立体几何文科 距离 体积

合集下载

空间立体几何知识点归纳(文科)教学内容

空间立体几何知识点归纳(文科)教学内容

第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。

文科高考数学立体几何大题求各类体积方法

文科高考数学立体几何大题求各类体积方法

A BCD PA B CDP文科高考数学立体几何大题求各类体积方法【三年真题重温】1.【2011⋅新课标全国理,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,∠DAB =60,2AB AD =,PD ⊥底面ABCD . (Ⅰ) 证明:PA ⊥BD ;(Ⅱ) 若PD AD =,求二面角A PB C --的余弦值. 2.【2011 新课标全国文,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形.60,2,DAB AB AD PD ∠==⊥底面ABCD .(Ⅰ) 证明:PA BD ⊥;(Ⅱ) 设1PD AD ==,求棱锥D PBC -的高.根据DE PB PD BD ⋅=⋅,得32DE =.即棱锥D PBC -的高为32.3.【2010 新课标全国理,18】如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点.(1) 证明:PE ⊥BC(2) 若∠APB=∠ADB=60°,求直线PA 与平面PEH 所成角的正弦值【解析】命题意图:本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.4.【2010 新课标全国文,18】如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。

(Ⅰ)证明:平面PAC ⊥ 平面PBD ; (Ⅱ)若6AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。

5.【2012 新课标全国理】(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。

6.【2012 新课标全国文】(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。

专题8.3 立体几何综合问题(原卷版)文科生

专题8.3 立体几何综合问题(原卷版)文科生

【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。

立体几何大题中有关体积、面积和距离的求法(教师版)

立体几何大题中有关体积、面积和距离的求法(教师版)

立体几何大题中有关体积、面积和距离的求法(教师版)立体几何大题中有关体积、面积和距离的求法知识点梳理1.柱、锥、台和球的侧面积和体积圆柱:侧面积为$S_\text{侧}=2\pi rh$,体积为$V=\pir^2h$圆锥:侧面积为$S_\text{侧}=\pi rl$,体积为$V=\frac{1}{3}\pi r^2h$圆台:侧面积为$S_\text{侧}=\pi(r_1+r_2)l$,体积为$V=\frac{1}{3}\pi h(r_1^2+r_2^2+r_1r_2)$直棱柱、正棱锥、正棱台、球的表面积和体积公式不再赘述。

2.几何体的表面积直棱柱、棱锥、棱台的表面积就是各面面积之和。

圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和。

一公式法例1.正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为。

解:因为正三棱柱的侧面展开图是边长分别为2和4的矩形,所以有以下两种情况:①:2是下底面的周长,4是三棱柱的高,此时下底面的边长为$\frac{2}{\sqrt{3}}$,所以体积为$V=\frac{4}{3}\sqrt{3}$,面积为$S=2\sqrt{3}$。

②:4是下底面的周长,2是三棱柱的高,此时下底面的边长为$\sqrt{3}$,所以体积为$V=\frac{4}{3}\sqrt{3}$,面积为$S=2\sqrt{3}$。

所以正三棱柱的体积为$\frac{4}{3}\sqrt{3}$。

例2.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为()。

解:由题意可知此几何体是一个四棱锥,由图可知底面两条对角线的长分别为2和3,底面边长为2,所以底面菱形的面积为$S=\frac{3}{2}$,侧棱为$\sqrt{2^2+3^2}= \sqrt{13}$,则棱锥的高$h=\sqrt{3^2-(\frac{\sqrt{13}}{2})^2}=\frac{\sqrt{35}}{2}$。

立体几何中的角度、体积、距离问题

立体几何中的角度、体积、距离问题

第02讲 玩转立体几何中的角度、体积、距离问题【学习目标】1.掌握各种角的定义,弄清异面直线所成的角与两直线所成的角,二面角与二面角的平面角,直线与平面所成的角和斜线与平面所成的角,二面角与两平面所成的角的联系与区别,弄清他们各自的取值范围。

2.细心体会求空间角的转化和数形结合思想。

3.掌握各种距离和距离的求解方法.【基础知识】知识点1.求点线、点面、线面距离的方法(1)若P 是平面α外一点,a 是平面α内的一条直线,过P 作平面α的垂线PO ,O 为垂足,过O 作OA ⊥a ,连接P A ,则以P A ⊥a .则线段P A 的长即为P 点到直线a 的距离(如图所示).(2)一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离叫直线与平面的距离.(3)求点面距离的常用方法:①直接过点作面的垂线,求垂线段的长,通常要借助于某个直角三角形来求解.②转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解.③体积法:利用三棱锥的特征转换位置来求解.知识点2.异面直线所成角的常用方法求异面直线所成角的一般步骤:(1)找(或作出)异面直线所成的角——用平移法,若题设中有中点,常考虑中位线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设(2)所求角大小为θ.若090θ︒<≤︒,则θ即为所求;若90180θ︒<<︒,则180θ︒-即为所求.知识点3.直线与平面所成角的常用方法求平面的斜线与平面所成的角的一般步骤(1)确定斜线与平面的交点(斜足);(2)通过斜线上除斜足以外的某一点作平面的垂线,连接垂足和斜足即为斜线在平面上的射影,则斜线和射影所成的锐角即为所求的角;(3)求解由斜线、垂线、射影构成的直角三角形.知识点4.作二面角的三种常用方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图①,则∠AOB 为二面角α-l -β的平面角.(2)垂直法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如图②,∠AOB 为二面角α-l -β的平面角.(3)垂线法:过二面角的一个面内异于棱上的一点A 向另一个平面作垂线,垂足为B ,由点B 向二面角的棱作垂线,垂足为O ,连接AO ,则AOB ∠为二面角的平面角或其补角.如图③,AOB ∠为二面角l αβ--的平面角.知识点5.求体积的常用方法选择合适的底面,再利用体积公式求解.【考点剖析】考点一:异面直线所成的角例1.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若2==AC BD ,且AC 与BD 所成的角为60°,则EG 的长为()A .1或2B .2或3C .1或3D .12或32考点二:线面角例2.如图,在三棱柱ABC A B C '''-中,底面ABC 是正三角形,AA '⊥底面ABC ,且1AB =,2AA '=,则直线BC '与平面ABB A ''所成角的正弦值为______.考点三:二面角例3.在四棱锥P ABCD -中,底面ABCD 是菱形,60ABC ∠=︒,PA ⊥平面ABCD ,2PA AB ==.(1)求证:PC BD ⊥;(2)求二面角P CD A --的正弦值.考点四:距离问题例4.如图,在直三棱柱111ABC A B C -中,1,,22AB BC AA AC AB BC ⊥===,E ,F 分别是11,AC AB 的中点.(1)证明:AE ∥平面11B C F .(2)求点C 到平面11B C F 的距离.考点五:体积问题例5.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,点F 为线段PC 上的点,过A ,D ,F 三点的平面与PB 交于点E .(1)证明://EF 平面ABCD ;(2)若E 为PB 中点,且2AB PA ==,求四棱锥P AEFD -的体积.【真题演练】1.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π62.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( ) A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角1.线面平行垂直的判定;2.线面角,异面直线所成角3.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤4.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A 235D 7 5.已知正方体1111ABCD ABCD -中,E 、F 分别为11、BB CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为____________.6.如下图,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2SA SD ==,3AB =. (1)求SA 与BC 所成角的余弦值;(2)求证:AB SD ⊥.7.如图,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =. (1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.8.如图,在圆锥PO 中,已知2PO O 的直径2AB =,点C 在AB 上,且30CAB ∠=,D 为AC 的中点.(I )证明:AC ⊥平面POD ;(II )求直线OC 和平面PAC 所成角的正弦值.9.如图,P 是边长为1的正六边形ABCDEF 所在平面外一点,1PA =,P 在平面ABC 内的射影为BF 的中点O .(Ⅰ)证明PA ⊥BF ;(Ⅰ)求面APB 与面DPB 所成二面角的大小的余弦值.10.在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA PD =.(1)判断M 点在PB 的位置并说明理由;(2)记直线DM 与平面P AC 的交点为K ,求DK KM的值;(3)若异面直线CM 与AP M CD A --的平面角的正切值. 11.如图,在长方体1111ABCD A B C D -中,AD =1,12AB AA ==,H ,F 分别是棱11C D ,1BB 的中点.(1)判断直线HF 与平面11A BCD 的位置关系,并证明你的结论;(2)求直线HF 与平面ABCD 所成角的正弦值;(3)在线段HF 上是否存在一点Q ,使得点Q 到平面11A BCD ,若存在,求出HQ HF的值;若不存在,说明理由. 【过关检测】1.在长方体1111ABCD A B C D -中,12AB AA ==,3AD =,点E 、F 分别是棱AB 、1AA 的中点,E 、F 、1C ∈平面α,直线11A D 平面P α=,则直线BP 与直线1CD 所成角的余弦值为()A C 2.在正方体1111ABCD ABCD -中,E ,F 分别为棱AD ,11A B 的中点,则异面直线EF 与1CD 夹角的余弦值为()A D3.如图所示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=,且2PA PB AB ===,=PC 则PC 与平面P AB 所成角的余弦值等于()A B 4.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若2==AC BD ,且AC 与BD 所成的角为60°,则EG 的长为()A.1.1.125.在棱长为1的正方体1111ABCD A B C D -中,O 为正方形1111D C B A 的中心,则下列结论错误的是() A .BO AC ⊥B .BO ∥平面1ACDC .点B 到平面1ACD D .直线BO 与直线1AD 的夹角为3π 6.在正方体1111ABCD A B C D -中,,,E F G 分别为11,,BC CC BB 的中点,则下列结论中正确的是() A .1D D AF ⊥B .二面角F AEC --的正切值为2C .异面直线1A G 与EFD .点G 到平面AEF 的距离是点C 到平面AEF 的距离的2倍7.如图,AB 是半球的直径,O 为球心,4,,AB M N =依次是半圆AB 上的两个三等分点,P 是半球面上一点,且PN MB ⊥,(1)证明:平面PBM ⊥平面PON ;(2)若点P 在底面圆内的射影恰在BM 上,求二面角--A PB N 的余弦值.8.已知平面四边形ABCD ,2AB AD ==,60BAD ∠=︒,30BCD ∠=︒,现将ABD △沿BD 边折起,使得平面ABD ⊥平面BCD ,此时AD CD ⊥,点P 为线段AD 的中点.(1)求证:BP ⊥平面ACD ;(2)若M 为CD 的中点,求MP 与平面BPC 所成角的正弦值;(3)在(2)的条件下,求二面角P BM D --的平面角的余弦值.9.已知四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)当1PD =,BD =PB 与AD 所成角的余弦值;10.已知四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)已知1PD =,(Ⅰ)当BD PB 与AD 所成角的余弦值;(Ⅰ)当直线PB 与平面ABCD 所成的角为45︒时,求四棱锥P ABCD -的体积.11.在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AB BC ==,12BB =.(1)求异面直线11B C 与1A C 所成角正切值的大小;(2)求点1B 与平面1A BC 的距离.第02讲 玩转立体几何中的角度、体积、距离问题【学习目标】1.掌握各种角的定义,弄清异面直线所成的角与两直线所成的角,二面角与二面角的平面角,直线与平面所成的角和斜线与平面所成的角,二面角与两平面所成的角的联系与区别,弄清他们各自的取值范围。

