应用也受到广泛的研究.离子交换树脂都是用有机合成方法制成.常用的原料为苯乙烯或丙烯酸酯,通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团通常为酸性或碱性基团而制成.离子交换树脂不溶于水和一般溶剂.大多数制成颗粒状,也有一些制成纤维状或粉状.树脂颗粒的尺寸一般在~范围内,大部分在~之间.它们有较高的机械强度坚牢性,化学性质也很稳定,在正常情况下有较长的使用寿命.离子交换树脂中含有一种或几种化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子如H+或Na+或阴离子如OH-或Cl-,同时吸附溶液中原来存有的其他阳离子或阴离子.即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来.离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途.应用树脂要根据工艺要求和物料的性质选用适当的类型和品种.离子交换树脂的处理方法新购树脂常残存较多有机溶剂,低分子聚合物及有机杂质,使用前必须尽量除去,否则将影响树脂的使用寿命.1.将树脂放在一大桶内,先用清水漂洗干净,滤干.2.用80%~90%工业乙醇浸泡24小时,洗去树脂内的乙醇溶性有机物然后抽干滤液供回收乙醇.3.用40~50℃的热水浸泡2小时,洗涤几次后,再浮选或筛选出粒度合适的树脂.目的是洗去树脂内的水溶性杂质和乙醇味.然后抽干.4.用4倍于树脂量的2摩尔/升盐酸1:5溶液浸泡处理2小时要经常翻动,目的是洗去酸溶性杂质.用蒸馏水或自来水洗至中性,抽干.5.用4倍于树脂量的2摩尔/升8%氢氧化钠溶液浸泡2小时需经常翻动,目的是洗去碱溶性杂物.用蒸馏水或自来水洗至中性,抽干,备用.6.如果是阴离子树脂,可转型为C1型或OH型,用盐酸按上法处理一次即可;如是阳离子树脂,可转为H型或Na型,用氢氧化钠按上法处理一次即可.再生,用过的树脂.如希望阳离子树脂为H型、Na型或NH4型,则可分别用盐酸、氢氧化钠或氢氧化铵处理;要使阴离子树脂为C1型、OH型,则可用盐酸或氢氧化钠分别处理.树脂宜保存于阴凉处,但不宜深冻,因深冻会破坏树脂的内部结构.短期存放可置于1摩尔/升盐酸或氢氧化钠溶液中.长期存放可加入适量防腐剂封存.遇到树脂长霉,可用1%甲醛浸泡1小时后,再漂洗干净,然后进行再行处理.详见离子交换树脂的还原方式如果您是再生用于软化的阳树脂,即通过置换的方法使水的硬度降低的,则用工业盐进行再生Nacl,使用量依照树脂量的多少和树脂品牌来计算,再生周期和频率依树脂再生效果和处理水量来定,浓度一般在10%.用盐的原因是盐中的NA离子可以把水中的钙和镁置换出来,此时的树脂只是一个置换的载体,再生后,置换出来的高浓度氯化钙和氯化镁被排出,树脂中的无数看不见的小孔被纳塞满可置换出水中的钙和镁,游离到水中,当置换达到饱和后,就不能进行吸附了,此时再重复再生的步骤已达到软化水质的目的.如果是混床,即MB中使用,内装阴阳两种树脂则需要用盐酸及液碱分别或同时进行再生,废水从中排管中流出,通过交换,盐酸中的H+离子和液碱中的OH-将水中的其他阴阳离子置换而产出更高要求纯度的水,一般都在35%的浓度,同样再生量根据树脂量和再生方法不同而略有差异.再一种就是分床,和混床差不多,只是将两个床的树脂分开,有的用来去除水中固定的金属离子,比如汞,铜等,有的在两塔中加一个脱气塔,吹出CO2以降低水中的溶解二氧化碳以提高水的纯度,我们叫KDA,阳离子用盐酸或硫酸,根据脱除金属离子的不同而选择,如果是阴离子一般都用碱.