2021年中考模拟试题三
【广东省】2021年中考英语全真模拟试卷(三)(原卷版)
2021年中考英语全真模拟试题三(满分120分,考试时间90分钟)一、听力理解(本大题分为A、B、C、D四部分,共30小题,每小题1分,共30分)A.听单句话(本题有5小题,每小题1分,共5分)根据所听句子的内容和所提的问题,选择符合题意的图画回答问题,并将答题卡上对应题目所选的选项涂黑。
每小题听一遍。
( )1. What is Tim’s favorite animalA B C( )2. Where did Alice go last WednesdayA B C( )3. When did Tom go to the Great WallA B C( )4. Who is Mandy’s best friendA B C( )5. How many footballs have Sam hadA B CB.听对话(本题有10小题,每小题1分,共10分)根据所听内容,回答每段对话后面的问题,在每小题所给的三个选项中选出一个最佳答案,并将答题卡上对应题目所选的选项涂黑。
每段对话听两遍听第一段对话,回答第6小题。
( ) 6. What is Bob’s favorite sportA.Running.B. Swimming.C. Dancing.听第二段对话,回答第7小题。
( ) 7. Where does the woman want to goA.To a bookstore.B. To a restroom.C. To a bank.听第三段对话,回答第8小题。
( ) 8. What is the jacket made ofA.Silk.B. Cotton.C. Paper.听第四段对话,回答第9小题。
( ) 9. How many kinds of noodles does the restaurant haveA.Two.B. Three.C. Four.听第五段对话,回答第10小题。
2021年广东省深圳市中考英语模拟试卷(三)含解析
2021年广东省深圳市中考英语模拟试卷(三)第一部分选择题(50分)Ⅰ.完形填空(10分)阅读下面短文,从短文后所给的A、B、C、D四个选项中选出能填入相应空白处的最佳选项,并将其标号填入题前的括号内。
(共1小题,每小题10分)1.(10分)It was so close to noon on December 21st 1943,in the Tanana River Valley of Alaska,not far from the Arctic Circle,when Crane on the Iceberg Inez was preparing to jump out of his plane. Wind cried and he was in the fall. Before Crane realized what was happening,he found himself (1)on a frozen stream. The plane that he had to (2)was burning,two miles away,which would be good(3) a rescue. However,the fire also meant the supplies﹣food,sleeping bags,signal flames,a gun﹣were lost. Still,he shouted out for any sign of life.(4),there was nobody else. Crane tried to take a few steps,but the thick snow made his walking hard. And to make things(5),a broken foot made it nearly impossible to reach the crash site before nightfall. He knew he mustn't lose his (6)and began to think of the things he could do.It was minus 60 degrees Fahrenheit. Crane knew he needed to start a fire and get it going,(7)he might not last the night. His fingers were dead,but he managed to light a match. The little flame wasn't enough to catch. He tried another three matches but they did nothing except burn his fingertips. At that moment,he remembered hearing from his father days ago. So with the help of the (8),a fire rose up. The (9)match worked.The journey back was unexpectedly difficult. One of his feet became so large that he could hardly put on his shoe. He walked at the best speed that he could manage although he was in great pain.Luckily,the 23﹣year﹣old (10)who had a strong will succeeded in keeping himself away from varied kinds of danger until help arrived 81 days later.(1)A. sleeping B. swimming C. lying D. laying(2)A. give up B. set up C. take up D. cut up(3)A. at B. of C. for D. with(4)A. Surprisingly B. Unluckily C. Suddenly D. Interestingly(5)A. easier B. better C. more D. worse(6)A. head B. feet C. hand D. fingers(7)A. so B. but C. if D. or(8)A. diary B. letter C. book D. email(9)A. second B. third C. fifth D. seventh(10)A. pilot B. doctor C.teacher D. firefighterⅡ.阅读理解(40分)第一节阅读下列短文,从下面每小题所给的A、B、C、D四个选项中,选出最佳选项,并将其标号填入题前的括号内。
2021年中考语文模拟试题与答案(三)
2021年中考语⽂模拟试题与答案(三)2021年中考语⽂模拟试题与答案(三)(全卷满分120分,考试时间120分钟)⼀、积累与运⽤(15分)1. 古诗⽂默写。
(6分)①________________,寒光照铁⾐。
(《⽊兰诗》②________________,忽复乘⾈梦⽇边。
(李⽩《⾏路难》)③俗⼦胸襟谁识我,________________。
[秋瑾《满江红(⼩住京华>》]④________________,西北望,射天..... (苏轼《江城⼦.密州出猎》)⑤马致远《天净沙秋思》中直抒胸臆,表达了游⼦浪迹天涯的孤苦悲伤之情的诗句是:________________,________________。
2.书法之美,美在其形,美在其意。
请你赏读下⾯两幅内容相同的书法作品,按要求完成题⽬。
请⽤简体楷书,将这幅书法作品⼯整、规范地写在⽥字格内。
(2分)3. 下列句⼦没有语病的⼀项是( )(2分)A.随着万物互联的5G时代的到来,使我们的⽣活将发⽣巨⼤的改变。
B.为了提⾼同学们的阅读兴趣,班级开展了⼀系列的名著阅读和主题诗歌朗诵。
C.在学习过程中,我们应该注意培养⾃⼰分析问题、解决问题和提出问题的能⼒。
D.三坊七巷举办⾮遗体验活动,旨在让⼈们领略传统⽂化的魅⼒,增强⽂化⾃信。
4. 下列句⼦中标点符号使⽤正确的⼀项是()(2分)A.服务贸易发展前景⼴阔、潜⼒巨⼤,我们应该抓住机遇,携⼿开创“全球服务、互惠共享”的美好未来。
B.⼀瞬间,她那修长美妙的⾝体犹如被空⽓托住了,衬着蓝天⽩云,酷似敦煌壁画中凌空翔舞的“飞天”。
C.《论语》中有不少语句逐渐演化并固定为成语,如“温故知新”、“不耻下问”、“诲⼈不倦”、“当仁不让”等。
D.⼈们常说:希腊有帕特农神庙,埃及有⾦字塔;罗马有⽃兽场,巴黎有圣母院;⽽东⽅有圆明园。
5. 将(1)—(5)句按⼀定的顺序排列,排列顺序最恰当的⼀项是()(3分)⑴由于阳光的照射,云彩的流动,雾霭的聚散和升降,不断变换着深浅浓淡的颜⾊。
2021年广东省深圳市中考物理模拟试卷(三)及答案解析
2021年广东省深圳市中考物理模拟试卷(三)一、单选题(共10题;共20分)1.(3分)下列关于声现象的说法正确的是()A.图1中人在水面下能听到岸上的说话声,表明声音的传播不需要介质B.图2中改变试管内的水量可以改变吹气时声音的音调C.图3中禁止鸣笛是在传播过程中减弱噪声D.图4中B超诊断仪是利用次声波工作的2.(3分)“金边日食”是壮观的天文现象,小明用自制小孔观看日食,下列说法正确的是()A.日食现象可用光的直线传播解释B.用小孔成像原理观看日食利用了光的折射C.日食通过小孔成正立、缩小的实像D.日食通过小孔所成的像与小孔的形状有关3.(3分)如图是小强用手机、透镜和纸盒自制的简易投影仪,能将手机上的画面放大投射到白色墙上。
下列说法正确的是()A.手机屏幕到透镜的距离应大于透镜的二倍焦距B.白色墙上呈现的是手机画面倒立、放大的实像C.若用不透明的硬纸板遮住透镜的一部分,白色墙上的画面将不再完整D.从各个角度都能清楚地看到白色墙上的像,是因为墙对光发生了镜面反射4.(3分)物理与生活联系非常密切,下列数据符合实际的是()A.一张纸的厚度约为1mm B.成年人步行的速度约为10m/sC.家用空调正常工作时的功率约为100W D.两个鸡蛋的质量约为100g5.(3分)为备战2022年冬季奥运会,短道速滑运动员在集训中多次进行模拟比赛,有关比赛过程中的说法正确的是()A.发令枪响前,运动员静止时所受的支持力与他对冰面的压力是一对平衡力B.发令枪响后,运动员用力向后蹬来获得向前的动力,是因为力的作用是相互的C.运动员在经过弯道时不再用力向后蹬,此时运动状态不发生改变D.冲线后,运动员停止用力仍能滑行很远,是因为运动员不受摩擦阻力6.(3分)高空中形成的雨滴在重力和空气阻力的共同作用下,开始下落的一段时间速度越来越大,落到地面前一段时间匀速下落。
雨滴在空中下落的整个过程中()A.动能一直增大,机械能守恒B.动能先增大后不变,机械能守恒C.动能先增大后不变,机械能一直减小D.动能先减小后不变,机械能一直减小7.(3分)如图所示的工具,正常使用时属于费力杠杆的是()A.核桃夹B.筷子C.瓶起子D.钳子8.(3分)如图是某小区的门禁系统,内部车辆出入,能够被自动识别栏杆抬起;外部车辆出入,需要门卫用按钮将栏杆抬起。
2021年广东省中考数学仿真模拟试卷(三)(解析版)
2021年广东省中考数学仿真模拟试卷(三)一、选择题(共10小题).1.﹣9的绝对值是()A.B.﹣C.9D.﹣92.北京冬奥会和冬残奥会赛会志愿者招募工作进展顺利,截止2020年底,赛会志愿者申请人数已突破960000人.将960000用科学记数法表示为()A.96×104B.9.6×104C.9.6×105D.9.6×1063.在平面直角坐标系中,点(2,5)关于y轴对称点的坐标为()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(2,5)4.如图所示的几何体从上面看到的形状图是()A.B.C.D.5.代数式在实数范围内有意义的条件是()A.x>﹣B.x≠﹣C.x<﹣D.x≥﹣6.已知有下列四个算式:①(﹣5)+(+3)=﹣8;②﹣(﹣2)3=6;③(﹣3)÷(﹣)=9;④(﹣)﹣(﹣)=﹣.其中正确的有()A.1个B.2个C.3个D.4个7.若一个多边形内角和等于1260°,则该多边形边数是()A.8B.9C.10D.118.成都市某医院开展了主题为“抗击疫情,迎战硝烟”的护士技能比赛活动,决赛中5名护士的成绩(单位:分)分别为:88,93,90,93,92,则这组数据的中位数是()A.88B.90C.92D.939.已知m,n是方程x2+x﹣3=0的两个实数根,则m2﹣n+2019的值是()A.2019B.2020C.2021D.202310.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②9a+3b+c<0;③一元二次方程ax2+bx+c=2的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.将x2﹣4y2因式分解为.12.已知﹣7x6y4和3x2m y n是同类项,则m﹣n的值是.13.若某数的两个平方根是a+1与a﹣3,则这个数是.14.若实数m,n满足|m﹣2|+(n﹣2021)2=0,则m﹣1+n0=.15.用一个圆心角为180°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.16.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为厘米.17.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值.(x﹣2y)2+2y(2x﹣3y).其中x=﹣1,y=.19.先化简,再求值:﹣,其中x=2﹣.20.如图,已知▱ABCD.(1)作出BC的垂直平分线,交AD于点E,交BC于点F,(用尺规作图,保留作图痕迹,不要求写作法);(2)在1的条件下,连接BE,CE,若∠D=65°,∠ABE=25°,求∠ECB的度数.三、解答题(二)(本大题3小题,每小题8分,共24分)21.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课,某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生3200人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.22.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是,未知数q表示的是;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?23.如图,点O是Rt△ABC的斜边AB上一点,⊙O与边AB交于点A,D,与AC交于点E,点F是的中点,边BC经过点F,连接AF.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为5,AF=8,求AC的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,已知直线OA与反比例函数y=(m≠0)的图象在第一象限交于点A.若OA =4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.25.如图1,一次函数的图象与两坐标轴分别交于A,B两点,且B点坐标为(0,4),以点A为顶点的抛物线解析式为y=﹣(x+2)2.(1)求一次函数的解析式;(2)如图2,将抛物线的顶点沿线段AB平移,此时抛物线顶点记为C,与y轴交点记为D,当点C的横坐标为﹣1时,求抛物线的解析式及D点的坐标;(3)在(2)的条件下,线段AB上是否存在点P,使以点B,D,P为顶点的三角形与△AOB相似,若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
精品解析:2021年重庆市九龙坡区育才中学中考数学三模试题(解析版)
2021年重庆市九龙坡区育才中学中考数学模拟试卷(三)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为小B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号写在括号内. 1. 在﹣3,﹣14,0,1四个数中,最大的数是()A. 1B. 0C. ﹣14D. ﹣3【答案】A【解析】【分析】根据实数大小比较判断即可;【详解】∵1>0>﹣14>﹣3,∴最大的数是1,故选:A.【点睛】本题主要考查了实数比大小,准确分析计算是解题的关键.2. 下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.【答案】A【解析】【详解】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.3. 在下列调查中,适宜采用全面调查的是()A. 检测一批电灯泡的使用寿命B. 了解九(1)班学生校服的尺码情况C. 了解我省中学生的视力情况D. 调查重庆《生活麻辣烫》栏目的收视率【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.检测一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;B.了解九(1)班学生校服的尺码情况,必需采用全面调查,符合题意;C.了解我省中学生的视力情况,适合抽样调查,不符合题意;D.调查重庆《生活麻辣烫》栏目的收视率,适合抽样调查,不符合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应该选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 已知x﹣2y=4,xy=4,则代数式5xy﹣3x+6y的值为()A. 32B. 16C. 8D. ﹣8【答案】C【解析】【分析】变形代数式5xy﹣3x+6y为5xy﹣3(x﹣2y),直接代入求值即可.【详解】解:原式=5xy﹣3(x﹣2y).当x﹣2y=4,xy=4时,原式=5×4﹣3×4=20﹣12=8.故选:C.【点睛】本题考查了代数式求值问题,涉及到了整体代入的思想方法,要求学生能对代数式进行变形,得到所需要的式子,进行整体代入即可,考查了学生对代数式的变形与计算的能力以及整体思想的运用.5. 如图,BC∥ED,下列说法不正确是()A. 两个三角形是位似图形B. 点A是两个三角形的位似中心C. B与D、C与E是对应位似点D. AE:AD是相似比【答案】D【解析】【分析】根据位似变换的概念判断即可.【详解】解:A、∵BC∥ED,∴△ADE∽△ABC,∵△ADE与△ABC对应点的连线相交于一点,对应边平行或在同一条直线上,∴△ADE与△ABC是位似图形,本选项说法正确,不符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、AE:AD不是相似比,AE:AC是相似比,本选项说法错误,符合题意;故选:D.【点睛】本题考查的是位似变换的概念,两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.6. +)A. 4B. 5C. 6D. 7【答案】C【解析】的值即可判断.【详解】解:(==46=+, 466.259<<<26 2.53∴<<<24464 2.543∴+<+<+<+即646 6.57<+<<46∴+的值更接近整数6∴()148183+⋅的值更接近整数6. 故选:C .【点睛】本题考查了估算无理数的大小以及二次根式的混合运算,估算无理数大小要用逼近法. 7. 如图,O 是ABC ∆的外接圆,已知50ACB ︒∠=,则ABO ∠的大小为( )A. 30︒B. 40︒C. 45︒D. 50︒【答案】B【解析】 【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=100°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO ,∴∠ABO=(180°-100°)÷2=40°,故选:B . 【点睛】此题主要考查了三角形的外接圆与外心,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8. 