2020年七年级数学上期末试题(含答案)

合集下载

2020人教版七年级上册数学期末考试试题(附答案)

2020人教版七年级上册数学期末考试试题(附答案)

人教版七年级上册数学期末考试考试试题一、选择题(10小题,每题3分,共30分)1.用一个平面截圆柱,则截面形状不可能是()A.圆B.正方形C.长方形D.梯形2.下列各图中,表示数轴的是()A.B.C.D.3.地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2 B.36.1×107km2 C.0.361×109km2 D.3.61×108km24.如果A、B、C在同一条直线上,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.4cm C.8cm或4cm D.无法确定5.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.6.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场8.如果一个角的补角是它的余角的3倍,那么这个角的度数是()A.30° B.45° C.60° D.90°9.如果a+b=0,那么a,b两个有理数一定是()A.一正一负B.互为倒数C.互为相反数D.无法确定10.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20° B.25° C.30° D.70°二、填空题(10小题,每题3分,共30分)11.如图,C是线段AB上任意一点,M,N分别是AC,BC的中点,如果AB=12cm,那么MN的长为cm.12.若|x﹣2|+(y+5)2=0,则y x=.13.已知ab≠0,则+的值是.14.若x=2是方程的解,则的值是.15.李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明轮到计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,得.16.﹣的相反数是;﹣的系数是;(﹣1)101=.17.绝对值小于2008的所有整数的和为;在数轴上,到原点距离为4的数是;3600″=°.18.单项式﹣的系数是,次数是;多项式﹣﹣2xy2+1的次数.19.已知x=3是方程ax﹣6=a+10的解,则a=.20.将弯曲的河道改直,可以缩短航程,是因为:两点之间的所有连线中,最短.三、解答题21.解方程①=﹣1②x﹣=﹣3.22.计算①﹣22+(﹣2)2﹣|﹣4×5|+81÷(﹣3)3②(1.2﹣3.7)2×(﹣1)2005÷()3×0.5.23.化简:,其中x=.24.列方程解应用题:①一件工程,甲独做需10天,乙独做需12天,丙独做需15天,甲、乙合作3天后,甲因事离开,丙参加工作,问还需多少天完成?②从A地到B地,水路比公路近40km,上午9点一艘轮船从A地驶往B地,中午12点一辆汽车也从A地开往B地,它们同时到达,轮船的速度为每小时24km,汽车的速度为每小时40km,求从A地到B地的公路和水路的长.25.已知|a﹣1|+(b+2)2=0,求(a+b)2007+a2008的值.26.如图所示,O为直线AB上一点,过O点作射线OC.已知OD平分∠AOC、OE平分∠BOC,请问OD与OE有什么位置关系?并说明理由.参考答案与试题解析一、选择题(10小题,每题3分,共30分)1.用一个平面截圆柱,则截面形状不可能是()A.圆B.正方形C.长方形D.梯形考点:截一个几何体.分析:根据圆柱的特点,考虑截面从不同角度和方向截取的情况.解答:解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,如果这个圆柱特殊点,底面圆的直径等于高的话,那有可能是正方形,唯独不可能是梯形.故选D.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.2.下列各图中,表示数轴的是()A.B.C.D.考点:数轴.分析:根据数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向分析得出即可.解答:解:A、缺少原点,不表示数轴,故此选项错误;B、负数排列错误,应从原点向左依次排列,故此选项错误;C、是正确的数轴,故此选项正确;D、缺少正方向,故此选项错误.故选C.点评:此题主要考查了数轴的概念,熟练掌握数轴的定义是解题关键.3.地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2 B.36.1×107km2 C.0.361×109km2 D.3.61×108km2考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:361000000=3.61×108,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如果A、B、C在同一条直线上,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.4cm C.8cm或4cm D.无法确定考点:两点间的距离.专题:计算题;分类讨论.分析:分点B在A、C之间和点C在A、B之间两种情况讨论.解答:解:(1)点B在A、C之间时,AC=AB+BC=6+2=8cm;(2)点C在A、B之间时,AC=AB﹣BC=6﹣2=4cm.所以A、C两点间的距离是8cm或4cm.故选:C.点评:本题考查的是两点间的距离,分两种情况讨论是解本题的难点也是解本题的关键.5.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及正方体的展开图解题.解答:解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选B.