基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)

合集下载

基于51单片机控制的语音报时万年历课程设计

基于51单片机控制的语音报时万年历课程设计

基于51单片机控制的语音报时万年历一.实验要求运用单片机及相关外设实现以下功能:1)万年历及时钟显示2)时间日期可调3)可对时间进行整点报时和随机报时二.方案分析根据实验要求,选用STC公司的8051系列,STC12C5A16S2增强型51单片机。

此单片机功能强大,具有片内EEPROM、1T分频系数、片内ADC转换器等较为实用功能,故选用此款。

实验中,对日期和时间进行显示,显示的字符数较多,故选用12864LCD屏幕。

该屏幕操作较为便捷,外围电路相对简单,实用性较强。

为了实现要求中的时间日期可调,故按键是不可缺少的,所以使用了较多的按键。

一方面,单片机的I/O口较为充足;另一方面,按键较多,选择的余地较大,方便编程控制。

实验中,并未要求对时间和日期进行保存和掉电续运行,所以并未添加EEPROM和DS12C887-RTC芯片。

实际上,对万年历来说,这是较为重要的,但为了方便实现和编程的简单,此处并未添加,而是使用单片机的定时器控制时间,精度有差别。

且上电默认时间为2014-01-01 09:00:00 之后需要手动调整为正确时间。

要求中的语音报时功能,这里选用ISD1760芯片的模块来帮助实现。

此模块通过软件模拟SPI协议控制。

先将所需要的声音片段录入芯片的EEPROM区域,之后读出各段声音的地址段,然后在程序中定义出相应地址予以控制播放哪一声音片段。

三.电路硬件设计实际效果图四.程序代码部分Main.h#ifndef _MAIN_H#define _MAIN_H#include "reg52.h"#include "INTRINS.H"#include "math.h"#include "string.h"#include "key.h"#include "led.h"#include "12864.h"#include "main.h"#include "isd1700.h"#include "sound.h"extern unsigned int count;extern unsigned int key_time[8]; extern unsigned char key_new; extern unsigned char key_old; extern unsigned char stop_flag; extern unsigned char key_follow[8]; extern unsigned int key_num[8];sbit BEEP=P3^7;sbit ISD_SS=P0^7;sbit ISD_MISO=P0^4;sbit ISD_MOSI=P0^5;sbit ISD_SCLK=P0^6;extern unsigned char date_show[]; extern unsigned char time_show[]; extern unsigned char sec;extern unsigned char min;extern unsigned char hour;extern unsigned char day;extern unsigned char month; extern unsigned char year_f; extern unsigned char year_l; extern unsigned char leap_year_flag;extern unsigned char update_flag;extern unsigned char adjust_flag;extern unsigned char key;unsigned char report();#endifMain.c#include "main.h"unsigned int count=0;unsigned int key_num[8]=0;unsigned char key_new=0;unsigned char key_old=0;unsigned char stop_flag=0;unsigned char key_follow[8]=0;unsigned char sec=1;unsigned char min=0;unsigned char hour=9;unsigned char day=1;unsigned char month=1;unsigned char year_f=20;unsigned char year_l=14;unsigned char leap_year_flag=0;unsigned char date_show[]="2014-01-01"; unsigned char time_show[]="09:00:00";unsigned char update_flag=1;unsigned char key=0;unsigned char adjust_flag=0;unsigned char adjust_pos=0;unsigned char report_flag=0;void main(){unsigned char i;P2=0XFF;BEEP=0;init();initinal(); //调用LCD字库初始化程序TMOD=0x01; //使用定时器T0TH0=(65536-1000)/256; //定时器高八位赋初值TL0=(65536-1000)%256; //定时器低八位赋初值*/ EA=1; //开中断总允许ET0=1; //允许T0中断TR0=1; //启动定时器T0while(1){if(update_flag){lcd_pos(1,0);for(i=0;i<10;i++)write_dat(date_show[i]);lcd_pos(2,4);for(i=0;i<8;i++)write_dat(time_show[i]);update_flag=0;}if(key!=keyscan_nor()){key=keyscan_nor();if(key==8&&!adjust_flag)adjust_flag=1;if(key&&adjust_flag){if(key==1){adjust_pos++;if(adjust_pos==14)adjust_pos=0;}else if(key==2){if(!adjust_pos)adjust_pos=13;elseadjust_pos--;}else if(key==6){if(!adjust_pos)sec++;else if(adjust_pos==1)sec=sec+10;else if(adjust_pos==2)min++;else if(adjust_pos==3)min=min+10;else if(adjust_pos==4)hour++;else if(adjust_pos==5)hour=hour+10;else if(adjust_pos==6)day++;else if(adjust_pos==7)day=day+10;else if(adjust_pos==8)month++;else if(adjust_pos==9)month=month+10;else if(adjust_pos==10)year_l++;else if(adjust_pos==11)year_l=year_l+10;else if(adjust_pos==12)year_f++;else if(adjust_pos==13)year_f=year_f+10; }else if(key==7){if(!adjust_pos)sec--;else if(adjust_pos==1)sec=sec-10;else if(adjust_pos==2)min--;else if(adjust_pos==3)min=min-10;else if(adjust_pos==4)hour--;else if(adjust_pos==5)hour=hour-10;else if(adjust_pos==6)day--;else if(adjust_pos==7)day=day-10;else if(adjust_pos==8)month--;else if(adjust_pos==9)month=month-10;else if(adjust_pos==10)year_l--;else if(adjust_pos==11)year_l=year_l-10;else if(adjust_pos==12)year_f--;else if(adjust_pos==13)year_f=year_f-10;}else if(key==3)adjust_flag=0;if(key==6||key==7){if(sec>=80)sec=0;if(min>=80)min=0;if(hour>=40)hour=0;if(month>30)month=1;if(day>50)day=0;if(year_f>=120)year_f=0;if(year_l>=120)year_l=0;}}}if(key==3)report_flag=1;if(report_flag){clrram();Dingwei(2,1);lcd_mesg("REPORTING!!!");report();clrram();}}}void time0() interrupt 1{static unsigned char timer=0;TH0=(65536-50000)/256; //定时器高八位赋初值TL0=(65536-50000)%256; //定时器低八位赋初值timer++;if(timer==20){sec++;time_show[6]=sec/10+48;time_show[7]=sec%10+48;if(sec>=60){sec=0;min++;time_show[6]=sec/10+48;time_show[7]=sec%10+48;time_show[3]=min/10+48;time_show[4]=min%10+48;}if(min>=60){min=0;hour++;time_show[3]=min/10+48;time_show[4]=min%10+48;time_show[0]=hour/10+48;time_show[1]=hour%10+48;}if(hour>=24){hour=0;day++;time_show[0]=hour/10+48;time_show[1]=hour%10+48;date_show[8]=day/10+48;date_show[9]=day%10+48;}if((day>=29&&!leap_year_flag&&month==2)||(day==30&&leap_year_flag&&month==2)||(day==31&&(month==4||month==6||month==9||month==11))||(month==32)){day=1;month++;date_show[8]=day/10+48;date_show[9]=day%10+48;date_show[5]=month/10+48;date_show[6]=month%10+48;}if(month>=13){month=1;year_l++;date_show[5]=month/10+48;date_show[6]=month%10+48;date_show[0]=year_f/10+48;date_show[1]=year_f%10+48;date_show[2]=year_l/10+48;date_show[3]=year_l%10+48;}if(year_l>=100){year_l=0;year_f++;if(((!((year_f*100+year_l)%4))&&((year_f*100+year_l)%100))||(!((year_f*100+year_l)%40 0)))leap_year_flag=1;elseleap_year_flag=0;date_show[0]=year_f/10+48;date_show[1]=year_f%10+48;date_show[2]=year_l/10+48;date_show[3]=year_l%10+48;}timer=0;update_flag=1;if(adjust_flag){time_show[7]=sec%10+48;time_show[6]=sec/10+48;time_show[4]=min%10+48;time_show[3]=min/10+48;time_show[1]=hour%10+48;time_show[0]=hour/10+48;date_show[9]=day%10+48;date_show[8]=day/10+48;date_show[6]=month%10+48;date_show[5]=month/10+48;date_show[3]=year_l%10+48;date_show[2]=year_l/10+48;date_show[1]=year_f%10+48;date_show[0]=year_f/10+48;}}if(adjust_flag&&timer==10){if(!adjust_pos)time_show[7]=' ';else if(adjust_pos==1)time_show[6]=' ';else if(adjust_pos==2)time_show[4]=' ';else if(adjust_pos==3)time_show[3]=' ';else if(adjust_pos==4)time_show[1]=' ';else if(adjust_pos==5)time_show[0]=' ';else if(adjust_pos==6)date_show[9]=' ';else if(adjust_pos==7)date_show[8]=' ';else if(adjust_pos==8)date_show[6]=' ';else if(adjust_pos==9)date_show[5]=' ';else if(adjust_pos==10)date_show[3]=' ';else if(adjust_pos==11)date_show[2]=' ';else if(adjust_pos==12)date_show[1]=' ';else if(adjust_pos==13)date_show[0]=' ';update_flag=1;}if(!min&&!sec&&!adjust_flag)report_flag=1;}unsigned char report(){PlaySoundTick(11);long_delay();if(!min){if(hour<=10){PlaySoundTick(hour);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else if(hour>10&&hour<20){PlaySoundTick(10);short_delay();PlaySoundTick(hour-10);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else if(hour==20){PlaySoundTick(2);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else{short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(hour-20);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}}else{if(hour<=10){PlaySoundTick(hour);short_delay();PlaySoundTick(12);short_delay();}else if(hour>10&&hour<20){PlaySoundTick(10);short_delay();PlaySoundTick(hour-10);short_delay();PlaySoundTick(12);short_delay();}else if(hour==20){PlaySoundTick(2);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(12);short_delay();}else{PlaySoundTick(2);short_delay();short_delay();PlaySoundTick(hour-20);short_delay();PlaySoundTick(12);short_delay();}if(min<=10){PlaySoundTick(min);short_delay();PlaySoundTick(13);short_delay();}else if(min>10&&min%10){PlaySoundTick(min/10);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(min-10*(min/10));short_delay();PlaySoundTick(13);short_delay();}else{PlaySoundTick(min/10);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(13);short_delay();}}report_flag=0;time_show[7]=sec%10+48;time_show[6]=sec/10+48;time_show[4]=min%10+48;time_show[3]=min/10+48;time_show[1]=hour%10+48;time_show[0]=hour/10+48;date_show[9]=day%10+48;date_show[8]=day/10+48;date_show[6]=month%10+48;date_show[5]=month/10+48;date_show[3]=year_l%10+48;date_show[2]=year_l/10+48;date_show[1]=year_f%10+48;date_show[0]=year_f/10+48;return 0;}Isd1700.h#ifndef _ISD1760_H#define _ISD1760_H#include "main.h"#define ISD1700_PU 0x01#define ISD1700_STOP 0X02 #define ISD1700_REST 0x03 #define ISD1700_CLR_INT 0x04 #define ISD1700_RD_STAUS 0x05 #define ISD1700_RD_PLAY_PTR 0x06 #define ISD1700_PD 0x07#define ISD1700_RD_REC_PTR 0x08 #define ISD1700_DEVID 0x09#define ISD1700_PLAY 0x40 #define ISD1700_REC 0x41 #define ISD1700_ERASE 0x42 #define ISD1700_G_ERASE 0x43 #define ISD1700_RD_APC 0x44 #define ISD1700_WR_APC1 0x45 #define ISD1700_WR_APC2 0x65#define ISD1700_WR_NVCFG 0x46 #define ISD1700_LD_NVCFG 0x47 #define ISD1700_FWD 0x48 #define ISD1700_CHK_MEM 0x49 #define ISD1700_EXTCLK 0x4A #define ISD1700_SET_PLAY 0x80 #define ISD1700_SET_REC 0x81 #define ISD1700_SET_ERASE 0x82 #define NULL 0x00 #define ISD_LED 0x10extern unsigned char data ISD_COMM_RAM_C[7];extern void init(void);extern void delay_isd(int x);extern void comm_sate(void);extern void rest_isd_comm_ptr(void);extern unsigned char T_R_comm_byte(unsigned char comm_data );extern void isd1700_par2_comm(unsigned char comm_par, unsigned int data_par);extern void isd1700_Npar_comm(unsigned char comm_par,comm_byte_count);extern void isd1700_7byte_comm(unsigned char comm_par, unsigned int star_addr, unsigned int end_addr);extern void spi_pu (void);extern void spi_stop (void);extern void spi_Rest ( void );extern void spi_CLR_INT(void);extern void spi_RD_STAUS(void);extern void spi_RD_play_ptr(void);extern void spi_pd(void);extern void spi_RD_rec_ptr(void);extern void spi_devid(void);extern void spi_play(void);extern void spi_rec (void);extern void spi_erase (void);extern void spi_G_ERASE (void);extern void spi_rd_apc(void);extern void spi_wr_apc1 (void);extern void spi_wr_apc2 (void);extern void spi_wr_nvcfg (void);extern void spi_ld_nvcfg (void);extern void spi_fwd (void);extern void spi_chk_mem(void);extern void spi_CurrRowAddr(void);extern void seril_back_sate(unsigned char byte_number);extern void spi_set_opt(unsigned char spi_set_comm);void init(void);#endifIsd1700.c//#pragma src#include "isd1700.h"#include "sound.h"#define uchar unsigned char#define uint unsigned intsbit DAC_sync=P2^0;sbit DAC_sclk=P2^1;sbit DAC_din =P2^2;bit re_fig;uchar data comm_temp;uchar data ISD_COMM_RAM[7];uchar data ISD_COMM_RAM_C[7];uchar data *isd_comm_ptr;uchar data *back_data_ptr;void init(void);void isd_delay(int x);void comm_sate(void);void rest_isd_comm_ptr(void);uchar T_R_comm_byte( uchar comm_data );void isd1700_par2_comm(uchar comm_par, uint data_par);void isd1700_Npar_comm(uchar comm_par,comm_byte_count); //no parameter comm void isd1700_7byte_comm(uchar comm_par, uint star_addr, uint end_addr);void spi_pu (void);void spi_stop (void);void spi_Rest ( void );void spi_CLR_INT(void);void spi_RD_STAUS(void);void spi_RD_play_ptr(void);void spi_pd(void);void spi_RD_rec_ptr(void);void spi_devid(void);void spi_play(void);void spi_rec (void);void spi_erase (void);void spi_G_ERASE (void);void spi_rd_apc(void);void spi_wr_apc1 (void);void spi_wr_apc2 (void);void spi_wr_nvcfg (void);void spi_ld_nvcfg (void);void spi_fwd (void);void spi_chk_mem(void);void spi_CurrRowAddr(void);void seril_back_sate(uchar byte_number); void spi_set_opt(uchar spi_set_comm);void comm_sate(void){uchar sate_temp;uint