下列说法正确的是()A. 若|a|=|b|,则a=bB. 内错角相等C. 2x-有意义的条件为x>2D. 点P(﹣3,2)关于y轴对称点的坐标为(3,2)【答案】D【解析】【分析】直接利用绝对值的性质以及二次根式的性质、关于y轴对称点的性质分别判断得出答案.【详解】解:A、若|a|=|b|,则a=±b,故此选项错误;B、两直线平行,内错角相等,故此选项说法错误;C、2x-有意义的条件为x≥2,故此选项错误;D、点P(﹣3,2)关于y轴对称点的坐标为(3,2),故此选项正确.故选:D.【点睛】本题考查了绝对值的性质以及二次根式的性质、关于y轴对称点的性质,正确掌握相关定义是解题的关键.9. 如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A. 7B. 11C. 13D. 20【答案】C【解析】【分析】过D作DG⊥BC于G,EH⊥BC于H,解直角三角形即可得到结论.【详解】解:过D作DG⊥BC于G,EH⊥BC于H,∴GH=DE=2,∵DG=EH=15,背水坡CD的坡度i=1:0.6,背水坡EF的坡度i=3:4,∴CG=9,HF=20,∴CF=GH+HF﹣CG=13米,故选:C.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.10. 如果关于x的分式方程1222x mx x++=--有非负整数解,关于y的不等式组21235(1)(3)y yy y m+⎧+⎪⎨⎪-<-+⎩有且只有3个整数解,则所有符合条件的m的和是()A. ﹣3B. ﹣2C. 0D. 2【答案】A【解析】【分析】分式方程去分母转化为整式方程,由解为非负整数解,以及不等式组只有3个整数解,确定出符合条件m的值即可.【详解】解:去分母得:x﹣m﹣1=2x﹣4,解得:x=3﹣m,由解为非负整数解,得到3﹣m≥0,3﹣m≠2,即m≤3且m≠1,不等式组整理得:224ymy≥-⎧⎪⎨-<⎪⎩,由不等式组只有3个整数解,得到y=﹣2,﹣1,0,即0<24m-≤1,解得:﹣2≤m<2,则符合题意m=﹣2,﹣1,0,之和为﹣3,故选:A.【点睛】此题考查了分式方程的解以及一元一次不等式组的整数解,解题关键是熟练掌握运算法则. 11. 如图,在Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB上的一点,连接CD,将△BCD沿CD 翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF翻折,点A恰好与点E重合.若DC=5,则AF的长为()A. 5B. 74C.54D. 4.5【答案】B【解析】【分析】根据折叠的性质和勾股定理定理即可得到结论.【详解】解:∵将△BCD沿CD翻折,使点B落在点E处,∴BD=DE,BC=CE=6,∠B=∠CED,∵将△ADF沿DF翻折,点A恰好与点E重合,∴∠A=∠DEF,AD=DE,AF=EF,∴∠FED+∠CED=90°,∴AD=DB,∴CD=DA=DB=12 AB,∵DC=5,∴AB=10,∴AC22AB BC-22106-=8,∴CF=8﹣AF,∴EF2+CE2=CF2,∴AF2+62=(8﹣AF)2,∴AF=74,故选:B.【点睛】本题考查了翻折变换、直角三角形斜边中线的性质、勾股定理等知识,解题的关键是正确寻找直角三角形解决问题.12. 在平面直角坐标系中,平行四边形ABCD的顶点A在y轴上,点C坐标为(﹣4,0),E为BC上靠近点C的三等分点,点B、E均在反比例函数y=kx(k<0,x<0)的图象上,若tan∠OAD=12,则k的值为()A. ﹣2B. ﹣25C. ﹣6D. ﹣42【答案】C【解析】【分析】根据已知条件运用点B,E都在反比例函数图象上,再运用tan∠OAD=12即可求解.【详解】如图所示,过点B作BN⊥x轴,过点E作EM⊥x轴∴EM∥BN∴△ECM∽△BCN∵E 为BC 三等分点∴EC =13BC ∴13EC EM CM BC BN CN === 设B 点的坐标为:(-m ,n )∵C (-4,0)∴OC =4∴ON =m ,BN =n则CN =4-m∴EM =13BN =3n CM =13CN =4-3m OM =OC -CM =4-4-3m =83m + ∴E (-83m +,3n ) ∵tan ∠OAD =12 ∴tan ∠OAD =12=OF OA 则OA =2OF∴tan ∠AFO =2∵四边形ABCD 是平行四边形∴AD ∥BC∴∠ECM =∠AFO∴tan ∠ECM =2EM CM = 即3n ÷4-3m =2 n =8-2m∴B (-m ,8-2m )E (-83m +,823m -),两点都在k y x=上 ∴-m (8-2m )=-83m +×823m - 解得m =1∴B (-1,6)∴k =-1×6=-6故选:C .【点睛】本题考查了反比例函数上点的坐标特征平行四边形的性质及解直角三角形,本题的解题关键是确定B ,E 点的坐标,利用tan ∠OAD =12的关系即可得出答案. 二、填空题:(本大题共6个小题,铅小题4分,共24分)13.(π﹣3)0﹣|﹣3|=_____.【答案】2【解析】【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.【详解】解:原式=4+1﹣3=2.故答案为:2.【点睛】本题考查了二次根式的化简、0指数幂的性质和绝对值的性质,解决本题的关键是牢记相关结论与性质,并能熟练运用.14. 清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为______米.【答案】8.4×10-6 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000084=8.4×10-6, 故答案为:8.4×10-6. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15. 一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,1个白球,1个黑球,搅匀后,从中随机摸出两个球,则摸到一个红球一个白球的概率为_____. 【答案】13【解析】【分析】先画树状图展示所有12种等可能的结果数,再找出摸到一个红球一个白球的结果数,然后根据概率公式求解.【详解】解:画树状图如图:共有12个等可能的结果,摸到一个红球一个白球的结果有4个,∴摸到一个红球一个白球的概率为412=13,故答案为:13.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16. 如图,在矩形ABCD中,AB=2AD=4,以点A为圆心,AB为半径的圆弧交CD于点E,交AD的延长线于点F,则图中阴影部分的面积为_____.(结果保留π)【答案】83π﹣3【解析】【分析】首先求出DE和AE,再利用特殊角的三角函数值求出∠DAE的度数,然后根据S阴影=S扇形AEF﹣S△ADE 即可求解.详解】解:∵AB=2AD=4,AE=AB,∴AD=2,AE=4.∴DE22224223AE AD--=,∴Rt△ADE中,cos∠DAE=2142 ADAE==,∴∠DAE=60°,则S△ADE=12AD•DE=12×2×33S扇形AEF=260483603ππ⨯=,则S阴影=S扇形AEF﹣S△ADE=8233π-.故答案为:8233π-.【点睛】本题综合考查了三角函数、矩形、勾股定理、扇形面积等内容,要求学生能利用相关概念和公式求出角以及线段的长,能利用面积公式求出图形的面积,因此,解决本题的关键是牢记公式,并做到熟练运用,本题运用了数形结合的思想方法.17. 小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.【答案】90【解析】【分析】根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答. 【详解】设小明的速度为akm/h,小亮的速度为bkm/h,23.5 2.5(3.52)(3.5 2.5)210bab a⎧=-⎪⎨⎪-+-=⎩,解得,12060ab=⎧⎨=⎩,当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=90(千米),故答案为90.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.18. 假设某地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2020年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和2个出口,则从早晨6点开始经过__________小时车库恰好停满. 【答案】165【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,然后根据题意可列方程组进行求解.【详解】解:设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: ()()8237523275x y a x y a ⎧-=⎪⎨-=⎪⎩%%, 解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩, 则3316602216325a a ⎛⎫÷⨯-⨯= ⎪⎝⎭%(小时); 故答案为165. 【点睛】本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.三、解答题:(本大题8个小题,26题8分,19-25题每小题8分,共78分)19. 计算:(1)(2a ﹣b )2+(a +b )(a ﹣b );(2)(1﹣32x +)÷212x x -+. 【答案】(1)5a 2﹣4ab ;(2)11x + 【解析】【分析】(1)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:(1)原式=4a 2﹣4ab +b 2+a 2﹣b 2=5a 2﹣4ab ;(2)原式=()()232·2211x x x x x x ++⎛⎫- ⎪+++-⎝⎭ =()()12·211x x x x x -+++- =11x +. 【点睛】本题考查了平方差公式和完全平方公式、分式的混合运算以及化简,要求学生熟记相关公式并能灵活运用,考查了学生对相关概念的理解能力和对公式的运用能力.20. 如图,在四边ABCD 中,AB DC AB AD =∥,,对角AC BD 、交于O AC ,平BAD ∠.(1)求证:四边形ABCD 是菱形;(2)过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE ,若254AB BD ==,,求OE 的长.【答案】(1)见解析;(2)4【解析】【分析】(1)先判断出∠CAB=∠DCA ,进而判断出∠DAC=∠DCA ,得出CD=AD=AB ,即可得出结论; (2)先判断出OE=OA=OC ,再求出OB=2,利用勾股定理求出OA ,即可得出结论.【详解】(1)证明:AB CD ∥ ,CAB ACD ∴∠=∠,AC 平分BAD ∠,CAB CAD ∴∠=∠ ,CAD ACD ∴∠=∠,AD CD ∴=又=AD AB ,AB CD ∴=,又AB CD ∥,∴四边形ABCD 是平行四边形,AB AD =,∴四边形ABCD 是菱形,(2)解:菱形ABCD ,AC BD ∴⊥ ,12OA OC AC == ,12OB OD BD ==, CE AB ⊥,90AEC ∴∠=︒,又O 为AC 中点,12OE AC OA ∴==, 在Rt AOB 中,90AOB ∠=︒,22OA AB OB ∴=-22(25)24OE OA ∴==-=. 【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB 是解本题的关键.21. 某防护服生产公司旗下有A 、B 两个生产车间,为了解A 、B 两个生产车间工人的日均生产数量,公司领导小组从A 、B 两个生产车间分别随机抽取了20名工人的日均生产数量x (单位:套),并对数据进行分析整理(数据分为五组:A .25≤x <35,B .35≤x <45,C .45≤x <55,D .55≤x <65,E .65≤x <75).得出了以下部分信息:A .B 两个生产车间工人日均生产数量的平均数、中位数、众数、极差如表:车间平均数(个) 中位数(个) 众数(个) 极差 A54 56 62 42 B a b 64 45“B 生产车间”工人日均生产数量在C 组中的数据是:52,45,54,48,54,其余所有数据的和为807. 根据以上信息,回答下列问题:(1)上述统计图表中,a = ,b = .扇形统计图B 组所对应扇形的圆心角度数为 °. (2)根据以上数据,你认为哪个生产车间情况更好?请说明理由(一条理由即可);(3)若A 生产车间共有200名工人,B 生产车间共有180个工人,请估计该公司生产防护服数量在“45≤x<65”范围的工人数量.【答案】(1)53,54,72;(2)“A车间”的生产情况较好,理由见解析;(3)估计生产防护服数量在“45≤x <65”范围的工人大约有199人【解析】【分析】(1)“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,可求出“B生产车间”工人日均生产数量在C组的百分比,进而求出工人日均生产数量在B组的百分比,再根据平均数、中位数、众数的意义求解即可;(2)根据中位数、平均数、极差的比较得出答案;(3)根据两个车间的在“45≤x<65”范围所占的百分比,通过教师得出答案.【详解】解:(1)“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,因此“C组”所占的百分比为5÷20=25%,“B组”所占的百分比为1﹣25%﹣10%﹣15%﹣30%=20%,所以“A组”的频数为:20×10%=2(人),“B组”的频数为:20×20%=4(人),“C组”的频数为:20×25%=5(人),“D组”的频数为:20×30%=6(人),“E组”的频数为:20×15%=3(人),因此“B车间”20名工人,日生产数量从小到大排列,处在中间位置的两个数的都是54,所以中位数是54,即b=54,“B车间”20名工人,日生产数量的平均数为:30×10%+40×20%+50×25%+60×30%+70×15%=53,即a=53,360°×20%=72°,故答案为:53,54,72;(2)“A车间”的生产情况较好,理由:“A车间”工人日均生产量的平均数,中位数均比“B车间”的高;(3)200×3720+180×(25%+30%)=199(人),答:A生产车间200人,B生产车间180人,估计生产防护服数量在“45≤x<65”范围的工人大约有199人.【点睛】本题考查了折线统计图、扇形统计图、平均数、中位数、众数以及极差,理解统计图中数量之间的关系是解题的关键.22. 如果自然数m使得作竖式加法m+(m+1)+(m+2)时对应的每一位都不产生进位现象,则称m为“三生三世数”,例如:12,321都是“三生三世数”,理由是12+13+14及321+322+323分别都不产生进位现象;50,123都不是“三生三世数“,理由是50+51+52及123+124+125分别产生了进位现象(1)分别判断42和3210是不是“三生三世数”,并说明理由;(2)求三位数中小于200且是3的倍数的“三生三世数”.【答案】(1)42不是“三生三世数”,3210是“三生三世数”,理由见解析;(2)102,111,120,132 【解析】【分析】(1)根据“三生三世数”的定义进行判断便可;(2)先根据“三生三世数”定义求出三位数中小于200的“三生三世数”,再求得其中是3的倍数的数便可.【详解】解:(1)∵42+43+44计算时会产生进位现象,∴42不是“三生三世数”,∵3210+3211+3212计算时不会产生进位现象,∴3210是“三生三世数”,(2)根据“三生三世数”的定义知,小于200的三位数中的“三生三世数”有:100,101,102,110,111,112,120,121,122,130,131,132,∵102,111,120,132能被3整除,∴三位数中小于200且是3的倍数的“三生三世数”有:102,111,120,132.【点睛】本题考查了有理数的加法、新定义,解题的关键是明确题意,利用题干中的新定义解答.23. 已知y=a|2x+4|+bx(a,b为常数).当x=1时,y=5;当x=﹣1时,y=3.(1)a=,b=;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数图象;并写出函数的一条性质:;(3)已知函数y=25|22|x-的图象如图所示,结合你所画的函数图象,直接写出方程a|2x+4|+bx=25|22|x-的近似解(精确到0.1).【答案】(1)1;﹣1;(2)当x≥﹣2时,y随x的增大而增大;(3)x1=﹣2.5,x2=2.8【解析】【分析】依题意(1)把当x=1时,y=5;当x=﹣1时,y=3分别代入函数y=a|2x+4|+bx(a,b为常数),可求出a和b的值;(2)根据对自变量x的范围的讨论,对函数进行变形,进而画出对应的函数图象;(3)根据两个函数图象的交点位置,估算出交点的横坐标即可;【详解】解:(1)根据题意可得,245243a ba b⎧++=⎪⎨-+-=⎪⎩,解得11ab=⎧⎨=-⎩,故答案为:1;﹣1;(2)根据题意,当x≥﹣2时,2x+4≥0,y=2x+4﹣x=x+4;当x<-2时,2x+4<0,则y=﹣2x﹣4﹣x=﹣3x﹣4.∴4,(2)34,(2)x xyx x+≥-⎧=⎨--<-⎩;由函数解析式可画出对应的函数图象,根据函数图象可得出对应函数的性质.故答案为:当x≥﹣2时,y随x的增大而增大;(3)根据函数图象,交点的横坐标就是该方程的解,根据图象估算对应的解为:x1=﹣2.5,x2=2.8;【点睛】本题主要考查待定系数求解析式、数形结合等,关键在如何准确应用数形结合求解;24. 为抗击新型肺炎疫情,某服装厂及时引进了一条口罩生产线生产口罩,开工第一天生产10万件,第三天生产14.4万件,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?【答案】(1)20%;(2)增加4条生产线【解析】【分析】(1)设每天增长的百分率x,根据题意第一天生产10万件,第三天生产14.4万件,列出方程即可解答.(2)设应该增加y条生产线,根据题意1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,列出方程即可解答.【详解】(1)设每天增长的百分率x,可得:10(1+x)2=14.4,解得:x=0.2,答:每天增长20%.(2)设应该增加y条生产线,根据题意可得:(20-2y)+(20-2y)y=60,解得:y=4,故答案为:4.【点睛】此题考查一元二次方程的应用,解题关键在于根据题意列出方程.25. 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B (点A 在点B 的左边),与y 轴交于点C ,点A 、C 的坐标分别为(﹣3,0)、(0,2),对称轴为直线x =﹣2.(1)求抛物线的解析式;(2)如图,点D 与点C 关于抛物线的对称轴对称,连接AC ,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点M .点F 是直线AC 下方抛物线上的一动点,连接DF 交AC 于点G ,连接EG ,求△EFG 的面积的最大值以及取得最大值时点F 的坐标;(3)在(2)的条件下,点P 为平面内一点,在抛物线上是否存在一点Q ,是以点P 、Q 、F 、C 为顶点的四边形为矩形,如果存在,直接写出点P 的坐标,如果不存在,说明理由.【答案】(1)228233y x x =++;(2)S △EFG 最大为154,F (-32,-12);(3)P (-325,6125)或(-1910,15750). 【解析】 【分析】(1)将A 、C 的坐标代入函数式,再结合对称轴公式利用待定系数法求解即可;(2)根据待定系数法求出直线AC 、直线DE 的表达式,再根据三角形面积之间的关系表示出△EFG 的面积,从而得到当△DEF 的面积最大时△EFG 的面积最大,求出△DEF 面积的最大值进行计算即可; (3)设Q (m ,228233m m ++),P (x P ,y P ),分三种情况:①以CF 为对角线,②以CQ 为对角线,③以CP 为对角线,分别计算可得问题的答案.