点评:正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.6.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元考点:一元一次方程的应用.专题:销售问题.分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解答:解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80% 解这个方程得:x=125则这种服装每件的成本是125元.故选:B.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场考点:一元一次方程的应用.专题:应用题.分析:设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.解答:解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选C.点评:此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.8.如果一个角的补角是它的余角的3倍,那么这个角的度数是()A.30° B.45° C.60° D.90°考点:余角和补角.分析:设这个角为x,则余角为90°﹣x,补角为180°﹣x,列出方程求解即可.解答:解:设这个角为x,则余角为90°﹣x,补角为180°﹣x,由题意得,180°﹣x=3(90°﹣x),解得:x=45,即这个角的度数为45°.故选B.点评:本题考查了余角和补角的知识,属于基础题,解答本题的关键是熟练掌握:互补的两角之和为180°,互余的两角之和为90°.9.如果a+b=0,那么a,b两个有理数一定是()A.一正一负B.互为倒数C.互为相反数D.无法确定考点:相反数.分析:根据有理数的加法,可得a、b的关系,可得答案.解答:解:果a+b=0,那么a,b两个有理数一定是互为相反数,故选:C.点评:本题考查了相反数,互为相反数的两个数的和为0是解题关键.10.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C. 30°D. 70°考点:角的计算;角平分线的定义.专题:计算题;压轴题.分析:先根据平角的定义求出∠COB的度数,再由OD平分∠BOC即可求出∠2的度数.解答:解:∵∠1=40°,∴∠COB=180°﹣40°=140°,∵OD平分∠BOC,∴∠2=∠BOC=×140°=70°.故选D.点评:本题考查的是平角的定义及角平分线的定义,熟知以上知识是解答此题的关键.二、填空题(10小题,每题3分,共30分)11.如图,C是线段AB上任意一点,M,N分别是AC,BC的中点,如果AB=12cm,那么MN的长为6cm.考点:比较线段的长短.专题:计算题.分析:由于点M是AC中点,所以MC=AC,由于点N是BC中点,则CN=BC,而MN=MC+CN=(AC+AB)=AB,从而可以求出MN的长度.解答:解:∵点M是AC中点∴MC=AC∵点N是BC中点∴CN=BCMN=MC+CN=(AC+AB)=AB=6.所以本题应填6.点评:本题考点为:线段的中点.不管点C在哪个位置,MC始终等于AC的一半,CN 始终等于BC的一半,而MN等于MC加上CN等于AB的一半,所以不管C点在哪个位置MN始终等于AB的一半.12.若|x﹣2|+(y+5)2=0,则y x=25.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出x、y的值,进而可求出y x的值.解答:解:∵|x﹣2|+(y+5)2=0∴x﹣2=0,y+5=0,即x=2,y=﹣5.故y x=(﹣5)2=25.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.13.已知ab≠0,则+的值是0或±2.考点:绝对值.分析:分四种情况讨论即可求解.解答:解:①当a>0,b>0时,+=1+1=2,②当a>0,b<0时,+=1﹣1=0,③当a<0,b>0时,+=﹣1+1=0,④当a<0,b<0时,+=﹣1﹣1=﹣2,综上所述:+的值是0或±2.故答案为:0或±2.点评:本题主要考查了绝对值,解题的关键是分类讨论a,b的取值.14.若x=2是方程的解,则的值是﹣2.考点:一元一次方程的解.专题:计算题.分析:先将x=2代入方程,求得a值;然后将a值代入所求并解答.解答:解:∵x=2是方程的解,∴x=2满足方程,∴3×2﹣4=﹣a,解得a=﹣1;∴=(﹣1)2011+=﹣1﹣1=﹣2.故答案为:﹣2.点评:此题考查的是一元一次方程的解,根据a的取值,来求的值.15.李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明轮到计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,得﹣8.考点:有理数的混合运算.专题:新定义.分析:根据新定义得到=2×5﹣3×6,再进行乘法运算,然后进行减法运算即可.解答:解:=2×5﹣3×6=10﹣18=﹣8.故答案为﹣8.点评:本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.16.﹣的相反数是;﹣的系数是﹣;(﹣1)101=1.考点:相反数;有理数的乘方;单项式.分析:根据只有符号不同的两个数互为相反数,可得答案;根据单项式的系数是数字因数,可得答案;根据负数的偶次幂是正数,可得答案.解答:解:﹣的相反数是;﹣的系数是﹣;(﹣1)101=1,故答案为:,﹣,1.点评:本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.17.绝对值小于2008的所有整数的和为0;在数轴上,到原点距离为4的数是±4;3600″=1°.