高中数学中的立体几何体积计算

高中数学中的立体几何体积计算

高中数学中的立体几何体积计算立体几何是数学中一个重要的分支,它研究的是三维空间中的物体形状和大小。

在高中数学中,我们经常需要计算各种立体几何体的体积,这是一个基本的技能。

本文将介绍一些常见的立体几何体以及计算它们体积的方法。

一、长方体的体积计算长方体是最基本的立体几何体之一,它的六个面都是矩形。

计算长方体的体积非常简单,只需要将它的长、宽、高三个边长相乘即可。

例如,一个长方体的长为5cm,宽为3cm,高为2cm,那么它的体积就是5cm × 3cm × 2cm = 30cm³。

二、正方体的体积计算正方体是一种特殊的长方体,它的六个面都是正方形。

计算正方体的体积也非常简单,只需要将它的边长立方即可。

例如,一个正方体的边长为4cm,那么它的体积就是4cm × 4cm × 4cm = 64cm³。

三、圆柱体的体积计算圆柱体是一个底面为圆形的立体几何体。

计算圆柱体的体积需要知道它的底面半径和高。

圆柱体的体积公式是底面积乘以高,即πr²h,其中π约等于3.14。

例如,一个圆柱体的底面半径为2cm,高为5cm,那么它的体积就是3.14 × 2² × 5 =62.8cm³。

四、球体的体积计算球体是一个所有点到中心点的距离都相等的立体几何体。

计算球体的体积需要知道它的半径。

球体的体积公式是4/3乘以π乘以半径的立方,即4/3πr³。

例如,一个球体的半径为3cm,那么它的体积就是4/3 × 3.14 × 3³ = 113.04cm³。

五、锥体的体积计算锥体是一个底面为圆形且所有侧面都相交于一个顶点的立体几何体。

计算锥体的体积需要知道它的底面半径和高。

锥体的体积公式是1/3乘以底面积乘以高,即1/3πr²h。

例如,一个锥体的底面半径为6cm,高为8cm,那么它的体积就是1/3 ×3.14 × 6² × 8 = 301.44cm³。

立体几何形的体积计算知识点总结

立体几何形的体积计算知识点总结

立体几何形的体积计算知识点总结体积是立体几何形的一个重要属性,它用来描述一个物体所占的空间大小。

在几何学中,我们经常需要计算不同形状的物体的体积。

为了更好地理解和掌握立体几何形的体积计算,我们需要掌握一些基本的知识点。

本文将根据不同的几何形状,总结一些常用的体积计算公式和方法。

一、正方体的体积计算正方体是最简单的立体几何形之一,它的六个面都是正方形。

计算正方体的体积非常简单,只需要将正方体的边长乘以自身再乘以自身即可。

即体积=边长×边长×边长。

例如,一个边长为5厘米的正方体的体积为5×5×5=125立方厘米。

二、长方体的体积计算长方体是更常见的一种立体几何形,它的六个面中,相对的两个面是相等的长方形。

计算长方体的体积也非常简单,只需要将长方体的长、宽和高相乘即可。

即体积=长×宽×高。

例如,一个长10厘米,宽6厘米,高8厘米的长方体的体积为10×6×8=480立方厘米。

三、圆柱体的体积计算圆柱体是一个底面为圆形的立体几何形。

要计算圆柱体的体积,需要知道底面的半径和高。

计算公式为体积=底面积×高=π×半径的平方×高。

例如,一个底面半径为3厘米,高为6厘米的圆柱体的体积为3.14×3×3×6=169.56立方厘米。

四、球体的体积计算球体是一个所有点到球心的距离都相等的立体几何形。

计算球体的体积需要知道球的半径。

计算公式为体积=4/3×π×半径的立方。

例如,一个半径为4厘米的球体的体积为4/3×3.14×4×4×4=268.08立方厘米。

五、锥体的体积计算锥体是一个底面为圆形,顶点与底面圆心相连的立体几何形。

计算锥体的体积需要知道底面的半径和高。

计算公式为体积=1/3×底面积×高=1/3×π×半径的平方×高。

高中文科数学公式总结大全

高中文科数学公式总结大全

高中文科数学公式总结大全高中文科数学相对理科数学来说是比较简单的,但是其中的公式还是有许多。

为了节省同学们整理文科数学公式的时间。

下面是由小编为大家整理的“高中文科数学公式总结大全”,仅供参考,欢迎大家阅读。

高中文科数学公式总结大全一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb)tan(a-b)=(tana-tanb)/(1+tana*tanb)高中数学知识点速记口诀1.《集合与函数》内容子交并补集,还有幂指对函数。