【详解】解:(1)将A 、C 的坐标(-3,0)、(0,2)代入函数式且对称轴为x =-2, ∴930222a b c c b a ⎧⎪-+=⎪=⎨⎪⎪-=-⎩,解得:23832 abc⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为:228233y x x=++;(2)由点A、C的坐标(-3,0)、(0,2)可知,直线AC为:223y x=+,∵DE∥AC,∴k DE=k AC,∴k DE=23,∵D与C关于x=-2对称,∴D(-4,2),∴直线DE为:21433y x=+,联立:22143328233y xy x x⎧=+⎪⎪⎨⎪=++⎪⎩,解得:1214xx=⎧⎨=-⎩,24x=-舍去,∴E的横坐标为1,代入可得,28162333y=++=,∴E(1,163),连接DC,作FK⊥x轴,交DE于K,∵DE∥AC,∴S△DEG=S△DEC,将x =0代入21433y x =+得:143y =, ∴M (0,143), ∴S △DEC =S △DCM +S △ECM =203, ∴S △DEG =203, ∵S △EFG =S △DEF -S △DEG =S △DEF -203, ∴当△DEF 的面积最大时,△EFG 的面积最大,设F 为(t ,228233t t ++),K (t ,21433t +), ∴S △DEF =S △DFK +S △EFK =12(x E -x D )(y K -y F )=252682333t t ⎛⎫--+ ⎪⎝⎭=252125()3312t -++, ∴当t =32-时,三角形DEF 面积最大,最大为12512,此时△EFG 面积的最大值为:12520151234-=, ∴当F (32-,12-)时,S △EFG 最大为154; (3)假设存在,∵C (0,2),F (32-,12-),且以P 、Q 、F 、C 为顶点的四边形为矩形, ∴设Q (m ,228233m m ++),P (x P ,y P ),则m ≠0,m 32≠-, ∴直线CF :12()52330()2CF k --==--,直线QC :22822283333QC m m k m m ++-==+, 直线QF :22812253233323QF m m k m m +++==++, ①矩形以CF 为对角线,则:C F P Q C F P Q x x x x y y y y QC QF +=+⎧⎪+=+⎨⎪⊥⎩,∴k QC •k QF =-1, ∴23212822233282513333P P x m y m m m m ⎧-=+⎪⎪⎪-=+++⎨⎪⎪⎛⎫⎛⎫+⨯+=-⎪⎪ ⎪⎝⎭⎝⎭⎩,∴4m 2+26m +49=0,∵22644491080∆=-⨯⨯=-<,∴无解,此时不存在;②以CQ 为对角线,则:C Q P F C Q P F x x x x y y y y CF QF +=+⎧⎪+=+⎨⎪⊥⎩,∴k CF •k QF =-1, ∴23228143325251333P p m x m m y m ⎧=-⎪⎪⎪++=-⎨⎪⎪⎛⎫⨯+=-⎪ ⎪⎝⎭⎩, ∴175m =-, ∴191015750P P x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴19157,1050P ⎛⎫- ⎪⎝⎭; ③以CP 为对角线,则:C P Q F C p Q F x x x x y y y y CF QC +=+⎧⎪+=+⎨⎪⊥⎩,∴k CF •k QC =-1, ∴232281223325281333P P x m y m m m ⎧=-⎪⎪⎪+=++-⎨⎪⎪⎛⎫⨯+=-⎪ ⎪⎝⎭⎩, ∴4910m =-,∴3256125PPxy⎧=-⎪⎪⎨⎪=⎪⎩,∴3261,525P⎛⎫- ⎪⎝⎭,综上,点P坐标为19157,1050⎛⎫- ⎪⎝⎭或3261,525⎛⎫- ⎪⎝⎭.【点睛】本题考查了二次函数的综合应用,矩形的判定等知识,熟练掌握函数图象上点的坐标特征和二次函数的性质,理解坐标与图形的性质,会解一元二次方程,会运用分类讨论的思想解决问题是解题的关键.26. 如图,在△ABC和△DEF中,AB=AC,DE=DF,∠BAC=∠EDF=120°,线段BC与EF相交于点O.(1)若点O恰好是线段BC与线段EF的中点.①如图1,当点D在线段BC上,A、F、O、E四点在同一条直线上时,已知BC=43,DE=3,求AD 的长;②如图2,连接AD,CF相交于点G,连接OG,BG,当BG⊥OG时,求证:BG=3 CG.(2)若点D与点A重合,CF∥AB,H、K分别为OC、AF的中点,连接HK,直接写出HKAE OF-的值.【答案】(1)①19AD=;②见解析;(2)31HKAE OF+=-【解析】【分析】(1)①根据中点的定义求出OB,利用三角函数求出AB、OA和OE,再利用勾股定理解答即可;②延长GO至H,使得OH=OG,连接HC,OD,AO,利用SAS证明△BOG≌△COH,接着证明△AOD∽△COF 进而进一步得到A、G、O、C四点共圆,得出∠OGC=∠OAC=60°,利用特殊角的三角函数值即可完成求证;(2)过F作FH⊥BC交BC延长线于点H,利用SAS证明△ABE≌△ACF,得到相等的角和边,接着证明△OBE∽△OHF,点A、O、C、F四点共圆等,利用三角函数等知识分别求出HK、AE、OF,进而直接代入求解即可.【详解】解:(1)①∵O 点是BC 、EF 的中点,∴OB =OC =12BC =OE =OF , ∵AB =AC ,∠BAC =120°,∴∠BAO =60°∴4sin 60OB AB ===︒,2tan 60OB OA ===︒, 同理,由∠EDF =120°,O 是EF中点,DE =∴3sin 602OE DE =︒⨯==, ∴OE =OF =32,OD =12DE∴AD2==; ②延长GO 至H ,使得OH =OG ,连接HC ,OD ,AO ,∵点O 是BC ,EF 的中点,∴OB =OC ,OE =OF ,∴OD ⊥EF ,AO ⊥BC ,在△BOG 和△COH 中,OB OC BOG COH OG OH =⎧⎪∠=∠⎨⎪=⎩,∴△BOG ≌△COH (SAS ),∴∠BGO =∠CHO ,BG =CH ,∵BG ⊥OG ,∴∠BGO =∠CHO =90°,∴∠EDF =∠BAC =120°,∴∠OFD =∠OCA =30°,∴OF,OC,∴OD OA OF OC=,∵∠AOD=∠COF,∴△AOD∽△COF,∴∠OAD=∠OCF,∴∠AGC=∠AOC=90°,∴A、G、O、C四点共圆,∴∠OGC=∠OAC=60°,在Rt△GHC中,∠GHC=90°,∠HGC=60°,∴3HCCG=,∴HC=3CG,∴BG=3CG.(2)过F作FH'⊥BC交BC延长线于H',∵∠BAC=∠EAF=120°,∴∠BAE=∠CAF,在△ABE和△ACF中,AB ACBAE CAFAE AF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACF(SAS),∴∠ABE=∠ACF,BE=CF,∵AB∥CF,∴∠BAC=∠ACF=120°,∵∠ABC =∠ACB =30°,∴∠CBE =∠ABE ﹣∠ABC =90°,∵∠FCH '=180°﹣∠ACF ﹣∠ACB =30°,∠FH 'C =90°,∴FH '=12CF , ∵∠CBE =∠CH 'F =90°,∴BE ∥FH ',∴△OBE ∽△OH 'F , ∴2BE OE FH OF='=, 设AE =AF =m ,如图,作AG '⊥EF ,∴EG '=2m ,AG '= 12m∴EF ,∵OE =2OF ,∴OE =23EF m ,OF ,∴OG '=OE -EG ',∴OG AG ''= ∴∠G AO '=30°,∴∠BAO =90°,∠OAF =∠OFA =30°,∴OA =OF =3m ,∠AOF =120°, ∴OE =2OA ,∴∠EAO =90°,∠AOE =60°,∵∠AOF =∠ACF =120°,∴点A 、O 、C 、F 四点共圆,设A 、O 、C 、F 四点都在⊙M 上,连接AM ,OM ,CM ,FM ,∴∠AMF=120°,∵∠AMO=2∠AFO=60°=12∠AMF,∴OM垂直平分AF,∵点K是AF的中点,∴点K OM上,∵MK=12AM=12OM,OH=CH,∴KH=12CM=12OM,∵OM=OA=AM=3m,∴KH=3m,∴331633mHKAE OFm m+==--.【点睛】本题综合考查了相似三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、圆以及它的内接四边形等的相关知识,要求学生理解并掌握相关概念与性质,牢记公式等。
【2021江西中考三模试题3】
03 2021年中考英语三模考试模拟题(江西省)第I卷(选择题)一、完型填空通读下面短文,掌握其大意,然后在各题所给的四个选项(A、B、C和D)中选出一个最佳选项。
Ann and her mother live in a small house. They don’t have much 1 . Next Saturday is Ann’s birthday. She wants to get a new 2 . But she doesn’t tell her mother. She knows it is 3 for her mother to buy a new schoolbag for her.One day, Ann’s 4 often talk about their birthday presents(礼物),“ My aunt will give me a computer” says Rita. “My father will buy me a nice watch,” says Linda. Then the two friends as k Ann, “ 5 is your birthday present?”Ann doesn’t say anything.She always cares about(关心)her 6 . These days, her mother looks 7 , because she works long hours. So Ann 8 tells her mother what she wants for her birthday.On Saturday morning, her mother leaves to 9 at 6:30. Ann starts to do the10 . She finds a beautiful new schoolbag on the sofa 11 she is cleaning. It is red, her favorite color. There’s a note(便条)next to the schoolbag. It says, “Dear Ann, happy birthday! You are a 12 girl. I’m really lucky to have a daughter 13 you.”Parents do everything for 14 children. Similarly, children should also 15 and care about parents.1.A.luck B.clothes C.money D.hobbies 2.A.watch B.schoolbag C.computer D.book 3.A.difficult B.important C.easy D.free 4.A.teachers B.friends C.cousins D.villagers 5.A.Why B.How C.Where D.What 6.A.grandparents B.classmate C.father D.mother 7.A.tired B.dirty C.beautiful D.young 8.A.sometimes B.often C.never D.always 9.A.work B.study C.dance D.read 10.A.homework B.shopping C.housework D.exercise 11.A.when B.so C.because D.but12A terrible B great C lazy D funny13.A.for B.about C.from D.like 14.A.her B.his C.their D.our 15.A.dream B.love C.miss D.fightOne night, a little swallow flew over the city. He was very 16 and wanted to have a good sleep in the city. When he saw the Statue of the Happy Prince (王子), he flew down and got ready to sleep 17 the feet of the Happy Prince.Just as he was putting his head under his wing, some 18 fell on him. He thought it was raining. But when he looked 19 , he found the sky was 20 clear and bright that he could see lots of stars. Suddenly, he saw some tears were running down the Prince’s golden 21“22 are you cryin g?” asked the swallow.“In a little street, there’s a poor house. From one of the windows, I see a woman23 at a table. She’s sewing clothes for24 women to wear. In a bed in the corner of the room, her little boy is sick. He’s asking for oranges, but his mother has only water to give him, so he is crying. The boy is so thirsty 25 the mother is so sad. Little swallow, will you please take her the 26 from the top of my sword (宝剑)?”“It is very cold here and I am leaving for a warm place, but I will stay with you and do as you ask.”The swallow took the bright red jewel from the Prince’s sword and flew away with it in his mouth. He flew into the woman’s room and27 it beside the woman’s needle.28 he flew back, he told the Prince what he had done. “It ‘s strange,” he added, “It’s so cold but I feel quite 29 now.”“That’s30 you have done a good thing,” said the Prince. The little swallow began to think about this, and then he fell asleep.16.A.hungry B.tired C.angry D.sad17.A.among B.above C.below D.between18.A.water B.snow C.grass D.milk19.A.at B.down C.up D.for20.A.quite B.so C.such D.very21.A.ear B.feet C.hair D.face22.A.Where B.How C.When D.Why23.A.sitting B.eating C.drinking D.cooking24.A.poor B.rich C.young D.old25.A.but B.or C.and D.so26.A.jewel B.orange C.gold D.diamond27.A.forgot B.took C.got D.put28.A.Before B.After C.Till D.While29.A.cold B.hot C.warm D.cool30.A.because B.though C.if D.whether二、阅读单选It was nearly dark, the sun was dropping down the mountains far away. Little Tom came back home with tears in his eyes.“What’s the matter, Tom? How’s your trip?” his mother asked with a big smile. “I failed. The mountain is so high and full of big or small stones on the way. I still went ahead. But I was tired and it was so late that I had to come back.” Tom cried. “It doesn’t matter, you are only 14 years old after all. Y ou will have another chance.” his mother said. “But, standing at the top of the mountain is my dream!” Tom said. His father came over and asked, “Did you see the green trees on your way to the mountain?” “Sure, and t here are a lot of beautiful flowers by the side of the road,” Tom answered. “Did you hear the birds singing?” his father asked. “There were many kinds of birds singing in the trees, and the sound was very sweet,” Tom said. “Did you feel the beauty of natur e?” his father asked. “Yes, the blue sky, the white clouds, the green trees and the colorful flowers made a nice picture.” Tom answered. “That’s enough!” his father smiled and said, “Please remember, son. For often, getting what you expect is not the most important thing. Although you didn’t reach the top of the mountain, you got a lot on the way.”It is true that not every job will end up with a success, and not every dream will come true. The most beautiful scenery (风景) is on the way.31.Tom got back home ________ when the sun was dropping.A.slowly B.sadly C.quickly D.early 32.What’s the main reason that Tom didn’t reach the top of the