考点:数轴;绝对值;有理数的加法;有理数的乘方.分析:利用数轴的特点及度秒的换算求解即可.解答:解:绝对值小于2008的所有整数是﹣2007,﹣2006,﹣2005,…2005,2006,2007,其和为﹣2007+(﹣2006)+(﹣2005)+…+2005+2006+2007=0.到原点距离为4的数是±4,3600″=1°.故答案为:0,±4,1.点评:本题主要考查了数轴,绝对值,有理数的加法及乘方,解题的关键是熟记数轴的特点及度秒的换算.18.单项式﹣的系数是﹣,次数是3;多项式﹣﹣2xy2+1的次数3.考点:多项式;单项式.分析:根据单项式和多项式的概念求解.解答:解:单项式﹣的系数是﹣,次数为3;多项式﹣﹣2xy2+1的次数为3次.故答案为:﹣,3;3.点评:本题考查了单项式和多项式,解答本题的关键是掌握单项式和多项式的概念.19.已知x=3是方程ax﹣6=a+10的解,则a=8.考点:一元一次方程的解.专题:计算题.分析:将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.解答:解:∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为:8.点评:本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.20.将弯曲的河道改直,可以缩短航程,是因为:两点之间的所有连线中,线段最短.考点:线段的性质:两点之间线段最短.分析:考查最短路径问题,即两点之间,线段最短.解答:解:线段;因为两点之间,线段最短.点评:掌握两点之间,线段最短的实际应用.三、解答题21.解方程①=﹣1②x﹣=﹣3.考点:解一元一次方程.专题:计算题.分析:①方程去分母,去括号,移项合并,把x系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:①去分母得:8x﹣4=3x+6﹣12,移项合并得:5x=﹣2,解得:x=﹣0.4;②去分母得:15x﹣3x+6=10x﹣25﹣45,移项合并得:2x=76,解得:x=38.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.计算①﹣22+(﹣2)2﹣|﹣4×5|+81÷(﹣3)3②(1.2﹣3.7)2×(﹣1)2005÷()3×0.5.考点:有理数的混合运算.专题:计算题.分析:①原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;②原式先计算乘方运算,再计算乘除运算,即可得到结果.解答:解:①原式=﹣4+4﹣20﹣3=﹣23;②原式=6.25×(﹣1)×8×0.5=﹣25.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.化简:,其中x=.考点:整式的加减—化简求值.分析:运用整式的加减运算顺序化简后代入值计算即可.解答:解:原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,是各地中考的常考点.注意一定先化简,再求值.24.列方程解应用题:①一件工程,甲独做需10天,乙独做需12天,丙独做需15天,甲、乙合作3天后,甲因事离开,丙参加工作,问还需多少天完成?②从A地到B地,水路比公路近40km,上午9点一艘轮船从A地驶往B地,中午12点一辆汽车也从A地开往B地,它们同时到达,轮船的速度为每小时24km,汽车的速度为每小时40km,求从A地到B地的公路和水路的长.考点:一元一次方程的应用.分析:①设还需x天完成,工程总量为1,由题意可得出三人每天各自能完成的工作量,再由题意和工程总量1,可列出关于x的一元一次方程,解这个方程即可求得还需要的天数.②设水路长为x km,则公路长为(40+x)km,则依据等量关系:轮船比汽车多用了3小时,列出方程并解答.解答:解:①设还需x天完成,工程总量为1,则:∵一件工程,甲独做需10天,乙独做需12天,丙独做需15天,∴甲、乙、丙三人每天分别能完成的工程进度为、、,∵甲、乙合作3天后,甲因事离开,丙参加工作,∴由题意可得出关于x的一元一次方程为:(++)×3+(+)x=1,解得:x=3.答:还需3天完成.②解:设水路长为x km,则公路长为(40+x)km,根据题意得:﹣=3,解得:x=240,则40+x=280.答:甲地到乙地的水路路程与公路路程分别是240km、280 km.点评:此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.已知|a﹣1|+(b+2)2=0,求(a+b)2007+a2008的值.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质求出a与b的值,代入原式计算即可得到结果.解答:解:∵|a﹣1|+(b+2)2=0,|a﹣1|≥0,(b+2)2≥0,∴a﹣1=0且b+2=0,解得:a=1且b=﹣2,则(a+b)2007+a2008=(1﹣2)2007+12008=﹣1+1=0.故答案为0.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.26.如图所示,O为直线AB上一点,过O点作射线OC.已知OD平分∠AOC、OE平分∠BOC,请问OD与OE有什么位置关系?并说明理由.考点:角平分线的定义.分析:先根据角平分线的定义得出∠DOC=∠AOC,∠COE=∠BOC,再根据平角的定义即可得出结论.解答:解:OD⊥OE.∵OD平分∠AOC、OE平分∠BOC,∴∠DOC=∠AOC,∠COE=∠BOC,∴∠DOE=∠DOC+∠COE=(∠AOC+∠BOC)=×180°=90°,∴OD⊥OE.点评:本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.。