apc_temp;if(RI){ sate_temp=SBUF;if(sate_temp==0x09){ spi_devid();}if(sate_temp==0x44){spi_rd_apc();}if(sate_temp==0x40){spi_play();}if(sate_temp==0x04){spi_CLR_INT();}if(sate_temp==0x05){spi_RD_STAUS();}if(sate_temp==0x43){ spi_G_ERASE();}if(sate_temp==0x01){ spi_pu ();}if(sate_temp==0x02){ spi_stop();}if(sate_temp==0x03){ spi_Rest ();}if(sate_temp==0x06){spi_RD_play_ptr();}if(sate_temp==0x07){spi_pd();}if(sate_temp==0x08){ spi_RD_rec_ptr();}if(sate_temp==0x41){ spi_rec();}if(sate_temp==0x42){ spi_erase();}if(sate_temp==0x45){spi_wr_apc1 ();}if(sate_temp==0x65){ spi_wr_apc2 ();}if(sate_temp==0x46){ spi_wr_nvcfg ();}if(sate_temp==0x47){ spi_ld_nvcfg ();}if(sate_temp==0x48){ spi_fwd ();}if(sate_temp==0x49){ spi_chk_mem();}if(sate_temp==0x60){ spi_CurrRowAddr();}if(sate_temp==0x80){spi_set_opt(ISD1700_SET_PLAY|ISD_LED);//spi_set_opt(ISD1700_SET_PLAY);}if(sate_temp==0x81){spi_set_opt(ISD1700_SET_REC|ISD_LED);//spi_set_opt(ISD1700_SET_REC);ISD_COMM_RAM_C[0]=ISD1700_SET_REC ;seril_back_sate(1);}if(sate_temp==0x82){spi_set_opt(ISD1700_SET_ERASE|ISD_LED);//spi_set_opt(ISD1700_SET_ERASE);}if(sate_temp==ISD1700_WR_APC2){RI=0;while(!RI);apc_temp=SBUF;apc_temp=apc_temp<<8;RI=0;while(!RI);apc_temp|=SBUF;RI=0;ISD_SS=0;isd1700_par2_comm(ISD1700_WR_APC2,apc_temp);ISD_SS=1;}RI=0;}if(re_fig){rest_isd_comm_ptr();sate_temp=0;do{SBUF=*back_data_ptr++;while(!TI);TI=0;}while(++sate_temp<=2);re_fig=0;}}void spi_set_opt(uchar spi_set_comm){uint start_addr,end_addr;RI=0;while(!RI);start_addr=SBUF;start_addr=start_addr<<8;RI=0;while(!RI);start_addr|=SBUF;RI=0;while(!RI);end_addr=SBUF;end_addr=start_addr<<8;RI=0;while(!RI);end_addr|=SBUF;RI=0;ISD_SS=0;isd1700_7byte_comm(spi_set_comm, start_addr, end_addr);ISD_SS=1;}void spi_pu (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_PU,2);ISD_SS=1;}void spi_stop (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_STOP,2);ISD_SS=1;ISD_COMM_RAM_C[0]=ISD1700_STOP ;seril_back_sate(1);}void spi_Rest (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_REST,2);ISD_SS=1;}void spi_CLR_INT(void){ISD_SS=0;isd1700_Npar_comm(ISD1700_CLR_INT,2);ISD_SS=1;}void spi_RD_STAUS(void){ uchar i;ISD_SS=0;isd1700_Npar_comm(ISD1700_RD_STAUS,3);ISD_SS=1;i=ISD_COMM_RAM_C[1];//j=ISD_COMM_RAM_C[2];ISD_COMM_RAM_C[1]=ISD_COMM_RAM_C[0];ISD_COMM_RAM_C[0]=i;seril_back_sate(3);}void spi_CurrRowAddr(void){ uchar i;ISD_SS=0;isd1700_Npar_comm(ISD1700_RD_STAUS,3);ISD_SS=1;i=ISD_COMM_RAM_C[1];ISD_COMM_RAM_C[1]=ISD_COMM_RAM_C[0]>>5|ISD_COMM_RAM_C[1]<<3;ISD_COMM_RAM_C[0]= i >>5;seril_back_sate(3);}void spi_RD_play_ptr(void){ uchar i;ISD_SS=0;isd1700_Npar_comm(ISD1700_RD_PLAY_PTR,4);ISD_SS=1;i=ISD_COMM_RAM_C[3]&0x03;ISD_COMM_RAM_C[3]=ISD_COMM_RAM_C[2];ISD_COMM_RAM_C[2]=i;seril_back_sate(4);}void spi_pd(void){ISD_SS=0;isd1700_Npar_comm(ISD1700_PD,2);ISD_SS=1;}void spi_RD_rec_ptr(void){ uchar i;ISD_SS=0;isd1700_Npar_comm(ISD1700_RD_REC_PTR,4);ISD_SS=1;i=ISD_COMM_RAM_C[3]&0x03;ISD_COMM_RAM_C[3]=ISD_COMM_RAM_C[2];ISD_COMM_RAM_C[2]=i;seril_back_sate(4);}void spi_devid(void){ISD_SS=0;isd1700_Npar_comm(ISD1700_DEVID,3);ISD_SS=1;ISD_COMM_RAM_C[2]=ISD_COMM_RAM_C[2]&0xf8;seril_back_sate(3);}void spi_play(void){ISD_SS=0;isd1700_Npar_comm(ISD1700_PLAY|ISD_LED,2);ISD_SS=1;}void spi_rec (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_REC|ISD_LED,2);ISD_SS=1;ISD_COMM_RAM_C[0]=ISD1700_REC ;seril_back_sate(1);}void spi_erase (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_ERASE|ISD_LED,2);ISD_SS=1;}void spi_G_ERASE (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_G_ERASE|ISD_LED,2);ISD_SS=1;}void spi_rd_apc(void){ISD_SS=0;isd1700_Npar_comm(ISD1700_RD_APC,4);ISD_SS=1;seril_back_sate(4);}void spi_wr_apc1 (void){}void spi_wr_apc2 (void){ISD_SS=0;isd1700_par2_comm(ISD1700_WR_APC2, 0x0400);ISD_SS=1;}void spi_wr_nvcfg (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_WR_NVCFG,2);ISD_SS=1;}void spi_ld_nvcfg (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_LD_NVCFG ,2);ISD_SS=1;}void spi_fwd (void){ISD_SS=0;isd1700_Npar_comm(ISD1700_FWD,2);ISD_SS=1;}void spi_chk_mem(void){ISD_SS=0;isd1700_Npar_comm(ISD1700_CHK_MEM,2);ISD_SS=1;}void seril_back_sate(uchar byte_number){uchar sate_temp;rest_isd_comm_ptr();sate_temp=0;do{SBUF=*back_data_ptr++;while(!TI);TI=0;}while(++sate_temp<byte_number);}void rest_isd_comm_ptr(void){isd_comm_ptr=ISD_COMM_RAM;back_data_ptr=ISD_COMM_RAM_C;}void isd1700_Npar_comm (uchar comm_par,comm_byte_count) {uchar i;i=0;ISD_COMM_RAM[0]=comm_par;isd_comm_ptr=&ISD_COMM_RAM[1];do{*isd_comm_ptr++=NULL;}while(++i<comm_byte_count-1);rest_isd_comm_ptr();i=0;do{*back_data_ptr++=T_R_comm_byte(*isd_comm_ptr++);i++;}while(i<comm_byte_count);}void isd1700_par2_comm(uchar comm_par, uint data_par){uchar i;ISD_COMM_RAM[0]=comm_par;ISD_COMM_RAM[1]=data_par;ISD_COMM_RAM[2]=data_par>>8;rest_isd_comm_ptr();i=0;do{*back_data_ptr++=T_R_comm_byte(*isd_comm_ptr++);i++;}while(i<3);}void isd1700_7byte_comm(uchar comm_par, uint star_addr, uint end_addr) {uchar i;ISD_COMM_RAM[0]=comm_par;ISD_COMM_RAM[1]=NULL;ISD_COMM_RAM[2]=star_addr;ISD_COMM_RAM[3]=star_addr>>8;ISD_COMM_RAM[4]=end_addr;ISD_COMM_RAM[5]=end_addr>>8;ISD_COMM_RAM[6]=NULL;rest_isd_comm_ptr();i=0;do{*back_data_ptr++=T_R_comm_byte(*isd_comm_ptr++);i++;}while(i<=7);}uchar T_R_comm_byte( uchar comm_data ){uchar bit_nuber;uchar temp;bit_nuber=0;temp=0;do{ISD_SCLK=0;isd_delay(1);if((comm_data>>bit_nuber&0x01)!=0){ISD_MOSI=1;}else{ISD_MOSI=0;}if(ISD_MISO){temp=(temp>>1)|0x80;}else{temp=temp>>1;}ISD_SCLK=1;isd_delay(1);}while(++bit_nuber<=7);ISD_MOSI=0;return (temp);}void isd_delay(int x){uchar i;for(; x>=1; x--){for(;i<=20;i++);}}void init(void){TMOD=0x21;SCON=0x50;TL0=0x00; //25msTH0=0x70; //25msTH1=0xE8;TL1=0xE8; //波特率:1200bps(12MHz:0xE6 11.0592MHz:0xE8)ET0=1;EA=1;TR1=1;IT0 = 0;EX0 = 0;spi_pu();spi_devid();}12864.h#ifndef _12864_H#define _12864_H#include "main.h"sbit RS =P3^2;sbit RW=P3^3;sbit EN=P3^4;void buzy();void TransferData(char data1,bit DI);void Dingwei(unsigned char line,unsigned char row);void delayms(unsigned int n);void delay(unsigned int m);void lcd_mesg(unsigned char code *adder1);void displayonechar(unsigned int data2);void initinal(void) ; //LCD字库初始化程序void clrram(void);void lcd_pos(unsigned char ,unsigned char );void write_dat(unsigned char);extern unsigned char time_show[];extern unsigned int aaa;#endif12864.c#include "12864.h"#define DataPort P1void initinal(void) //LCD字库初始化程序{TransferData(0x30,0); //8BIT设置,RE=0: basic instruction setTransferData(0x08,0); //Display on ControlTransferData(0x10,0); //Cursor Display Control光标设置TransferData(0x0C,0); //Display Control,D=1,显示开TransferData(0x01,0); //Display Clear}void buzy(){DataPort=0xff;RW=1;RS=0;EN=1;while(DataPort&0x80);EN=0;}void Dingwei(unsigned char line,unsigned char row) //定位在哪行哪列显示{unsigned int i;switch(line){case 1: i=0x80+row;break;case 2: i=0x90+row;break;case 3: i=0x88+row;break;case 4: i=0x98+row;break;default: i=0x80;break;}TransferData(i,0);delay(1);}void lcd_mesg(unsigned char code *addr) //传送一个字符串{while(*addr>0){TransferData(*addr,1);addr++;}}void TransferData(char data1,bit DI) //传送数据或者命令,当DI=0,传送命令,当DI=1,传送数据.{buzy();RW=0;RS=DI;DataPort=data1;EN=1;EN=0;}void delayms(unsigned int n) //延时10×n毫秒程序{unsigned int i,j;for(i=0;i<3*n;i++)for(j=0;j<2000;j++);}void delay(unsigned int m) //延时程序,微妙级{while(m--){_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}}void write_cmd(unsigned char cmd){RS=0;RW=0;EN=0;P1=cmd;delayms(1);EN=1;delayms(1);EN=0;}void write_dat(unsigned char dat){RS=1;RW=0;EN=0;P1=dat;delayms(1);EN=1;delayms(1);EN=0;}void lcd_pos(unsigned char x,unsigned char y){unsigned char pos;if(x==0)x=0x80;else if(x==1)x=0x90;else if(x==2)x=0x88;else if(x==3)x=0x98;pos=x+y;write_cmd(pos);}void clrram(void){write_cmd(0x30);write_cmd(0x01);}Sound.h#ifndef _SOUND_H#define _SOUND_H#include "main.h"//以下为语音信息对应播放起始地址定义,A为开始,B为结束#define sound_0A 0x0012#define sound_0B 0x0017#define sound_1A 0x0019#define sound_1B 0x0025#define sound_2A 0x0027#define sound_2B 0x002e#define sound_3A 0x002f#define sound_3B 0x0039#define sound_4A 0x003b#define sound_4B 0x0048#define sound_5A 0x004a#define sound_5B 0x004f#define sound_6A 0x0052#define sound_6B 0x0159#define sound_7A 0x005c#define sound_7B 0x0062#define sound_8A 0x0065#define sound_8B 0x0131#define sound_9A 0x006f#define sound_9B 0x015F#define sound_10A 0x0079#define sound_10B 0x015E#define sound_11A 0x0082#define sound_11B 0x018A#define sound_12A 0x0091#define sound_12B 0x0100#define sound_13A 0x009f#define sound_13B 0x0100#define sound_14A 0x00ac#define sound_14B 0x0100void GetSound(unsigned char soundtick); void PlaySoundTick(unsigned char number); void delay_isd(unsigned int time);void short_delay();void long_delay();#endifSound.c#include "sound.h"void GetSound(unsigned char soundtick){ISD_SS=0;switch(soundtick){case 0:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_0A, sound_0B); }break;case 1:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_1A, sound_1B); }break;case 2:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_2A, sound_2B); }break;case 3:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_3A, sound_3B); }break;case 4:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_4A, sound_4B); }break;case 5:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_5A, sound_5B); }break;case 6:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_6A, sound_6B); }break;case 7:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_7A, sound_7B); }break;case 8:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_8A, sound_8B); }break;case 9:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_9A, sound_9B); }break;case 10:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_10A, sound_10B); }break;case 11:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_11A, sound_11B); }break;case 12:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_12A, sound_12B); }break;case 13:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_13A, sound_13B); }break;case 14:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_14A, sound_14B); }break;default: break;}ISD_SS=1;}void PlaySoundTick(unsigned char number) {spi_stop ();delay_isd(30000);GetSound(number);}void delay_isd(unsigned int time){while(time--!=0);}void short_delay(){delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);}void long_delay(){short_delay();short_delay();short_delay();short_delay();}Key.h#ifndef _KEY_H#define _KEY_H#include "main.h"sbit KEY1=P2^0;sbit KEY2=P2^1;sbit KEY3=P2^2;sbit KEY4=P2^3;sbit KEY5=P2^4;sbit KEY6=P2^5;sbit KEY7=P2^6;sbit KEY8=P2^7;sbit KEY_SURE=P3^6;void key_delay(unsigned char z); unsigned char keyscan_nor();#endifKey.c#include "key.h"unsigned char keyscan_nor() {if(!KEY1){key_delay(20);if(!KEY1){LED1=0;return 1;}}if(!KEY2){key_delay(20);if(!KEY2){LED2=0;return 2;}}if(!KEY3){key_delay(20);if(!KEY3){LED3=0;return 3;}}if(!KEY4){key_delay(20);if(!KEY4){LED4=0;return 4;}}if(!KEY5){key_delay(20);if(!KEY5){LED5=0;return 5;}}if(!KEY6){key_delay(20);if(!KEY6){LED6=0;return 6;}}if(!KEY7){key_delay(20);if(!KEY7){LED7=0;return 7;}}if(!KEY8){key_delay(20);if(!KEY8){LED8=0;return 8;}}return 0;}void key_delay(unsigned char z) {unsigned char x,y;for(x=z;x>0;x--)for(y=110;y>0;y--); }五.参与制作人员ZYL毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