mountain?A.The mountain was so high. B.The way was full of big or small stones. C.He was tired and it was so late. D.He was only 14 years old.33.Tom saw a lot of things on the way to the mountain except ________.A.clear water B.blue sky C.colorful flowers D.green trees 34.The writer tries to tell us that ________.A.the dream is not important B.everyone should climb the mountain C.the mountain is very beautiful D.the process (过程) is more important than the resultHello, listeners. Welcome to Henton Hospital Radio. Before our music program begins, I’m going to repeat some of our hospital rules.The hospital can sleep 800 patients. There are 8 beds in each ward(病房).The visiting hours are in the afternoon from 2:30 to 3:30 and in the evening from 7:00 to 8:00. But remember only two visitors at a time. Sorry about that, but you can see what would happen if we didn’t have these rules.The other rules are about our time schedule. We start quite early-you might not be used to that. We wake you at 6 o’clock, and breakfast is at 8 o’clock, lunch at noon. There’s tea at 3:30 and supper is at 6’ o clock.You can see the “No Smoking” sign-we don’t allow smoking in the wards. I’m sure you understand why. However, if you do need to smoke, there are some smoking-rooms for you. You will find the radio switch(开关) on the wall near your bed, with your own headphones, if you want to listen. It’s our own hospital radio wishing you a quick recovery{康复}。
(安徽卷含听力)2021年中考英语第三次模拟考试(A4考试版)
绝密★启用前|学科网试题命制中心2021年中考英语第三次模拟考试【安徽卷】英语(考试时间:120分钟试卷满分:120分)注意事项:1. 本试卷共四部分,十大题,满分120分,考试时间120分钟。
2. 请务必在答题卡上答题,在试卷上答题无效。
3. 考试结束后,请将试卷和答题卡一并交回。
第一部分听力(共四大题,满分20分)I.听短对话回答问题(共5小题;每小题1分,满分5分)你将听到五段对话,每段对话后有一个小题。
请在每小题所给的A、B、C三个选项中选出一个最佳选项。
每段对话读两遍。
1.What will Uncle Wang do at the weekend?A.Go fishing. B.Read books. C.See a film.2.What was the weather like yesterday?A.Cloudy. B.Rainy. C.Sunny.3.What will they do?A.Open the window. B.Paint the wall. C.Order the food.4.What size would the woman take?A.Size 25. B.Size 26. C.Size 27.5.What is Tom going to do?A.To see a film. B.To see the doctor. C.To have a talk.II. 听长对话回答问题你将听到两段对话,每段对话后有几个小题。
请在每小题所给的A、B、C三个选项中选出一个最佳选项。
每段对话读两遍。
听下面一段对话,回答第6-7小题。
6.What subject is Jack weak in?A.Maths. B.English. C.Science.7.How many suggestions does Lily offer?A.Two. B.Three. C.Four.听下面一段对话,回答第8至10小题。
(全国通用)2021年中考道德与法治第三次模拟考试(原卷版)
2021年中考第三次模拟考试【全国通用】道德与法治(考试时间:60分钟试卷满分:100分)注意事项:1.本试卷分选择题和非选择题两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题(本大题共25小题,每小题2分,共50分。
在各题的四个选项中,只有一项是最符合题意要求的答案)1.2021年以来,中国疫苗成为越来越多国家,特别是发展中国家最期盼的“中国春节礼物”:多位外国领导人公开接种和夸赞中国疫苗、多国派专机前来中国采购、总统或高层领导人亲自到机场迎接中国疫苗,签署的疫苗合同已经突破了5亿剂,包括了足足十六个国家以及地区……这表明()①中国是一个负责任、勇于担当的大国②疫情当前,国际竞争的实质就是疫苗接种③和平与合作是当今时代的两大主题④中国遵循共商共建共享原则,推动世界共同发展A.①② B.①④ C.②③ D.②④2.成蕾名为中国央视主播,暗为他国间谍。
2021年2月8日,外交部发言人汪文斌称:“中国司法机关经依法审查,认为澳大利亚籍人士成蕾涉嫌为境外非法提供国家秘密罪,依据《中华人民共和国刑事诉讼法》批准逮捕犯罪嫌疑人成蕾。
”下列属于危害国家安全的行为是()①发布分裂国家的言论,企图制造混乱②参加间谍组织或接受间谍组织及其代理人的任务③举报某企业向长江乱排有毒工业废水④发现有外国人士拍摄有关我国军事基地图片及时上报A.①③ B.②③ C.②④ D.①②3.2021年3月11日,十三届全国人大四次会议以高票表决通过《全国人民代表大会关于完善香港特别行政区选举制度的决定》,落实“爱国者治港”原则的制度建设迈出坚实的第一步,香港特区政府也将据此进行一系列的本地立法。
(山东卷)2021年中考数学第三次模拟考试(A3考试版)
绝密★启用前2021届九年级第三次模拟考试【山东卷】数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣2的绝对值是A.﹣2 B.2 C.±2D .-122.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B.3910-⨯C.30.910-⨯D.40.910-⨯3.以下给出的几何体中,主视图是矩形,俯视图是圆的是A.B.C.D.4.改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是A.B.C.D.5.下列运算正确的是A.235x x x+=B.22(2)4x x-=-C.23522x x x⋅=D.()437x x=6.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为A.70°B.20°C.55°D .35°7.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是A.,B.,C.,D.,8.如图,点A,B,C,D在⊙O上,AC是⊙O的直径,∠BAC=40°,则∠D的度数是A.50°B.60°C.80°D.90°9.如图,两个转盘分别被分成等份和等份,分别标有数字、、和、、、,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为或的概率是A.16B.14C.512D.71210.如图,某“拓展训练营”的一个自行车爬坡项目有两条不同路线,路线一:从C到B,路线二:从D到A,AB为垂直升降梯.其中BC的坡度为i=1:2,BC=12米,CD=8米,∠D=(其中A,B,C,D均在同一平面内),则垂直升降梯AB的高度约为(精确到米)(参考数据:tan36°≈,cos36°≈,sin36°≈)A.B.C.D.11.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE 于点F,则BF的长为A .3102B .3105C.105D .35512.如图,抛物线y1=a(x+2)2﹣3与y2=12(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=23;③当x=0时,y2﹣y1=6;④AB+AC=10;其中正确结论的个数是A.①②④B.①③④C.②③④D.①②③④第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.因式分解:22242a ab b-+=____________.14.计算:(﹣12)﹣2﹣2cos60°=____________.15.若分式13x-有意义,则的取值范围是_____________.16.如图,∠1,∠2,∠3是多边形的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,那么∠DFE的度数是____________.17.如图,Rt ABC△中,90ACB∠=︒,AC BC=,在以的中点为坐标原点,所在直线为轴建立的平面直角坐标系中,将ABC绕点顺时针旋转,使点旋转至轴的正半轴上的点处,若2AO OB==,则图中阴影部分面积为________.18.如图,在平行四边形ABCD中,120C∠=︒,28AD AB==,点、分别是边、上的动点.连接、,点为的中点,点为的中点,连接.则的最大值与最小值的差为__________.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)解不等式组:3(2)41213x xxx--≤⎧⎪+⎨>-⎪⎩20.(本小题满分6分)化简式子(22244m mm m--++1)221mm m-÷+,并在﹣2,﹣1,0,1,2中选取一个合适的数作为m的值代入求值.21.(本小题满分6分)如图,AC DB=,AB DC=,求证:EB EC=.22.(本小题满分8分)如图,DE是△ABC的中位线,延长DE至R,使EF=DE,连接BF .(1)求证:四边形ABFD是平行四边形;(2)求证:BF=D C.23.(本小题满分8分)某服装网店李经理用11000元购进了甲、乙两种款式的童装共150套,两种童装的进价如下图所示:请你求出李经理购买甲、乙两种款式的童装各多少套24.(本小题满分10分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了__________名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是__________,类别D所对应的扇形圆心角的度数是__________度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.25.(本小题满分10分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O 于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接B C.(1)求证:BC是⊙O的切线;(2)⊙O的半径为5,tan A =34,求FD的长.26.(本小题满分12分)如图,一次函数y=﹣33x+2的图象与x轴、y轴分别交于点A、B,以线段AB 为边在第一象限作等边△AB C.(1)若点C在反比例函数y=kx的图象上,求该反比例函数的解析式;(2)点P(4,m)在第一象限,过点P作x轴的垂线,垂足为D,当△P AD与△OAB相似且P点在(1)中反比例函数图象上时,求出P点坐标.27.(本小题满分12分)如图所示,在平面直角坐标系中,抛物线2(0)y ax bx c a=++≠的顶点坐标为()3, 6C,并与轴交于点()0, 3B,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP 、AP ,求ABP ∆的面积的最大值; (3)如图②所示,在对称轴的右侧作30ACD ∠=交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使60CQD ∠=若存在,求点的坐标;若不存在,请说明理由.。
湖北省黄冈市中考语文模拟试题(3
2021年省XX市中考语文模拟试题(3)时间:120分满分:120分一、古诗词名句填写(6分)1、 ,浅草才能没马蹄。
(白居易《钱塘湖春行》)2、无限山河泪,。
(夏完淳《别云间》)3、刘禹锡在《酬乐天XX初逢席上见赠》一诗中,一改伤感低沉情调,尽显慷慨激昂气概的诗句是,.4、上任伊始,答中外记者问时,曾说“当后,我心里总默念着林则徐的两句诗:‘,岂因祸福避趋之’。
”这就是我今后工作的态度。
5、当你的同学在学习和生活中遇到挫折而灰心丧气时,你可以用古诗词中的两句来勉励他:“, ”。
6、初中校园生活即将结束,朝夕相处的同学将要分别,请你写出两句表达离别之情的古代名句:,。
二、语言基础和语文活动(20分)7、请把下面语句工整规范地书写在田字格中。
(3分)路漫漫其修远兮,吾将上下而求索.8、下列XX组词语中加点字的注音完全正确的一项是( )(2分)A、凝.成nín收敛.liǎn迸.bèng溅忍俊不禁.jīngB、伫.chù立倔强..jué jiàng狩.shòu猎苦心孤诣.yìC、喑.哑y..ī.n.yǎ..称.chèn g职讪.shěn笑义愤填膺.yīngD、叱.ch..ì咤..zh..à.剽.pi..á.o.悍.h.àn..荒谬.miù一抔.póu黄土9、下列XX句中加点的成语使用有误的一项是( )(2分)A、8位维和在海地大地震中不幸遇难,获知此,很多网友不能自已....,纷纷在网上发帖表示悼念。
B、在志愿者的帮助下,这些山区失学儿童重回课堂,和其他师生一起共享天伦之乐.....C、当“甲型流感”这个名词频繁出现在大家面前时,XX呼吁切勿草木皆兵....,应保持足够的冷静与理智.D、因为一念之差....,歌星满文军陷入了“门”,导致身败名裂,这个教训值得演艺圈内大腕们深思。
【最新】2022-2021年中考物理三模试题及答案
2021-2021学年中考物理三模试题学校姓名准考证号一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。
共30分,每小题2分)1.下列能源属于可再生能源的是A.石油B.风能C.天然气D.核能2.在常温干燥的条件下,下面四种厨房用品属于导体的是3.小明在公园的湖面上看到“云在水中飘,鱼在云上游”,对于这一有趣现象,下列说法中正确的是A.云和鱼都是虚像B.云和鱼都是由光的反射形成的C.云是虚像,鱼是实像D.云和鱼都是由光的折射形成的4.图2中的四种家用电器,利用电流热效应工作的是5.对下列常见现象的分析中合理的是A.雾霾弥漫是因为分子在不停地运动B.雪花纷飞是因为分子之间有排斥力C.盛夏,冰棒冒出的“白气”是冰棒周围空气中的水蒸气液化形成的D.夏天,从冰箱里取出的易拉罐过一会儿外壁出现小水滴,是水蒸气凝华形成的6.下列实例中,目的为了增大压强的是A.将铁轨铺在枕木上B.剪刀钝了磨一磨,使刀刃锋利些C.书包的带子扁而宽D.大型平板车安装有许多轮子7.如图3所示的实例中,工作时应用了电磁感应现象的是8.下列做法中符合安全用电的是A.在高压电线下边放风筝B.家用电器着火时应迅速用水来灭火C.使用测电笔时,手要接触笔尾的金属体D.家庭电路中保险丝熔断后,可以用铜丝代替9.如图4所示,用50N的水平拉力F将物体在水平地面上拉动4m,用时2s,则A.拉力和支持力都不做功B.拉力的功率为零C.拉力做功为100JD.拉力的功率为100W10.下列数据最符合实际情况的是A.人感觉舒适的温度是40℃B.中学生走路的速度约为1.1m/sC.中学生立正时对地面的压强约为500pa D.人体的安全电压是36V11.Wi-Fi是一种可以将电脑、手机等设备以无线方式互相连接的技术。
Wi-Fi无线路由器可以把有线网络信号和移动网络信号转换成无线信号,供电脑、手机、Pad等移动终端接收。
图5是一种常用的路由器,它同时支持有线和无线连接,既可以向移动终端传输无线网络信号,也可以通过网线将网络信号同时传输给多台电脑。
中考语文模拟试题 三(含答案)
2021年初中毕业、升学统一模拟测试(三)语文温馨提示:1、本试卷满分150分,考试时间150分钟。
2、答卷前请在答题卡密封线内填写学校、班级、姓名、考号,请勿遗漏。
3、全卷由试题卷和答题卡两部分组成。
答题时请将答案写在答题卡相应位置上,写在试题卷上无效。
4、考生必须保持答题卡的整洁。
5、考试结束后,上交答题卡。
第一部分积累与运用(30分)1、阅读下面文字,完成各题。
(共4分)古人① 情于山水,很大程度上是因为人世间鲜.有何物能匹敌山之高② 伟岸、海之茫无际涯。
登山③ 海,常让人顿悟天地之阔大、人生之渺小,于是心胸为之豁.然,眼界为之高远。
①依次给上面文字中加点的字注音,全都正确的一项是()(2分)A.xiǎn huōB.xiǎn huòC.xiān huòD.xiān huō②在上面文字横线处填入汉字,全都正确的一项是()(2分)A.①钟②竣③邻B.①衷②峻③临C.①衷②竣③邻D.①钟②峻③临2、下列有关文学、文化常识的表述,不正确的一项是()(2分)A.《诗经》多采用重章叠句的手法,即上下句或上下段的字数、结构基本相同,具有回环往复的表达效果。
B.古人称谓有尊称和谦称的区别,如“尊君”“令堂”是对别人父亲的尊称,“家严”“家君”是对自己父亲的谦称。
C.消息的最大特点是真实、客观、时效性强,它的正文结构通常是按照重要性递减的原则安排的,即所谓“倒金字塔结构”。
D.剧本的主体部分一般是台词,也就是戏剧中人物所说的话,它是推进剧情、刻画人物、表现主题的主要手段。
3、下列关于名著的人物的判断有误的一项是()(2分)A.“他是一个传奇式的人物。
他个子清瘦,中等身材,骨骼小而结实,尽管胡子又长又黑,外表上仍不脱孩子气。
又大又深的眼睛富于热情。
”《红星照耀中国》中所描绘的这个人,就是国民党悬赏8万元要通缉的毛泽东。
B.“这是一个高大身材,长头发,眼球白多黑少的人,看人总像在藐视。
”“其时进来的是一个黑瘦的先生,八字须,戴着眼镜,挟着一叠大大小小的书。
2021年中考英语模拟试题(含听力原文及答案)3
中考英语模拟试题3听力部分(共25分)Ⅰ. 对话理解(共15小题,每小题1分,计15分)A)听下面十段对话,每段对话后有一小题,从题中所给的A、B、C三个选项中选出最佳答案并将其标号填在标号填在题前括号内,每段对话读两遍。
(10分)。
() 1. A. Monday. B. Tuesday. C. Wednesday.() 2. A. Not last September. B. Last September.C. Not September.() 3. A. $29 B. $30 C. $26() 4. A. Seven. B. Six thirty. C. Eight.() 5. A. Her husband. B. A friend. C. Mr. Green.() 6. A. At the library. B. At the bus stop.C. At the zoo.() 7. A. Yes, of course they will. B. Yes, they may buy one.C. No, they won't.() 8. A. He didn't work hard. B. He went to bed early.C. He went to bed very late.() 9. A. Fifty miles. B. Ten miles: C. Sixty miles() 10. A. Shenyang is not as beautiful as Dalian.B. Shenyang is more beautiful than Dalian.C. Shenyang is as beautiful as Dalian.B)听下面一组对话,从所给的A、B、C三个选项中选出所提问题的正确答案,并将其标号填在题前括号内,对话读两遍。