浙江省宁波市奉化区2020-2021学年七年级上学期期末数学试题及参考答案

浙江省宁波市奉化区2020-2021学年七年级上学期期末数学试题及参考答案

浙江省宁波市奉化区2020-2021学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.宁波至奉化城际铁路于2020年9月27日上午10:00正式开通运营,该线路自鄞州区高塘桥站向南引出止于奉化区金海路站,全长21530米,为奉化居民往返宁波城区的交通出行提供极大便利,其中21530用科学记数法表示为( )A .42.15310⨯B .321.5310⨯C .50.215310⨯D .32.15310⨯ 2.在0,2,13-,2-四个数中,最小的数是( )A .0B .2C .13- D .2-3.随着校园足球的推广,越来越多的青少年喜爱足球这项运动.下图检测了4个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从符合标准质量的角度看,最接近标准的是( )A .B .C .D . 4.下列计算正确的是( )A .3()3a b a b +=+B .220a b ba -+=C .22423x x x += D .235m n mn += 5.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为( ) A .1- B .2- C .1 D .26.多项式5322451x xy x +--的次数和常数项分别是( )A .5,1-B .5,1C .10,1-D .11,1- 7.如图,点D 把线段AB 从左至右依次分成1∶2两部分,点C 是AB 的中点,若3DC =,则线段AB 的长是( )A .18B .12C .16D .14 8.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( )A .21000(26)800x x ⨯-=B .1000(13)800x x -=C .1000(26)2800x x -=⨯D .1000(26)800x x -=9.计算:1321-=,2318-=,33216-=,43810-=,534122-=,……,归纳各计算结果中的个位数字的规律,猜测20213的个位数字是( )A .0B .1C .2D .310.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10二、填空题 11.2020的倒数是_______.12.已知2020α'∠=︒,则α∠的余角为________.13|3|0b -=,那么b a =________.14.已知等式:①35x y =②25x y x =-③350x y -=④23x y y -=,其中可以通过适当变形得到35x y =的等式是________.(填序号)15.已知代数式2346x x -+的值为8-,那么23242x x -+-的值为________. 16.如图,已知一周长为 30cm 的圆形轨道上有相距 10cm 的 A 、B 两点 (备注:圆形轨道上两点的距离是指圆上这两点间较短部分展直后的线段长).动点P 从A 点出发,以 7 cm/s 的速度在轨道上按逆时针方向运动,与此同时,动点 Q 从 B 出发,以 3 cm/s 的速度按同样的方向运动.设运动时间为 t (s),在 P 、Q 第二次相遇前,当动点 P 、Q在轨道上相距 12cm 时,则 t=______________s .三、解答题17.计算:(1)753(36)964⎛⎫-+⨯- ⎪⎝⎭ (2)42112(3)6⎡⎤--⨯--⎣⎦ 18.解下列方程:(1)532(5)x x +=- (2)2523136x x -+=- 19.如图是一个44⨯的正方形网格,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.请你完成:(1)画一个面积为8的格点正方形(四个顶点都在方格的顶点上);(220.已知22243,22X a ab Y a ab b =+=-+.(1)化简3X Y -(2)当2a =,1b =-时,求3X Y -的值.21.数轴上有,,A B C 三点.点,A B 表示的数互为相反数,且点A 在点B 的左边,同时点,A B 相距8个单位;点,A C 相距2个单位.点,,A B C 表示的数各是多少?22.某班在一次数学兴趣活动中要分为四个组,已知第二组人数比第一组人数32少5人,第三组人数比第一组与第二组人数的和少15人,第四组人数与第一组人数的2倍的和是34,若设第一组有x 人.(1)用含x 的式子表示第二、三、四组的人数,把答案填在下表相应的位置.(2)该班的总人数是否可以为47人?若可以,请写出每组的具体人数;若不可以,请说明理由. 23.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例 将0.7化为分数形式 由于0.70.7777=⋯,设0.7777x =⋯①则107.777x =⋯② ②-①得97x =,解得79x =,于是得70.79=. 同理可得310.393==,4677.470.4799=+=+= 根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(1)基础训练:0.6=______,8.2=______;(2)参考(1)中的方法,比较0.9与1的大小:0.9____1;(填“>”、“<”或“=”) (3)将0.64化为分数形式,写出推导过程.(4)迁移应用:0.153=______;(注:0.1530.153153=⋯) 24.探索新知:如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB ,∠AOC 和∠BOC ,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB 的“巧分线”.(1)一个角的平分线 这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠MPN =α,且射线PQ 是∠MPN 的“巧分线”,则∠MPQ = ;(用含α的代数式表示出所有可能的结果)深入研究:如图2,若∠MPN =60°,且射线PQ 绕点P 从PN 位置开始,以每秒10°的速度逆时针旋转,当PQ 与PN 成180°时停止旋转,旋转的时间为t 秒.(3)当t 为何值时,射线PM 是∠QPN 的“巧分线”;(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.参考答案1.A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将21530用科学记数法表示为42.15310⨯.故选:A .