软化再生时一般用自动再生头时间型或流量型混床一般用PLC编程控制气动或电动阀门来进行再生,也有一些老的设备是手动再生的,方法都差不多,只是人操作每次的再生药剂量和效果差异较大.水处理乃高深学问,几句话也没法表述清楚,还是建议找正规的厂家来处理比较合适.各类离子交换树脂的再生方法再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐.1、大孔吸附树脂简单再生的方法是用不同浓度的溶剂按极性从大到小剃度洗脱,再用2~3BV的稀酸、稀碱溶液浸泡洗脱,水洗至PH值中性即可使用.2、钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的2倍用NaCl量为117g/ l 树脂;氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物.为此,宜先通入1~2%的稀硫酸再生.3、氯型强碱性树脂,主要以NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + %NaOH 的碱盐液再生,常规用量为每升树脂用150~200g NaCl ,及3~4g NaOH.OH型强碱阴树脂则用4%NaOH溶液再生.4、一些脱色树脂特别是弱碱性树脂宜在微酸性下工作.此时可通入稀盐酸,使树脂 pH值下降至6左右,再用水正洗,反洗各一次.干的离子交换树脂如何溶胀,谢谢离子交换树脂是亲水性高分子化合物,当将干的离子交换树脂侵入水中时,其体积常常要变大,这种现象称为溶胀,使离子交换树脂含有水分.由于树脂具有这种性能,因而在其交换和再生过程中会发生胀缩现象,多次的胀缩就容易促使颗粒破裂.影响离子交换树脂溶胀的因素有:1交联度.高交联度树脂的溶胀能力较低.2活性基因.活性基因团易电离,即交换容量越高,树脂的溶胀性越大.3溶液浓度.溶液中电解质浓度越大,树脂内外溶液的渗透压反而减小,树脂的溶胀就小,所以对于“失水”的树脂,应将其先侵泡在饱和食盐水中,使树脂缓慢膨胀,不至破碎,就是基于上述道理.一般讲,强酸性阳离子交换树脂由Na型变成H 型,强碱阴离子交换树脂由CL型变成OH型,其体积均增加约5%.。
离子交换树脂常见问题及应对方案
离子交换树脂常见问题及应对方案问题一:树脂的颗粒化现象现象描述:在使用离子交换树脂的过程中,可能会出现树脂颗粒化或结块的情况,导致树脂床层不均匀,降低了离子交换效率。
在使用离子交换树脂的过程中,可能会出现树脂颗粒化或结块的情况,导致树脂床层不均匀,降低了离子交换效率。
可能原因:树脂长时间接触水分,或树脂的质量不合格,质量不一致。
树脂长时间接触水分,或树脂的质量不合格,质量不一致。
应对方案:1. 检查树脂包装是否完好,防潮措施是否到位。
2. 如发现树脂结块现象,可将结块的部分用硬物轻轻敲打,使其恢复颗粒状,但需注意不要过度敲打。
3. 定期更换树脂,确保树脂的质量。
问题二:树脂吸附效果下降现象描述:在使用离子交换树脂的过程中,发现树脂吸附效果明显下降,处理效果不佳。
在使用离子交换树脂的过程中,发现树脂吸附效果明显下降,处理效果不佳。
可能原因:1. 树脂饱和,需要进行再生。
2. 树脂表面被污染,需要进行清洗。
3. 树脂老化,需更换。
应对方案:1. 根据树脂使用情况,定期进行再生处理。
2. 如发现树脂表面污染,可通过清洗树脂表面或更换树脂层来解决。
3. 定期更换树脂,以保证吸附效果。
问题三:树脂吸附剂溢出现象描述:在使用离子交换树脂的过程中,可能会出现树脂吸附剂溢出的情况,造成设备故障或损坏。
在使用离子交换树脂的过程中,可能会出现树脂吸附剂溢出的情况,造成设备故障或损坏。
可能原因:1. 树脂床层高度不当,超过设备规定高度。
2. 设备操作不当,造成树脂床层动荡。