(5分)() 11. A. Amy. B. Peter C. Amy's sister.() 12. A. He has passed the exam. B. He has got a new friend.C. he will hold a birthday party.() 13. A. This Saturday evening. B. Next Saturday evening.C. This Sunday evening.() 14. A. In their schoolroom. B. In his garden.C. In Peter's sister's house.() 15. A. Time. B. Address. C. Presents.Ⅱ.短文理解(共10小题,每小题1分,计10分)听下面的短文,从每题所给的A、B、C三个选项中选出一个最佳答案,并将其标号填在题前括号内,每篇短文读两遍。
2021年湖北三地中考英语模拟卷03 原题卷(黄冈、孝感、咸宁三地专用)
绝密★启用前|考试研究中心命制模拟卷03 2021年湖北三地中考英语最新题型冲刺卷(黄冈、孝感、咸宁三地专用)一、单项选择(共10小题;每小题1分,满分10分)从A、B、C、D 四个选项中,选出可以填入空白处的最佳选项。
1.Which of the following underlined parts is different in pronunciation?A.cartoon B.garden C.market D.warning2.—What ________ is your handbag made of?—A kind of special paper. It looks very nice.A.material B.style C.trade D.process3.________ of the twins attended the swimming class yesterday because they got stuck in traffic.A.Both B.All C.Neither D.None4.Nowadays, the price of the computer is quite ________. Almost every family can afford one.A.expensive B.cheap C.low D.high5.—Why did you stay up late last night, Jack?—Because I was asked to ________ my work yesterday.A.mention B.complete C.avoid D.attend6.He sits next to the teacher's desk _________ he can listen to the teacher more clearly.A.even though B.as soon as C.so that D.so7.Mike reading playing computer games.A.prefers; than B.prefers; toC.would rather; than D.would rather; to8.—What's the meaning of the activity "Let's Save"? —Paper ________ in everyday life.A.should waste B.shouldn't waste C.shouldn't be wasted D.should be wasted9.I think it will be difficult for me ________ him.A.win B.to win C.beat D.to beat10.— Can you tell me __________ to Paris? — Sure. Next month.A.when you will travel B.when will you travelC.when you travelled D.when did you travel二、完形填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中选出最佳选项,使短文意思完整。
2021年浙江省温州外国语学校中考数学三模试卷(解析版)
2021年浙江省温州外国语学校中考数学三模试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(有10小题,每小题4分,共40分).1.计算:6÷(﹣2)的结果是()A.﹣3B.3C.﹣4D.42.据统计,去年3月至年底,我国口罩出口量约22 400 000万只,用科学记数法可将数据22 400 000表示为()A.224×105B.22.4×106C.2.24×107D.0.224×108 3.如图所示的几何体由一个圆柱体和一个长方体组成,它的主视图是()A.B.C.D.4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在阴影部分的概率是()A.B.C.D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(6,3),B(6,6),以点O 为位似中心,在第一象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(1,2)B.(2,1)C.(2,2)D.(3,6)6.若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()A.B.r C.D.2r7.已知二次函数y=3x2+12x﹣15,若点(﹣5+t,y1),(1﹣t,y2),(﹣2,y3)在此二次函数图象上,则y1,y2,y3的大小关系正确的是()A.y3<y1<y2B.y3>y2>y1C.y3≤y1=y2D.y3≥y1=y28.如图,已知Rt△ABC,∠A=90°,P,Q分别为AC,BC上的点,且PQ∥AB,记AP =x,PQ=y,且y=2﹣x,则BC的长为()A.2B.4C.D.9.如图,将道具△ABC斜靠在墙OE上,已知∠ACB=90°,测得∠CAO=α,∠BAC=β,CO=m,则AB的长为()A.B.C.m•sinα•cosβD.10.如图,在⊙O中,将劣弧BC沿弦BC翻折恰好经过圆心O,A是劣弧BC上一点,分别延长CA,BA交圆O于E,D两点,连接BE,CD.若tan∠ECB=,记△ABE的面积为S1,△ADC的面积为S2.则=()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:4x2﹣9=.12.不等式组的解集为.13.某校10名同学参加“环保知识竞赛”,成绩如下表:得分(分)78910人数(人)1423则这10名同学的成绩的平均数是.14.如图,点A在反比例函数y=的图象上,点B在反比例函数y=的图象上,且AB ⊥x轴于点C,点D在y轴上,则△ABD的面积为.15.如图1,书柜ABCD中放了7本厚度一样,高度分别为20cm和25cm的小书和大书,搬运过程中大书恰好倾斜成图2所示,则书柜的长AB为cm.16.图1是一种儿童可折叠滑板车,该滑板车完全展开后示意图如图2所示,由车架AB﹣CE﹣EF和两个大小相同的车轮组成,已知CD=25cm,DE=17cm,cos∠ACD=,当A,E,F在同一水平高度上时,∠CEF=135°,则AC=cm;为方便存放,将车架前部分绕着点D旋转至AB∥EF,如图3所示,则d1﹣d2为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣|﹣3|+(π﹣3.14)0﹣()﹣1;(2)化简:+.18.如图,在△ABC和△DBC中,AB=AC,DB=DC,点E,F分别为边AB,AC的中点,连结DF,DE.(1)求证:△BDE≌△CDF;(2)若∠EDF=60°,ED=5,求BC的长.19.在8×8的方格纸中,点A,B,C都在格点上,按要求画图(保留作图痕迹):(1)在图1中找一点D,使点D在线段BC上,且∠ADC=2∠B;(2)在图2中找一格点E,使∠BAC+∠BEC=180°.20.某校举行“汉字听写大赛,九年级A,B两班学生的成绩情况如下:【信息一】九A班40名学生成绩的频数分布直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左到右第4组成绩如表:120120120121122122124125125126127129【信息三】九年级A,B两班各40名学生成绩的平均数、中位数、众数、优秀率(135分及以上为优秀)、方差等数据如下(部分空缺):班级平均数中位数众数优秀率方差九A班127.213030%190九B班127.212713225%210根据以上信息,回答下列问题:(1)九A班40名学生成绩的中位数为分;(2)求从A,B两班共80人中随机抽取一人成绩为优秀的概率;(3)请你选择适合的统计量,尽量从多个角度,综合阐述哪个班级的整体水平较高.21.已知二次函数y=ax2﹣4ax+c的最小值为﹣1.其图象与x轴交于A,B两点(点B在点A右侧),与y轴交于(0,3).(1)求二次函数表达式.(2)将线段OB向右平移m个单位,向上平移n个单位至O'B'(m,n均为正数),若点O',B'均落在此二次函数图象上,求m,n的值.22.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,点E为BC边上一点,以BE为直径的半圆恰好经过点D,且交线段CD于点F,连接BD,BF.(1)求证:BF=BA;(2)若AF=6,cos A=.求直径BE的长.23.某工厂生产A,B两种型号的环保产品,A产品每件利润200元,B产品每件利润500元,该工厂按计划每天生产两种产品共50件,其中A产品的总利润比B产品少4000元.(1)求该厂每天生产A产品和B产品各多少件.(2)据市场调查,B产品的需求量较大,该厂决定在日总产量不变的前提下增加B产品的生产,但B产品相比原计划每多生产一件,每件利润便降低10元.设该厂实际生产B产品的数量比原计划多x件,每天生产A,B产品获得的总利润为w.①若实际生产B产品的数量不少于A产品数量的1.2倍,求总利润w的最大值.②若每生产一件环保产品,政府给予a元(a为整数)的补贴,在此前提下,经核算,存在5种不同的生产方案使得该厂每日利润不少于17200元,试求a的值.24.如图,在矩形ABCD中,AB=8,O是对角线AC的中点,P是线段AB上一点,射线PO交CD于点Q,交AD延长线于点E,连结CE,在CE上取点F,使FQ=CQ,设AP =x(x>4),(1)连结DB,当x=时,判断四边形EDBC是否为平行四边形,并说明理由.(2)当x=6时,若FQ平行△ACB的某一边,求AD的长.(3)若EA=EC,分别记△FQC和△EDC的面积为S1和S2,且=,求的值.参考答案一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:6÷(﹣2)的结果是()A.﹣3B.3C.﹣4D.4【分析】根据有理数除法的运算法则进行计算求解.解:原式=﹣6×=﹣3,故选:A.2.据统计,去年3月至年底,我国口罩出口量约22 400 000万只,用科学记数法可将数据22 400 000表示为()A.224×105B.22.4×106C.2.24×107D.0.224×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:22400000=2.24×107.故选:C.3.如图所示的几何体由一个圆柱体和一个长方体组成,它的主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图,可得答案.解:从正面看下面是一个比较长的矩形,上面是一个比较窄的矩形.故选:B.4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在阴影部分的概率是()A.B.C.D.【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在阴影部分的概率.解:∵阴影部分的面积可看成是5,圆的总面积看成是8,∴指针落在阴影部分的概率是5÷8=.故选:D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(6,3),B(6,6),以点O 为位似中心,在第一象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(1,2)B.(2,1)C.(2,2)D.(3,6)【分析】根据位似变换的性质计算,得到答案.解:∵以点O为位似中心,在第一象限内作与△OAB的位似比为的位似图形△OCD,A(6,3),∴点C的坐标为(6×,3×),即(2,1),故选:B.6.若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()A.B.r C.D.2r【分析】首先求得圆锥的母线长,然后利用勾股定理求得答案即可.解:设扇形的半径为R,根据题意得:=2πr,解得:R=2r,∴圆锥的该为=,故选:C.7.已知二次函数y=3x2+12x﹣15,若点(﹣5+t,y1),(1﹣t,y2),(﹣2,y3)在此二次函数图象上,则y1,y2,y3的大小关系正确的是()A.y3<y1<y2B.y3>y2>y1C.y3≤y1=y2D.y3≥y1=y2【分析】将题目中的函数解析式化为顶点式,即可得到该函数的顶点坐标和函数图象的开口方向,然后根据点(﹣5+t,y1),(1﹣t,y2),(﹣2,y3)在此二次函数图象上,即可得到y1,y2,y3的大小关系.解:∵二次函数y=3x2+12x﹣15=3(x+2)2﹣27,∴该函数图象开口向上,当x=﹣2时,取得最小值﹣27,∵(1﹣t)+(﹣5+t)=1﹣t﹣5+t=﹣4=﹣2×2,点(﹣5+t,y1),(1﹣t,y2),(﹣2,y3)在此二次函数图象上,∴y3≤y1=y2,故选:C.8.如图,已知Rt△ABC,∠A=90°,P,Q分别为AC,BC上的点,且PQ∥AB,记AP =x,PQ=y,且y=2﹣x,则BC的长为()A.2B.4C.D.【分析】根据题意可知当PQ=y=0,则有x=4,即AP=4,当P、Q与点C重合,则AC=4,当AP=x=0时,则有PQ=y=2,点P与点A重合,点Q与AB重合,即AB =2,进而可得AB=2,AC=4,然后根据勾股定理可求解.解:∵PQ∥AB,AP=x,PQ=y,且y=2﹣x,∴当PQ=y=0,则有x=4,即AP=4,∴当P、Q与点C重合,则AC=4,当AP=x=0时,则有PQ=y=2,∴点P与点A重合,点Q与AB重合,即AB=2,在Rt△ABC中,BC==2,故选:D.9.如图,将道具△ABC斜靠在墙OE上,已知∠ACB=90°,测得∠CAO=α,∠BAC=β,CO=m,则AB的长为()A.B.C.m•sinα•cosβD.【分析】由题意得AC=,然后根据三角函数可进行求解.解:∵∠CAO=α,CO=m,∠ACB=90°,∴AC=,∵∠BAC=β,∴AB=,故选:D.10.如图,在⊙O中,将劣弧BC沿弦BC翻折恰好经过圆心O,A是劣弧BC上一点,分别延长CA,BA交圆O于E,D两点,连接BE,CD.若tan∠ECB=,记△ABE的面积为S1,△ADC的面积为S2.则=()A.B.C.D.【分析】分别作点A、点O关于线段BC的对称点F、H,OH与BC交于点M,连接OH、OB,过点B作BG⊥CE于点G,根据轴对称的性质可得的度数为120°,则有∠BFC =∠BAC=120°,进而可得△ABE和△ADC都为等边三角形,然后根据三角函数可得,最后根据相似三角形的性质可求解.解:分别作点A、点O关于线段BC的对称点F、H,OH与BC交于点M,连接OH、OB,过点B作BG⊥CE于点G,如图所示:劣弧BC沿弦BC翻折恰好经过圆心O,由折叠的性质可得OM=MH=OH,OH⊥BC,∠BAC=∠BFC,∴OM=OB,,∴∠OBC=30°∴∠BOH=60°,∴的度数为120°,∴的度数为240°,∠D=∠E=60°,∴∠BFC=∠BAC=120°,∴∠EAB=∠DAC=60°,∴△ABE和△ADC都为等边三角形,且△ABE∽△ACD,∵BG⊥CE,∴EG=AG,∠EBG=∠ABG=30°,∴BG=,∵tan∠ECB=,设BG=x,CG=6x,则EG=AG=x,∴AE=2x,AC=5x,∴,∵∠EAB=∠DAC,∠E=∠D,∴△EAB∽△DAC,∴,故选:B.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:4x2﹣9=(2x﹣3)(2x+3).【分析】先整理成平方差公式的形式.再利用平方差公式进行分解因式.解:4x2﹣9=(2x﹣3)(2x+3).故答案为:(2x﹣3)(2x+3).12.不等式组的解集为x<2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:解不等式﹣x+2>0,得:x<2,解不等式≤4,得:x≤9,则不等式组的解集为x<2,故答案为:x<2.13.某校10名同学参加“环保知识竞赛”,成绩如下表:得分(分)78910人数(人)1423则这10名同学的成绩的平均数是8.7分.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.解:这10名同学的成绩的平均数是:×(7+8×4+9×2+10×3)=8.7(分).故答案为:8.7分.14.如图,点A在反比例函数y=的图象上,点B在反比例函数y=的图象上,且AB ⊥x轴于点C,点D在y轴上,则△ABD的面积为.【分析】根据反比例函数系数k的几何意义和三角形的面积公式进行计算即可.解:设C(m,0),则OC=m,B(m,),A(m,),∴AB=AC﹣BC=﹣=,∴△ABD的面积为AB•OC=××m=,故答案为:.15.如图1,书柜ABCD中放了7本厚度一样,高度分别为20cm和25cm的小书和大书,搬运过程中大书恰好倾斜成图2所示,则书柜的长AB为cm.【分析】先由勾股定理求出EI=15(cm),再证△HIE≌△FCG(AAS),得HI=FC=20cm,然后证△EBF∽△HIE,求出BE=(cm),EF=(cm),即可解决问题.解:由题意得:HE=GF=BC=25cm,HI=20cm,∠HIE=90°,∴EI===15(cm),∵四边形ABCD、四边形EFGH是矩形,∴∠B=∠C=∠HEF=∠EFG=90°,∴∠IEH+∠BEF=∠BEF+∠BFE=∠BFE+∠CFG=∠CFG+∠CGF=90°,∴∠IEH=∠BFE=∠CGF,在△HIE和△FCG中,,∴△HIE≌△FCG(AAS),∴HI=FC=20cm,∴BF=BC﹣FC=5(cm),∵∠B=∠HIE=90°,∠BFE=∠IEH,∴△EBF∽△HIE,∴==,即==,解得:BE=(cm),EF=(cm),∴BI=BE+EI=+15=(cm),AI=6EF=6×=50(cm),∴AB=AI+BI=+50=(cm),故答案为:.16.图1是一种儿童可折叠滑板车,该滑板车完全展开后示意图如图2所示,由车架AB﹣CE﹣EF和两个大小相同的车轮组成,已知CD=25cm,DE=17cm,cos∠ACD=,当A,E,F在同一水平高度上时,∠CEF=135°,则AC=30cm;为方便存放,将车架前部分绕着点D旋转至AB∥EF,如图3所示,则d1﹣d2为(﹣10)cm.【分析】(1)根据题意作出辅助线构造Rt△AHC,再根据cos∠ACD=按比例设出△AHC中CH═4x,AC═5x,AH═3x,最后根据△DAE为等腰直角三角形及线段之间的等量关系列出等式42﹣4x═3x,求解即可,(2)根据题意过点A作AM⊥EF交其延长线于点M,过点D作DN⊥EF交其延长线于点N,并延长ND,交AB于点P,得出四边形AMNP是矩形,再结合折叠的性质CD═25cm,DE═17cm,cos∠ACD=,∠DEN═45°,AC═30cm以及直角三角形的边角关系PC═CD cos∠ACD,EN═DE∠cos∠DEN求得相关线段的长度,设半径为r,则目标线段d1═2r+AE+EF,d2═2r+EM+EF,两式相减即可.