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.D【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵−2<13-<0<2,∴在0,2,13-,2-四个数中,最小的数是2-. 故选:D .【点睛】本题主要考查了有理数大小比较,熟记有理数大小比较的法则是解题的关键.3.C【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】解:∵|-0.8|<|+0.9|<|+2.5|<|-3.6|,∴-0.8最接近标准,故选:C .【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键.4.B【分析】直接利用整式的加减运算法则计算得出答案.【详解】解:A .3()33+=+a b a b ,故此选项不符合题意;B .220a b ba -+=,故此选项符合题意;C .22223x x x +=,故此选项不符合题意;D .23m n +,无法计算,故此选项不符合题意;故选:B .【点睛】本题主要考查了整式的加减运算,解题的关键是熟练运用整式的运算法则.5.D【分析】把x =1代入方程2x -a =0得到关于a 的一元一次方程,解之即可.【详解】解:把x =1代入方程2x -a =0,得:2-a =0,解得:a =2,故选:D .【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是关键.6.A【分析】根据几个单项式的和叫做多项式,多项式中次数最高的项的次数叫做多项式的次数,每个单项式叫做多项式的项,其中不含字母的项叫做常数项可得答案.【详解】解:多项式5322451x xy x +--的次数和常数项分别是5,-1.故选:A .【点睛】本题考查了多项式的有关定义,解题的关键是掌握多项式的次数和常数项的确定方法. 7.A【分析】 根据题意易得11,32AD AB AC AB ==,则有1113236DC AB AB AB =-==,进而问题可求解.【详解】解:∵点D 把线段AB 从左至右依次分成1∶2两部分, ∴13AD AB =, ∵点C 是AB 的中点, ∴12AC AB =, ∵3DC =, ∴1113236DC AB AB AB =-==, ∴AB=18;故选A .【点睛】本题主要考查线段的中点及线段的和差关系,熟练掌握线段的中点及线段的和差关系是解题的关键.8.C【分析】安排x 名工人生产口罩面,则(26-x )人生产耳绳,由一个口罩面需要配两个耳绳可知耳绳的个数是口罩面个数的2倍从而得出等量关系,就可以列出方程.【详解】解:设安排x 名工人生产口罩面,则(26-x )人生产耳绳,由题意得1000(26-x )=2×800x .故选:C .【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.D【分析】根据已知得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2021除以4看得出的余数确定202131-的个位数字,即可确定20213的个位数字.【详解】解:1321-=,2318-=,33216-=,43810-=,534122-=,……,∴末尾数字以2,8,6,0四个数字不断循环出现,∵2021÷4=505…1,∴202131-的个位数字是2,∴20213的个位数字是3.故选:D .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现个位数字的变化特点,求出所求式子的个位数字.10.A【分析】利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差,再由S 2-S 1=3b ,AD=10,列出方程求得AB 便可.【详解】解:S 1=(AB-a )•a+(CD-b )(AD-a )=(AB-a )•a+(AB-b )(AD-a ),S 2=AB (AD-a )+(a-b )(AB-a ),∴S 2-S 1=AB (AD-a )+(a-b )(AB-a )-(AB-a )•a -(AB-b )(AD-a )=(AD-a )(AB-AB+b )+(AB-a )(a-b-a )=b•AD -ab-b•AB+ab=b (AD-AB ),∵S 2-S 1=3b ,AD=10,∴b (10-AB )=3b ,∴AB=7.故选:A .【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.11.12020【分析】根据互为倒数两个数乘积等于1可得答案.【详解】解:2020的倒数是12020. 故答案为:12020【点睛】本题主要考察了倒数,掌握倒数的定义是解题的关键.12.6940'︒【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【详解】解:∵2020α︒'∠=,∴α∠的余角为9020206940''︒-︒=︒,故答案为:6940'︒.【点睛】本题考查了余角,熟记概念是解题的关键,要注意度、分、秒是60进制.13.8-【分析】因为一个数的算术平方根为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要=0,∣b -3∣=0,由此求出a 、b 即可解答.【详解】解:|3|0b -=,=0,∣b -3∣=0,∴2a =-,3b =,∴()328b a =-=-.故答案为:-8.【点睛】本题考查了算术平方根和绝对值的非负性,整数指数幂,求出a ,b 的值是解题关键. 14.②③④【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:①根据等式性质2,由35x y =两边同乘以15得,5x= 3y ; ②根据等式性质1,25x y x =-两边同加x 得,35x y =;③根据等式性质1,350x y -=两边同加5y 得,35x y =;④根据等式性质2,由23x y y -=两边同乘以3y 得332x y y -=,据等式性质1,332x y y -=两边同加3y 得,35x y =.故答案为:②③④.【点睛】本题主要考查等式的性质:等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.15.3【分析】将2346x x -+=8-进行适当的变形,得出23272x x -+=,进而求出答案. 【详解】解:由题意得, 23468x x -+=-移项得,23414x x -=-,两边都除以-2得,23272x x -+=, ∴23247432x x -+-=-=. 故答案为:3.【点睛】本题考查代数式求值,将原代数式进行适当变形和整体代入是解决问题的关键.16.0.5或2或8或9.5【分析】经过ts ,P 、Q 两点相距12cm ,分相遇前和相遇后两种情况建立方程求出其解;分点P ,Q 只能在直线AB 上相遇,而点P 旋转到直线AB 上的时间分两种情况,所以根据题意列出方程分别求解.