基于51单片机DS1302万年历课程设计报告

基于51单片机DS1302万年历课程设计报告

基于51单片机DS1302万年历课程设计报告课程名称:微机原理课程设计题目:基于DS1302芯片万年历摘要DS1302 是DALLAS 公司推出的涓流充电时钟芯片,内含有一个实时时钟/日历和31 字节静态RAM,通过简单的串行接口与单片机进行通信实时时钟/日历电路.提供秒、分、时、日、日期.、月、年的信息,每月的天数和闰年的天数可自动调整时钟。

本次课程设计的是使用专门的时钟芯片DS1302在数码管上显示的数字电子钟,并能通过按键对其进行调时和校准以及实现年月日。

DS1302是一种高性能、低功耗、带RAM的实时时钟芯片,它能够对时,分,秒进行精确计时,它与单片机的接口使用同步串行通信,仅用3条线与之相连接,就可以实现STC-51单片机对其进行读写操作,把读出的时间数据送到数码管上显示。

程序运行时,数码管将从当前时间开始显示,通过调节K2键和K3键可以分别对小时和分钟进行调整,调整后,时钟以新的时间为起点继续刷新显示,通过调节K1键可以切换年月日和时钟显示。

关键字:STC-51单片机,DS1302,数码管,动态扫描,调时,切换,秒闪;目录一、设计任务与要求 (4)1.1设计任务 (4)1.2设计要求 (4)1.3发挥部分 (4)1.4创新部分 (4)二、方案总体设计 (5)2.1设计目的 (5)2.2硬件功能描述 (5)2.3设计方案选择 (5)2.4总体设计 (6)2.5总体方案及基本工作原理 (6)三、硬件设计 (7)3.1 STC89C51芯片 (7)3.2电源模块及晶振模块 (7)3.3 DS1302 (8)3.4数码管显示模块 (9)3.5蜂鸣器部分 (10)3.6按键部分 (11)四、软件设计 (13)4.1软件流程图 (13)4.2 软件设计 (13)主函数部分: (13)五、系统仿真和调试 (15)5.1 仿真软件简介 (15)5.2硬件调试 (15)5.3软件调试 (15)5.4使用说明 (16)六、设计总结与体会 (18)6.1学习方面 (18)6.2工作方面 (18)七、参考文献 (19)一、设计任务与要求1.1设计任务DS1302万年历;1.2设计要求利用DS1302生成万年历,时钟可调,通过四位数码管显示,并可实现秒闪功能,同时蜂鸣器闹铃;1.3发挥部分设置按键K3用来切换显示时钟和年月日;1.4创新部分只设置了两个按键K1和K2来调节时分,时钟到24归零,分钟到60归零,分钟有长按迅速调节功能。

单片机实训报告 - 基于51单片机的数字万年历设计

单片机实训报告 - 基于51单片机的数字万年历设计

《单片机应用实训》课程设计报告姓名:班级:指导老师:实习时间:基于51单片机的数字万年历设计摘要:利用单片机、DS1302芯片、DS18B20芯片搭建一个数字万年历模块,编写程序,实现了年、月、日、时、分、秒计数,温度测量、时钟报警等功能。

关键词: STC89C51 数字时钟一、 实训目的电子时间显示器现在在任何地方都有涉及到,例如电子表和商场的时间显示等等,所以它是一种既方便又实用的技术,而我们所做的万年历则是在它的基础上做出来的,通过万年历的制作,我们可以进一步了解计数器的使用,了解各个进制之间的转换,以及其他的任意进制计数器的构成方法等,并且进一步了解DS1302芯片、DS18B20芯片的使用等。

二、总体设计方案根据项目任务,该系统采用STC89C51为控制核心,以电子大赛开发板为实验平台,利用各种芯片实现相应功能,三、硬件设计1、单片机最小系统STC89C52为40引脚双列直插芯片,有四个I/O 口P0,P1,P2,P3,每一条I/O 线都能独立地作输出或输入。

单片机的最小系统如下图所示,18引脚和19引脚接晶振电路,XTAL1接外部晶振和微调电容的一端,在片内它是振荡器倒相放大器的输入,XTAL2接外部晶振和微调电容的另一端,在片内它是振荡器倒相放大器的输出。

第9引脚为复位输入端,接上电容,电阻及开关后够成上电复位电路,20引脚为接地端,40引脚为电源端。

时钟振荡电路用于产生单片机正常工作时所需要的时钟信号,电路由两个22pF的瓷片电容和一个12MHz的晶振组成,并接入到单片机的XTAL1和XTAL2引脚处 使单片机工作于内部振荡模式。

此电路在加电后延迟大约10ms振荡器起振,在XTAL2引脚产生幅度为3V左右的正弦波时钟信号,其振荡频率主要由石英晶振的频率决定。

时钟振荡电路如下图所示。

复位电路由电阻和极性电容组成,如下图所示,通过高电平使单片机复位,在时钟电路开始工作后,当高电平的时间超过大约2us时,即可实现复位。

基于51单片机,电子显示时钟带闹钟、整点报时、日期、星期

基于51单片机,电子显示时钟带闹钟、整点报时、日期、星期
void xianshishuzu()
{ StrTab[1]=second/10; //秒十位
StrTab[0]=second%10; //秒个位
StrTab[2]=10; //间隔符-
StrTab[4]=minute/10; //分十位
StrTab[3]=minute%10; //分个位
StrTab[5]=10; //间隔符-
void display(uchar w[32])
{ unsigned int i,j,c=0;
if(a==0)//正常时间显示
{ for(i=0;i<8;i++) //依次将数组w中八个数取出,并显示
{ P2=weikong_code[i]; //位选
j=w[i]; //取出要显示的数码
P0=tab[j]; //取出段选编码
if(month==13)
{month=1; year++;
if(year==10000)
year=0;}}
week++;//星期走
if(week==8)
week=1;
data1();
week1();
while(second==err);
}
}
/**********************键盘扫描子程序*************************/
{if(dБайду номын сангаасy==30); //闰年29天
{day=1; month++;
if(month==13)
{month=1; year++;
if(year==10000)
year=0;}}}

51单片机万年历课程设计报告【VIP专享】

51单片机万年历课程设计报告【VIP专享】

一、设计任务:1、设计任务:设计并制作一个数字钟。

2、设计要求:●显示年月日时分秒及星期信息●具有可调整日期和时间功能●增加闰年计算功能●显示部分由LCD1602完成二、方案论证:1.显示部分:显示部分是本次设计的重要部分,一般有以下两种方案:方案一:采用LED显示,分静态显示和动态显示。

对于静态显示方式,所需的译码驱动装置很多,引线多而复杂,且可靠性也较低。

而对于动态显示方式,虽可以避免静态显示的问题,但设计上如果处理不当,易造成亮度低,有闪烁等问题。

方案二:采用LCD显示。

LCD液晶显示具有丰富多样性、灵活性、电路简单、易于控制而且功耗小等优点,对于信息量多的系统,是比较适合的。

鉴于上述原因,我们采用方案二。

2.数字时钟:数字时钟是本设计的核心的部分。

根据需要可采用以下两种方案实现:方案一:方案完全用软件实现数字时钟。

原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。

利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将时字节清零。

该方案具有硬件电路简单的特点,但当单片机不上电,程序将不执行。

而且由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。

方案二:方案采用Dallas公司的专用时钟芯片DS1302。

该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。

为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。

当电网电压不足或突然掉电时,可使系统自动转换到内部锂电池供电系统。

而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。

基于时钟芯片的上述优点,本设计采用方案二完成数字时钟的功能。

基于51单片机多功能电子时钟课程设计报告

基于51单片机多功能电子时钟课程设计报告

单片机课程设计报告多功能电子数字钟目录一课程设计题目-------------------------------- 3 二电路设计--------------------------------------- 4 三程序总体设计思路概述------------------- 5 四各模块程序设计及流程图---------------- 6 五程序及程序说明见附录------------------- ** 六课程设计心得及体会---------------------- 11 七参考资料--------------------------------------- 12一题目及要求本次单片机课程设计在Proteus软件仿真平台下实现,完成电路设计连接,编程、调试,仿真出实验结果。

具体要如下:用8051单片机设计扩展6位数码管的静态或动态显示电路,再连接几个按键和一个蜂鸣器报警电路,设计出一个多功能电子钟,实现以下功能:(1)走时(能实现时分秒,年月日的计时)(2)显示(分屏切换显示时分秒和年月日,修改时能定位闪烁显示)(3)校时(能用按键修改和校准时钟)(4)定时报警(能定点报时)本次课程设计要求每个学生使用Proteus仿真软件独立设计制作出电路图、完成程序设计和系统仿真调试,验收时能操作演示。

最后验收检查结果,评定成绩分为:(1)完成“走时+显示+秒闪”功能----及格(2)完成“校时修改”功能----中等(3)完成“校时修改位闪”----良好(4)完成“定点报警”功能,且使用资源少----优秀二电路设计(电路设计图见附件电路图)(1)采用89C51型号单片机(2)采用8位共阴数码管(3)因为单片机输出高电平时输出的电流不足以驱动数码管,所以在P0口与8位数码管之间加74LS373来驱动数码管(4)P2口与数码管选择位直接加74LS138译码器(5)蜂鸣器接P3.7口。

因为单片机输出高电平时输出的电流不足以驱动蜂鸣器所以蜂鸣器,所以P3.7口与蜂鸣器直接接反相器再接蜂鸣器的一端,蜂鸣器的另一端接5V电源。

基于51单片机电子万年历设计

基于51单片机电子万年历设计

基于51单片机电子万年历设计大连民族学院机电信息工程学院自动化系单片机系统课程设计报告题目:电子万年历专业:自动化班级:106学生姓名:指导教师:设计完成日期:2012年11月30日1任务分析和性能指标1.1任务分析设计一个具有报时功能、停电正常运行(来电无需校时)、闹钟功能、带有年月日、时分秒及星期显示的电子日历。