应对方案:1. 根据设备规定,调整树脂床层高度,以避免过高。
2. 操作时要避免剧烈摇晃或震动设备,以保持树脂床层稳定。
问题四:树脂流速受限现象描述:在使用离子交换树脂的过程中,发现树脂流速受限,导致处理效率低下。
在使用离子交换树脂的过程中,发现树脂流速受限,导致处理效率低下。
可能原因:1. 树脂床层紧实,导致流速减慢。
2. 设备管道堵塞。
应对方案:1. 调整树脂床层,使其适度紧实,但不要过度压实。
造成离子交换树脂出现破碎的因素有哪些
造成离子交换树脂出现破碎的因素有哪些
离子交换树脂是水处理设备中最重要的一种物质,在水处理设备中起到对水中含有的杂质等一些污染水质安全的污染物进行有效的去除和过滤的作用。
不过在运行使用中会常常遇到它出现破碎的问题。
那么,是什么原因造成的呢?今天,给大家讲解一下。
1、质量:首先就是其树脂的质量不合格造成的。
这点主要就和生产树脂的工艺问题了。
2、干燥:对于树脂来说如果静置在空气中的话,会逐渐的失去水分而变小。
如果再将干树脂浸泡在水中的话会迅速吸收水分而胀大,从而造成树脂的破碎。
3、冰冻:树脂漆内部会含有大量的水分,如果放置在零度以下的话其内部的水分就会出现结冰的情况出现,其体积就会膨胀,最终就会造成树脂的崩裂。
以上就是给大家讲解的造成离子交换树脂出现破碎的几种因素,希望能够帮助大家解决难题。
阳离子交换树脂受到污染的原因与防治
阳离子交换树脂受到污染的原因与防治阳离子交换树脂受到污染的原因与防治用途:本产品重要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净打扮置(HOH或MH4OH混床系统),还能用于废水处理,回收重金属;氨基酸回收;也可作催化剂。
包装:编织袋,内衬塑料袋。
塑料桶,内衬塑料袋。
使用时参考指标:1.PH范围:0142.允许温度(℃):钠型≤120氢型≤1003.膨胀率:%(Na+→OH+)≤104.工业用树脂层高度:m1.03.05.再生液浓度:%HCL:25H2SO4:12;246.再生剂用量(按100计):kg/m3湿树脂HCL(工业)40100H2SO4(工业)751507.再生液流速:m/h588.再生接触时间:minute:30609.正洗流速:m/h:102010.正洗时间:minute:约3011.运行流速:m/h,1525高流速:8010012.工作交换容量:mmol/l(湿树脂)≥1300重要性能指标:指标名称D001H/NaD001FCH/NaD001SCH/NaD001MBH/NaD001TR全交换容量mmol/g≥4.35/4.2体积交换容量mmol/ml≥1.60/1.80含水量5060/4555湿视密度g/ml0.740.84/0.750.85湿真密度g/ml1.161.24/1.251.28粒度(0.3151.25mm)≥95(0.451.25mm)≥95(0.631.25mm)≥95(0.711.25mm)≥95(〈0.315mm)≤1(〈0.45mm)≤1(〈0.63mm)≤1(〈0.71mm)≤1有效粒径mm0.400.700.500.750.650.90均一系数≤1.601.40磨后圆球率≥95外观浅棕色或灰褐色不透亮球状颗粒浅棕色或灰褐色不透亮球状颗粒浅棕色或灰褐色不透亮球状颗粒浅棕色或灰褐色不透亮球状颗粒出厂型式NaNaNaNa用途通用浮动床双层床混床三层床一、树脂的运输和贮存:离子交换树脂内含有肯定量的水份,在运输及贮存过程中应尽量保持这部分水份。
离子交换树脂污染的处理及预防
( ) 生系统 5再
阴、 阳离子 交换 树脂 失效后 , 分
别用 一定 浓度 的 N O a H溶 液和 H S 液再 生 。 2O 溶
表 1 各 离 子 交 换 器 中装 填 树 脂 类 别