解:如图2所示,过点A作AH⊥CE,∵cos∠ACD==,∴可设CH═4xcm,AC═5xcm,AH═3xcm,∵∠DEA═180°﹣∠DEF═45°,∴△DAE为等腰直角三角形,∴AH═HE,∵CE═CD+DE═25+17═42cm,∴AH═CE﹣CH═(42﹣4x)cm,∴42﹣4x═3x,解得x═6,∴AC═5×6═30cm.故答案为:30.(2)如图3所示,过点A作AM⊥EF交其延长线于点M,过点D作DN⊥EF交其延长线于点N,并延长ND,交AB于点P,∵AB∥EF,∴∠M═∠PNM═∠NPA═90°,∴四边形AMNP是矩形,∴AP═MN,∵CD═25cm,DE═17cm,cos∠ACD=,∠DEN═45°,AC═30cm,∴PC═CD cos∠ACD═20cm,EN═DE∠cos∠DEN═cm,∴MN═AP═AC﹣PC═30﹣20═10cm,∴ME═MN+EN═(10+)cm,由(1)可知AH═HE═18cm,∴AE═18cm,设车轮半径为rcm,则有:d1═(2r+AE+EF)cm,d2═(2r+AE+EF)cm,∴d1﹣d2═(2r+AE+EF)﹣(2r+EM+EF)═AE﹣EM═18﹣(10+)═(﹣10)cm,故答案为:(﹣10).三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣|﹣3|+(π﹣3.14)0﹣()﹣1;(2)化简:+.【分析】(1)先化简算术平方根,绝对值,零指数幂,负整数指数幂,然后再计算;(2)根据同分母分式加减法运算法则进行计算.解:(1)原式=4﹣3+1﹣2=0;(2)原式====.18.如图,在△ABC和△DBC中,AB=AC,DB=DC,点E,F分别为边AB,AC的中点,连结DF,DE.(1)求证:△BDE≌△CDF;(2)若∠EDF=60°,ED=5,求BC的长.【分析】(1)根据等腰三角形的性质得∠ABC=∠ACD,∠DBC=∠DCB,则有∠ABD =∠ACD,然后由中点的定义得BE=CF,利用SAS即可求证;(2)连接EF,由题意易得△EDF是等边三角形,则EF=ED=5,然后根据三角形中位线可进行求解.【解答】(1)证明:AB=AC,DB=DC,∴∠ABC=∠ACD,∠DBC=∠DCB,∴∠ABD=∠ACD,即∠EBD=∠FCD,∵点E,F分别为边AB,AC的中点,AB=AC,∴BE=CF,在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);(2)解:连接EF,如图所示:由(1)可得△BDE≌△CDF,∵∠EDF=60°,∴△EDF是等边三角形,∴EF=ED=5,∵点E,F分别为边AB,AC的中点,∴BC=2EF=10.19.在8×8的方格纸中,点A,B,C都在格点上,按要求画图(保留作图痕迹):(1)在图1中找一点D,使点D在线段BC上,且∠ADC=2∠B;(2)在图2中找一格点E,使∠BAC+∠BEC=180°.【分析】(1)取格点E,F作直线EF交BC于点D,点D即为所求.(2)作△ABC的外接圆,利用圆内接四边形的对角互补,解决问题即可.解:(1)如图,点D即为所求.(2)如图,点E即为所求(答案不唯一).20.某校举行“汉字听写大赛,九年级A,B两班学生的成绩情况如下:【信息一】九A班40名学生成绩的频数分布直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左到右第4组成绩如表:120120120121122122124125125126127129【信息三】九年级A,B两班各40名学生成绩的平均数、中位数、众数、优秀率(135分及以上为优秀)、方差等数据如下(部分空缺):班级平均数中位数众数优秀率方差九A班127.212813030%190九B班127.212713225%210根据以上信息,回答下列问题:(1)九A班40名学生成绩的中位数为128分;(2)求从A,B两班共80人中随机抽取一人成绩为优秀的概率;(3)请你选择适合的统计量,尽量从多个角度,综合阐述哪个班级的整体水平较高.【分析】(1)由中位数的定义求解即可;(2)先求出A,B两班优秀的学生人数,再由概率公式求解即可.解:(1)由题意得:九A班40名学生成绩的中位数为=128(分),故答案为:128;(2)九年级A,B两班成绩优秀的学生人数分别为:40×30%=12(人),40×25%=10(人),∴从A,B两班共80人中随机抽取一人成绩为优秀的概率为=;(3)九A班的整体水平较高,理由如下:①九A班的中位数大于九B班的中位数;②九A班的优秀率大于九B班的优秀率;③九A班的方差小于九B班的方差,因此九A班的成绩更稳定.21.已知二次函数y=ax2﹣4ax+c的最小值为﹣1.其图象与x轴交于A,B两点(点B在点A右侧),与y轴交于(0,3).(1)求二次函数表达式.(2)将线段OB向右平移m个单位,向上平移n个单位至O'B'(m,n均为正数),若点O',B'均落在此二次函数图象上,求m,n的值.【分析】(1)用顶点式结合待定系数法可解答案;(2)根据二次函数的对称性结合平移的规律可解答案.解:(1)∵二次函数y=ax2﹣4ax+c的最小值为﹣1,∴对称轴为直线x=﹣=2,顶点(2,﹣1),∴y=a(x﹣2)2﹣1,代入(0,3).解得a=1,∴y=(x﹣2)2﹣1=x2﹣4x+3.(2)y=x2﹣4x+3=0,解得x=1或3,∴A(1,0),B(3,0),∴OB=O'B'=3,又∵对称轴为直线x=﹣=2,O',B'均落在此二次函数图象上,∴O',B'到对称轴的距离为,∴m=2+﹣3=,n=﹣1=.22.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,点E为BC边上一点,以BE为直径的半圆恰好经过点D,且交线段CD于点F,连接BD,BF.(1)求证:BF=BA;(2)若AF=6,cos A=.求直径BE的长.【分析】(1)连接DE,根据直角三角形的性质及直角的定义得出∠DEB=∠DBA=∠A,再根据同圆中同弧所对的圆周角相等得到∠DEB=∠DFB,则∠DFB=∠A,再根据等角对等边即可得解;(2)过点B作BH⊥AF于点F,根据直角三角形的性质得到AH=3,解直角三角形得到AB=4,设DE=3x,则BE=4x,BD=x,AD=BD=x,根据勾股定理求出x,据此即可得解.【解答】(1)证明:连接DE,∵∠ABC=90°,点D是斜边AC的中点,∴AD=BD,∴∠A=∠DBA,∵BE是直径,∴∠EDB=90°,∴∠DEB+∠DBE=90°,∵∠DBA+∠DBE=90°,∴∠DEB=∠DBA=∠A,∵∠DEB=∠DFB,∴∠DFB=∠A,∴BF=BA;(2)解:过点B作BH⊥AF于点F,由(1)知,BF=BA,∴AH=AF=3,∵cos A=,∴AB===4,∴BH===,由(1)得,∠DEB=∠A,∴cos∠DEB=cos A=,设DE=3x,则BE=4x,BD=x,∴AD=BD=x,在Rt△BDH中,BD2=DH2+BH2,即=+,解得,x=,∴BE=4x=.23.某工厂生产A,B两种型号的环保产品,A产品每件利润200元,B产品每件利润500元,该工厂按计划每天生产两种产品共50件,其中A产品的总利润比B产品少4000元.(1)求该厂每天生产A产品和B产品各多少件.(2)据市场调查,B产品的需求量较大,该厂决定在日总产量不变的前提下增加B产品的生产,但B产品相比原计划每多生产一件,每件利润便降低10元.设该厂实际生产B 产品的数量比原计划多x件,每天生产A,B产品获得的总利润为w.①若实际生产B产品的数量不少于A产品数量的1.2倍,求总利润w的最大值.②若每生产一件环保产品,政府给予a元(a为整数)的补贴,在此前提下,经核算,存在5种不同的生产方案使得该厂每日利润不少于17200元,试求a的值.【分析】(1)设每天生产A产品x件,则每天生产B产品(50﹣x)件,由题意列出方程可得答案;(2)①根据题意列出不等式可得x的取值范围,再结合二次函数的增减性可得答案;②由题意得,w=﹣10x2+100x+16000+50a,根据对称轴可得w=16000+160+50a<17200①,w=16000+210+50a≥17200②,解得可得答案.解:(1)设每天生产A产品x件,则每天生产B产品(50﹣x)件,由题意得:500(50﹣x)﹣200x=4000,解得x=30,50﹣30=20(件),答:每天生产A产品30件,生产B产品20件;(2)①由题意得,20+x≥1.2(30﹣x),解得x≥,w=(500﹣10x)(20+x)+200(30﹣x)=﹣10x2+100x+16000,∴对称轴为x=﹣=5,在对称轴的右侧,w随x的增大而减小,∴当x=8时,w最大值为16160元;②由题意得,w=﹣10x2+100x+16000+50a,∵对称轴为x=5,∴当x=3,4,5,6,7时,利润不少于17200元,即当x=2时,w=16000+160+50a<17200①,当x=3时,w=16000+210+50a≥17200②,综合①和②,解得19.8≤a≤20.8,∵a为整数,∴a=20.24.如图,在矩形ABCD中,AB=8,O是对角线AC的中点,P是线段AB上一点,射线PO交CD于点Q,交AD延长线于点E,连结CE,在CE上取点F,使FQ=CQ,设AP =x(x>4),(1)连结DB,当x=时,判断四边形EDBC是否为平行四边形,并说明理由.(2)当x=6时,若FQ平行△ACB的某一边,求AD的长.(3)若EA=EC,分别记△FQC和△EDC的面积为S1和S2,且=,求的值.【分析】(1)由题意易得CD=AB=8,CD∥AB,DA∥CB,DA=CB,则有∠DCA=∠CAB,进而可得△COQ≌△AOP,则CQ=AP=,然后可得△EDQ∽△EAP,则可得ED=DA,然后问题可求解;(2)分类讨论:①当FQ∥BC时,通过等腰直角三角形得到△EDQ∽△EAP,然后根据相似三角形的性质求解;②当FQ∥AC时,作DH∥FC交AC于点H,得到△QFC∽△CDH,然后根据相似三角形的性质求解;(3)过点Q作QN⊥CF于点N,根据题意得到△CNQ和S1的比值,然后得到CN:CD 的比值,从而求出CN,进而可得DQ=QN=m,CQ=8﹣m,然后根据勾股定理求解.解:(1)四边形EDBC是平行四边形,理由如下:∵四边形ABCD是矩形,AB=8,∴CD=AB=8,CD∥AB,DA∥BC,DA=CB,∴∠DCA=∠CAB,∵点O是对角线AC的中点,∴OA=OC,∵∠QOC=∠AOP,∴△COQ≌△AOP(ASA),∴CQ=AP=,∴DQ=8﹣=,∵CD∥BA,∴△EDQ∽△EAP,∴,∴ED=DA,∴ED=CB,∴四边形EDBC是平行四边形.(2)由(1)及题意得:CQ=AP=6,①如图1,当FQ∥BC时,则∠FQC=∠QCB=90°,∴∠FCQ=45°,∴△FQC、△EDC为等腰直角三角形,∴ED=DC=8,FQ=QC=6,∴DQ=2,∵△EDQ∽△EAP,∴,∴EA=24,∴AD=24﹣8=16;②如图2,当FQ∥AC时,作DH∥FC交AC于点H,∴∠FQC=∠HCD,∠FCQ=∠HDC,∴△QFC∽△CDH,∴CD=CH=8,∵△EDQ∽△EAP,DQ=CD﹣CQ=8﹣6=2,∴,∵DH∥EC,∴,∴AC=24,∴AD==16,综上所述,AD=16或AD=16.(3)如图3,过点Q作QN⊥CF于点N,则∠QNC=∠EDC=90°,∵∠NCQ=∠ECD,∴△CNQ∽△CDE,∵FQ=CQ,∴CN=FN,∴,∵=,∴,∴,∴CN=4,∵EA=EC,OA=OC,∴EO是∠EAC的角平分线,∴DQ=QN=m,∴AP=CQ=8﹣m,在Rt△CNQ中,CN2+QN2=CQ2,即42+m2=(8﹣m)2,解得:m=3,∴DQ=3,AP=CQ=8﹣3=5,∴,∴.。
2021年湖南省长沙市中考数学模拟试卷(三)(含解析)
2021年湖南省长沙市中考数学模拟试卷(三)一、选择题(共12小题).1.下列四个数:﹣2,﹣0.6,,中,绝对值最小的是()A.﹣2B.﹣0.6C.D.2.下列计算正确的是()A.a3+a2=a5B.a5÷a2=a3C.a3•a2=a6D.(﹣a3)2=﹣a6 3.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,逆时针旋转∠α,要使这个∠α最小时,旋转后的图形也能与原图形完全重合,则这个图形是()A.B.C.D.4.五边形的内角和是()A.180°B.360°C.540°D.720°5.在平面直角坐标系xOy中,将点N(﹣2,﹣3)绕点O旋转180°,得到的对应点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)6.下列命题中,是真命题的是()A.菱形对角线相等B.函数y=的自变量取值范围是x≠﹣1C.若|a|=|b|,则a=bD.同位角一定相等7.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.48.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°9.抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0B.1C.2D.310.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地,送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据题意,可得秋千的绳索长为()A.10尺B.14.5尺C.13尺D.17尺11.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是12.如图,A,B为圆O上的点,且D为弧AB的中点,∠ACB=120°,DE⊥BC于E,若AC=DE,则的值为()A.3B.2C.+1D.+1二、填空题(共4小题,每题3分,共12分)13.计算﹣3=.14.为了防止输入性“新冠肺炎”,某医院成立隔离治疗发热病人防控小组,决定从内科3位骨干医师中(含有甲)抽调2人组成.则甲一定会被抽调到防控小组的概率是.15.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.16.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.三、解答题(本大题共9个小题,共72分)17.计算:(﹣)﹣2﹣|﹣2|﹣2cos45°+(3﹣π)018.先化简,再求值:(﹣b)•,其中a﹣b=2.19.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.20.为了解全校同学对球类运动项目的喜爱情况,该校某班的研究性学习小组在全校范围内随机抽取部分同学参与“我最喜爱的球类项目”问卷调查,收集数据后绘制成两幅不完整的统计图:请根据统计图,解答下列问题:(1)全班共有名同学;(2)补全条形统计图;(3)若该校约有1500名学生,估计全校学生中喜欢足球的有多少人;(4)若从九年级的3名女选手和八年级的2名女选手中随机抽取两名同学组成乒乓球双打组合,用画树状图或列表法求抽到的两名同学恰好是同一年级的概率.21.人教版初中数学教科书八年级上册第84页探究了“三角形中边与角之间的不等关系”,部分原文如下:如图1,在△ABC中,如果AB>AC,那么我们可以将△ABC折叠,使边AC落在AB上,点C落在AB上的D点,折线交BC于点E,则∠C=∠ADE.∵∠ADE>∠B(想一想为什么),∴∠C>∠B.(1)请证明上文中的∠ADE>∠B;(2)如图2,在△ABC中,如果∠ACB>∠B,能否证明AB>AC?同学小雅提供了一种方法:将△ABC折叠,使点B落在点C上,折线交AB于点F,交BC于点G,再运用三角形三边关系即可证明,请你按照小雅的方法完成证明;(3)如图3,在△ABC中,∠C=2∠B,按照图1的方式进行折叠,得到折痕AE,过点E作AC的平行线交AB于点M,若∠BEA=110°,求∠DEM的度数.22.九一班计划购买A、B两种相册共42册作为毕业礼品,这两种相册的单价分别是50元和40元,由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B 种相册数量的,但又不少于B种相册数量的,如果设买A种相册x册,买这两种相册共花费y元.(1)求计划购买这两种相册所需的费用y(元)关于x(册)的函数关系式.(2)班委会多少种不同的购买方案?(3)商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.23.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是上的一个动点(不与点A、B重合),过点O分别作弦AC,BC的垂线OD,OE垂足分别为D,E.(1)求∠DOE的度数;(2)求线段DE长;(3)当四边形DOEC的面积取最大值时,求CD+CE的值.24.我们定义:如果两个多项式A与B的差为常数,且这个常数为正数,则称A是B的“差常式”,这个常数称为A关于B的“差常值”.如多项式A=x2﹣5x+6,B=(x+1)(x ﹣6),则A是B的“差常式”,A关于B的“差常值”为12.(1)已知多项式C=2x2﹣5x+4,D=(x﹣2)(2x﹣1),判断C是否是D的“差常式”,若不是,请说明理由,若是,请证明并求出C关于D的“差常值”;(2)已知多项式M=(x﹣a)2,N=x2﹣2x+b(a,b为常数),M是N的“差常式”,且当x为实数时,N的最小值为﹣2,求M关于N的“差常值”;(3)若多项式x2+b2x+c2是x2+b1x+c1的“差常式”(其中b1,b2,c1,c2为常数),令y1=x2+b1x+c1,y2=x2+b2x+c2(c1<c2),直线y=kx+m与y1=x2+b1x+c1,y2=x2+b2x+c2的图象相交于E(x1,y1),F(x2,y2),G(x3,y3),H(x4,y4),其中x1<x2<x3<x4.若y1=x2+b1x+c1的图象的顶点为P,记S1,S2,S3分别为△EPF,△EPG,△EPH 的面积.问:的值是否为定值?如果是,请求出它的值;如果不是,请求出相关表达式.25.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形?若存在,请直接写出此时点M的坐标,若不存在,请说明理由.参考答案一、选择题(共12小题,每小题3分,共36分)1.下列四个数:﹣2,﹣0.6,,中,绝对值最小的是()A.﹣2B.﹣0.6C.D.【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.解:∵|﹣2|=2,|﹣0.6|=0.6,||=,||=,∵,所以绝对值最小的是,故选:C.2.下列计算正确的是()A.a3+a2=a5B.a5÷a2=a3C.a3•a2=a6D.(﹣a3)2=﹣a6【分析】分别根据合并同类项法则,同底数幂的除法法则,同底数幂的乘法法则以及积的乘方运算法则逐一判断即可.解:A.a3与a2不是同类项,所以不能合并,故本选项不合题意;B.a5÷a2=a3,运算正确;C.a3•a2=a5,故本选项不合题意;D.(﹣a3)2=a6,故本选项不合题意.故选:B.3.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,逆时针旋转∠α,要使这个∠α最小时,旋转后的图形也能与原图形完全重合,则这个图形是()A.B.C.D.【分析】求出各旋转对称图形的最小旋转角度,继而可作出判断.解:A、最小旋转角度==72°;B、最小旋转角度==120°;C、最小旋转角度==90°;D、最小旋转角度==180°;综上可得:旋转一定角度后,能与原图形完全重合,且旋转角度最小的是A.故选:A.4.五边形的内角和是()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和为:(n﹣2)•180°(n≥3,且n为整数),求出五边形的内角和是多少度即可.解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.5.在平面直角坐标系xOy中,将点N(﹣2,﹣3)绕点O旋转180°,得到的对应点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)【分析】根据中心对称的性质解决问题即可.