电子万年历是日常生活中常见的小型电子产品,其形式多种多样,小到带有日期的电子腕表,大到公共场所悬挂的大型电子日历,此外,眼下我们还常能在宾馆、饭店等场所见到一种带有年、月、日、时、分、秒、星期甚至节气等信息的电子日历牌。

电子日历的主要功能是给人们提供时间和日期信息,无论其形式如何,从外部都可分为显示和校准两部分。

为使电子日历协调工作,整个系统从功能上可分为实时时钟、显示和键盘三个模块,分别完成时间和日期的计算以及人机交互的管理等。

1.2性能指标实时时钟(RTC:Real Time Clock)是系统的核心,其运行精度直接影响产品质量。

实时时钟的实现有两种方案可选,一是利用单片机系统时钟和中断完成时间和日期的计算;二是利用专用时钟芯片。

前者不用附加芯片,系统简单,但是累计误差较大,只有短时计时才可使用。

长时间计时一般都采用后者。

后者采用32.768KHz晶体振荡器振作为脉冲源,内部的15位计数器刚好产生标准秒脉冲。

该类芯片除时钟计时外,还有年月日和星期的计算功能,并且还可计算闰年。

芯片初始化后可脱离CPU自动运行,有些芯片内部带有电池,出厂时芯片即开始运行。

专用时钟芯片的种类很多,与CPU的通信方式有并行,也有串行。

常见的芯片有DALLAS 公司生产的DS1302和DS12C887,前者为串行,需要外加后备电池;后者为并行,芯片内置锂电池和晶体振荡器,无外加电源的情况下可运行10年。

此外,还有许多时钟芯片,如Epson、Holtek、深圳兴威帆等公司都推出自己的时钟芯片。

这次我们选用的芯片是DS12C887。

基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)

基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)

单片微型计算机课程设计报告多功能电子数字钟姓 名 许伟敏学 号 060301021124班 级 电气二班指导教师 林卫2009-06-25目录一:概述 (1)二:设计基本原理简介 (2)三:设计要求及说明 (3)四:整体设计方案 (4)系统硬件电路设计 4系统软件总流程设计 5模块划分及分析 6五:单模块流程设计 (8)各模块设计概述、流程图 8模块源程序集合及注释 13六:单模块软件测试 (23)七:系统检测调试 (24)硬件电路调试软件部分烧写调试八:系统优化及拓展 (26)九:心得体会 (28)单片微型计算机课程设计 基于汇编语言的电子数字钟 概述课程设计流程图↑一、概述课程设计题目:电子数字钟应用知识简介:● 51单片机单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

作为嵌入式系统控制核心的单片机具有其体积小、功能全、性价比高等诸多优点。

51系列单片机是国内目前应用最广泛的单片机之一,随着嵌入式系统、片上系统等概念的提出和普遍接受及应用,51系列单片机的发展又进入了一个新的阶段。

在今后很长一段时间内51系列单片机仍将占据嵌入式系统产品的中低端市场。

● 汇编语言汇编语言是一种面向机器的计算机低级编程语言,通常是为特定的计算机或系列计算机专门设计的。

汇编语言保持了机器语言的优点,具有直接和简捷的特点,其代码具有效率高实时性强等优点。

但是对于复杂的运算或大型程序,用汇编语言编写将非常耗时。

汇编语言可以与高级语言配合使用,应用十分广泛。

● ISPISP (In-System Programming )在系统可编程,是当今流行的单片机编程模式,指电路板上的空白元器件可以编程写入最终用户代码,而不需要从电路板上取下元器件。

已经编程的器件也可以用ISP 方式擦除或再编程。

本次课程设计便使用ISP 方式,直接将编写好的程序下载到连接好的单片机中进行调试。

51单片机万年历课程设计报告

51单片机万年历课程设计报告

一、设计任务:1、设计任务:设计并制作一个数字钟。

2、设计要求:●显示年月日时分秒及星期信息●具有可调整日期和时间功能●增加闰年计算功能●显示部分由LCD1602完成二、方案论证:1.显示部分:显示部分是本次设计的重要部分,一般有以下两种方案:方案一:采用LED显示,分静态显示和动态显示。

对于静态显示方式,所需的译码驱动装置很多,引线多而复杂,且可靠性也较低。

而对于动态显示方式,虽可以避免静态显示的问题,但设计上如果处理不当,易造成亮度低,有闪烁等问题。

方案二:采用LCD显示。

LCD液晶显示具有丰富多样性、灵活性、电路简单、易于控制而且功耗小等优点,对于信息量多的系统,是比较适合的。

鉴于上述原因,我们采用方案二。

2.数字时钟:数字时钟是本设计的核心的部分。

根据需要可采用以下两种方案实现:方案一:方案完全用软件实现数字时钟。

原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。

利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将时字节清零。

该方案具有硬件电路简单的特点,但当单片机不上电,程序将不执行。

而且由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。

方案二:方案采用Dallas公司的专用时钟芯片DS1302。

该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。

为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。

当电网电压不足或突然掉电时,可使系统自动转换到内部锂电池供电系统。

而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。

基于时钟芯片的上述优点,本设计采用方案二完成数字时钟的功能。

基于51单片机的电子闹钟设计报告

基于51单片机的电子闹钟设计报告

*********大学********学院电子闹钟设计报告专业:******学号:******姓名:*******一.仿真电路图:二. 器件30P电容2个12MHZ晶振1个喇叭1个38译码器1个89c52单片机1个按键4个5V电源300欧电阻7个8位共阴数码管1个三.流程图:电子闹钟主流程图:调时、调日期、调星期流程图:倒计时结束流程图:音乐播放流程图:闹铃功能流程图:四.功能介绍:有计时,计日期,计星期,调时、调日期、调星期、闹钟、调闹钟、音乐闹铃、秒表、99秒倒计时、60秒倒计时、5秒倒计时、倒计时结束播放提醒音乐、直接按键播放音乐共计15个小的功能,分为四个功能模块,用四个按键来实现1.调时,查看日期以及调日期,查看星期以及调星期按键1进入该模块后,显示该模块的界面“1234”,分别代表在该界面中要用到的按键编号。

此时按1即进入调时界面,显示当前时间,按1秒加1,按2分加1,按3时加1,按4退出该界面而回到模块界面。

此时按2即进入查看日期以及调日期的界面,显示当前日期,按1天加1,按2月加1,按3年加1,按4退出该界面而回到模块界面。

此时按3即进入查看星期以及调星期的界面,显示当前星期,按1星期加1,按4退出该界面而回到模块界面。

此时按4则退出功能模块1而回到主界面。

2.调闹钟进入该模块时,显示闹钟时间,按1秒加1,按2分加1,按3时加1,按4退出调闹钟模块而回到主界面3.秒表,倒计时进入该模块后,显示界面“12 4”,分别代表在该界面中要用到的按键编号。

此时按1进入秒表计时状态,按4退出,回到模块界面。

此时按2进入99秒倒计时状态,按1切换到60秒倒计时,按1切换到5秒倒计时,在倒计时进行中,按4可以回到模块界面。

此时按4,可以回到主界面4.音乐进入该界面后,显示界面“00-00-00”,按1播放歌曲1,按2播放歌曲2,按3播放歌曲3,按4播放歌曲4,在播放歌曲时,按4可以结束播放音乐并且回到主界面。

单片机课程设计--基于51单片机的万年历

单片机课程设计--基于51单片机的万年历

单片机课程设计--基于51单片机的万年历单片机课程设计基于 51 单片机的万年历一、引言在现代生活中,时间的准确记录和显示对于我们的日常生活和工作具有重要意义。

万年历作为一种能够同时显示年、月、日、星期、时、分、秒等信息的设备,给人们带来了极大的便利。

本次课程设计旨在利用 51 单片机实现一个简单实用的万年历系统。

二、系统设计方案(一)硬件设计1、单片机选型选择经典的 51 单片机,如 STC89C52 单片机,其具有性能稳定、价格低廉、资源丰富等优点,能够满足本设计的需求。

2、显示模块采用液晶显示屏(LCD1602)作为显示设备,能够清晰地显示数字和字符信息。

3、时钟芯片选用DS1302 时钟芯片,它可以提供精确的实时时钟数据,包括年、月、日、星期、时、分、秒等。

4、按键模块设置三个按键,分别用于调整时间、选择调整项(年、月、日、时、分、秒等)以及切换显示模式(正常显示和设置模式)。

(二)软件设计1、主程序流程系统初始化后,首先读取 DS1302 中的时间数据,并将其显示在LCD1602 上。

然后进入循环,不断检测按键状态,根据按键操作进行相应的时间调整和显示模式切换。

2、时间读取与显示程序通过与 DS1302 进行通信,读取实时时间数据,并将其转换为适合LCD1602 显示的格式进行显示。

3、按键处理程序检测按键的按下状态,根据不同的按键执行相应的操作,如调整时间、切换显示模式等。

三、硬件电路设计(一)单片机最小系统单片机最小系统包括单片机芯片、晶振电路和复位电路。

晶振电路为单片机提供时钟信号,复位电路用于系统初始化时将单片机的状态恢复到初始值。

(二)显示电路LCD1602 显示屏通过数据总线和控制总线与单片机相连。

数据总线用于传输要显示的数据,控制总线用于控制显示屏的读写操作和显示模式。

(三)时钟电路DS1302 时钟芯片通过串行通信接口与单片机进行通信。

单片机通过发送特定的指令和数据,对 DS1302 进行读写操作,获取或设置时间信息。

51单片机数字时钟(带闹钟)

51单片机数字时钟(带闹钟)

51单片机数字时钟(带闹钟)计算机硬件综合课程设计报告课目:学院:班级:姓名:指导教师:目录1.1 功能需求1.2 设计要求2.1 总体描述2.2 系统总体框图2.3 Proteus仿真电路图3 软件设计流程及描述3.1 程序流程图3.2 函数模块及功能4 心得体会附:源程序11.1功能需求(1)实现数字时钟准确实时的计时与显示功能;(2)实现闹钟功能,即系统时间到达闹钟时间时闹铃响;(3)实现时间和闹钟时间的调时功能;(4)刚启动系统的时候在数码管上滚动显示数字串(学号)。

1.2设计要求(1)应用MCS-51单片机设计实现数字时钟电路;(2)使用定时器/计数器中断实现计时;(3)选用8个数码管显示时间;(4)使用3个按钮实现调时间和闹钟时间的功能。

按钮1:更换模式(模式0:正常显示时间;模式1:调当前时间的小时;模式2;调当前时间的分钟;模式3:调闹钟时间的小时;模式4:调闹钟时间的分钟);按钮2:在非模式0下给需要调节的时间数加一,但不溢出;按钮3:在非模式0下给需要调节的时间数减一,但不小于零;(5)在非0模式下,给正在调节的时间闪烁提示;(6)使用扬声器实现闹钟功能;(7)采用C语言编写程序并调试。

2.1总体描述(1)单片机采用AT89C51型;(2)时间显示电路:采用8个共阴极数码管,P1口驱动显示数字,P2口作为扫描信号;(3)时间设置电路:P3.0、P3.1、P3.2分别连接3个按键,实现调模式,时间加和时间减;(4)闹钟:P3.3口接扬声器。

2.2系统总体框图2.3Proteus仿真电路图3 软件设计流程及描述3.1 程序流程图(1) void display_led()(2)学号的滚动显示函数;(3) void display()显示时间以及显示调节时间和闹钟时间的闪烁;(4)voidkey_prc()键盘功能函数,实现3个按键有关的模式转换以及数字加一减一;(5) void init()初始化设置中断;(6) void time1() interrupt 3定时器1中断函数,实现计时功能。

单片机汇编程序51电子时钟.doc

单片机汇编程序51电子时钟.doc

单片机汇编程序 51电子时钟电子钟设计实验报告一)实验目的:1、进一步掌握定时器的使用和编程方法。

2、进一步掌握中断处理程序的编程方法。

3、进一步掌握数码显示电路的驱动方法。

4、进一步掌握键盘电路的驱动方法。

5、进一步掌握软件数据处理的方法。

二)内容要求:1、利用CPU的定时器和数码显示电路,设计一个电子时钟。

格式如下:XX XX XX 由左向右分别为:时、分、秒。

2、电子时钟有秒表功能。

3、并能用键盘调整时钟时间。

4、电子时钟能整点报时、整点对时功能。

5、能设定电子时钟的闹铃。

三)主要元件:电阻4.7K 10个 2K 1个四位共阳数码管1个二位共阳数码管1个按钮开关4个万用板(中板)1个 9012PNP 7个排线排阵若干电线一捆蜂鸣器1个最小系统一个四)系统说明:按P1.0键,如果按下的时间小于1秒进入省电模式(数码管不显示,开T0计时器),如果按下的时间大于1秒则进入时间调整.。