T b 1 Re i l s i c t n i i e e tin e c a g r a. sn c a sf ai n d f r n o — x h n e i o f
子 交换 后 ,当再 生液 中 c 和 s 离 子 浓度 的乘 a 0
积 超 过 C S 度 积 至 一定 范 围后 , aO 沉 淀 就 aO 溶 CS 会 从水 溶 液 中析 出覆 盖在 树 脂表 面上 , 而造 成钙 对
50蒸 气 冷凝 液 回收 , 一级 除盐水 混合 。 0) 与
Ab ta t s r c :The r a o fp lut n s h a ac u ,ion a r a c n c e ia tr te t e ts se t e s nso o l i uc sc li m r nd og nis i h m c lwa e r am n y t m o o i n-e c a e r sn o x h ng e i we e a a y e r n l z d.Th oc s t o o e o e i x h ng c pa i r i r d e ,a d e pr e s me h ds fr r c v rng e c a e a ct we e nto uc d n y
造
摘
要: 了化学水处理系统 中钙 、 、 分析 铁 有机物等污染树脂的原因 , 介绍 了恢 复树脂 的交换能力的处理
方 法 , 出 了合 理 的 预 防措 施 。 提
树脂使用注意事项
树脂使⽤注意事项使⽤离⼦交换树脂的⼀些注意事项肖进华江苏省特种设备安全监督检验研究院盐城分院1.新购离⼦交换树脂的验收离⼦交换树脂的物理化学性质的优劣对电⼚⽔处理车间的⽔质和运⾏经济性有直接影响。
⽬前各⽣产⼚家均制定了本⼚⽣产的离⼦交换树脂的产品质量标准。
国家质量技术监督局正式批准发布了001×7、201×7、D001和D201四种离⼦交换树脂的产品标准,标准代号分别为GB13659、GB13660、GB/T13579和GB/T13580。
标准中分列了合格品、⼀级品和优级品的性能指标。
电⼒⾏业针对本⾏业⽔处理⼯艺的要求,制定了相关的⾏业标准:《⽕⼒发电⼚⽔处理⽤离⼦交换树脂验收标准》(DL519)。
验收标准中对各种牌号离⼦交换树脂的外观和出⼚形态作了规定,如规定树脂包装件中应⽆游离⽔分,当有游离⽔分时,应扣除后计量。
标准中除规定了通⽤树脂的各项技术要求外,还对⽤于双层床、浮动床、混合床、三层床等⼯艺的树脂中的某些性能提出了特殊的要求。
因此⽤户在购买离⼦交换树脂时应掌握此标准,并严格按标准进⾏验收。
2.新树脂使⽤前的预处理在新离⼦交换树脂中,往往含有少量过剩的原料及反应不完全⽽⽣成的有机低聚物和⼀些⽆机杂质,在使⽤初期会逐渐溶解释放,影响出⽔⽔质,因此新树脂在使⽤前⼀般都应事先进⾏适当的处理,除去这些杂质。
树脂的预处理宜在离⼦交换器中进⾏,具体步骤如下:⽤⽔先反洗后正洗树脂,洗⾄排⽔⽆⾊和⽆泡沫为⽌,以除去树脂中的机械杂质和细碎树脂。
⽤约为树脂2倍体积的5%HCl浸泡树脂4-8⼩时,排去酸液,⽤⽔冲洗树脂⾄出⽔呈中性。
⽤约为树脂2倍体积的2%-4%NaOH浸泡树脂4-8⼩时,放掉碱液,⽤⽔冲洗⾄出⽔近中性。
酸、碱处理若能反复进⾏2-3次,效果更佳。
对于没有上述处理条件的场合,可使⽤1%NaOH+10%NaCl的碱性⾷盐⽔浸泡或低流速处理。
更简单的⽅法是⽤40-50℃的温⽔或清⽔冲洗数⼩时。
阳离子交换树脂
应用注意事项
1、贮存运输 ①应贮存在密封容器内,避免受冷或爆晒。 ②贮存温度:4℃—40℃之间。 ③树脂贮存期为2年,超过2年复检合格方可使
用。若发现树脂失水,不能直接向树脂中加水, 应先加入适量浓食盐水,使树脂恢复湿润。