广东文科二轮 立体几何找高求体积

广东文科二轮 立体几何找高求体积

在三棱锥S-ABC 中,△ABC 是边长为23的正三角形,平面SAC ⊥平面ABC ,SA=SC=2,M 、N 分别为AB 、SB 的中点……(1) 证明:AC ⊥SB ;(2) 求B-CMN 的体积.(1)证明:取AC 中点D ,连接SD ,DB . 因为SA=SC ,AB=BC ,所以AC ⊥SD 且AC ⊥BD ,因为SD ∩BD=D ,所以AC ⊥平面SDB .又SB ⊂平面SDB ,所以AC ⊥SB ;(2)解:因为AC ⊥平面SDB ,AC ⊂平面ABC ,所以平面SDC ⊥平面ABC .过N 作NE ⊥BD 于E ,则NE ⊥平面ABC ,因为平面SAC ⊥平面ABC ,SD ⊥AC ,所以SD ⊥平面ABC .又因为NE ⊥平面ABC ,所以NE ∥SD .×332×12=34如图,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=22,M,N分别是棱CC1,AB中点,(Ⅰ)求证:CN⊥平面ABB1A1;(Ⅱ)求三棱锥B1-AMN的体积。

(Ⅰ)证明:因为三棱柱ABC-A1B1C1中,AA1⊥底面ABC,又因为平面ABC,所以,因为,N是AB中点,所以CN⊥AB,因为,所以CN⊥平面ABB1A1。

(Ⅱ)证明:取AB1的中点G,连结MG,NG,因为N,G分别是棱AB,AB1中点,所以,又因为,所以CM∥NG,CM=NG,所以四边形CNGM是平行四边形,所以CN∥MG,CN⊥平面ABB1A1。

所以MG⊥平面ABB1A1。

MG为三棱锥M-AB1N的高。

如图,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=4,E、F、G分别是PC、PD、BC的中点.(1)求证:PA∥平面EFG(2)求三棱锥P-EFG的体积(3)求点P到平面EFG的距离.证明:(1)∵E、G分别是PC、BC的中点∴EG是△PBC的中位线∴EG∥PB又∵PB⊂平面PAB,EG⊄平面PAB∴EG∥平面PAB∵E、F分别是PC、PD的中点∴EF∥CD又∵底面ABCD为正方形∴CD∥AB∴EF∥AB又∵AB⊂平面PAB,EF⊄平面PAB∴EF∥平面PAB又EF∩EG=E∴平面EFG∥平面PAB∵PA⊂平面PAB∴PA∥平面EFG(2)∵底面ABCD为正方形∴GC⊥CD∵PD⊥平面ABCD∴GC⊥PD又∵CD∩PD=DPD•CD=2BC=2即PN是点P到平面EFG的距离,在△PNF中,PF=2,∠PFN=45°∴PN= 2如图,在正方体ABCD-A1B1C1D1中,棱长为a,E为棱CC1上的动点.(1)求证:A1E⊥BD;(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面EBD;(3)在(2)的条件下,求V A1−BDE.证明:(1)连AC,A1C1.∵正方体AC1中,AA1⊥平面ABCD,∴AA1⊥BD.如图是以正方形ABCD为底面的正四棱柱被一平面所截得的几何体,四边形EFGH为截面,且AB=BC(Ⅰ)证明:截面四边形EFGH是菱形;(Ⅱ)求几何体C-EFGH的体积.解:(Ⅰ)证明:因为平面ABFE∥平面CDHG,且平面EFGH分别交平面ABFE、平面CDHG于直线EF、GH,所以EF∥GH.同理,FG∥EH.因此,四边形EFGH为平行四边形.因为BD⊥AC,而AC为EG在底面ABCD上的射影,所以EG⊥BD.因为BF=DH,所以FH∥BD.因此,FH⊥EG.所以四边形EFGH是菱形.(Ⅱ)连接CE、CF、CH、CA,则V C-E F G H=V-V C-A B F E-V C-A D H E∵AE=1,BF=DH=2,CG=3且几何体是以正方形ABCD为底面的正四棱柱的一部分,∴该几何体的体积为V=22×2=4,V C−ABFE=13×S四边形ABFE×BC=13×12(AE+BF)•AB×BC=1同理,得V C-A D H E=1所以,V C-E F G H=V-V C-A B F E-V C-A D H E=4-1-1=2,即几何体C-EFGH的体积为2.。

高中文科数学立体几何知识点总结[1]

高中文科数学立体几何知识点总结[1]

(直打版)高中文科数学立体几何知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)高中文科数学立体几何知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)高中文科数学立体几何知识点总结(word版可编辑修改)的全部内容。

立体几何知识点整理(文科)一.直线和平面的三种位置关系:1。

线面平行l符号表示:2。

线面相交符号表示:3。

线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现.mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现.αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmlll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l三.垂直关系: 1。

线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2。

《立体几何中的体积计算与距离问题》

《立体几何中的体积计算与距离问题》
立体几何中的体积计算与点到平面的距离问题
一、解答题
1.如图,正方形与矩形所在平面互相垂直,,为的中点.
(1)求证:平面;
(2)求三棱锥的体积.
2.如图,在直四棱柱中,底面为菱形,为中点.
(1)求证:平面;
(2)求证:.
3.如图,矩形中,,,为上的点,且,.
(Ⅰ)求证:平面;
(Ⅱ)求三棱锥的体积.
4.如图,在三棱锥 中,平面 平面 , 为等边三角形, , 是 的中点.
点评:解决该试题的关键是正确运用线面平行的判定。
解:∵ , ∴ 且
∴四边形EFBC是平行四边形∴H为FC的中点
又∵G是FD的中点

∵ 平面CDE, 平面CDE
∴GH∥平面CDE
(2)∵平面ADEF⊥平面ABCD,交线为AD
且FA⊥AD,
∴FA⊥平面ABCD.
∵ , ∴ 又∵ ,
∴BD⊥CD
∴ =
∴ =
【详解】
(1)证明:连接 ,交 于点 ,连接 .
∵ 为 的中点, 为 的中点,
∴ 为 的中位线,
∴ ,且 .
又 平面 , 平面 ,
∴ 平面 .
(2)在 中, , ,
由余弦定理得 ,
∴ .
∴ .
∵ ,且 为 的中点,
∴ .
在 中, .
在平面 内,作 ,交 的延长线于 .
∵平面 平面 ,平面 平面 ,
∴ 平面 .