在时间调整状态:再按P1.0,如果按下时间大于0.5秒转调小时状态,按下时间小于0.5秒加1分钟操作。

在小时调整状态再按P1.0键,如果按下时间大于0.5秒退出时间调整,如果按下时间小于0.5秒加1小时操作。

按P1.1键,进入闹铃调分状态,按P1.2分加1,按P1.0分减1。

若再按P1.3,则进入调整状态,按P1.2时加1,按P1.0分时。

按P1.1键,闹铃有效,显示式样变为00:00:—0;再按P1.1键,闹铃无效,显示式样变为00:00:—。

按P1.3键,调整闹钟时间结束。

按P1.2键,进入秒表计时功能,按P1.2键暂停或清零,按P1.1键退出秒表回到时钟状态。

而且本系统还有整点报时功能,以及按键伴有声音提示。

五)程序流程图:开始 TO中断初始化保护现场进入功能调用显示定时初值校正程序子程序N Y键按下, 1S到,Y N加1S处理整点到NY恢复现场,中断返回按时间鸣叫次数主程序流程图 T0中断计时程序流程图T1中断保护现场T1中断服务程序流程图秒表/闪烁,时钟调时闪烁加10MS处理闪烁处理恢复现场,中断返回六)电路图七)程序清单:中断入口程序 ;; DISPFIRST EQU 30H BELL EQU P1.4CONBS EQU 2FHOUTPX EQU P2 ;P2位选OUTPY EQU P0 ;P0段选INP0 BIT P1.0INP1 BIT P1.1INP2 BIT P1.2ORG 0000H ;程序执行开始地址LJMP START ;跳到标号START执行ORG 0003H ;外中断0中断程序入口RETI ;外中断0中断返回ORG 000BH ;定时器T0中断程序入口LJMP INTT0 ;跳至INTTO执行ORG 0013H ;外中断1中断程序入口RETI ;外中断1中断返回ORG 001BH ;定时器T1中断程序入口LJMP INTT1 ;跳至INTT1执行ORG 0023H ;串行中断程序入口地址RETI ;串行中断程序返回;QQQQ:MOV A,#10HMOV B,79HMUL ABADD A,78HMOV CONBS,ABSLOOP:LCALL DS20MSLCALL DL1SLCALL DL1SLCALL DL1SDJNZ CONBS,BSLOOPCLR 08HAJMP START;; 主程序 ;;START:MOV R0,#00H ;清70H-7AH共11个内存单元MOV R7,#80H ;CLEARDISP: MOV @R0,#00H ;INC R0 ;DJNZ R7,CLEARDISP ;MOV 20H,#00H ;清20H(标志用)MOV 7AH,#0AH ;放入"熄灭符"数据MOV TMOD,#11H ;设T0、T1为16位定时器MOV TL0,#0B0H ;50MS定时初值(T0计时用) MOV TH0,#3CH ;50MS定时初值MOV TL1,#0B0H ;50MS定时初值(T1闪烁定时用) MOV TH1,#3CH ;50MS定时初值SETB EA ;总中断开放SETB ET0 ;允许T0中断SETB TR0 ;开启T0定时器MOV R4,#14H ;1秒定时用初值(50MS×20)MOV DISPFIRST ,#70HSTART1: LCALL DISPLAY ;调用显示子程序JNB INP0,SETMM1 ;P1.0口为0时转时间调整程序JNB INP1,FUNSS ; 秒表功能,P1.1按键调时时作减1加能JNB INP2,FUNPT ;STOP,PUSE,CLRJNB P1.3,TSFUNSJMP START1 ;P1.0口为1时跳回START1SETMM1: LJMP SETMM ;转到时间调整程序SETMM FUNSS: LCALL DS20MSJB INP1,START1WAIT11: JNB INP1,WAIT11CPL 03HMOV DISPFIRST,#00H :显示秒表数据单元MOV 70H,#00HMOV 71H,#00HMOV 76H,#00HMOV 77H,#00HMOV 78H,#00HMOV 79H,#00HAJMP START1FUNPT: LCALL DS20MSJB INP2,START1WAIT22: JNB INP2,WAIT21CLR ET0CLR TR0WAIT33: JB INP2,WAIT31 LCALL DS20MSJB INP2,WAIT33WAIT66: JNB INP2,WAIT61 MOV R0,#70H ;清70H-79H共10 个内存单元MOV R7,#0AH ;CLEARP: MOV @R0,#00H ;INC R0 ;DJNZ R7,CLEARP ;WAIT44: JB INP2,WAIT41 LCALL DS20MSJB INP2,WAIT44WAIT55: JNB INP2,WAIT51 SETB ET0SETB TR0AJMP START1WAIT21: LCALL DISPLAY AJMP WAIT22WAIT31: LCALL DISPLAY AJMP WAIT33WAIT41: LCALL DISPLAYAJMP WAIT44WAIT51: LCALL DISPLAYAJMP WAIT55WAIT61: LCALL DISPLAYAJMP WAIT66 TSFUN:LCALL DS20MSWAIT113:JNB P1.3,WAIT113JB 05H,CLOSESPMOV DISPFIRST,#50HMOV 50H,#0CHMOV 51H,#0AHDSWAIT:SETB EALCALL DISPLAYJNB P1.2,DSFINCJNB P1.0,DSDECJNB P1.3,DSSFU AJMP DSWAITCLOSESP:CLR 05HCLR BELLAJMP START1 DSSFU:LCALL DS20MS JB P1.3,DSWAIT LJMP DSSFUNN DSFINC:LCALL DS20MS JB P1.2,DSWAIT DSWAIT12:LCALL DISPLAY JNB P1.2,DSWAIT12 CLR EAMOV R0,#53H LCALL ADD1MOV A,R3CLR CCJNE A,#60H,ADDHH22ADDHH22:JC DSWAITACALL CLR0AJMP DSWAITDSDEC:LCALL DS20MSLCALL DISPLAYDSWAITEE:LCALL DISPLAYJNB P1.0,DSWAITEECLR EAMOV R0,#53HLCALL SUB1LJMP DSWAIT ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 1秒计时程序 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;T0中断服务程序INTT0: PUSH ACC ;累加器入栈保护PUSH PSW ;状态字入栈保护CLR ET0 ;关T0中断允许CLR TR0 ;关闭定时器T0JB 03H,FSSMOV A,#0B7H ;中断响应时间同步修正ADD A,TL0 ;低8位初值修正MOV TL0,A ;重装初值(低8位修正值)MOV A,#3CH ;高8位初值修正ADDC A,TH0 ;MOV TH0,A ;重装初值(高8位修正值)SETB TR0 ;开启定时器T0DJNZ R4, OUTT0 ;20次中断未到中断退出ADDSS: MOV R4,#14H ;20次中断到(1秒)重赋初值MOV R0,#71H ;指向秒计时单元(71H-72H)ACALL ADD1 ;调用加1程序(加1秒操作)MOV A,R3 ;秒数据放入A(R3为2位十进制数组合)CLR C ;清进位标志CJNE A,#60H,ADDMM ;ADDMM: JC OUTT0 ;小于60秒时中断退出ACALL CLR0 ;大于或等于60秒时对秒计时单元清0 MOV R0,#77H ;指向分计时单元(76H-77H)ACALL ADD1 ;分计时单元加1分钟MOV A,R3 ;分数据放入ACLR C ;清进位标志CJNE A,#60H,ADDHH ;ADDHH: JC OUTT0 ;小于60分时中断退出ACALL CLR0 ;大于或等于60分时分计时单元清0MOV R0,#79H ;指向小时计时单元(78H-79H)ACALL ADD1 ;小时计时单元加1小时MOV A,R3 ;时数据放入ACLR C ;清进位标志JB 03H,OUTT0 ;秒表时最大数为99CJNE A,#24H,HOUR ;HOUR: JC OUTT0 ;小于24小时中断退出ACALL CLR0 ;大于或等于24小时小时计时单元清0OUTT0: MOV 72H,76H ;中断退出时将分、时计时单元数据移MOV 73H,77H ;入对应显示单元MOV 74H,78H ;MOV 75H,79H ;LCALL BAOJPOP PSW ;恢复状态字(出栈)POP ACC ;恢复累加器SETB ET0 ;开放T0中断RETI ;中断返回 ;秒表计时程序(10MS加1),低2位为0.1、0.01秒,中间2位为秒,最高位为分。

单片机课程设计--基于51单片机的万年历

单片机课程设计--基于51单片机的万年历

单片机课程设计报告万年历的设计基于51单片机的万年历摘要:电子万年历是一种非常广泛日常计时工具,对现代社会越来越流行。

它可以对年、月、日、周日、时、分、秒进行计时,使用寿命长,误差小。

对于数字电子万年历采用直观的数字显示,可以同时显示年、月、日、周日、时、分、秒和温度等信息,还具有时间校准等功能。

该电路采用AT89S52单片机作为核心,功耗小,能在3V的低压工作,电压可选用3~5V电压供电。

本设计是基于51系列的单片机进行的电子万年历设计,可以显示年月日时分秒及周信息,具有可调整日期和时间功能。

在设计的同时对单片机的理论基础和外围扩展知识进行了比较全面准备。

万年历的设计过程在硬件与软件方面进行同步设计。

硬件部分主要由AT89C52单片机,LCD显示电路,以及调时按键电路等组成。

在单片机的选择上本人使用了AT89C52单片机,该单片机适合于许多较为复杂控制应用场合。

显示器使用了1602液晶显示,并且使用蜂鸣器实现了整点报警的功能,温度测试的功能实现使用了DS18B20,并实现了温度过高或过低时的温度报警。

软件方面主要包括日历程序、时间调整程序,显示程序等。

程序采用C语言编写。

所有程序编写完成后,在KeilC51软件中进行调试,确定没有问题后,在Proteus软件中嵌入单片机内进行仿真,并最终实现基本要求。

综上所述此万年历具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,符合电子仪器仪表的发展趋势,具有广阔的市场前景。

一、设计要求基本要求:1,8 个数码管上显示,显示时间的格式为(假如当前时间是19:32:20)“19-32-20”;2,具有日历功能;③时间可以通过按键调整。

发挥部分:④具有闹钟功能(可以设定多个)。

二:总体设计电路设计框图系统硬件概述本电路是由AT89S52单片机为控制核心,具有在线编程功能,低功耗,能在3V超低压工作;时钟电路由单片机定时功能提供;温度的采集由DS18B20构成,它具有独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯,使用时不需要额外的外围电路。

基于51单片机电子闹钟或万年历的设计课程设计(精)

基于51单片机电子闹钟或万年历的设计课程设计(精)

目录目录 (1)1.项目背景 (3)1.1 项目研究的目的和意义 (3)1.2课题研究的内容 (3)2.方案的选择和和论证 (4)2.1 单片机型号的选择 (4)2.2 按键的选择 (4)2.3 显示器的选择 (4)2.4 计时部分的选择 (5)2.5 发音部分的设计 (5)2.6电路设计最终方案 (5)3. AT89C52单片机简介 (6)3.1单片机基本特性 (6)3.2单片机内部结构图 (6)3.3 单片机I/O引脚结构 (6)3.3.1 P0口 (6)3.3.2 P1口 (7)3.3.3 P2口 (7)3.3.4 P3口 (7)3.4单片机最小系统板 (8)4. 数字电子钟的设计原理和方法 (9)4.1 设计原理 (9)4.2 硬件电路的设计 (9)4.2.1 DS1302时钟芯片 (9)4.2.2 1602 液晶简介 (11)4.2.3 蜂鸣器驱动电路 (12)4.2.4 独立键盘电路 (13)5.软件部分的设计 (14)5.1程序流程图 (14)5.1.1 系统总流程图 (14)5.1.2 DS1302时钟程序流程图 (15)5.1.3 LCD显示程序流程图 (16)5.2程序的设计 (17)5.2.1 DS1302读写程序 (17)5.2.2液晶显示程序 (17)7.心得体会 (20)参考文献 (21)附录一系统原理图 (22)附录二系统程序 (23)1.项目背景1.1 项目研究的目的和意义20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。

时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。

忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。

但是,一旦重要事情,一时的耽误可能酿成大祸。

例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间等造成的。

数字钟基于51单片机汇编语言设计

数字钟基于51单片机汇编语言设计
关键词:单片机 AT89C51 共阴极 LED 数码显示器 74LS245 译码器
IV
一、单片机数字时钟设计的概述
1.1 设计目的
1、利用所学过的知识,初步分析单片计算机控制系统的能力; 2、利用单片机定时器制作数字时钟并可以实现时钟的控制; 3、综合运用本专业方向所学知识,构成以单片机为核心控制系统的能力; 4、单片计算机控制系统实时软件的设计、 编制与调试的能力; 5、单片计算机控制系统中模拟部件以及常规传感部件的使用、调试的能力; 6、掌握数码管动态显示方法。 7、学习 AT89C51 芯片管脚及其功能。 8、单片计算机控制系统综合调整及性能测试的能力; 9、实验结果分析、总结及撰写技术报告的能力。
数字钟是采用数字电路实现对、时、分、秒,数字显示的计时装置,广泛用 于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必 需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精 度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而 且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间 程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至 各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研 究数字钟及扩大其应用,有着非常现实的意义。
I
3.1.1 系统开发环境·································12 3.1.2 汇编语言·····································12 3.2 数字时钟设计的思路及流程···························14 3.2.1 主程序·······································14 3.2.2 定时中断(走时)子程序流程···················15 3.2.3 按键调试子程序·······························16 3.3 定时器、计数器功能·································16 3.4 中断系统功能·······································18 四、数字时钟系统的仿真及运行··························19 4.1 WAVE6000 仿真软件介绍······························19 4.2 程序设计及运行结果·································21 4.2.1 数字时钟源程序·······························21 4.2.2Wave6000 仿真程序运行调试结果·················25 4.2.3 Proteus 仿真电路运行调试结果·················25 五、心得体会··········································26 六、参考文献··········································28

基于51单片机DS1302万年历课程设计报告

基于51单片机DS1302万年历课程设计报告

课程名称:微机原理课程设计题目:基于DS1302芯片万年历摘要DS1302 是DALLAS 公司推出的涓流充电时钟芯片,内含有一个实时时钟/日历和31 字节静态RAM,通过简单的串行接口与单片机进行通信实时时钟/日历电路.提供秒、分、时、日、日期.、月、年的信息,每月的天数和闰年的天数可自动调整时钟。