④运输贮存中应保护好标记,以免与外界树脂 混淆。
⑤应防止包装物挤破,不能野蛮装卸。
(6) 搅拌速度
加大搅拌速度可以减小膜厚度,从而提高扩散速度。 但搅拌速度达一定值以后,交换反应速度便不再上升。 液膜扩散速度随水流速增加而增大 。
(7)交换离子的性质
主要是离子的价态和水化离子的大小。在树脂内扩 散的离子是由于树脂的固定的离子库仑力的吸引而扩 散进入的,故离子价态越高,吸引力越大,扩散速度 越快。水化离子越大,则越难扩散。
3 通液
溶液准备好(包括温度控制)之后,便可 进行通液交换操作。通液的目的可以是吸附、 洗涤、洗脱、再生等等。无论那种操作,速度 控制十分重要的。流速可以通过计量泵、阀、 流量计、液位差等手段调节。小型实验中的简 单装置,可通过收集量和滴数等方法控制。
实验室常用线流速表示速度,单位为Ml /(cm2.min)., 即每分钟单位柱截面上通过的溶液的毫升数。
内部铁污染可用 10%的 HCl 泡 5-12 小时,或配用 其它络合剂协同复苏处理。 ③有机物污染
有机物分解产物含带负电荷的基团,能与阴树脂带正 电的固定基团发生电性复合作用,紧紧地吸附在交换位 置上。
对策:10%NaCl+2%的 NaOH,加热至 40-50℃, 用量为 1-3 倍树脂床。
离子交换的选择性、可逆性
? 最常用的法则是依据树脂功能基的类别。
依据树脂功能基分类
分為強酸型、中強酸型和弱酸型三類
离子交换树脂污染与复苏处理
阳树 脂一 旦污 染 , 根据 不 同的 污染 程度 采取 不 同的方 法把 污染 物及 时 除
去
( 1 ) 压 缩空 气擦 洗法
主要是除去树脂表面的悬浮物, 先将树脂 , 小反洗再大反洗, 待树脂沉降之 后树 脂表 面 留有 3 0 0 mm ̄右 , 用 压缩 空气 从树 脂的最 底部 进入 , 保持 阳床的顶 部 出排 气 口压 力在O . ma 左右 1 O 分左 右 , 再 反洗 至水清 , 这 样如 此循环 几次直 到反洗 出水澄 清为 止就 会到 目的。 ( 2 ) 酸洗 法
从树 脂污染 的状 况来看 , 假若树 脂是被铁 离子 、 铝离 子等污染 , 用压 缩空气 擦洗是 难 以除去 的 , 可 以使用 盐酸 ( 必须 质最 合格 的盐酸 ) 处理。 可 以事先 做个 小型试验 来确 定树脂污 染的程 度 以便确 定酸洗 的浓度 以及酸 洗的 时间 , 可以利 用现 场的再 生系 统 , 配置 合适 的盐酸 浓度进 行 酸洗 。 酸洗 之前 树脂 最好使 用压 缩空气 擦洗 、 反洗 后再 进行 酸洗 或者 酸 的浸泡 。
2 . 2 阳树 脂 的处理 方法
阴树 脂被铁 铝化合 物 的污染 , 主要 是再 生剂 的不合格含 铁 的化合 物超 标 、 入 口水 含铁量 太大 造成 的 , 当进水 含有大 量 的大分 子有机 化合 物时 , 铁 与大分 子有机化合物生成络合物, 进入树脂网, 导致树脂受到污染。 树脂受到污染颜色 变 为黑 色 , 性能 变坏 、 再 生剂 用量 增大 、 自耗 水量增 大 、 出水质量 不 合格 。 ( 3 ) 胶 体硅 的污 染 强碱 阴树 脂一般 不会受到 胶体硅 的污 染 , 它在天 然水 中不 能直接交 换水 中 的胶 体硅 , 当水通 过树脂 时胶体硅 含量有 所下降 , 在正 常 睛况 之下 , 胶体硅 不会 无污 染阴树 脂的 , 但是 , 在外界 的条件 影响之 下 , 如再生 温度 、 再 生 液的纯度 、 再 生液 的浓 度 、 再生液 的流 速调整 不 当以及 强碱 阴树脂 失效后 长 时间不 处理 , 阴 树脂 均 可收到 胶体 硅 的污染 。
废砂浆回收中离子交换树脂的污染与复苏