【详解】解:a=7,共有4种可能:①7t+10-3t=12,解得:t=0.5;②7t+10-3t=18,解得:t=2;③7t+10-3t=42,解得:t=8;④7t+10-3t=48,解得:t=9.5;综上所知,t 的值为0.5、2、8或9.5.故答案为t 的值为0.5、2、8或9.5.【点睛】本题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解题关键. 17.(1)-25;(2)16【分析】(1)利用乘法的分配律计算即可;(2)先算乘方,再算括号,然后算乘法,最后算加减.【详解】解:(1)753(36)964⎛⎫-+⨯- ⎪⎝⎭ 283027=-+-25=-;(2)42112(3)6⎡⎤--⨯--⎣⎦ 11(7)6=--⨯- 16=. 【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序、简化计算过程.18.(1)x=1;(2)136x =【分析】(1)先去括号,然后移项合并同类项,最后进行求解即可;(2)先去分母,然后移项合并同类项进行求解即可.【详解】解:(1)()5325x x +=- 53102x x +=-,55=x ,1x =;(2)2523136x x -+=- ()()225623x x -=-+,613x =,136x =. 【点睛】本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键. 19.(1)见解析;(2)见解析.【分析】(1)根据勾股定理和正方形的面积公式即可画出图形;(2)利用圆规,以O 的位置.【详解】解:(1=如图:正方形OABC 即为所作的格点正方形,(2)以O 为圆心,正方形的边长为半径画弧,点D 所表示的点.【点睛】本题考查了正方形的面积,实数与数轴,勾股定理的应用,在直角三角形中,两直角边的平方和等于斜边的平方.20.(1)22266a ab b -+-;(2)-26【分析】(1)将已知代入3X Y -计算即可;(2)将2a =,1b =-代入(1)所求结果即可解答.【详解】解:(1)()()222343322X Y a ab a ab b -=+--+,22243636a ab a ab b =+-+-22266a ab b =-+-;(2)当2,1a b ==-时,()()223226216126X Y -=-⨯+⨯⨯--⨯-=-.【点睛】本题考查了整式的加减-化简求值:先去括号,然后合并同类项,再把满足条件的字母的值代入计算得到对应的整式的值.21.点A 表示的数为4-,点B 表示的数为4,点C 表示的数为6-或2-【分析】先根据相反数的定义设出A 、B 两点所表示的数,再根据数轴上两点之间的距离公式解答即可.【详解】解:∵点A 、B 表示的数互为相反数,且点A 在点B 的左边∴A 为负数,B 为正数∵点A 、B 相距8个单位长度∴点A 表示的数为()824-÷=-,点B 表示的数为824÷=∵点A 、C 相距2个单位长度∴点C 表示的数为426--=-或422-+=-∴点A 表示的数为4-,点B 表示的数为4,点C 表示的数为6-或2-.如图所示:故答案是:点A 表示的数为4-,点B 表示的数为4,点C 表示的.数为6-或2-【点睛】本题考查的是数轴的特点及相反数的定义,熟知数轴上两点之间距离的定义是解答此题的关键.用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点. 22.(1)352x -,5202x -,342x -;(2)该班总人数不可以为47人,理由见解析 【分析】(1)根据题意可用含x 的代数式表示第二、三、四组的人数;(2)把四个小组的人数相加即可求出该班的总人数,求出该班的总人数为47人时x 的值,根据整数的性质即可求解.【详解】解:(1)设第一组有x 人,根据题意得: 第二组人数:352x -, 第三组人数:x+352x --15=5202x -, 第四组人数:342x -,填表如下:(2)该班总人数为:355203423922x x x x x +-+-+-=+, 令3947x +=,解得383x =,这与人数为整数矛盾, ∴该班总人数不可以为47人.【点睛】本题考查了整式的加减,以及列代数式,一元一次方程的应用,熟练掌握运算法则是解题的关键.23.(1)23,749;(2)=;(3)640.6499=,见解析;(4)17111 【分析】(1)根据阅读材料的解答过程,循环部只有一位数时,用循环部的数除以9即为分数,进而求出答案.(2)根据阅读材料的解答过程,类比可得0.9=1,即可求解;(3)循环部有两位数时,参照阅读材料的解答过程,可先乘以100,再与原数相减,即求得答案;(4)循环部有三位数时,参照阅读材料的解答过程,可先乘以1000,再与原数相减,即求得答案.【详解】解:(1)由于0.60.666=⋯,设0.6666x =⋯①则10 6.666x =⋯②②-①得96x =,解得23x =,于是得20.63=. 同理可得,2748.28+=99= 故答案为:23,749; (2)90.919== 故答案为:=.(3)由于0.640.646464=⋯设0.646464x =⋯①则10064.6464x =⋯②②-①得9964x =,解得6499x =,于是得640.6499= (4)迁移应用:由于0.1530.153153153=⋯设0.153153153x =⋯①则1000153.153153153x =⋯②②-①得999153x =,解得17111x =,于是得170.153111= 故答案为:17111【点睛】 本题考查了有理数运算、比较大小,一元一次方程的解法.解题关键是,正确理解题意的解答过程并转化运用到循环部数字不一样的情况计算.24.(1)是;(2)12α或13α或23α;(3)当t 为9或12或18时,射线PM 是∠QPN 的“巧分线”;(4)当t 为2.4或4或6时,射线PQ 是∠MPN 的“巧分线”.【分析】()1根据巧分线定义即可求解;()2分3种情况,根据巧分线定义即可求解;()3分3种情况,根据巧分线定义得到方程求解即可;()4分3种情况,根据巧分线定义得到方程求解即可.【详解】()1一个角的平分线是这个角的“巧分线”;(填“是”或“不是”)故答案为是()2MPN α∠=,12MPQ α∴∠=或13α或23α; 故答案为12α或13α或23α; 深入研究:()3依题意有11060602t =+⨯①, 解得9t =;10260t =⨯②,解得12t =;1060260t =+⨯③,解得18t =.故当t 为9或12或18时,射线PM 是QPN ∠的“巧分线”;()4依题意有()1105603t t =+①, 解得 2.4t =; ()1105602t t =+②, 解得4t =; ()2105603t t =+③, 解得6t =.故当t 为2.4或4或6时,射线PQ 是MPN ∠的“巧分线”.【点睛】本题是一道阅读理解型的题目,主要考查了旋转的性质,巧分线定义,学生的阅读理解能力及知识的迁移能力,理解“巧分线”的定义是解题的关键.。