本次课程设计的是使用专门的时钟芯片DS1302在数码管上显示的数字电子钟,并能通过按键对其进行调时和校准以及实现年月日。

DS1302是一种高性能、低功耗、带RAM的实时时钟芯片,它能够对时,分,秒进行精确计时,它与单片机的接口使用同步串行通信,仅用3条线与之相连接,就可以实现STC-51单片机对其进行读写操作,把读出的时间数据送到数码管上显示。

程序运行时,数码管将从当前时间开始显示,通过调节K2键和K3键可以分别对小时和分钟进行调整,调整后,时钟以新的时间为起点继续刷新显示,通过调节K1键可以切换年月日和时钟显示。

关键字:STC-51单片机,DS1302,数码管,动态扫描,调时,切换,秒闪;目录一、设计任务与要求 (4)1.1设计任务 (4)1.2设计要求 (4)1.3发挥部分 (4)1.4创新部分 (4)二、方案总体设计 (5)2.1设计目的 (5)2.2硬件功能描述 (5)2.3设计方案选择 (5)2.4总体设计 (6)2.5总体方案及基本工作原理 (6)三、硬件设计 (7)3.1 STC89C51芯片 (7)3.2电源模块及晶振模块 (7)3.3 DS1302 (8)3.4数码管显示模块 (9)3.5蜂鸣器部分 (10)3.6按键部分 (11)四、软件设计 (13)4.1软件流程图 (13)4.2 软件设计 (13)主函数部分: (13)五、系统仿真和调试 (15)5.1 仿真软件简介 (15)5.2硬件调试 (15)5.3软件调试 (15)5.4使用说明 (16)六、设计总结与体会 (18)6.1学习方面 (18)6.2工作方面 (18)七、参考文献 (19)一、设计任务与要求1.1设计任务DS1302万年历;1.2设计要求利用DS1302生成万年历,时钟可调,通过四位数码管显示,并可实现秒闪功能,同时蜂鸣器闹铃;1.3发挥部分设置按键K3用来切换显示时钟和年月日;1.4创新部分只设置了两个按键K1和K2来调节时分,时钟到24归零,分钟到60归零,分钟有长按迅速调节功能。

51单片机,万年历设计报告

51单片机,万年历设计报告

摘要:本次数字电子钟课程设计采用stc公司的stc89c52为基本芯片,外配以11.0592MHZ的晶振作为时钟电路,按键与电阻电容组成的复位电路,通过程序下载软件与数字钟硬件连接,实现24小时的时,分,秒计时系统。

该电子万年历设置3个按键,实现对年,月,日时,分,秒加一减一以及确定的作用。

在具体数码显示中能够实现自动记时,手动调时,满位自动清0的作用。

关键词数字万年历;STC89C52;硬件设计;软件设计设计任务与要求:1、电子时钟显示用LED 数码八段管显示,由左向右分别为:年、月、日、时、分、秒,比如:2011 07 13 23-20-40 表示2011年7月13日23时20分40秒;2、按下按键实现切换位进行闪烁调时,按下按键实现位加一,按下另外的按键实现位减一;系统整体设计方案比较与选择:本系统共分为两个模块:一个是单片机最小系统;另外一个是显示和按键的拓展模块;方案一:键盘输入使用独立式键盘,(由于键盘数量仅仅只有三个,太多了浪费),八段管采用共阳极数码管动态扫描,使用芯片译码;方案二:键盘使用矩阵式键盘;八段管采用动态显示,不通过芯片译码;方案分析:方案一显然可操作性较强;程序也较为简单,而我们采用的是方案二,因为因为之前做其他实验的时候已经做好了显示模块,和按键模块,为了节约成本和提高程序的难度,因而选择方案二。

设计与论证:本设计的程序设计需要考虑两个方面:第一,时钟,时钟进位是秒分各为60进制,小时为24进制,第二,日期,小时与日期的关系是24小时为一天,每个月的天数又有说不同,1,3,5,7,8,10,12为大月,每月有31天,2月得看润年与否,闰年有29天,非闰年有28天,其他月份为小月30天。