废砂浆回收中离子交换树脂的污染与复苏摘要:本文主要涉及到的时应用在聚乙二醇回收行业中的离子交换树脂污染,指出主要污染物为有机物。
并且选择不同的复苏液进行复苏处理,复苏后树脂交换量大幅度提高。
为离子交换树脂在聚乙二醇回收液中的使用和复苏提供了理论基础。
关键词:聚乙二醇离子交换树脂复苏液交换容量线切割聚乙二醇的回收现在应用日益广泛,由于聚乙二醇在切割过程中会被氧化并带入大量的金属杂质离子,在回收过程想用简单的过滤方法很难将这些杂质完全去除。
离子交换树脂能在液箱中与带相同电荷的离子进行交换反应,此交换反应是可逆的,即可用适当的电解质冲洗,使树脂恢复原有状态,可供再次利用。
利用离子交换去除回收液中的杂质离子,可以提高回收液的品质。
离子交换树脂现在被广泛应用于聚乙二醇回收行业。
虽然离子交换树脂的使用已经非常广泛,但其在聚乙二醇回收液中的应用鲜有报道。
开封万盛新材结合近几年应用的实际情况,对离子交换树脂的污染原因进行了分析,并比较了不同的复苏的方法,成功解决了树脂受污染后产量下降,树脂破碎等问题。
1 树脂污染的原因和主要污染源分析1.1 阴树脂污染原因及污染后特征进水的各种大分子有机物是阴树脂污染的主要来源[1];因为阴树脂的结构和性能使其对大分子有机物存在不可逆反应。
低分子量有机物被树脂吸附后,在再生时可以置换出来,因而不易污染树脂。
此外,来自阳树脂的降解产物也会使阴树脂受到有机物污染。
国外经验认为,氢型阳树脂含水量大于60%时,就会有相当数量的有机物释放到水中污染阴离子。
被污染的强碱阴树脂可出现以下特征。
(1)外观颜色由开始的浅黄色,逐渐污染为淡棕色-深棕色-棕褐色-黑褐色,且树脂破碎严重。
(2)再生后的强碱阴树脂,其冲洗水量会明显增大。
(3)工作交换容量下降,树脂含水量下降,树脂上的交换基团发生变化,其中强碱基团减少,弱碱基团增多。
1.2 树脂受有机物污染的判断浸泡后食盐水的颜色树脂被污染程度如表1所示。
离子交换树脂的污染原因分析及防止措施
行压差增大 , 无法继续运行。将树脂掏出后发现 , 其 颜 色 已经 变成 了红 色 , 手轻 轻一 压就 变成 了粉 末 。 用
12 强 碱 阴树 脂 的污染 . 强碱 阴树 脂污 染关键词 : 离子 交换 树脂 ; 污染 ; 因分析 ; 原 措施
tr fb i rf e ) o o l e d—wa e k u ,S ' e e s r O p e e t e t rma e p O is n c a y t r v n t s
r i r m ee o ain a d c na n t nf rs p lig a - s e n fo d tr r to n o tmi a o o u pyn c i i cp a l tr Th o g n lsso h rmef co s c l e tb ewae. r u h a ay i n t e pi a tr al —
维普资讯
Vo . 5 N0 2 12 .
Ap . 0 6 r2 0
河北 电力 技 术
H EBEIELECTRI P C OW ER
第 2 5卷 第 2期
20 0 6年 4月
离 子交换树 脂的污染原 因分析及防止措施
Ca s ay i n t e Co t mia in o n u e An lss o h n a n t fI o o
水中存在有污染物质或氧化物质时, 树脂表面容易 被堵 塞 污染或 氧化 裂解 , 能基 团 的交 换能 力 降低 , 功 影 响 设备 的周 期 制 水量 , 时 酸碱 耗 增 大 。下 面 根 同 据树脂特点 , 分别对强酸 阳树脂的氧化变质 、 强碱阴 树 脂 的污染 原 因进行 了分 析 。 2 1 强 酸 阳树 脂 .