由于 , , , , 平面 , 平面 ;
平面 平面 ;

平面
(2)连接 , ,由于 ,则异面直线 与 所成角即为相交线 与 所成角,
由 为 ,则 ,
由四边形 为边长为2的菱形,则 ,由于 ,则 ;

专题6 立体几何(文科)解答题30题 教师版--高考数学专题训练

专题6 立体几何(文科)解答题30题 教师版--高考数学专题训练

专题6立体几何(文科)解答题30题1.(贵州省贵阳市2023届高三上学期8月摸底考试数学(文)试题)如图,在直三棱柱111ABC A B C -中,1CA CB ==,90BCA ∠=︒,12AA =,M ,N 分别是11A B ,1A A 的中点.(1)求证:1BN C M ⊥;(2)求三棱锥1B BCN -的体积.2.(广西普通高中2023届高三摸底考试数学(文)试题)如图,多面体ABCDEF中,∠=︒,FA⊥平面ABCD,//ED FA,且22 ABCD是菱形,60ABC===.AB FA ED(1)求证:平面BDE⊥平面FAC;(2)求多面体ABCDEF的体积.))如图所示,取中点G ,连接3.(江西省五市九校协作体2023届高三第一次联考数学(文)试题)如图多面体ABCDEF 中,四边形ABCD 是菱形,60ABC ∠=︒,EA ⊥平面ABCD ,//EA BF ,22AB AE BF ===.(1)证明:平面EAC ⊥平面EFC ;(2)求点B 到平面CEF 的距离.(2)设B 到平面CEF 的距离为因为EA ⊥平面ABCD ,AC 因为//EA BF ,EA ⊥平面ABCD 且BC ⊂平面ABCD ,所以BF 因为60ABC ∠=︒,2AB =4.(新疆乌鲁木齐地区2023届高三第一次质量监测数学(文)试题)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,AD BC ∥,且2PA AD CD ===,3BC =,E 是PD 的中点,点F 在PC 上,且2PF FC =.(1)证明:DF ∥平面PAB ;(2)求三棱锥P AEF -的体积.(2)作FG PD ⊥交PD 于点G 因为PA ⊥面ABCD ,所以PA 又AD CD ⊥,PA 与AD 交于点所以CD ⊥面PAD ,CD PD ⊥又FG PD ⊥,所以//FG CD ,所以所以PF FG PC CD =,得43FG =,因为E 为PD 中点,所以P AEF D AEF F ADE V V V ---===5.(新疆阿克苏地区柯坪湖州国庆中学2021-2022学年高二上学期期末数学试题)如图所示,已知AB ⊥平面BCD ,M ,N 分别是AC ,AD 的中点,BC CD ⊥.(1)求证://MN 平面BCD ;(2)求证:CD BM ⊥;【答案】(1)证明见解析;(2)证明见解析.【分析】1)根据中位线定理,可得//MN CD ,即可由线面平行的判定定理证明//MN 平面BCD ;(2)由已知推导出AB CD ⊥,再由CD BC ⊥,得CD ⊥平面ABC ,由此能证明CD BM ⊥;【详解】(1)M ,N 分别是AC ,AD 的中点,//MN CD ∴,MN ⊂/ 平面BCD ,且CD ⊂平面BCD ,//MN ∴平面BCD ;(2)AB ⊥Q 平面BCD ,M ,N 分别是AC ,AD 的中点,AB CD ∴⊥,BC CD ⊥ ,,AB BC B AB BC =⊂ ,平面ABC ,CD \^平面ABC ,BM ⊂ 平面ABC ,CD BM ∴⊥.6.(内蒙古乌兰浩特第一中学2022届高三全真模拟文科数学试题)如图在梯形中,//BC AD ,22AB AD BC ===,23ABC π∠=,E 为AD 中点,以BE 为折痕将ABE 折起,使点A 到达点P 的位置,连接,PD PC ,(1)证明:平面PED ⊥平面BCDE ;(2)当2PC =时,求点D 到平面PEB 的距离.因为PE PD =,F 为ED 因为平面PED ⊥平面BCDE 因为21122PF ⎛⎫=-= ⎪⎝⎭设D 到平面PEB 的距离为7.(山西省运城市2022届高三5月考前适应性测试数学(文)试题(A 卷))如图,四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,侧面11ADD A 为矩形,22AB AD ==,160D DB ∠=︒,1BD AA =(1)证明:平面ABCD ⊥平面11BDD B ;(2)求三棱锥11D BCB -的体积.8.(黑龙江省八校2021-2022学年高三上学期期末联合考试数学(文)试题)已知直三棱柱111ABC A B C -中,AC BC =,点D 是AB 的中点.(1)求证:1BC ∥平面1C AD ;(2)若底面ABC 边长为2的正三角形,1BB =11B A DC -的体积.【答案】(1)证明见解析(2)1【分析】(1)连接1AC 交1AC 于点E ,连接DE ,由三角形中位线定理,得1DE BC ∥,进而由线面平行的判定定理即可证得结论;(2)利用等体积转化1111B A DC C A B D V V --=,依题意,高为CD ,再求底面11A B D 的面积,进而求三棱锥的体积.【详解】(1)连接1AC 交1AC 于点E ,连接DE∵四边形11AAC C 是矩形,∴E 为1AC 的中点,又∵D 是AB 的中点,∴1DE BC ∥,又∵DE ⊂平面1C AD ,1BC ⊄平面1C AD ,∴1BC ∥面1C AD .(2)∵AC BC =,D 是AB 的中点,∴AB CD ⊥,9.(青海省西宁市2022届高三二模数学(文)试题)如图,V是圆锥的顶点,O是底面圆心,AB是底面圆的一条直径,且点C是弧AB的中点,点D是AC的中点,2AB=,VA=.2(1)求圆锥的表面积;又D 是AC 的中点,所以OD AC ⊥,又VO OD O ⋂=,VO ⊂平面VOD ,OD ⊂平面VOD所以AC ⊥平面VOD ,又AC ⊂平面VAC ,所以平面VAC ⊥平面VOD .10.(河南省郑州市2023届高三第一次质量预测文科数学试题)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ⊥AB ,AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(1)证明:平面PBC ⊥平面PCD ;(2)求四棱锥E ABCD -的体积;又点E 为棱PC 的中点,BE 由勾股定理得2AC AD =+∵△PAC 为直角三角形,E 111.(江西省部分学校2023届高三上学期1月联考数学(文)试题)如图,在正三棱柱111ABC A B C -中,12AA AB ==,D ,E 分别是棱BC ,1BB 的中点.(1)证明:平面1AC D ⊥平面1ACE .(2)求点1C 到平面1ACE 的距离.(2)连接1EC .因为1AA 由正三棱柱的性质可知因为ABC 是边长为2的等边三角形,所以故三棱锥11A CC E -的体积以15A E CE ==,1A E 则1ACE △的面积212S =12.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)在三棱锥-P ABC 中,底面ABC 是边长为2的等边三角形,点P 在底面ABC 上的射影为棱BC 的中点O ,且PB 与底面ABC 所成角为π3,点M 为线段PO 上一动点.(1)证明:BC AM ⊥;(2)若12PM MO =,求点M 到平面PAB 的距离.AO BC ∴⊥,点P 在底面ABC 上的投影为点PO ∴⊥平面ABC , PO BC ∴⊥,13.(广西南宁市第二中学2023届高三上学期第一次综合质检数学(文)试题)如图,D ,O 是圆柱底面的圆心,ABC 是底面圆的内接正三角形,AE 为圆柱的一条母线,P 为DO 的中点,Q 为AE 的中点,(1)若90APC ∠=︒,证明:DQ ⊥平面PBC ;(2)设2DO =,圆柱的侧面积为8π,求点B 到平面PAC 的距离.∴//,AQ PD AQ PD =,∴四边形AQDP 为平行四边形,∴//DQ PA .又∵P 在DO 上,而OD ∴O 为P 在ABC 内的投影,且ABC 是圆内接正三角形∴三棱锥-P ABC 为正三棱锥∴PAB PAC PBC △≌△≌△∴APB APC BPC ∠=∠=∠即,PA PC PA PB ⊥⊥.∵PC PB P = ,,PB PC14.