要考虑到时钟自己走的时候和时钟在调整的过程中所遇到的极限值的问题,即在调整到最后一个数字的时候能根据各种情况来调整。

电路设计:本设计采用最小的系统板和八段数码管显示模块,以及矩阵按键模块,整体设计框图如下:显示模块原理图:显示模块的PCB图:。

基于51单片机的万年历-闹钟-秒表设计

基于51单片机的万年历-闹钟-秒表设计

基于51单片机的万年历,闹钟,秒表设计有关接线图完整的程序代码#include<reg52.h>#define uchar unsigned char#define uint unsigned intuchar code table[]={"20 年月日"};uchar code table1[]={" : : "};uchar code table5[]={" QI CHUANG LA"};void LCD_WRITE_COM(uchar com);void LCD_WRITE_DAT(uchar dat);void LCD_CSH();void LCD_GD();void LCD_CLR();void DELAYUS(uchar i);void DELAY(uint t);void DELAY_A(uint n);void DISP_TIME();void DISL1();void DISL3();void DS1302_CSH();void DS1302_WRITE(uchar addr,uchar dat); void WRITE_BTY(uchar dat);void DSweek(uchar num);void DS1820RST();void DS1820WR(uchar dat);void KEYSCAN();void KEYMOVE();void TIME_UP();void TIME_DOWN();uchar DS1820RD();uchar READ_T();uchar DS1302_READ(uchar addr);uchar READ_BTY();sbit IO=P3^5;sbit RST=P1^7;sbit SCLK=P1^6;sbit FMQ=P2^4;sbit DQ=P2^3; //DS18B20输出口sbit RS=P2^5; //寄存器选择信号sbit RW=P2^6; //读写控制信号线sbit LCDEN=P2^7; //使能信号线sbit S1=P1^0;sbit S2=P1^1;sbit S3=P1^2;sbit S4=P1^3;sbit S=P1^4;char BW,SW,GW;uchar t,tflag;uchar m,f,s,x,r,y,n;uchar A,A_m,A_f,A_s,A_x;uchar num1,num2;uchar flag,flag_A,flag_j;uchar shi,ge;uchar M_a,M_b,M_c,M_d,M_e,M_f,temp,ss; long int z=0,m1,m2;//*********延时*********void DELAY(uint t) //延时1MS{int x,y;for(x=t;x>0;x--)for(y=110;y>0;y--);}void DELAY_US(uint i) //延时1US {while(i--);}void DELAY_A(uint i){ uint j;char k;for(j=0;j<i;j++){ if(S4==0){DELAY(20);if(S4==0){break;}}for(k=110;k>0;k--){FMQ=1;DELAY(10);FMQ=0;DELAY(10);if(S4==0){DELAY(20); if(S4==0) {break;} }}}}//*********LCD模块*******void LCD_CSH(){ LCD_WRITE_COM(0x38); //设置液晶工作模式 16*2行显示,5*7点阵,8位数据DELAY(1);LCD_WRITE_COM(0x0c); //开显示DELAY(1);LCD_WRITE_COM(0x06); //光标移动DELAY(1);LCD_WRITE_COM(0x01); //清屏DELAY(1);}void LCD_WRITE_COM(uchar com){RW=0; //写RS=0; //寄存器模式选择,写命令P0=com; //写命令LCDEN=0;DELAY(1);LCDEN=1; //使能,0到1DELAY(1);LCDEN=0; //数据送入有效}void LCD_WRITE_DAT(uchar dat){RW=0;RS=1; //寄存器选择,写数据P0=dat; //写数据LCDEN=0;DELAY(1);LCDEN=1; //使能0到1DELAY(1);LCDEN=0; //数据送入有效}void LCD_WORD(unsigned char *p){while(*p>0){ LCD_WRITE_DAT(*p) ;p++;}}//固定显示void LCD_GD(){char i;LCD_WRITE_COM(0x80); //"20 年月日"for(i=0;i<15;i++){LCD_WRITE_DAT(table[i]);DELAY(1);}LCD_WRITE_COM(0x90); //" : : "for(i=0;i<11;i++){LCD_WRITE_DAT(table1[i]);}LCD_WRITE_COM(0x99);LCD_WRITE_DAT(0x03);LCD_WRITE_DAT(0x03);LCD_WRITE_COM(0x9A);LCD_WORD("萍水缘");LCD_WRITE_DAT(0x03);LCD_WRITE_DAT(0x03);}//清屏void LCD_CLR(){LCD_WRITE_COM(0x01);DELAY(2);}//上电欢迎界面void DISL1(){ LCD_WRITE_COM(0x80);LCD_WORD("基于51单片机的万年历,欢迎使用!"); }void DISL3() //闹钟时间到的显示界面{char i;LCD_WRITE_COM(0x80);for(i=0;i<15;i++){LCD_WRITE_DAT(table5[i]);DELAY(1);}LCD_WRITE_COM(0x90);for(i=0;i<15;i++){LCD_WRITE_DAT(table5[i]);DELAY(1);}}//********DS1302模块**********void DS1302_CSH()//(写程序要对照DS1302的各个写地址){RST=0;SCLK=0;DS1302_WRITE(0x8e,0x00);//允许写DS1302_WRITE(0x80,0x00);//初始秒0DS1302_WRITE(0x82,0x00);//初始分0DS1302_WRITE(0x84,0x15);//初始时0DS1302_WRITE(0x8a,0x01);//初始星期6DS1302_WRITE(0x86,0x04);//初始日1DS1302_WRITE(0x88,0x06);//初始月1DS1302_WRITE(0x8c,0x12);//初始年11DS1302_WRITE(0x8e,0x80);//写保护关}uchar DS1302_READ(uchar addr){uchar dat;RST=0; //初始CE为0SCLK=0; //初始时钟线为0RST=1; //传输开始WRITE_BTY(addr); //传送读取时间的地址dat=READ_BTY(); //读取时间SCLK=1; //时钟线拉高RST=0; //传输结束return dat; //返回时间}void DS1302_WRITE(uchar addr,uchar dat) {RST=0; //初始CE为0SCLK=0; //初始时钟线为0RST=1; //传输开始DELAY(1);WRITE_BTY(addr); //传送读取时间的地址WRITE_BTY(dat); //写入修改的时间SCLK=1; //时钟线拉高RST=0; //传输结束}uchar READ_BTY(){uchar i,dat=0;SCLK=0;DELAY(1);for(i=0;i<8;i++){dat=dat>>1;DELAY(1);if(IO==1) //如果读出数据是1(当前数据线为高时,证明该位数据为1)dat|=0x80; //要传输数据的当前位置为1,不是,则为0SCLK=1; //拉高时钟线DELAY(1);SCLK=0; //制造下降沿DELAY(1);}return dat;}void WRITE_BTY(uchar dat){uchar i;SCLK=0; //当前时钟线为0DELAY(1);for(i=0;i<8;i++) //开始传输8为数据{IO=dat&0x01; //取最低位DELAY(1);SCLK=0; //拉低时钟线DELAY(1);SCLK=1; //拉高时钟线dat=dat>>1; //数据右移一位,准备传输下一个数据}}//显示时间void DISP_TIME(){LCD_WRITE_COM(0x81);//显示年,DS1302的读地址8d为年位置,LCD显示在0x81位置shi=DS1302_READ(0x8d)/16;ge=DS1302_READ(0x8d)%16;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x83); //显示月,DS1302的读地址83为年位置shi=DS1302_READ(0x89)/16;ge=DS1302_READ(0x89)%16;LCD_WRITE_DAT(shi+0x30);LCD_WRITE_DAT(ge+0x30);LCD_WRITE_COM(0x85);//显示日shi=DS1302_READ(0x87)/16;ge=DS1302_READ(0x87)%16;LCD_WRITE_DAT(shi+0x30);LCD_WRITE_DAT(ge+0x30);LCD_WRITE_COM(0x90);//显示小时shi=DS1302_READ(0x85)/16;ge=DS1302_READ(0x85)%16;LCD_WRITE_DAT(shi+0x30);LCD_WRITE_DAT(ge+0x30);LCD_WRITE_COM(0x92);//显示分钟shi=DS1302_READ(0x83)/16;ge=DS1302_READ(0x83)%16;LCD_WRITE_DAT(shi+0x30);LCD_WRITE_DAT(ge+0x30);LCD_WRITE_COM(0x94);//显示秒shi=DS1302_READ(0x81)/16;ge=DS1302_READ(0x81)%16;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);DSweek(DS1302_READ(0x8b)); //显示星期if(A==1) //显示闹钟{LCD_WRITE_COM(0x87);LCD_WRITE_DAT(0x20);LCD_WRITE_DAT(0x0e);}if(A!=1){LCD_WRITE_COM(0x87);LCD_WRITE_DAT(' ');}}//显示时间的星期模块void DSweek(uchar num){LCD_WRITE_COM(0x95); //95位置清空,96.97显示周一,二,三,四,五,六,日LCD_WRITE_DAT(0x20);LCD_WRITE_DAT(0x20);LCD_WRITE_COM(0x96);switch(num){case 1:LCD_WRITE_DAT(0xD6);LCD_WRITE_DAT(0xDC);LCD_WRITE_DAT(0xD2);LCD_WRITE_DAT(0xBB);break;case 2:LCD_WRITE_DAT(0xD6);LCD_WRITE_DAT(0xDC);LCD_WRITE_DAT(0xB6);LCD_WRITE_DAT(0xFE);break;case 3:LCD_WRITE_DAT(0xD6); LCD_WRITE_DAT(0xDC);LCD_WRITE_DAT(0xC8);LCD_WRITE_DAT(0xFD);break;case 4:LCD_WRITE_DAT(0xD6); LCD_WRITE_DAT(0xDC);LCD_WRITE_DAT(0xCB);LCD_WRITE_DAT(0xC4);break;case 5:LCD_WRITE_DAT(0xD6); LCD_WRITE_DAT(0xDC);LCD_WRITE_DAT(0xCE);LCD_WRITE_DAT(0xE5);break;case 6:LCD_WRITE_DAT(0xD6); LCD_WRITE_DAT(0xDC);LCD_WRITE_DAT(0xC1);LCD_WRITE_DAT(0xF9);break;case 7:LCD_WRITE_DAT(0xD6); LCD_WRITE_DAT(0xDC);LCD_WRITE_DAT(0xC8);LCD_WRITE_DAT(0xD5);break;}}//**********温度模块*******void DS1820RST() //DS18b20的初始化函数{ uchar x=0;DQ=1; //DQ复位DELAY_US(4); //延时DQ=0; //DQ拉低DELAY_US(100); //精确延时大于480usDQ=1; //拉高DELAY_US(40);x=DQ;}uchar DS1820RD() //读一个字节{uchar i=0,dat=0;for (i=8;i>0;i--){DQ=0; //给脉冲信号 dat=dat>>1;DQ=1; //给脉冲信号if(DQ==1)dat|=0x80;DELAY_US(10);}return dat; //写一个字节}void DS1820WR(uchar dat){char i=0;for (i=8;i>0;i--){DQ=0;DQ=dat&0x01;DELAY_US(10);DQ=1;dat=dat>>1;}}uchar READ_T(){uchar a,b;DS1820RST();DS1820WR(0xcc);//跳过读序列号(固定)DS1820WR(0x44);//启动温度转换DS1820RST();DS1820WR(0xcc);//跳过读序列号DS1820WR(0xbe);//读取温度a=DS1820RD();b=DS1820RD();b<<=4;b+=(a&0xf0)>>4;t=b;return t;}//显示温度void DISP_T(){ uchar R1;R1=READ_T();LCD_WRITE_COM(0xc8);LCD_WRITE_DAT(0xCE);LCD_WRITE_DAT(0xC2);LCD_WRITE_DAT(0xB6);LCD_WRITE_DAT(0xC8);LCD_WRITE_DAT(':');if(R1<0x81){LCD_WRITE_DAT(0x30+R1/100);} else{R1=~(R1)+1;LCD_WRITE_DAT('-');}LCD_WRITE_DAT(0x30+R1%100/10);LCD_WRITE_DAT(0x30+R1%10);LCD_WRITE_DAT(0xA1);LCD_WRITE_DAT(0xE6);}//*******键盘******//读暂停时的时间void TIME(){if(flag==0){m=DS1302_READ(0x81); //分别读出秒,分,时,星期,日,月,年(DS1302的读地址应用)f=DS1302_READ(0x83);s=DS1302_READ(0x85);x=DS1302_READ(0x8b);r=DS1302_READ(0x87);y=DS1302_READ(0x89);n=DS1302_READ(0x8d);}}//时间更新void TIME_UPDATE(){DS1302_WRITE(0x8e,0x00); //写允许DS1302_WRITE(0x80,m); //分别写出秒,分,时,星期,日,月,年(DS1302的写地址应用)DS1302_WRITE(0x82,f);DS1302_WRITE(0x84,s);DS1302_WRITE(0x8a,x);DS1302_WRITE(0x86,r);DS1302_WRITE(0x88,y);DS1302_WRITE(0x8c,n);DS1302_WRITE(0x8e,0x80); //禁止写}//闹钟void ALARM_CLOCK(){LCD_CLR();DELAY(10);DISL3(); //显示起床DELAY_A(100);FMQ=0; //蜂鸣器响flag_A=0;LCD_CLR();LCD_GD(); //固定显示}//闹钟开关显示void ALARM_KG(){if(x!=1){A=0;LCD_WRITE_COM(0x85);LCD_WRITE_DAT(0xb9);LCD_WRITE_DAT(0xd8);x=0;}if(x==1){A=1;LCD_WRITE_COM(0x85);LCD_WRITE_DAT(0xbf);LCD_WRITE_DAT(0xaa);}}//*******秒表******void CSH(){EA=1;ET0=1;TMOD=0x01;TH0=(65535-4900)/256;TL0=(65535-4900)%256;TR0=0;ss=0;M_a=M_b=M_c=M_d=0;}//秒表的键盘扫描void KEYSCAN_M(){ S=0;if(S2==0){DELAY(100);if(S2==0){while(S2==0);ss=~ss;TR0=1;if(ss==0) //S2可以暂停或者继续TR0=0;}}if(S3==0){DELAY(100);if(S3==0){while(S3==0){M_a=M_b=M_c=M_d=0;}}}}void TIME_M() interrupt 1{TH0=(65535-4900)/256;TL0=(65535-4900)%256;temp++;if(temp==2){temp=0;M_c++;if(M_c==10){M_c=0;M_b++;if(M_b==10){M_b=0;M_a++;if(M_a==10){M_a=0;M_d++;if(M_d==6){M_d=0;M_e++;if(M_e==0){M_e=0;M_f++;}}}}}}}//显示秒表,fe:da:bcvoid DISP_M(){ LCD_WRITE_COM(0x83); //显示秒表LCD_WRITE_DAT(0xc3);LCD_WRITE_DAT(0xeb);LCD_WRITE_DAT(0xb1);LCD_WRITE_DAT(0xed);LCD_WRITE_COM(0x91); //显示00:00::00LCD_WRITE_DAT(0x30+M_f);LCD_WRITE_DAT(0x30+M_e);LCD_WRITE_DAT(':');LCD_WRITE_COM(0x93);LCD_WRITE_DAT(0x30+M_d);LCD_WRITE_DAT(0x30+M_a);LCD_WRITE_DAT(':');LCD_WRITE_COM(0x95);LCD_WRITE_DAT(0x30+M_b);LCD_WRITE_DAT(0x30+M_c);}//按键扫描,s1为功能显示,s2为光标移动/秒表暂停(开始),s3为加时间和秒表复位,s4为减时间和停止闹钟void KEYSCAN(){ S=0;if(S1==0){DELAY(100);if(S1==0)while(!S1);{num1++; // 界面切换switch(num1){case 1: num2=0;m=A_m;f=A_f;s=A_s;x=A_x;LCD_CLR();LCD_WRITE_COM(0x80); //显示闹钟设置LCD_WRITE_DAT(0xC4);LCD_WRITE_DAT(0xD6);LCD_WRITE_DAT(0xD6);LCD_WRITE_DAT(0xD3);LCD_WRITE_DAT(0xC9);LCD_WRITE_DAT(0xE8);LCD_WRITE_DAT(0xD6);LCD_WRITE_DAT(0xC3);LCD_WRITE_COM(0x94);LCD_WRITE_DAT(0x30+m/16); LCD_WRITE_DAT(0x30+m%16);LCD_WRITE_COM(0x92);LCD_WRITE_DAT(0x30+f/16); LCD_WRITE_DAT(0x30+f%16); LCD_WRITE_DAT(':');LCD_WRITE_COM(0x90);LCD_WRITE_DAT(0x30+s/16); LCD_WRITE_DAT(0x30+s%16); LCD_WRITE_DAT(':');LCD_WRITE_COM(0x8b);ALARM_KG();break;case 2: LCD_WRITE_COM(0x0c); //开显示LCD_CLR();break;case 3: num2=0;num1=0;A_m=m;A_f=f;A_s=s;A_x=x;LCD_WRITE_COM(0x0c);flag=0; //读暂停的时间标志位LCD_CLR();LCD_GD(); //固定显示break;}}}}//光标移动void KEYMOVE(){ S=0;if(S2==0){ DELAY(100);if(S2==0)while(!S2);{num2++;}}if(num1==0) //调整时间,日期{switch(num2){case 1: //S2按下一次TIME(); //读出暂停的时间flag=1;LCD_WRITE_COM(0x97); //光标在星期位置闪烁LCD_WRITE_COM(0x0f);TIME_UPDATE(); //时间更新,写入设置的时间break;case 2:LCD_WRITE_COM(0x94); //光标在秒位置闪烁TIME_UPDATE(); //时间更新,写入设置的时间break;case 3:LCD_WRITE_COM(0x92); //光标在分钟位置闪烁TIME_UPDATE(); //时间更新,写入设置的时间break;case 4:LCD_WRITE_COM(0x90); //光标在时位置闪烁TIME_UPDATE(); //时间更新,写入设置的时间break;case 5:LCD_WRITE_COM(0x85); //光标在日期位置闪烁TIME_UPDATE(); //时间更新,写入设置的时间break;case 6:LCD_WRITE_COM(0x83); //光标在月份位置闪烁TIME_UPDATE(); //时间更新,写入设置的时间break;case 7:LCD_WRITE_COM(0x81); //光标在年份位置闪烁TIME_UPDATE(); //时间更新,写入设置的时间break;case 8:LCD_WRITE_COM(0x0c); //开显示flag=0; // 读暂停的时间标志位TIME_UPDATE(); //时间更新,写入设置的时间num2=0; //复位 break;}}if(num1==1) //调整闹钟{switch(num2){case 1:LCD_WRITE_COM(0x85); //是够开闹钟LCD_WRITE_COM(0x0f);break;case 2:LCD_WRITE_COM(0x94); //光标在秒位置闪烁break;case 3:LCD_WRITE_COM(0x92); //光标在分钟位置闪烁break;case 4:LCD_WRITE_COM(0x90); //光标在小时位置闪烁break;case 5:LCD_WRITE_COM(0x0c); //开显示num2=0; //复位 break;}}if(S3==0) //加时间{ DELAY(100);if(S3==0)while(!S3);{TIME_UP();}}if(S4==0) //减时间{ DELAY(100);if(S4==0)while(!S4);{TIME_DOWN();}}}//加时间void TIME_UP(){switch(num2){case 1:x++; //星期加1if(x==0x08) x=1;if(num1==0){ DS1302_WRITE(0x8e,0x00);//写允许DS1302_WRITE(0x8a,x);DS1302_WRITE(0x8e,0x80); //写禁止DSweek(DS1302_READ(0x8b));//显示时间的星期模块}if(num1==1){ ALARM_KG();} //闹钟开关显示 break;case 2: m++; //秒加1if(m%16==10) m=(m&0xf0)+0x10;if(m==0x60) m=0;shi=m>>4;ge=m&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x94);break;case 3:f++; //分钟加1if(f%16==10) f=(f&0xf0)+0x10;if(f==0x60) f=0;shi=f>>4;ge=f&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x92);break;case 4:s++; //小时加1if(s%16==10) s=(s&0xf0)+0x10; if(s==0x24) s=0;shi=s>>4;ge=s&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x90);break;case 5:r++; //日期加1if(r%16==10) r=(r&0xf0)+0x10; if(r==0x32) r=1;shi=r>>4;ge=r&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x85);break;case 6:y++; //月份加1if(y%16==10) y=(y&0xf0)+0x10; if(y==0x13) y=1;shi=y>>4;ge=y&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x83);break;case 7:n++; //年份加1if(n%16==10) n=(n&0xf0)+0x10; if(n==0x99) n=1;shi=n>>4;ge=n&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x81);break;}}//减时间void TIME_DOWN(){switch(num2){case 1:x--; //星期减1if(x==0x00) x=7;if(num1==0){DS1302_WRITE(0x8e,0x00); DS1302_WRITE(0x8a,x);DS1302_WRITE(0x8e,0x80);DSweek(DS1302_READ(0x8b));}if(num1==1){ ALARM_KG();}break;case 2:m--; //秒减1if(m%16==15) m=(m&0xf0)+0x09; if(m==0xf9) m=0x59;shi=m>>4;ge=m&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x94);break;case 3:f--; //分钟减1if(f%16==15) f=(f&0xf0)+0x09; if(f==0xf9) f=0x59;shi=f>>4;ge=f&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x92);break;case 4:s--; //小时减1if(s%16==15) s=(s&0xf0)+0x09; if(s==0xf9) s=0x23;shi=s>>4;ge=s&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x90);break;case 5:r--; //日期减1if(r%16==15) r=(r&0xf0)+0x09; if(r==0xf9) r=0x31;shi=r>>4;ge=r&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x95);break;case 6:y--; //月份减1if(y%16==15) y=(y&0xf0)+0x09; if(y==0xf9) y=0x12;shi=y>>4;ge=y&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x93);break;case 7:n--; //年减1if(n%16==15) n=(n&0xf0)+0x09; if(n==0xf9) n=0x99;shi=n>>4;ge=n&0x0f;LCD_WRITE_DAT(0x30+shi);LCD_WRITE_DAT(0x30+ge);LCD_WRITE_COM(0x91);break;}}void main(){ CSH();LCD_CSH();DELAY(10);DS1302_CSH();DISL1(); //上电欢迎界面DELAY(10000);LCD_CLR(); //清屏LCD_GD(); //固定显示while(1){ KEYSCAN();if(num1==2){while(1){DISP_M();KEYSCAN_M();if(S1==0){DELAY(100);if(S1==0)break;}}}KEYMOVE();if(num1==0&&flag==0){DISP_TIME();DISP_T();if(DS1302_READ(0x83)==A_f&&DS1302_READ(0x85)==A_s&&DS1302_R EAD(0x81)==A_m&&A==1){ALARM_CLOCK();}}}}。