解:点N(﹣2,﹣3)绕点O旋转180°,得到的对应点的坐标是(2,3),故选:D.6.下列命题中,是真命题的是()A.菱形对角线相等B.函数y=的自变量取值范围是x≠﹣1C.若|a|=|b|,则a=bD.同位角一定相等【分析】利用菱形的性质、分式有意义的条件、绝对值的定义及平行线的性质分别判断后即可确定正确的选项.解:A、菱形的对角线垂直但不一定相等,故错误,是假命题;B、函数y=的自变量取值范围是x≠﹣1,正确,是真命题;C、若|a|=|b|,则a=±b,故错误,是假命题;D、只要两直线平行同位角才相等,故错误,是假命题,故选:B.7.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.4【分析】作DE⊥AB于点E,根据角平分线的性质得DE=CD=3,由∠B=30°知BD=2DE=6.解:如图,作DE⊥AB于点E,∵AD为∠CAB的平分线,∴DE=CD=3,∵∠B=30°,则BD=2DE=6,故选:B.8.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.9.抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0B.1C.2D.3【分析】对于抛物线解析式,分别令x=0与y=0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数.解:抛物线y=2x2﹣2x+1,显然抛物线与y轴有一个交点,令y=0,得到2x2﹣2x+1=0,∵△=8﹣8=0,∴抛物线与x轴有一个交点,则抛物线与坐标轴的交点个数是2,故选:C.10.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地,送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据题意,可得秋千的绳索长为()A.10尺B.14.5尺C.13尺D.17尺【分析】设绳索有x尺长,根据勾股定理列方程即可得到结果.解:设绳索有x尺长,则102+(x+1﹣5)2=x2,解得:x=14.5,即绳索长14.5尺,故选:B.11.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为吨2.故选:C.12.如图,A,B为圆O上的点,且D为弧AB的中点,∠ACB=120°,DE⊥BC于E,若AC=DE,则的值为()A.3B.2C.+1D.+1【分析】如图,连接AD,BD,CD,在EB上取点Q,使EQ=CE,根据D为弧AB的中点,∠ACB=120°,得到∠DCB=30°,根据线段垂直平分线的性质得到CD=DQ,求得∠CDQ=120°,推出∠ACD=∠DQB,得到△ACD≌△BQD,根据全等三角形的性质得到AC=BQ,再证明AC=EC=EQ=BQ即可解决问题.解:如图,连接AD,BD,CD,OA,OD,OB,在⊙O上取一点K,连接AK,BK,在EB上取点Q,使EQ=CE,连接DQ.∵D为弧AB的中点,∠ACB=120°,∴∠K=60°,∠AOB=120°,∠AOD=∠BOD=60°∴∠DCB=∠DOB=30°,∵CE=QE,DE⊥BC,∴CD=DQ,∴∠CDQ=120°,∵∠CDB=∠ACB=120°,∴∠CDA=∠QDB,∵∠DCE=∠DQE=30°,∴∠DQB=150°,∵∠ACD=120°+30°=150°,∴∠ACD=∠DQB,在△ACD与△BQD中,,∴△ACD≌△BQD(ASA),∴AC=BQ,∵CE=DE,AC=DE,∴AC=CE=EQ=BQ,∴BE:CE=2:1,故选:B.二、填空题(共4小题,每题3分,共12分)13.计算﹣3=.【分析】原式各项化为最简二次根式,合并即可得到结果.解:原式=2﹣3×=2﹣=.故答案为:.14.为了防止输入性“新冠肺炎”,某医院成立隔离治疗发热病人防控小组,决定从内科3位骨干医师中(含有甲)抽调2人组成.则甲一定会被抽调到防控小组的概率是.【分析】画出树状图,共有6个等可能的结果,甲一定会被抽调到防控小组的结果有4个,由概率公式即可求解.解:内科3位骨干医师分别即为甲、乙、丙,画树状图如图:共有6个等可能的结果,甲一定会被抽调到防控小组的结果有4个,∴甲一定会被抽调到防控小组的概率==;故答案为:.15.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD =∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.16.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有①②⑤(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.【分析】①正确,只要证明∠APM=90°即可解决问题.②正确,设PB=x,构建二次函数,利用二次函数性质解决问题即可.③错误,先判断出ND=ND,设ND=NE=y,在Rt△PCN中,利用勾股定理求出y即可解决问题.④错误,作MG⊥AB于G,因为AM==,所以AG最小时AM最小,构建二次函数,求得AG的最小值为3,AM的最小值为5.⑤正确,在AB上取一点K使得AK=PK,设PB=z,列出方程即可解决问题.解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴=,∴CM=x(4﹣x),∴S四边形AMCB=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,由折叠知,AE=AB=AD,∠AEP=∠B=90°,∴∠AEN=90°=∠D,∵AN=AN,∴Rt△ADN≌Rt△AEN(HL),∴DN=EN,设ND=NE=y,在Rt△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∴MG=AD=4,根据勾股定理得:AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣2)2+3,∴x=2时,AG最小值=3,∴AM最小值==5,故④错误.∵△ABP≌△ADN时,∴△ABP≌△ADN≌△AEN≌△AEP,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4,故⑤正确.故答案为①②⑤.三、解答题(本大题共9个小题,共72分)17.计算:(﹣)﹣2﹣|﹣2|﹣2cos45°+(3﹣π)0【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.解:原式=4﹣2+﹣+1=3.18.先化简,再求值:(﹣b)•,其中a﹣b=2.【分析】先算括号内的减法,算乘法,即可求出答案.解:(﹣b)•=•=•=,当a﹣b=2时,原式==.19.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.20.为了解全校同学对球类运动项目的喜爱情况,该校某班的研究性学习小组在全校范围内随机抽取部分同学参与“我最喜爱的球类项目”问卷调查,收集数据后绘制成两幅不完整的统计图:请根据统计图,解答下列问题:(1)全班共有50名同学;(2)补全条形统计图;(3)若该校约有1500名学生,估计全校学生中喜欢足球的有多少人;(4)若从九年级的3名女选手和八年级的2名女选手中随机抽取两名同学组成乒乓球双打组合,用画树状图或列表法求抽到的两名同学恰好是同一年级的概率.【分析】(1)由喜欢篮球的人数除以所占百分比即可;(2)求出喜欢乒乓球和喜欢足球的学生人数,补全条形统计图即可;(3)由全校学生总人数乘以喜欢足球的人数所占的比例即可;(4)画树状图,再由概率公式求解即可.解:(1)12÷24%=50(名),故答案为:50;(2)喜欢乒乓球的学生人数为:50×36%=18(人),喜欢足球的学生人数为:50﹣12﹣18﹣10=10(人),补全条形统计图如图:(3),答:全校学生中喜欢足球的大约有300人;(4)把九年级的3名女选手和八年级的2名女选手分别记为:A、A、A,B、B,画树状图如下:由图可知,共有20种等可能情况,两名同学恰好是同一年级的有8种情况,∴抽到的两名同学恰好是同一年级的概率为=.21.人教版初中数学教科书八年级上册第84页探究了“三角形中边与角之间的不等关系”,部分原文如下:如图1,在△ABC中,如果AB>AC,那么我们可以将△ABC折叠,使边AC落在AB上,点C落在AB上的D点,折线交BC于点E,则∠C=∠ADE.∵∠ADE>∠B(想一想为什么),∴∠C>∠B.(1)请证明上文中的∠ADE>∠B;(2)如图2,在△ABC中,如果∠ACB>∠B,能否证明AB>AC?同学小雅提供了一种方法:将△ABC折叠,使点B落在点C上,折线交AB于点F,交BC于点G,再运用三角形三边关系即可证明,请你按照小雅的方法完成证明;(3)如图3,在△ABC中,∠C=2∠B,按照图1的方式进行折叠,得到折痕AE,过点E作AC的平行线交AB于点M,若∠BEA=110°,求∠DEM的度数.【分析】(1)利用三角形的外角的性质,即可得出结论;(2)先由折叠得出BF=CF,再利用三角形外角的性质,即可得出结论;(3)先判断出∠B=∠BED,再判断出∠MAE=∠MEA,进而求出∠B+∠BAE=70°,即可得出结论.【解答】(1)证明:∵∠ADE=∠B+∠BED,∴∠ADE>∠B;(2)证明:由折叠知,BF=CF,在△ACF中,AF+FC>AC,∴AF+BF>AC,∴AB>AC;(3)由折叠知,∠MAE=∠EAC,∠ADE=∠C,∵∠C=2∠B,∴∠ADE=2∠B,∵∠ADE=∠B+∠BED,∴∠B=∠BED,∵ME∥AC,∴∠MEA=∠EAC,∵∠MAE=∠EAC,∴∠MAE=∠MEA,∵∠BEA=110°,∴∠B+∠BAE=180°﹣∠BEA=180°﹣110°=70°,∴∠BED+∠MEA=∠B+∠BAM=70°,∴∠DEM=∠BEA﹣(∠BED+∠MEA)=110°﹣70°=40°.22.九一班计划购买A、B两种相册共42册作为毕业礼品,这两种相册的单价分别是50元和40元,由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B 种相册数量的,但又不少于B种相册数量的,如果设买A种相册x册,买这两种相册共花费y元.(1)求计划购买这两种相册所需的费用y(元)关于x(册)的函数关系式.(2)班委会多少种不同的购买方案?(3)商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.【分析】(1)根据题意得到y(元)关于x(册)的函数关系式;(2)根据题意可得到一个关于x的不等式组,可求出x的取值范围,再结合花费的函数式,可求出x的具体数值;(3)根据购买所需的总费用与购买的方案无关可得函数关系式中x的系数为0,即可得到a与b的关系,再根据函数最小即可确定a的取值范围,即可得到结论.解:(1)依题意得:y=50x+40(42﹣x),即y=10x+1680;(2)依题意得,解得12≤x<18,∴x可取12、13、14、15、16、17,故班委会有6种不同的购买方案;(3)设总费用为w,根据题意得,w=(50﹣a)x+(40﹣b)(42﹣x),w=(50﹣a)x+42(40﹣b)﹣(40﹣b)x,w=(10﹣a+b)x+42(40﹣b),∵购买所需的总费用与购买的方案无关,即w的值与x无关,∴10﹣a+b=0,∴b=a﹣10,∴w=42[40﹣(a﹣10)]=﹣42a+2100,∵﹣42<0,∴w随a增大而减小,又∵12≤a≤18,∴a=18时,w最小=1354(元)所以a=18.23.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是上的一个动点(不与点A、B重合),过点O分别作弦AC,BC的垂线OD,OE垂足分别为D,E.(1)求∠DOE的度数;(2)求线段DE长;(3)当四边形DOEC的面积取最大值时,求CD+CE的值.【分析】(1)OD⊥BC,OE⊥AC,且OA=OB=OC,则∠BOD=∠COD,∠AOE=∠COE,即可求解;(2)证明DE是△ABC的中位线,即可求解;(3)当四边形DOEC的面积取最大值时,上述两个三角形的高共线,即m+n等于圆的半径CO,即m+n=2,进而求解.解:(1)∵OD⊥BC,OE⊥AC,且OA=OB=OC,∴∠BOD=∠COD,∠AOE=∠COE,∴∠DOE=∠AOB=45°,即∠DOE=45°;(2)如图,连接AB,∵∠AOB=90°,OA=OB=2,∴AB2=OB2+OA2=8,∴AB=2;∵OD⊥BC,OE⊥AC,∴BD=CD,AE=EC,∴DE是△ABC的中位线,即DE∥AB,∴DE=×2=;(3)设△DEC和△DEO底边DE的高分别为m、n,则四边形DOEC的面积=S△DEC+S△DEO=×DE×(m+n),故当四边形DOEC的面积取最大值时,上述两个三角形的高共线,即m+n等于圆的半径CO,即m+n=2,此时CO⊥DE,而DE⊥CO,则点C为的中点,即CO是DE的中垂线,故CE=CD,而CE=AE,故AC=CE+CD,则∠AOC=45°,过点C作CH⊥AO于点H,则CH=OH=CO•cos45°=,则AH=OA﹣OH=2﹣,在Rt△CHA中,CA===2.∴CD+CE=AC=2.24.我们定义:如果两个多项式A与B的差为常数,且这个常数为正数,则称A是B的“差常式”,这个常数称为A关于B的“差常值”.如多项式A=x2﹣5x+6,B=(x+1)(x ﹣6),则A是B的“差常式”,A关于B的“差常值”为12.(1)已知多项式C=2x2﹣5x+4,D=(x﹣2)(2x﹣1),判断C是否是D的“差常式”,若不是,请说明理由,若是,请证明并求出C关于D的“差常值”;(2)已知多项式M=(x﹣a)2,N=x2﹣2x+b(a,b为常数),M是N的“差常式”,且当x为实数时,N的最小值为﹣2,求M关于N的“差常值”;(3)若多项式x2+b2x+c2是x2+b1x+c1的“差常式”(其中b1,b2,c1,c2为常数),令y1=x2+b1x+c1,y2=x2+b2x+c2(c1<c2),直线y=kx+m与y1=x2+b1x+c1,y2=x2+b2x+c2的图象相交于E(x1,y1),F(x2,y2),G(x3,y3),H(x4,y4),其中x1<x2<x3<x4.若y1=x2+b1x+c1的图象的顶点为P,记S1,S2,S3分别为△EPF,△EPG,△EPH 的面积.问:的值是否为定值?如果是,请求出它的值;如果不是,请求出相关表达式.【分析】(1)先计算C﹣D=1,再根据“差常式”的定义即可判断C是D的“差常式”,并求出C关于D的“差常值”;(2)先求出M﹣N=(﹣2a+2)x+a2﹣b,由M是N的“差常式”得出﹣2a+2=0,得出a=1.由x为实数时,N的最小值为﹣2,得出﹣1+b=﹣2,求出b=﹣1,进而求出M﹣N=2;(3)多项式x2+b2x+c2是x2+b1x+c1的“差常式”,得b1=b2,由x1,x4是方程组对应的两根方程x2+(b2﹣k)x+c2﹣m=0的两根,得x1+x4=k﹣b2,x1x4=c2﹣m.同理:x2+x3=k﹣b1,x2x3=c1﹣m,得x1+x4=x2+x3,即x1﹣x2=x3﹣x4,得FM=HN,从而可证△EFM≌△GHN,EF=GH,由面积公式即可求S△EPF=S△GPH,即=1.解:(1)∵C﹣D=(2x2﹣5x+4)﹣(x﹣2)(2x﹣1)=(2x2﹣5x+4)﹣(2x2﹣5x+2)=2,∴C是D的“差常式”,“差常值”为2;(2)∵M是N的“差常式”,∴M﹣N=(x﹣a)2﹣(x2﹣2x+b)=(x2﹣2ax+a2)﹣(x2﹣2x+b)=(﹣2a+2)x+a2﹣b,∴﹣2a+2=0,∴a=1.∵N=x2﹣2x+b=(x﹣1)2﹣1+b,且当x为实数时,N的最小值为﹣2,∴﹣1+b=﹣2,∴b=﹣1,∴M﹣N=a2﹣b=1﹣(﹣1)=2;(3)∵多项式x2+b2x+c2是x2+b1x+c1的“差常式”,∴b1=b2.∵x1,x4是方程组对应的两根方程x2+(b2﹣k)x+c2﹣m=0的两根,∴x1+x4=k﹣b2,x1x4=c2﹣m.同理:x2+x3=k﹣b1,x2x3=c1﹣m,∴x1+x4=x2+x3,∴x4﹣x3=x2﹣x1,分别过E、F作x轴、y轴的垂线,两直线交于点M.分别过G、H作x轴、y轴的垂线,两直线交于点N.∴HN=FM,∵FM∥HN,∴∠EFM=∠GHN,在△EFM和△GHN中,,∴△EFM≌△GHN(ASA),∴EF=GH,∴S△EPF=S△GPH,∴=1.25.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形?若存在,请直接写出此时点M的坐标,若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可;(2)求出抛物线的对称轴,再根据对称性求出点C的坐标即可解决问题;(3)设点P(m,﹣m2+4m),根据S△ABP=S△ABH+S梯形AHDP﹣S△PBD,建立方程求解即可;(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理ON 的长即可.解:(1)∵抛物线y=ax2+bx过A(4,0),B(1,3)两点,∴,解得:,∴抛物线的解析式为y=﹣x2+4x.(2)如图1,∵y=﹣x2+4x=﹣(x﹣2)2+4,∴对称轴为直线x=2,∵B,C关于对称轴对称,B(1,3),∴C(3,3),∴BC=2,∴S△ABC=×2×3=3.(3)如图1,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S梯形AHDP﹣S△PBD,∴6=×3×3+×(3+m﹣1)×(m2﹣4m)﹣×(m﹣1)×(3+m2﹣4m),解得:m1=0,m2=5,∵点P是抛物线上一动点,且位于第四象限,∴m>0,∴m=5,﹣m2+4m=﹣52+4×5=﹣5,∴P(5,﹣5);(4)点M在直线BH上,点N在x轴上,△CMN为等腰直角三角形时,分三类情况讨论:①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,∵∠CBM=∠MHN=90°,∴∠CMB+∠NMH=∠NMH+∠MNH=90°,∴∠CMB=∠MNH,∴△CBM≌△MHN(AAS),∴BC=MH=2,BM=HN=3﹣2=1,∴M(1,2);②以点M为直角顶点且M在x轴下方时,如图3,过点C作CD∥y轴,过点N作NE∥y轴,过点M作DE∥x轴交CD于点D,交NE于E,∵∠CMN=∠CDM=∠MEN=90°,CM=MN,∴∠CMD+∠NME=∠NME+∠MNE=90°,∴∠CMD=∠MNE,∴△NEM≌△MDC(AAS),∴NE=MD=BC=2,EM=CD=5,∵∠ENH=∠NEM=∠NHM=90°,∴四边形EMHN是矩形,∴HM=NE=2,∴M(1,﹣2);③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,过点M作ME∥x轴,过点N作EN∥y轴交CB的延长线于D,同理可得:△NEM≌△CDN(AAS),∴ME=DN=3,NE=CD=HM=5,∴M(1,﹣5);④以点N为直角顶点且N在y轴右侧时,如图5,过点M作ME∥x轴,过点N作NE∥y轴交BC延长线于D,同理可得:△NEM≌△CDN(AAS),∴ME=DN=NH=3,NE=CD=3﹣2=1,∴HM=NE=1,∴M(1,﹣1);⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述,当△CMN为等腰直角三角形时,M点坐标为(1,2)或(1,﹣2)或(1,﹣5)或(1,﹣1).。
浙江省绍兴实验学校2021-2022学年中考三模数学试题含解析