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)如图,在四棱锥P -ABCD 中,AB CD ,12AD CD BC PA PC AB =====,BC PA ⊥.(1)证明:平面PBC ⊥平面PAC ;(2)若PB =D 到平面PBC 的距离.又BC PA ⊥,PA AC A = 所以BC ⊥平面PAC ,又BC (2)因为BC ⊥平面PAC ,由22PB =,BC PC =,得15.(江西省部分学校2023届高三下学期一轮复习验收考试(2月联考)数学(文)试题)如图,在长方体1111ABCD A B C D -中,1AB AD ==,1AA =E 在棱1DD 上,且1AE A D ⊥.(1)证明:1AE A C ⊥;(2)求三棱锥1E ACD -的体积.【答案】(1)证明见解析;)在平面11ADD A 中,由AE ⊥1AD DE AA AD =,所以12112A DE S DE AD =⋅= 16.(新疆兵团地州学校2023届高三一轮期中调研考试数学(文)试题)如图1,在等腰梯形ABCD 中,M ,N ,F 分别是AD ,AE ,BE 的中点,4AE BE BC CD ====,将ADE V 沿着DE 折起,使得点A 与点P 重合,平面PDE ⊥平面BCDE ,如图2.(1)证明:PC∥平面MNF.(2)求点C到平面MNF的距离.17.(宁夏银川市第一中学2023届高三上学期第四次月考数学(文)试题)如图1,在直角梯形ABCD 中,,90,5,2,3AB DC BAD AB AD DC ∠==== ∥,点E 在CD 上,且2DE =,将ADE V 沿AE 折起,使得平面ADE ⊥平面ABCE (如图2).(1)求点B 到平面ADE 的距离;(2)在线段BD 上是否存在点P ,使得CP 平面ADE ?若存在,求三棱锥-P ABC 的体积;若不存在,请说明理由..18.(陕西省汉中市2023届高三上学期教学质量第一次检测文科数学试题)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥ 平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.19.(内蒙古赤峰市2022届高三下学期5月模拟考试数学(文科)试题)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60PAB PAD BAD ∠=∠=∠= .(1)证明:BD ⊥平面PAC ;(2)若23AB PA ==,,求四棱锥P ABCD -的体积.解:如图,记AC 与BD 的交点为因为底面ABCD 为菱形,故又60PAB PAD BAD ∠=∠=∠=又PO AC O = ,故BD ⊥平面(2)解:因为2,3,AB PA ==∠20.(内蒙古2023届高三仿真模拟考试文科数学试题)如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AD AB ⊥,//AB CD ,22PB CD AB AD ===,PD =,PC DE ⊥,E 是棱PB 的中点.(1)证明:PD ⊥平面ABCD ;(2)若F 是棱AB 的中点,2AB =,求点C 到平面DEF 的距离.,AB AD=AB AD⊥,2BD∴=为棱PB中点,DE PBE∴⊥,又∴⊥平面PBC,又BC⊂平面DE在直角梯形ABCD中,取CD中点 ,DM AB=2CD AB∴=,又DM ∴四边形ABMD为正方形,BM∴∴===,又BC BM AD AB222BD DE⊂平面PBD ,,=BD DE D21.(山西省晋中市2022届高三下学期5月模拟数学(文)试题)如图,在三棱锥-P ABC中,PAB 为等腰直角三角形,112PA PB AC ===,PC ,平面PAB ⊥平面ABC .(1)求证:PA BC ⊥;(2)求三棱锥-P ABC 的体积.∴OP AB ⊥,22OP =,AB =又∵平面PAB ⊥平面ABC ,平面∴OP ⊥平面ABC .22.(山西省太原市2022届高三下学期三模文科数学试题)已知三角形PAD 是边长为2的正三角形,现将菱形ABCD 沿AD 折叠,所成二面角P AD B --的大小为120°,此时恰有PC AD ⊥.(1)求BD 的长;(2)求三棱锥-P ABC 的体积.∵PAD 是正三角形,∴PM AD ⊥,又∴,PC AD PC PM P⊥=I ∴AD ⊥平面PMC ,∴AD MC ⊥,故ACD 为等腰三角形23.(陕西省联盟学校2023届高三下学期第一次大联考文科数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是长方形,22AD CD PD ===,PA 二面角P AD C--为120︒,点E 为线段PC 的中点,点F 在线段AB 上,且12AF =.(1)平面PCD ⊥平面ABCD ;(2)求棱锥C DEF -的高.824.(陕西省榆林市2023届高三上学期一模文科数学试题)如图,在四棱锥P ABCD -中,平面PAD ⊥底面,,60,ABCD AB CD DAB PA PD ∠=⊥ ∥,且2,22PA PD AB CD ====.(1)证明:AD PB ⊥;(2)求点A 到平面PBC 的距离.(2)因为AB CD ,所以∠2222BC BD CD BD CD =+-⋅由222BD BC CD =+,得BC 25.(陕西省宝鸡教育联盟2022-2023学年高三下学期教学质量检测(五)文科数学试题)如图,在三棱柱111ABC A B C -中,平面11ABB A ⊥平面ABC ,四边形11ABB A 是边长为2的菱形,ABC 为等边三角形,160A AB ∠=︒,E 为BC 的中点,D 为1CC 的中点,P为线段AC上的动点.AB平面PDE,请确定点P在线段AC上的位置;(1)若1//-的体积.(2)若点P为AC的中点,求三棱锥C PDE(2)解:如图,取AB 的中点∵四边形11ABB A 为边长为2∴12A B =,1AA B 为等边三角形,26.(山西省运城市2022届高三上学期期末数学(文)试题)如图,在四棱锥P -ABCD中,底面ABCD 是平行四边形,2APB π∠=,3ABC π∠=,PB =,24PA AD PC ===,点M 是AB 的中点,点N 是线段BC 上的动点.(1)证明:CM⊥平面PAB;(2)若点N到平面PCM BNBC的值.27.(2020届河南省许昌济源平顶山高三第二次质量检测文科数学试题)如图,四棱锥P ABCD -中,//AB CD ,33AB CD ==,2PA PD BC ===,90ABC ∠=︒,且PB PC =.(1)求证:平面PAD ⊥平面ABCD ;(2)求点D 到平面PBC 的距离.因为//AB CD ,33AB CD ==,所以四边形ABCD 为梯形,又M 、E 为AD 、BC 的中点,所以ME 为梯形的中位线,28.(青海省海东市2022-2023学年高三上学期12月第一次模拟数学(文)试题)如图,在直三棱柱111ABC A B C -中,ABC 是等边三角形,14AB AA ==,D 是棱AB 的中点.(1)证明:平面1ACD ⊥平面11ABB A .(2)求点1B 到平面1A CD 的距离.由题意可得11A B D △的面积因为ABC 是边长为4的等边三角形,且29.(河南省十所名校2022-2023学年高三阶段性测试(四)文科数学试题)如图,在四棱锥P —ABCD 中,PC BC ⊥,PA PB =,APC BPC ∠=∠.(1)证明:PC AD ⊥;(2)若AB CD,PD AD ⊥,PC =,且点C 到平面PAB AD 的长.∵PA PB =,APC BPC ∠=∠∴90PCA PCB ∠=∠=︒,即∵PC BC ⊥,AC BC = ∴PC ⊥平面ABCD ,又∵PA PB =,E 为AB 中点∴PE AB ⊥,由(1)知AC BC =,E 为∵PE CE E = ,,PE CE 30.(河南省部分重点中学2022-2023学年高三下学期2月开学联考文科数学试题)如图,在直三棱柱111ABC A B C -中,5AB AC ==,16BB BC ==,D ,E 分别是1AA 和1B C 的中点.(1)求证:平面BED ⊥平面11BCC B ;(2)求三棱锥E BCD -的体积.。