基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)

基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)

单片微型计算机课程设计报告多功能电子数字钟姓名学号班级指导教师许伟敏4电气二班林卫2009-06-25目录一:概述 (1)二:设计基本原理简介 (2)三:设计要求及说明 (3)四:整体设计方案 (4)系统硬件电路设计 4系统软件总流程设计模块划分及分析5 6五:单模块流程设计 (8)各模块设计概述、流程图模块源程序集合及注释8 13六:单模块软件测试 (23)七:系统检测调试 (24)硬件电路调试软件部分烧写调试八:系统优化及拓展 (26)九:心得体会 (28)单片微型计算机课程设计一、概述基于汇编语言的电子数字钟概述课程设计题目:电子数字钟应用知识简介:● 51 单片机单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

作为嵌入式系统控制核心的单片机具有其体积小、功能全、性价比高等诸多优点。

51 系列单片机是国内目前应用最广泛的单片机之一,随着嵌入式系统、片上系统等概念的提出和普遍接受及应用,51 系列单片机的发展又进入了一个新的阶段。

在今后很长一段时间内51 系列单片机仍将占据嵌入式系统产品的中低端市场。

●汇编语言汇编语言是一种面向机器的计算机低级编程语言,通常是为特定的计算机或系列计算机专门设计的。

汇编语言保持了机器语言的优点,具有直接和简捷的特点,其代码具有效率高实时性强等优点。

但是对于复杂的运算或大型程序,用汇编语言编写将非常耗时。

汇编语言可以与高级语言配合使用,应用十分广泛。

● ISPISP(In-System Programming)在系统可编程,是当今流行的单片机编程模式,指电路板上的空白元器件可以编程写入最终用户代码,而不需要从电路板上取下元器件。

已经编程的器件也可以用ISP方式擦除或再编程。

本次课程设计便使用ISP方式,直接将编写好的程序下载到连接好的单片机中进行调试。

选题系统功能分析硬件电路设计整体流程设计及模块划分模块流程设计模块编码测试系统合成调试编译下载调试(含硬件电路调试及软件烧写调试)验收完成总结报告课程设计流程图↑选题目的及设计思想简介:课程设计是一次难得的对所学的知识进行实践的机会,我希望通过课程设计独立设计一个简单的系统从而达到强化课本知识并灵活运用的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片微型计算机课程设计报告多功能电子数字钟姓 名 许伟敏学 号 060301021124班 级 电气二班指导教师 林卫2009-06-25目录一:概述 (1)二:设计基本原理简介 (2)三:设计要求及说明 (3)四:整体设计方案 (4)系统硬件电路设计 4系统软件总流程设计 5模块划分及分析 6五:单模块流程设计 (8)各模块设计概述、流程图 8模块源程序集合及注释 13六:单模块软件测试 (23)七:系统检测调试 (24)硬件电路调试软件部分烧写调试八:系统优化及拓展 (26)九:心得体会 (28)单片微型计算机课程设计 基于汇编语言的电子数字钟 概述课程设计流程图↑一、概述课程设计题目:电子数字钟应用知识简介:● 51单片机单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

作为嵌入式系统控制核心的单片机具有其体积小、功能全、性价比高等诸多优点。

51系列单片机是国内目前应用最广泛的单片机之一,随着嵌入式系统、片上系统等概念的提出和普遍接受及应用,51系列单片机的发展又进入了一个新的阶段。

在今后很长一段时间内51系列单片机仍将占据嵌入式系统产品的中低端市场。

● 汇编语言汇编语言是一种面向机器的计算机低级编程语言,通常是为特定的计算机或系列计算机专门设计的。

汇编语言保持了机器语言的优点,具有直接和简捷的特点,其代码具有效率高实时性强等优点。

但是对于复杂的运算或大型程序,用汇编语言编写将非常耗时。

汇编语言可以与高级语言配合使用,应用十分广泛。

● ISPISP (In-System Programming )在系统可编程,是当今流行的单片机编程模式,指电路板上的空白元器件可以编程写入最终用户代码,而不需要从电路板上取下元器件。

已经编程的器件也可以用ISP 方式擦除或再编程。

本次课程设计便使用ISP 方式,直接将编写好的程序下载到连接好的单片机中进行调试。

选题目的及设计思想简介:课程设计是一次难得的对所学的知识进行实践的机会,我希望通过课程设计独立设计一个简单的系统从而达到强化课本知识并灵活运用的目的。

电子数字钟是日常生活钟随处可见的简单系统。

对电子数字钟的设计比较容易联系实际并进行拓展, 在设计中我将力求尽可能跳出课本的样板,从现实生活中寻找设计原型和设计思路,争取有所突破。

如图所示便是我本次课程设计流程图,设计的整个过程运用自顶向下分析、自底向上实现的办法进行设计,借鉴在软件工程中学习到的软件设计流程和规范来完成系统设计并在设计过程中体会软件设计的流程。

二、设计基本原理简介数字钟的设计首先要保证其走时尽可能准确,其次再根据人们日常的使用习惯来设定其附加功能。

在设计中利用单片机定时计数器来完成走时并用两组输出口控制数码管来显示;通过编程向某一输出口输出方波实现报时及闹铃;利用输入端口外接各种开关来完成对走时及显示的控制(如预置时间等)。

在设计中需要用到许多技巧。

以下为我在学习单片机课程中总结的一些设计思想或方法:● 占空比概念在设计中的运用如图所示的一串方波序列,导通时间同周期的比值即占空比。

在用单片机控制对多个数码管的扫描显示中,数码管接收到的电压可以看成是一串方波序列,占空比控制了数码管的亮度。

实际上对显示延时时间的调节就是调节数码管电压的占空比,当占空比大于一定数值的时候数码管可以显示,实验证明占空比在0.1时仍可以使数码管清晰显示。

利用这个概念可以比较直观地理解显示延时的调节。

● CPU的分时复用单片机只有一个CPU,因此在一个时间内只能执行一条语句,要使单片机同时控制多个外部元件(比如扬声器和数码管)就必须对单片机的CPU进行分时复用,让单片机在一小段时间内连续交替执行控制多个器件的语句,从表面上看,单片机便用一个CPU控制了多个元件。

本次课程设计中对整点报时和闹铃功能的实现便用到了这个概念。

● 单片机位寻址区的使用单片机内部数据存储器由20H到2FH共有16个字节的位寻址区可以被作为程序执行过程中的状态参数,许多程序模块至于两个状态(比如闪烁与正常显示,报时与不报时等)用位寻址区中的某一位来记录程序执行状态,在需要对状态进行判断的时候十分方便并且节约空间,一个字节便可以判断八个状态,而非位寻址区的地址记录程序状态时可能需要先进行变换,增加了执行成本且容易出错。

● 检测开关时需要注意的问题对于用各种开关控制程序执行状态的程序设计中,需要注意实时地进行开关的检测,以确保一旦有开关动作,程序状态立即随之改变。

此外,在用多个开关控制不同执行状态时,应注意设置开关检测的优先级以防止多个开关同时按下时出现错误。

● 系统资源分配与使用单片机有许多资源是有限的不能滥用,比如定时计数器T,外部中断等,在设计一个多模块程序时,要注意先做一个整体规划,把稀缺资源用在最需要用的地方。

此外在有多个模块时,要注意模块间的数据传递,比如累加器A和进位标志C,在使用时要注意不能让前一个模块的数据对下一个模块产生不希望有的影响。

在模块间的数据传递比较多时最好用固定的内部数据存储器,以避免冲突发生错误。

三、设计要求及说明㈠设计要求:基于单片机电路,借鉴生活中常见的电子钟的功能,结合课本的要求使用汇编语言设计一个简单的电子钟系统。

要求使用简便,功能实用,错误少,有一定创新性。

㈡电子数字钟实现的主要功能:① 实现正常走时(秒→分→时→日→月→年进位)② 能够预置时间和日期③ 能够自动区分平闰年和大小月④ 具有闹铃及设定闹铃时间功能⑤ 具有整点报时功能⑥ 具有生日提醒功能,能够预置生日时间⑦ 在任何一种预置状态下,预置项目会闪烁显示㈢其它设计说明① 优先级:预置>闹铃>报时>生日提醒>正常显示,即预置状态下闹铃、报时功能及生日提醒功能都无效② 生日时间到五个数码管显示“HAPPY”③ 生日显示状态下,按下中断INT0恢复正常显示且此后只有在下更改生日日期或第二年生日显示才有效。

④ 正常显示状态下按下中断INT0进入预置状态,再按一次恢复。

⑤ 用数码管(K0,K1)控制显示状态:00:时间,01:闹铃时间,10:日期,11:生日时间且显示样板如下图所示:⑥ 预置由拨码开关K2/K3/K4分别控制数码管12/34/56显示值,预置优先级:LED34>LED12>LED56(相应数码管显示的项目,显示状态下才能预置)⑦ 整点报时声音为59分51、53、55、57秒的后半秒报四声低音, 59秒的后半秒报一声高音⑧ 闹铃每次响一分钟⑨ 不论是预置状态还是正常走时状态均能够自动区分平闰年和大小月⑩ 闹铃使能由拨码开关K5控制并实时显示生日:6 月1 日生日,最后两位bd 为birthday 的缩写闹铃:于早晨6 点10 分响,最后一位为一表示使能有效 时间:12 点39 分45 秒日期:08 年2 月29 日四、整体设计方案㈠硬件电路设计系统硬件电路根据系统功能可知,需要六个数码管,一个外部中断INT0,一个扬声器,由此结合单片机课程学习中对实验面板的了解,做出如下电路:如图,晶振频率12MHz,拨码开关数值由P0口读入;P2口的输出作为控制数码管的段控信号,经74LS573即8位数据锁存器接到数码管中。

数码管采用共阴接法(图中未标示);P1.0-P1.5作为数码管的位控信号输出端;开关W2经一个基本RS锁存器接入INT0,每按一次开关INTO取反一次,按两次输入一个下降沿;扬声器由P1.6口控制。

㈡系统软件总流程设计根据系统要求,设计出系统软件总流程图如下以T0作为正常走时的计时器,T1作为预置状态下预置项目值自动跳升的控制计时器,INT0作为设定预置及清楚生日信号的控制按钮设计使每一轮显示(即六个数码管都显示一次)便检测一次开关使软 件 系 统 总 流 程 图 ↑上图的“检测开关值→判断并显示→检测开关值” 的循环时间大约为10ms,即每隔10ms检测一次开关值,每个数码管接收到的电压信号占空比大约为1/7,确保数码管正常显示。

三个中断源中断程序执行时间每次均为几十毫秒,基本不影响主程序的显示及闹铃输出。

中断优先级T0>INT0>T1,首先确保走时尽可能的准确,其次由于T1的开启和关闭是由INT0进行控制的,故INT0优先级较高。

此外有优先级“预置显示>闹铃>整点报时>生日显示”,由于预置显示是人为控制的故优先级最高,考虑到日常生活中假如闹铃或整点报时被生日显示覆盖可能使影响到人们的日常生活故设定生日优先级最低,且闹铃最多影响生日信号一分钟。

闹铃和整点报时不影响正常的时间等的显示。

㈢模块划分及分析根据系统功能将模块划分如下●ONE:初始化程序模块进行资源分配(EQU,BIT伪指令),设定初值,各中断初始化●TWO:开关检测模块检测开关号,将要显示值送入显示缓存●THREE:显示主程序显示显示缓存中值,并进行生日,闹铃,报时判断●SEVEN:显示生日祝福HAPPY程序经显示主程序判断生日时间到要执行的显示HAPPY程序(其实可以认为是显示主程序的一部分)●EIGHT:闹铃及整点报时判断程序判断是否闹铃或报时,如果是则CPLP1.6且忽略生日信号,反之则继续执行后续语句●NINE:中断(TO)计时程序包含了秒→分→时→日→月→年进位以及判断大小月及平闰年以及生日标志设定●TEN:中断预置程序控制预置项目的自动加计数的延时时间, 并能判断大小月及平闰年●ELEVEN:中断(INT0)控制程序控制预置的开/关及生日信号的清楚●TEWLVE:延时程序用于闪烁时的数码管亮度控制模块划分中遇到的问题及解决:模块划分的过程中遇到的问题不多,只做了一个比较大的修改。

刚开始设置模块的时候并没有设定显示缓存LED12、LED34、LED56而是将主显示模块THREE分成四个部分分别实现对时间、日期、闹铃、生日的显示(编号FOUR、FIVE,SIX便是删去的另外三个部分的程序名)并通过检测开关决定跳转到哪一个部分去执行,但经过分析发现这样做极大地浪费了存储空间而设置显示缓存后,只需要在检测开关后将相应要显示的数据送入显示缓存并在主程序中对显示缓存进行显示即可,这样做大大地缩减了程序存储空间而程序可读性也增强了。

在程序编码完成后发现,没有必要将SEVEN 显示HAPPY程序同THREE显示主程序单列开来,TWELVE延时程序也并不是必要的,并且模块的划分还有些值得商榷的地方,本报告中的程序还可以通过模块划分的优化修改得更加精简一些。

五、单模块流程设计在完成了系统总流程设计后,便进入到了系统设计中工作量最大的单模块流程设计。

由于系统模块划分虽然是系统设计的基础,但比较简单而且模块划分有多种方法,因此单模块的设计可以认为是本程序中最关键的部分。

相关文档
最新文档