2020年初一数学上期末试卷(附答案)

2020年初一数学上期末试卷(附答案)

②作图的依据是

22.先化简,后求值:
已知 x 32
y1 2
0
求代数式 2xy2 6x 42x 1 2xy2 9 的值
23.如图 1,点 A、O、B 依次在直线 MN 上,现将射线 OA 绕点 O 沿顺时针方向以每秒 4°的速度旋转,同时射线 OB 绕点 O 沿逆时针方向以每秒 6°的速度旋转,直线 MN 保持 不动,如图 2,设旋转时间为 t(0≤t≤60,单位:秒).
14.100【解析】【分析】设这件童装的进价为 x 元根据利润=售价﹣进价即可 得出关于 x 的一元一次方程解之即可得出结论【详解】解:设这件童装的进价 为 x 元依题意得:120﹣x=20x 解得:x=100 故答案为:1
解析:100 【解析】 【分析】
设这件童装的进价为 x 元,根据利润=售价﹣进价,即可得出关于 x 的一元一次方程,解 之即可得出结论. 【详解】 解:设这件童装的进价为 x 元, 依题意,得:120﹣x=20%x, 解得:x=100. 故答案为:100. 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
第一步:取一个自然数 n1 5 ,计算 n12 1得 a1 ; 第二步:算出 a1 的各位数字之和得 n2 ,计算 n22 1 得 a2 ; 第三步:算出 a2 的各位数字之和得 n3 ,再计算 n32 1得 a3 ; 依此类推,则 a2019 ____________ 16.若 2a3x1 与 1 a2x4 的和是单项式,则 x 的值为____________.
5.A
解析:A 【解析】
【分析】
分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.
【详解】
解:因为 x2-3x=4, 所以 3x2-9x=12, 所以 3x2-9x+8=12+8=20. 故选 A. 【点睛】

七年级数学(上)期末检测试卷(含答案)

七年级数学(上)期末检测试卷(含答案)

七年级数学(上)期末检测试卷(含答案)温馨提示:本试卷内容沪科版七上全册第1章~5章、共4页八大题、23小题,满分150分,时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分)1.在-6,0,-5,-1这四个数中,最小的数是()A.0 B.-6 C.-5 D.-12、将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C.D.3、下列运算中,结果正确的是()A.a3+a3=a6 B.2a3-3a2=-a C.a2•a4=a8 D.(-a2)3=-a64、2020年11月10日,万米级全海深载人潜水器“奋斗者”号在西太平洋马里亚纳海沟成功坐底,抵达洋底深度显示为10909米,刷新中国载人深潜新纪录,其中10909用科学记数法可表示为()A.1.0909×104 B.1.0909×105 C.0.10909×105 D.10.909×1035、合肥市2022年预计越有3万名考生参加中考,为了了解这3万名考生的数学成绩,从中抽取了 1000名考生的数学成绩进行统计分析.以下说法正确的有( )个①这种调查采用了抽样调查的方式;②3 万名考生是总体;③1000 名考生是总体的一个样本;④每名考生的数学成绩是个体.A.2 B.3 C.4 D.06.已知B,C,D三个车站的位置如图所示,B,C两站之间的距离是2a﹣b,B,D两站之间的距离是72a-2b-1,则C,D两站之间的距离是()A.112a-3b﹣1 B.13-a+b+1 C.32a-b-1 D.32a-3b-1 第6题图第9题图第10题图7、已知方程组263a ba b m-=⎧⎨-=⎩中,a、b互为相反数,则m的值是()A.4 B.-4 C.0 D.88、若x2-3x的值为4,则3x2-9x-3的值为()A.1 B.9 C.12 D.15 9.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠BOC=30°,则∠AOD等于()A.10° B.150° C.140° D.160°10.在长方形ABCD中,放入5个形状大小相同的小长方形(空白部分),其中AB=7cm,BC=11求阴影部分图形的总面积()A.18cm2 B.21cm2 C.24cm2 D.27cm2二、填空题(本大题共4小题,每小题5分,满分20分)11、比较大小:-2021 -2022(填“>”或“<”)12、已知:A 和B 都在同一条数轴上,点A 表示-2,又知点B 和点A 相距5个单位长度,则点B 表示的数是13.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出九,盈五;人出八,不足五.问人数几何?译文为:现有一些人共同买一个物品,每人出9元,还盈余5元;每人出8元,则还差5元,问共有________人.14、已知点P 是射线AB 上一点,当PA PB =2或PA PB=12时,称点P 是射线AB 的强弱点,若AB =6,则PA =__________.三、(本大题共2小题,每小题8分,总计16分)15、计算:(1)22022123312(1)23⎛⎫-÷+-⨯--⎪⎝⎭ (2)(3574126+-)×(-60)16、解方程(组):(1)321142x x --= (2)32137x y x y -=-⎧⎨+=⎩四、(本大题共2小题,每小题8分,总计16分) 17、作图与计算:(1)已知:∠α,∠AOB 求作:在图2中,以OA 为一边,在∠AOB 的内部作∠AOC=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹.)(2)过点O 分别引射线OA 、OB 、OC ,且∠AOB=65°,∠BOC=30°,求∠AOC 的度数.18、某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-“表示出库): +30、-25、-30、+28、-29、-16、-15.(1)经过这7天,仓库里的水泥是増多还是减少了?増多或减少了多少吨?(2)如果进仓库的水泥装卸费是毎吨a 元、出仓库的水泥装卸费是每吨b 元,求这7天要付多少元装卸费?(用含a 、b 的代式表示).五、(本大题共2小题,每小题10分,总计20分)19、已知 a 是绝对值等于2 的负数,b 是最小的正整数,c 的3次方还是它本身, 求代数式:4a 2b 3-[2abc+(5a 2b 3-7abc )-a 2b 3] 的值.20、某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)商品/价格 A B进价(元/件)1200 1000售价(元/件)1350 1200(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?六、(本大题共1小题,每小题12分,总计12分)为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”“B.了解”“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题(1)这次调查的市民人数为___ __人,图2中,n=__ ___;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.七、(本大题共1小题,每小题12分,总计12分)23.已知:如图,O是直线AB上一点,∠MON=90°,作射线OC.(1)如图1,若ON平分∠BOC,∠BON=60°,则∠COM=___ __°(直接写出答案);(2)如图2,若OC平分∠AOM,∠BON比∠COM大36°,求∠COM的度数(3)如图3,若OC 平分∠AON ,当∠BON =2∠COM 时,能否求出∠COM 的度数?若可以,求出度数;若不可以,请说明理由.八、(本大题共1小题,每小题14分,总计14分)23、数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律.譬如:数轴上点A 、点B 表示的数分别为a 、b ,则A 、B 两点之间的距离AB =|a-b|,线段AB的中点表示的数为2a b.如图,数轴上点A 表示的数为-4,点B 表示的数为2.(1)求线段AB 的长和线段AB 的中点表示的数. (2)找出所有符合条件的整数x ,使得|x+1|+|x-2|=3.(3)并由此探索猜想,对于任意的有理数x ,|x-2|+|x+4|是否有最小值,如果有,写出最小值;如果没有,请说明理由.(4)点C 在数轴上对应的数为x ,且x 是方程2x-1=32x+1的解.数轴上是否存在一点P ,使得PA+PB =PC ,若存在,写出点P 所对应的数;若不存在,请说明理由.答案1 2 3 4 5 6 7 8 9 10B D D A ACD B B D11、> 12、 -7或3 13、 10; 14、 2或4或12;15、(1) -6;(2)016、(1)x=-2;(2)12 xy=⎧⎨=⎩17、(1)如图所示(2)35°或95°;18、(1)减少57吨;(2)(58a+115b)19、10或0或-10;20、(1)A种商品200件; B种商品150件;(2)9折21、(1)1000; 35;(2)如图所示;100.8°;(3)153万人;在垃圾桶上贴上垃圾分类标签;22、(1)30°;(2)18°;(3)不能求出∠COM的度数,理由如下:设∠C0M=x.因为∠MON=90°, 所以∠CON=90°-x°,因为OC∠平分AON,所以∠AON=2∠CON=2x×(90°-x°) = 180°-2 x°,所以∠RON= 2x°;故不论∠COM等于多少度,只能得出∠HON如终是COM的2倍,所以求不出∠COM的度数;23、(1)-1;(2)2,1,0,-1.(3)6;(4)-6或-2。