文科立体几何大题---变换顶点求体积学生版(答案在卷尾)

文科立体几何大题---变换顶点求体积学生版(答案在卷尾)

文科立体几何大题-------求体积 题型一:变换顶点求体积 例题1如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,//AB CD ,2AB =,3CD =,M 为PC 上一点,且2PM MC =.(1)求证:BM ∥平面PAD ; (2)若2AD =,3PD =,3BAD π∠=,求三棱锥P -ADM 的体积.典型题练习1.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(Ⅰ)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(Ⅱ)求三棱锥E-ABC的体积.练习2在四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 为平行四边形,AA 1⊥平面ABCD .AB =2AD =4,3DAB π∠=. (1)证明:平面D 1BC ⊥平面D 1BD ;(2)若直线D 1B 与底面ABCD 所成角为6π,M ,N ,Q 分别为BD ,CD ,D 1D 的中点,求三棱锥C —MNQ 的体积.巩固练习1.如图示,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 是矩形,PD AD =,E 、F 分别CD 、PB 的中点.(Ⅰ)求证:EF ∥平面PAD ;(Ⅱ)求证:EF ⊥平面PAB ; (Ⅲ)设33==BC AB , 求三棱锥P -AEF 的体积.练习2如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,60BAD ∠=︒.(1)求证:平面PBD ⊥平面P AC ;(2)若PA AB =,M 为线段PC 的中点,求三棱锥C -MBD 的体积。

文科立体几何大题-------求体积题型一:变换顶点求体积例题1.解析:1.(1)法一:过作交于点,连接.∵,∴.又∵,且,∴,∴四边形为平行四边形,∴.又∵平面,平面,∴平面.法二:过点作于点,为垂足,连接.由题意,,则,又∵,,∴,∴四边形为平行四边形,∴.∵平面,平面,∴.又,∴.又∵平面,平面;∵平面,平面,;∴平面平面.∵平面,∴平面.(2)过作的垂线,垂足为.∵平面,平面,∴.又∵平面,平面,;∴平面由(1)知,平面,所以到平面的距离等于到平面的距离,即.在中,,,∴.M //MN CD PD N AN 2PM MC =23MN CD=23ABCD =//AB CD //AB MN ABMN//BM AN BM ⊄PAD AN ⊂PAD //BM PAD M MN CD ⊥N N BN 2PM MC =2DN NC =3DC =2DN =//AB DN ABND //BN AD PD ⊥ABCD DC ⊂ABCD PD DC ⊥MN DC ⊥//PD MN BN ⊂MBN MN ⊂,MBN BN MN N =AD ⊂PAD PD ⊂PAD AD PD D ⋂=//MBN PAD BM ⊂MBN //BM PAD B AD E PD ⊥ABCD BE ⊂ABCD PD BE ⊥AD ⊂PAD PD ⊂PAD AD PD D ⋂=BE ⊥PAD //BM PAD M PAD B PAD BE ABC ∆2AB AD ==3BAD π∠=BE =13P ADM M PAD PAD V V S --∆==⨯133BE ⋅=⨯典型题练习1.解析:(Ⅰ)如图所示,取中点,取中点,连结,则即为所求. 证明:取中点,连结,∵为腰长为的等腰三角形,为中点,∴,又平面平面,平面平面,平面,∴平面,同理可证平面,∴,∵平面,平面,∴平面.又,分别为,中点,∴,∵平面,平面,∴平面.又,平面,平面,∴平面平面,又平面,∴平面.(Ⅱ)连结,取中点,连结,则,由(Ⅰ)可知平面,所以点到平面的距离与点到平面的距离相等.又是边长为的等边三角形,∴,又平面平面,平面平面,平面,∴平面,∴平面,∴为中点,∴,又,,∴∴.DC N BD M MN MN BC H AH ABC ∆3H BC AH BC ⊥ABC ⊥BCD ABC BCD BC =AH ⊂ABCAH ⊥BCD EN ⊥BCD //EN AH EN ⊄ABCAH ⊂ABC //EN ABC M N BD DC //MN BC MN ⊄ABC BC ⊂ABC //MN ABC MN EN N =MN ⊂EMN EN ⊂EMN //EMN ABC EF ⊂EMN //EF ABC DH CH G NG //NG DH //EN ABC E ABC N ABC BCD ∆2DH BC ⊥ABC ⊥BCD ABC BCD BC =DH ⊂BCD DH ⊥ABC NG ⊥ABC DH =N CD NG =3AC AB ==2BC =12ABC S BC AC ∆=⋅⋅=V V =1S NG =⋅⋅=练习2解析:(1)证明:∵D 1D ⊥平面ABCD ,, ∴D 1D ⊥BC .又AB =4,AD =2,,∴∵AD 2+BD 2=AB 2,∴AD ⊥BD .又∵AD ∥BC ,∴BC ⊥BD .又∵D 1D∩BD =D ,,,∴BC ⊥平面D 1BD ,而,∴平面D 1BC⊥平面D 1BD ; (2)解:∵D 1D ⊥平面ABCD ,∴∠D 1BD 即为直线D 1B 与底面ABCD 所成的角,即,而,∴DD 1=2.,∴BC ABCD ⊂平面3DAB π∠=BD ==1BD D BD ⊂平面11D D D BD ⊂平面1BC D BC ⊂平面16D BD π∠=BD =14C MNQ Q CMN Q BDC V V V ---==11121432C MNQ V -=⨯⨯⨯⨯=巩固练习1.解析:(Ⅰ)取PA 的中点G ,连FG ,由题可知:BF=FP ,则FG //AB FG = AB ,又CE= ED ,可得:DE//AB 且DE = AB ,∴ FG //DE 且FG = DE ,∴四边形DEFG 为平行四边形,则EF //DG且EF =DG ,DG ⊂平面PAD ;EF ⊄平面PAD ,∴ EF//平面PAD ⋯⋯⋯4分 (Ⅱ)由PD ⊥平面ABCD ,PD ⊂平面PAD ,∴ 平面PAD ⊥平面ABCD ,且交线为AD ,又底面ABCD 是矩形,∴ BA ⊥ AD ,∴BA ⊥ 平面PAD ,∴平面PAB ⊥平面PAD,其交线为PA ,又PD=AD ,G 为PA 的中点,∴DG ⊥ PA ,∴ DG ⊥平面PAB ,由(Ⅰ)知:EF // DG , ∴ EF ⊥平面PAB ⋯⋯⋯8分 (Ⅲ)由BC =1, AB =F 为PB 的中点,∴ = = = == = ⋯⋯⋯⋯12分练习2解析:(Ⅰ)证明:∵四边形ABCD 是菱形,∴. 又∵平面ABCD ,平面ABCD ,∴.又,平面,平面,∴平面, ∵平面,∴平面平面. (Ⅱ)解:1212AEF P V -AEF B V -ABE F V-ABE P V -21PD S ABE ⋅⋅⋅∆3121112213121⋅⋅⋅⋅⋅122AC BD ⊥PA ⊥BD ⊂≠PA BD ⊥PA AC A =PA ⊂≠PAC AC ⊂≠PAC BD ⊥PAC BD ⊂≠PBD PBD ⊥PAC BCD 11=2232C BDM M V V --=⨯⨯⨯。