树脂在使用前的活化方法概述
树脂使用前的活化(转)对于初次使用需要激活或者说完全再生的树脂而言,整理网友的资料如下:(1)新的离子交换树脂常含有反应溶剂、未参加反应的物质和少量低分子量的聚合物、铁、铅、铜等杂质。
当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。
因此,新树脂在投运前要进行预处理,转换为指定的离子型式。
(2)阳离子交换树脂(含碱性基团的强酸阳树脂)的预处理步骤:首先用清水对树脂进行冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。
然后用4~5版HCl和NaOHE交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。
最后一次处(3)阴离子交换树脂(含酸性基团的强碱阴树脂)的预处理步骤:同上,只是酸碱的使用交换位置。
(4)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。
(5)各种树脂因品种、用途不一,预处理的方法也有区别,预处理时的酸碱浓度及接触时间等,可具体参考各型号树脂的介绍。
(6)预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。
(7)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。
有网友提出如何检测树脂失效的问题。
整理答案:新树脂必须先送到有关部门检测合格后再使用。
树脂必须符合阴阳树脂的验收标准,主要检测指标:全交换容量、含水率、耐磨率、有效粒径、湿真密度、湿视密度、不均匀系数等。
根据厂家提供的再生装置及离子交换树脂再生的需要可以得知,这次,我们采用的树脂应该是强酸性阳离子(Na+)交换树脂。
因为它的再生装置只有一个盐箱,用的是NaCl (当然不是吃的那种),听说是工业专用的粗盐。
弱酸性的阳离子交换树脂也用NaCl再生,但它需要在碱性条件下才能有较高的交换能力,而这套设备不提供碱性条件。
离子交换树脂的基本性能及其影响因素
离子交换树脂的基本性能及其影响因素离子交换树脂的基本性能包括以下几个方面,现分别简述如下:一、树脂的外观新的树脂因结构、基团、离子形态、制造工艺等因素的不同,而有黄色、褐色、白色、棕色、黑色、灰色等各种颜色,以满足具体使用中不同场合的需要。
常用水处理用的树脂外观一般为:凝胶型的苯乙烯系树脂一般为透明的淡黄色颗粒;而大孔树脂则为不透明(或微透明)颗粒;大孔苯乙烯系阳树脂一般为淡黄色或淡灰褐色颗粒,大孔苯乙烯系阴树脂为白色颗粒;丙烯酸系的树脂为白色或乳白色颗粒。
同一种树脂在不同的离子形态时会发生颜色上的变化,如001x7树脂由再生态到失效态时的颜色是由深到淡,由失效态到再生态,又由淡到深。
这种变化是可以逆转的,树脂受污染时,其颜色也会发生根本性的变化,其颜色的变化程度一般与树脂受污染的程度成正比,并且较难逆转。
因此,树脂在使用的过程中,要随时留意其颜色上的变化,以判断树脂污染的程度。
如201x7树脂受铁或有机物污染时,颜色变深甚至黑褐色。
001x7树脂受氧化剂破坏时,其树脂交联和交换基团都将被氧化,树脂的颜色也将变淡,树脂体积增大,由此树脂易碎和体积交换容量下降。
二、粒度树脂的粒度大小和均匀性,对运行的影响较大。
粒度大,比表面积就小,交换速度就慢;粒度太小,虽然交换速度快,但是,运行时的阻力又大;因此,国家标准根据不同的交换器床型(不同床型的运行流速不同)相对应的树脂型号,规定了相对较合理的粒径范围(参考国标)。
三、树脂的溶胀及转型体积改变率树脂在干燥的状态下(惰性树脂除外),遇水会迅速膨胀。
因此,当树脂脱水时,不能直接与水接触,而要用饱和的食盐水浸泡,减缓膨胀速度,防止树脂的破裂。