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.42.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分3.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定4.一次函数21y x =-的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图,AB 是⊙O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△BDA 相似,可以添加一个条件.下列添加的条件中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD·AB =CD·BD D .AD 2=BD·CD6.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1≠x 2B .x 1+x 2>0C .x 1•x 2>0D .x 1<0,x 2<07.实数4的倒数是( ) A .4B .14C .﹣4D .﹣148.下列运算正确的是( ) A .B .=﹣3 C .a•a 2=a 2 D .(2a 3)2=4a 69.如图,在ABC ∆中,,4,AB AC BC ==面积是16,AC 的垂直平分线EF 分别交,AC AB 边于,E F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .6B .8C .10D .1210.6的绝对值是( ) A .6B .﹣6C .16D .16-二、填空题(共7小题,每小题3分,满分21分)11.2017年7月27日上映的国产电影《战狼2》,风靡全国.剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影响力,累计票房56.8亿元.将56.8亿元用科学记数法表示为_____元.12.如果a c eb d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____.13.分解因式:2x 2﹣8=_____________14.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是_____.15.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.17.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.三、解答题(共7小题,满分69分)18.(10分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分∠DAB;(2)若BE=3,CE=33,求图中阴影部分的面积.19.(5分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25≤x<30 4 0.0830≤x<35 8 0.1635≤x<40 a 0.3240≤x<45 b c45≤x<50 10 0.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.20.(8分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,15(1)求证:△AMC∽△EMB;(2)求EM的长;(3)求sin∠EOB的值.21.(10分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.22.(10分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.23.(12分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.abcd gh能被x0整除,依次轮换个位数字得到的新数bcd...gha能被x0+1整除,再24.(14分)有一个n位自然数...habc g 依次轮换个位数字得到的新数cd...ghab能被x0+2整除,按此规律轮换后,d...ghabc能被x0+3整除,…,...bcd gh是x0的一个“轮换数”.能被x0+n﹣1整除,则称这个n位数a...例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数abc是3的一个“轮换数”,其中a=2,求这个三位自然数abc.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.2、C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C .点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 3、D 【解析】 由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生. 【详解】解:根据随机事件的定义判定,中奖次数不能确定. 故选D . 【点睛】解答此题要明确概率和事件的关系:()P A 0=①,为不可能事件; ()P A 1=②为必然事件; ()0P A 1③<<为随机事件.4、B 【解析】由二次函数k 20b 10=>=-<,,可得函数图像经过一、三、四象限,所以不经过第二象限 【详解】解:∵k 20=>,∴函数图象一定经过一、三象限;又∵b 10=-<,函数与y 轴交于y 轴负半轴, ∴函数经过一、三、四象限,不经过第二象限 故选B 【点睛】此题考查一次函数的性质,要熟记一次函数的k 、b 对函数图象位置的影响 5、D 【解析】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴AD DE,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定6、A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.7、B【解析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】解:实数4的倒数是:1÷4=14.故选:B.【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.8、D【解析】试题解析:A. 与不是同类二次根式,不能合并,故该选项错误;B.,故原选项错误;C.,故原选项错误;D. ,故该选项正确.故选D.9、C【解析】连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故AD BC⊥,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA MC=,推出MC DM MA DM AD+=+≥,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA∵△ABC是等腰三角形,点D是BC边上的中点∴AD BC⊥∴1141622S ABC BC AD AD==⨯⨯=△解得8AD=∵EF 是线段AC 的垂直平分线 ∴点A 关于直线EF 的对称点为点C ∴MA MC = ∵AD AM MD ≤+∴AD 的长为BM+MD 的最小值 ∴△CDM 的周长最短()CM MD CD =++12AD BC =+1842=+⨯10=故选:C .【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键. 10、A 【解析】试题分析:1是正数,绝对值是它本身1.故选A . 考点:绝对值.二、填空题(共7小题,每小题3分,满分21分) 11、5.68×109 【解析】试题解析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.56.8亿95.6810.=⨯故答案为95.6810.⨯12、3【解析】 ∵a c e b d f===k ,∴a=bk ,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3,故答案为:3.13、2(x+2)(x ﹣2)【解析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.14【解析】【分析】由折叠的性质可知AE=CE ,再证明△BCE 是等腰三角形即可得到BC=CE ,问题得解.【详解】∵AB=AC ,∠A=36°,∴∠B=∠ACB=180362︒-︒=72°, ∵将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处,∴AE=CE ,∠A=∠ECA=36°,∴∠CEB=72°,∴【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE 是等腰三角形是解题的关键.15、50°【解析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【详解】如图所示:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).1016【解析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD 和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.【详解】如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,90CAD BCE ADC BEC AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=1,∴AD=2,∴AC=225CD AD +=,∴AB=2AC=10,∴sinα=1101010=, 故答案为1010.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.17、(﹣20163+1)【解析】据轴对称判断出点C 变换后在x 轴上方,然后求出点C 纵坐标,再根据平移的距离求出点A 变换后的横坐标,最后写出即可.【详解】解:∵△ABC 是等边三角形AB =3﹣1=2,∴点C 到x 轴的距离为1+2×33, 横坐标为2,∴C (23+1),第2018次变换后的三角形在x 轴上方,点C+1,横坐标为2﹣2018×1=﹣2016,所以,点C的对应点C′的坐标是(﹣2016)故答案为:(﹣2016)【点睛】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)3 22π-【解析】(1)连接OC,如图,利用切线的性质得CO⊥CD,则AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,从而得到∠DAC=∠CAO;(2)设⊙O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出∠COE=60°,然后根据扇形的面积公式,利用S阴影=S△COE﹣S扇形COB进行计算即可.【详解】解:(1)连接OC,如图,∵CD与⊙O相切于点E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)设⊙O半径为r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=12 OCOE=,∴∠COE=60°,∴S阴影=S△COE﹣S扇形COB=12•3•33﹣260?·393336022ππ=-.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.19、(1)50;(2)详见解析;(3)220.【解析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c 的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点睛】本题主要考查数据的收集、处理以及统计图表。
2021年山东省聊城临清市中考三模生物试题
二零二一年中考模拟检测生物试题三【时间:70分钟满分:100分】一、选择题:每小题2分,共50分。
每个小题只用一个最佳答案,选其代号,涂于答题卷中。
1.谷雨是春季最后一个节气。
谚语“谷雨前后,种瓜点豆”意思是说谷雨前后适于播种。
这体现了哪些非生物因素对生物的影响?()A.阳光、温度B.土壤、水分C.水分、温度D.空气、阳光2.玉米田中有杂草,有玉米螟等害虫,还有以害虫为食的天敌。
下列关于该生态系统的叙述,错误的是()A.该生态系统中玉米是生产者B.杂草和玉米之间是竞争关系C.玉米螟和它的天敌之间是捕食关系D.玉米田中物种少,但自我调节能力强3.显微镜是科学研究中最常用的观察工具。
下列操作流程正确的是()A.①→②→③→④B.①→③→②→④C.③→①→②→④D.③→①→④→②4.细胞的生活是物质、能量与信息变化的统一。
以下关于细胞生活的说法中,正确的是()A.细胞中的物质都是由细胞自己制造的B.细胞不需要的物质一定不能通过细胞膜C.细胞核中有指导生物发育的全部遗传信息的物质,它的中文名叫脱氧核糖核酸D.如果将细胞比作汽车,那么叶绿体相当于汽车的发动机5.如图为大豆生长发育过程的示意图,下列叙述正确的是()A.①②③⑤组成的是大豆种子的胚B.只要外界条件适宜种子就能萌发C.大豆根尖的成熟区是吸收水和无机盐的主要部位D.⑥⑦组成的结构是由子房壁发育来的6.如图为某温室大棚内一天中二氧化碳含量的变化曲线,据此曲线分析,正确的是()A.ab 段植物只进行呼吸作用B.bd 段植物只进行光合作用C.c 点氧气浓度最高D.d 点有机物积累最多7.为探究绿色植物和种子的生命活动,某兴趣小组的同学设计并实施了以下实验。
下列叙述错误的是()A.甲装置实验前暗处理的目的是将叶片内的淀粉运走耗尽B.乙装置收集的气体可以使带火星的细木条复燃C.丙装置观察到的现象是澄清的石灰水变浑浊D.丁装置实验现象说明萌发的种子呼吸作用产生了二氧化碳8.男孩进入青春期以后,生长发育速度加快,同时也出现了情感丰富、情绪容易波动、逆反等心理变化,与之直接相关的器官是()A.雄性激素B.大脑皮层C.精子D.睾丸9.俗话说“食不言,寝不语”,吃饭时不能大声说笑的科学道理是()A.食物容易由咽误入气管B.唾液腺分泌的唾液会减少C.流经消化器官的血流量会减少D.不利于声带的保护10.呼吸道不仅能保证气体顺畅通过,还能对吸入的气体进行处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题 3 分,共 42 分) 1.(3 分)|﹣2019|=( )
A.2019
B.﹣2019 C.
D.﹣
2.(3 分)如图,a∥b,若∠1=110°,则∠2 的度数是( )
A.110°
B.80°
C.70°
D.60°
3.(3 分)不等式 1﹣2x≥0 的解集是( )
A.OM= AC
B.MB=MO
C.BD⊥AC
D.∠AMB=∠CND
14.(3 分)从地面竖直向上抛出一小球,小球的高度 h(单位:m)与小球运动时间 t(单位:s)之间的
函数关系如图所示.下列结论:
①小球在空中经过的路程是 40m;
②小球抛出 3 秒后,速度越来越快;
③小球抛出 3 秒时速度为 0;
A.2+ π
B.2+ + π
C.4+ π
D.2+ π
第 1页(共 4页)
12.(3 分)下列关于一次函数 y=kx+b(k<0,b>0)的说法,错误的是( ) A.图象经过第一、二、四象限 B.y 随 x 的增大而减小
C.图象与 y 轴交于点(0,b) D.当 x>﹣ 时,y>0
13.(3 分)如图,在平行四边形 ABCD 中,M、N 是 BD 上两点,BM=DN,连接 AM、MC、CN、NA, 添加一个条件,使四边形 AMCN 是矩形,这个条件是( )
A.x≥2
B.x≥
C.x≤2
D.x
4.(3 分)如图所示,正三棱柱的左视图( )
A.
B.
C.
D.
5.(3 分)将 a3b﹣ab 进行因式分解,正确的是( )
A.a(a2b﹣b) B.ab(a﹣1)2
C.ab(a+1)(a﹣1) D.ab(a2﹣1)
6.(3 分)如图,D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,FC∥AB,若 AB=4,CF
=3,则 BD 的长是( )
A.0.5
B.1
C.1.5
D.2
7.(3 分)下列计算错误的是( )
A.(a3b)•(ab2)=a4b3
B.(﹣mn3)2=m2n6
C.a5÷a﹣2=a3
D.xy2﹣ xy2= xy2
8.(3 分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则 两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
.
三、解答题:(共 63 分) 20.(7 分)解方程: = .
第 2页(共 4页)
21.(7 分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习 情况,学校随机抽取 30 名学生进行测试,成绩如下(单位:分) 78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93 整理上面的数据得到频数分布表和频数分布直方图:
成绩(分)
频数78≤x<82582≤x<86a
86≤x<90
11
90≤x<94
b
94≤x<98
2
回答下列问题:
(1)以上 30 个数据中,中位数是
;频数分布表中 a=
;b=
;
(2)补全频数分布直方图;
(3)若成绩不低于 86 分为优秀,估计该校七年级 300 名学生中,达到优秀等级的人数.
22.(7 分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿 AC 方向开挖隧道,为了 加快施工速度,要在小山的另一侧 D(A、C、D 共线)处同时施工.测得∠CAB=30°,AB=4km,∠ ABD=105°,求 BD 的长.
和 2 件乙种产品;要生产甲种产品 37 件,乙种产品 18 件,则恰好需用 A、B 两种型号的钢板共
块.
18.(3 分)一般地,如果 x4=a(a≥0),则称 x 为 a 的四次方根,一个正数 a 的四次方根有两个.它们互
为相反数,记为± ,若 =10,则 m=
.
19.(3 分)如图,在△ABC 中,∠ACB=120°,BC=4,D 为 AB 的中点,DC⊥BC,则△ABC 的面积是
25.(11 分)如图,在正方形 ABCD 中,E 是 DC 边上一点,(与 D、C 不重合),连接 AE,将△ADE 沿 AE 所在的直线折叠得到△AFE,延长 EF 交 BC 于 G,连接 AG,作 GH⊥AG,与 AE 的延长线交于点 H, 连接 CH.显然 AE 是∠DAF 的平分线,EA 是∠DEF 的平分线.仔细观察,请逐一找出图中其他的角 平分线(仅限于小于 180°的角平分线),并说明理由.
23.(9 分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点 O 作 OD⊥AB,交 BC 的延长线于 D,交 AC 于点 E,F 是 DE 的中点,连接 CF. (1)求证:CF 是⊙O 的切线. (2)若∠A=22.5°,求证:AC=DC.
第 3页(共 4页)
24.(9 分)汛期到来,山洪暴发.下表记录了某水库 20h 内水位的变化情况,其中 x 表示时间(单位:h), y 表示水位高度(单位:m),当 x=8(h)时,达到警戒水位,开始开闸放水.
④小球的高度 h=30m 时,t=1.5s.
其中正确的是( )
A.①④
B.①②
C.②③④
D.②③
一、选择题
1-7
二、填空题:(每题 3 分,共 15 分) 15.(3 分)计算: × ﹣tan45°=
8-14
.
16.(3 分)在平面直角坐标系中,点 P(4,2)关于直线 x=1 的对称点的坐标是
.
17.(3 分)用 1 块 A 型钢板可制成 4 件甲种产品和 1 件乙种产品;用 1 块 B 型钢板可制成 3 件甲种产品
x/h
0
2
4
6
8
10
12
14
16
18
20
y/m 14
15
16
17
18 14.4 12 10.3
9
8
7.2
(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.
(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.
(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 6m.
A.
B.
C.
D.
9.(3 分)计算 ﹣a﹣1 的正确结果是( )
A.﹣
B.
C.﹣
D.
10.(3 分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:
天数(天)
1
2
1
3
最高气温(℃) 22
26
28
29
则这周最高气温的平均值是( )
A.26.25℃
B.27℃
C.28℃
D.29℃
11.(3 分)如图,⊙O 中, = ,∠ACB=75°,BC=2,则阴影部分的面积是( )