立体几何中的体积计算

立体几何中的体积计算

立体几何中的体积计算在立体几何中,计算物体的体积是一项重要的任务。

通过准确计算体积,我们可以了解物体的容量、空间占用情况以及形状特征。

本文将介绍几种常见的计算立体几何体积的方法,包括球体、长方体、圆柱体和锥体。

一、球体的体积计算球体是一种几何体,其所有点到中心的距离相等。

计算球体的体积可以使用下列公式:V = (4/3)πr³其中V表示球体的体积,r表示球体的半径,π为圆周率,约等于3.14。

二、长方体的体积计算长方体是一种具有六个矩形面的几何体。

计算长方体的体积可以使用下列公式:V = lwh其中V表示长方体的体积,l表示长方体的长度,w表示长方体的宽度,h表示长方体的高度。

三、圆柱体的体积计算圆柱体是一种由两个平行圆面和一个连接两个圆面的曲面组成的几何体。

计算圆柱体的体积可以使用下列公式:V = πr²h其中V表示圆柱体的体积,r表示圆柱体底面圆的半径,h表示圆柱体的高度。

四、锥体的体积计算锥体是一种由一个圆锥面和一个尖顶组成的几何体。

计算锥体的体积可以使用下列公式:V = (1/3)πr²h其中V表示锥体的体积,r表示锥体底面圆的半径,h表示锥体的高度。

在实际应用中,我们常常需要计算复杂形状的物体的体积。

这时候,我们可以将复杂形状分解为若干个简单的几何体,分别计算它们的体积,再将它们相加得到整个物体的体积。

除了上述几种常见的几何体,还有许多其他形状的立体需要计算其体积。

对于像球台、圆环等特殊形状,可以通过将其分解为更简单的几何体进行计算。

总结起来,立体几何中的体积计算是通过对几何体的形状和尺寸进行分析和测量,再利用相应的公式计算得到的。

对于复杂形状的几何体,可以将其分解为更简单的几何体进行计算。

在应用中,我们可以根据具体情况选择适合的计算方法来求解体积问题。

通过准确计算物体的体积,我们能够更好地理解物体的性质和特征,为实际应用提供重要的参考和依据。

文科立体几何高三知识点

文科立体几何高三知识点

文科立体几何高三知识点高三文科立体几何知识点立体几何是数学中的一个分支,它研究的对象是三维空间中的各种几何体及其性质。

在高中文科数学教学中,立体几何也是一个重要的知识点。

本文将详细介绍高三文科立体几何的相关知识点,包括体积、表面积、平行截面等内容。

一、体积体积是一个几何体所占据的三维空间的大小。

常见的几何体包括长方体、正方体、圆柱体、圆锥体和球体等。

这些几何体的体积计算公式如下:1. 长方体的体积计算公式为:V = lwh,其中l代表长度,w代表宽度,h代表高度。

2. 正方体的体积计算公式为:V = a^3,其中a代表边长。

3. 圆柱体的体积计算公式为:V = πr^2h,其中r代表底面半径,h代表高度。

4. 圆锥体的体积计算公式为:V = (1/3)πr^2h,其中r代表底面半径,h代表高度。

5. 球体的体积计算公式为:V = (4/3)πr^3,其中r代表半径。

二、表面积表面积是一个几何体外部面积的总和。

与体积类似,不同几何体的表面积计算公式也存在差异。

常见几何体的表面积计算公式如下:1. 长方体的表面积计算公式为:S = 2lw + 2lh + 2wh。

2. 正方体的表面积计算公式为:S = 6a^2,其中a代表边长。

3. 圆柱体的表面积计算公式为:S = 2πrh + 2πr^2,其中r代表底面半径,h代表高度。

4. 圆锥体的表面积计算公式为:S = πrl + πr^2,其中r代表底面半径,l代表斜高。

5. 球体的表面积计算公式为:S = 4πr^2,其中r代表半径。

三、平行截面平行截面是指一切平行于同一平面的柱体截面都相似。

根据平行截面的性质,我们可以得出以下结论:1. 柱体两个平行截面的面积比等于对应高度的比值的平方。

2. 柱体两个平行截面的体积比等于对应高度的比值的平方。

3. 柱体两个平行截面的表面积比等于对应高度的比值。

通过利用平行截面的性质,我们可以简化立体几何问题的计算。

结语:高三文科立体几何是数学学科中的一个重要部分。

高考总复习数学文科 第七篇 立体几何第2讲 空间几何体的表面积与体积

高考总复习数学文科 第七篇 立体几何第2讲 空间几何体的表面积与体积

高考总复习数学文科第七篇立体几何第2讲空间几何体的表面积与体积[最新考纲]1.了解球体、柱体、锥体、台体的表面积的计算公式.2.了解球体、柱体、锥体、台体的体积计算公式.知识梳理1.柱、锥、台和球的侧面积和体积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨析感悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)(2013·浙江卷改编)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24 cm3.(√)(5)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(6)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(7)(2014·青州模拟改编)将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为312a3.(×)[感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.考点一空间几何体的表面积【例1】(2014·日照一模)如图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形.则该几何体的表面积是().A.8B.20+82C.16D.24+8 2解析由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为22,由面积82,得长为4,则该几何体的表面积为S=2×12×2×2+22×4+2×2×4=20+8 2.答案 B规律方法(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【训练1】(2013·陕西卷)某几何体的三视图如图所示,则其表面积为________.解析由三视图可知,该几何体为半径r=1的半球体,表面积为底面圆面积加上半球面的面积,所以S=πr2+2πr2=3π.答案3π考点二空间几何体的体积【例2】(1)(2013·新课标全国Ⅰ卷)某几何体的三视图如图所示,则该几何体的体积为().A.16+8πB.8+8πC.16+16πD.8+16π(2)(2014·福州模拟)如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为().A.312 B.34C.612 D.64解析(1)由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4,2,2,圆柱的底面半径为2、高为4.所以V=2×2×4+12×22×π×4=16+8π.故选A.(2)三棱锥B1-ABC1的体积等于三棱锥A-B1BC1的体积,三棱锥A-B1BC1的高为32,底面积为12,故其体积为13×12×32=312.答案(1)A(2)A规律方法(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.【训练2】如图所示,已知E,F分别是棱长为a的正方体ABCD-A1B1C1D1的棱A1A,CC1的中点,求四棱锥C1-B1EDF的体积.解法一连接A1C1,B1D1交于点O1,连接B1D,EF,过O1作O1H⊥B1D于H.∵EF∥A1C1,且A1C1⊄平面B1EDF,EF⊂平面B1EDF.∴A1C1∥平面B1EDF.∴C1到平面B1EDF的距离就是A1C1到平面B1EDF的距离.∵平面B1D1D⊥平面B1EDF,且平面B1D1D∩平面B1EDF=B1D,∴O1H⊥平面B1EDF,即O1H为棱锥的高.∵△B1O1H∽△B1DD1,∴O1H=B1O1·DD1B1D=66a.∴VC1-B1EDF=13S四边形B1EDF·O1H=13·12·EF·B1D·O1H=13·12·2a·3a·66a=16a 3.法二连接EF,B1D.设B1到平面C1EF的距离为h1,D到平面C1EF的距离为h2,则h1+h2=B1D1=2a.由题意得,VC1-B1EDF=VB1-C1EF+VD-C1EF=13·S△C1EF·(h1+h2)=16a3.考点三球与空间几何体的接、切问题【例3】(1)(2013·新课标全国Ⅱ卷)已知正四棱锥O-ABCD的体积为32 2,底面边长为3,则以O为球心,OA为半径的球的表面积为________.(2)(2013·辽宁卷)已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A.3172 B .210 C.132D .310审题路线 (1)根据正四棱锥的体积求高⇒求底面正方形的对角线长⇒由勾股定理求OA ⇒由球的表面积公式求解.(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解.解析 (1)设正四棱锥的高为h , 则13×(3)2×h =322,解得h =322. 又底面正方形的对角线长为2×3= 6. 所以OA =⎝ ⎛⎭⎪⎫3222+⎝ ⎛⎭⎪⎫622= 6. 故球的表面积为S 球=4π×(6)2=24π.(2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)24π (2)C 学生用书第108页规律方法解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】(2012·辽宁卷)已知点P,A,B,C,D是球O表面上的点,P A ⊥平面ABCD,四边形ABCD是边长为23的正方形.若P A=26,则△OAB 的面积为________.解析根据球的内接四棱锥的性质求解.如图所示,线段PC就是球的直径,设球的半径为R,因为AB=BC=23,所以AC=2 6.又P A=26,所以PC2=P A2+AC2=24+24=48,所以PC=43,所以OA=OB=23,所以△AOB是正三角形,所以S=12×23×23×32=3 3.