树脂不同的交联度,其膨胀系数也不同,体积改变率的大小与交联度成反比。
交换容量的大小与溶胀率成正比。
可交换离子价数越高,溶胀率越小。
同价离子,水合能力越强,溶胀率越大。
当然,树脂转型膨胀率的规律在实际的应用中较为复杂,因为它往往是多种离子间的交换。
阳离子交换树脂的污染形式及解决解析
阳离子交换树脂在水处理系统中主要用来除去天然水中的阳离子。
由于阳离子交换树脂在处理系统中的位置相对靠前,受到污染的阳离子交换树脂通常会发生周期制水量减少,工作交换容量下降,出水水质恶化等现象,而且会对后续的阴离子的制水过程产生不利的影响。
阳离子交换树脂介绍为多孔网状立体结构,多孔网眼是离子在树脂内部扩散进出的通道,通道内壁具有众多的功能基团,是离子交换反应的活性点,一旦此活性点被覆盖,离子交换过程就无法进行。
在离子交换过程中,交换势能较高、附着力强的离子或大分子之类的物质,容易被交换或吸附到树脂,而在再生时却难以洗脱下来,从而阻碍了离子交换反应的讲行或是在离子交换反应过程中生成难溶的沉
积物,并沉积在树脂内部,阻塞了离子交换的通道。
阳离子交换树脂易受到铁离子的污染,尤其是在以井水作为水源的水处理系统中更为严重。
铁离子对树脂的污染有三种不同的情况。
①如果铁离子以胶态悬浮体出现的话,它会从过滤器中漏过而污染阳离子交换树脂。
②铁以二价铁离子的形式交换到树脂上,随后拿被氧化成三价铁离子,从而在树脂颗粒上形成凝胶状的不溶于水的铁的氢氧化物。
③可能交换到树脂上的二价铁离子在树脂的交换基团上直接转
化为三价铁离子,但在再生过程中不能被完全除去而残留在树脂中。
如果发生了第一种情况,可以采用反洗的方法将树脂层中累积的胶态悬浮体除去。
如果在整个树脂层中发生了铁离子的累积,那么可以采用亚硫酸钠或亚硫酸氢钠处理树脂,这样就可以将三价铁离子还原成更易溶解的二价铁离子,而后者对树脂的亲合力要小于前者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子交换树脂受到污染的原因离子交换在运行过程中,如果发现颜色变深;树脂交换容量不断地下降;清洗水不断地增加;出水水质变差;周期性制水容量不断地下降等现象,可以认为树脂受到污染。
污染的原因主要有:
(1).有机物引起的污染有机物质在水中往往带有负电,成为阴离子交换树脂污染的主要物质.有机物主要存在于天然水中的腐殖酸,胶团性的有机杂质,相对分子质量从500到5000的高分子化合物以及多元有机羚酸等,这些物质吸附在树脂上,有的占据或者结合了树脂上的活性基团,有的使树脂的强碱活性基团碱性降低而降解,使树脂降低了离子交换能力。
这类污染从COD的监测中可以检出。
(2).油脂引起的污染水中往往含有油类物类物质,形成膜状物,堵塞或包裹了树脂的微孔中的活性基团进行离子交抽象.
(3).悬浮物引起的污染水中悬浮物质,紧裹着树脂表面的液膜层,从而隔断了树脂的离子交换过程,使树脂受到污染,这种污染以阳离子交换树脂为多。
离子交换树脂,软化水处理设备,树脂
(4).胶体物质引起的污染水中胶体颗粒常带负离子,使阴离子交换树脂受到污染,胶体物质中以胶体硅对树脂的危害最大,它吸附并在树脂的表面上聚合,阻止树脂进行离子交换.
(5).高价金属离子引起的污染原水中的高价金属离子(如混凝剂中高价金属离子的后移等),如A13+、Fe3+等圹散进入阳离子
交换树脂的内部,同于这些高价金属离子的交换势能高,与树脂中的固定离子-SO32-牢固结合形成AL(SO3)3、Fe(SO3)3等,从而使用这部分的固定离子失去作用,丧失了离了子交换能力。
(6).再生剂不纯引起的污染离子交换树脂的再生剂不纯往往混有许多杂质,龙其是烧碱(NaOH)中的杂质甚多,如Fe3+纯、NaCl、Na2CO3等,对阴离子交换树脂的污染最为严重。