答案3 3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB =90°,AC=4,BC=CC1=3.P是BC1上一动点,则CP+P A1的最小值为________(其中P A1表示P,A1两点沿棱柱的表面距离).解析(1)折叠后的四面体如图所示.OA,OC,OD两两相互垂直,且OA=OC=OD=22,体积V=13S△OCD·OA=1 3×12×(22)3=823.(2)由题意知,A1P在几何体内部,把面BB1C1C沿BB1展开与面AA1B1B在一个平面上,如图所示,连接A1C即可.则A1、P、C三点共线时,CP+P A1最小,∵∠ACB=90°,AC=4,BC=C1C=3,∴A1B1=AB=42+32=5,∴A1C1=5+3=8,∴A1C=82+32=73.故CP+P A1的最小值为73.答案(1)823(2)73规律方法(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR =SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P-ABCD(如图所示),其中PD⊥平面ABCD,因此该四棱锥的体积V=13×6×6×6=72,而棱长=3个这样的几何体,才能为6的正方体的体积V=6×6×6=216,故需要21672拼成一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16.[优美解法] E 点移到A 点,F 点移到C 点,则VD 1-EDF =VD 1-ADC =13×12×1×1×1=16.[答案] 16[反思感悟] (1)一般解法利用了转化思想,把三棱锥D 1-EDF 的体积转化为三棱锥F -DD 1E 的体积,但这种解法还是难度稍大,不如采用特殊点的解法易理解、也简单易求.(2)在求几何体体积时还经常用到等积法、割补法.【自主体验】 如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为________.解析补形法将三棱柱补成四棱柱,如图所示.记A1到平面BCC1B1的距离为d,则d=2.则V三棱柱=12V四棱柱=12S四边形BCC1B1·d=12×4×2=4.答案 4对应学生用书P267基础巩固题组(建议用时:40分钟)一、选择题1.(2013·广东卷)某三棱锥的三视图如图所示,则该三棱锥的体积是().A.16 B.13 C.23D .1解析 由三视图可知该三棱锥的底面是边长为1的等腰直角三角形,高为2.由锥体的体积公式可知V =13×12×1×1×2=13.答案 B2.(2013·湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( ).A.32 B .1 C.2+12D. 2解析 易知正方体是水平放置的,又侧视图是面积为2的矩形.∴正方体的对角面平行于投影面,此时正视图和侧视图相同,面积为 2.答案 D 3.(2014·许昌模拟)如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( ).A .4π B.32π C .3πD .2π解析 由三视图可知,该几何体是一个圆柱,S表=2×π×⎝ ⎛⎭⎪⎫122+π×1×1=3π2.答案 B4.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为().A.23 B.33C.43 D.32解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=12,AG=GD=BH=HC=32,∴S△AGD=S△BHC=12×22×1=24,∴V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=13×24×12×2+24×1=23.故选A.答案 A5.(2012·新课标全国卷)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为().A.6πB.43πC.46πD.63π解析如图,设截面圆的圆心为O′,M为截面圆上任一点,则OO′=2,O′M=1,∴OM=(2)2+1=3,即球的半径为3,∴V=43π(3)3=43π.答案 B二、填空题6.(2013·辽宁卷)某几何体的三视图如图所示,则该几何体的体积是________.解析由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,所以几何体的体积为16π-16.答案16π-167.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析设正方体的棱长为a,外接球的半径为R,由题意知43πR3=9π2,∴R3=278,而R=32.由于3a2=4R2,∴a2=43R2=43×⎝⎛⎭⎪⎫322=3,∴a= 3.答案 38.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________.解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎪⎨⎪⎧πrl =2π,πr 2=π,∴⎩⎪⎨⎪⎧r =1,l =2.∴h =l 2-r 2=22-12= 3.∴圆锥的体积V =13π·12·3=33π. 答案 33π 三、解答题9.如图,已知某几何体的三视图如下(单位:cm):(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解(1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由P A 1=PD 1= 2 cm ,A 1D 1=AD =2 cm ,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),体积V =23+12×(2)2×2=10(cm 3).10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径BC 的长为3r ,则容器内水的体积为V =V 圆锥-V 球=13π(3r )2·3r - 43πr 3=53πr 3,将球取出后,设容器中水的深度为h , 则水面圆的半径为33h ,从而容器内水的体积为 V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r .能力提升题组 (建议用时:25分钟)一、选择题1.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( ).A .33B .23 C.3D .1解析由题意知,如图所示,在棱锥S-ABC中,△SAC,△SBC都是有一个角为30°的直角三角形,其中AB=3,SC=4,所以SA=SB=23,AC=BC=2,作BD⊥SC于D点,连接AD,易证SC⊥平面ABD,因此V=13×34×(3)2×4= 3.答案 C2.(2013·临沂一模)具有如图所示的正视图和俯视图的几何体中,体积最大的几何体的表面积为().A.3B.7+3 2C.72πD.14解析由正视图和俯视图可知,该几何体可能是四棱柱或者是水平放置的三棱柱,或水平放置的圆柱.由图可知四棱柱的体积最大.四棱柱的高为1,底面边长分别为1,3,所以表面积为2(1×3+1×1+3×1)=14.答案 D二、填空题3.如图,已知正三棱柱ABC-A1B1C1的底面边长为2 cm、高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm).答案 13 三、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC ,∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B-ACD=13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

距离问题
1、如图,四棱锥中,底面,
,,.
(1)求证:;(2)求点到平面的距离.
2、如图,已知四棱锥的底面为菱形,,,
.
(Ⅰ)求证:⊥;
(Ⅱ)求点到平面的距离.
3、如图,正三棱柱(底面为正三角形,侧棱垂直于底面)中,是的中点,
.
(1)求证:直线平面;
(2)求点到平面的距离.
4、在四棱柱中,底面,底面为菱形,为与的交点,已知
,.
(1)求证:平面平面;
(2)求点到平面的距离.
体积问题
【2014高考北京文第17题】如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,
AB BC ⊥,12AA AC ==,E 、F 分别为11AC 、BC 的中点.
(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.
C 1
B 1
A 1
F
E C B
A
3. 【2015高考北京,文18】(本小题满分14分)如图,在三棱锥V C -AB 中,
平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,
C C A ⊥B
且C C A =B =O ,M 分别为AB ,V A 的中点.
(I )求证:V //B 平面C MO ; (II )求证:平面C MO ⊥平面V AB ; (III )求三棱锥V C -AB 的体积.
5. [2016高考新课标Ⅲ文数]如图,四棱锥P ABC -中,PA ⊥平面ABCD ,
AD
BC ,3AB AD AC ===,
4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.
(I )证明MN 平面PAB ;
(II )求四面体N BCM -的体积.
23. 【2015高考新课标1,文18】(本小题满分12分)如图四边形ABCD 为菱
形,G 为AC 与BD 交点,BE ABCD ⊥平面,
(I )证明:平面AEC ⊥平面BED ;
(II )若120ABC ∠=,,AE EC ⊥
三棱锥E ACD -求该三棱锥的侧面积.
38.(2014课标全国Ⅰ,文19)如图,三棱柱ABC-A
B1C1中,侧面BB1C1C为
1
菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱
ABC-A1B1C1的高.。

相关文档
最新文档