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。

广东佛山顺德区2020-2021学年七上期末考试数学试卷(解析版)

广东佛山顺德区2020-2021学年七上期末考试数学试卷(解析版)

2020-2021学年广东省佛山市顺德区七年级(上)期末数学试卷参考答案与试题解析一、选择题(10个题,每题3分,共30分)1.的倒数是()A.﹣2B.﹣C.2D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.2.以下调查方式比较合理的是()A.了解全国学生周末使用网络情况,采用普查的方式B.了解全国七年级学生节约用水的情况,采用抽样调查的方式C.了解一沓钞票中有没有假钞,采用抽样调查的方式D.了解全国中学生心理健康现状,采用普查的方式【分析】根据全面调查和抽样调查的意义,结合实际需要进行判断即可.【解答】解:A.了解全国学生周末使用网络情况,由于数量较大,且没有必要,因此采用抽样调查的方式较好,因此A不符合题意;B.了解全国七年级学生节约用水的情况,采用抽样调查的方式较好,因此B符合题意;C.了解一沓钞票中有没有假钞,必须每一种都要检查,因此采用全面调查的方式较好,因此C不符合题意;D.了解全国中学生心理健康现状,由于个体较多,且没有必要全面调查,采用抽样调查的方式较好,因此D不符合题意;故选:B.3.如图,能用∠1、∠ABC、∠B三种方法,表示同一个角的是()A.B.C.D.【分析】当角的顶点处只有一个角时,可以用一个大写字母表示这个角,也可以用三个大写字母表示这个角.【解答】解:A、顶点B处有四个角,不能用∠B表示,错误;B、顶点B处有一个角,能同时用∠ABC,∠B,∠1表示,正确;C、顶点B处有三个角,不能用∠B表示,错误;D、顶点B处有四个角,不能用∠B表示,错误.故选:B.4.下列变形正确的是()A.若a=b,则a+1=b+2B.将a+1=0移项得a=1C.若a=b,则﹣3a=﹣3bD.将a+1=0去分母得a+1=0【分析】根据等式的性质即可求出答案.【解答】解:A、在等式a=b的两边都加上1得a+1=b+1,原变形错误,故此选项不符合题意;B、在等式a=b的两边都减去1,得a=﹣1,原变形错误,故此选项不符合题意;C、在等式a=b的两边都乘以﹣3,即﹣3a=﹣3b,原变形正确,故此选项符合题意;D、将a+1=0去分母得3a+3=0,原变形错误,故此选项不符合题意;故选:C.5.计算:1800′=()A.10°B.18°C.20°D.30°【分析】利用1°=60′,1′=60″进行计算即可.【解答】解:1800′=(1800÷60)°=30°,故选:D.6.下列哪个图形经过折叠可以围成棱柱是()A.B.C.D.【分析】根据棱柱的特点作答.【解答】解:A是圆柱,B比棱柱缺少一个侧面的长方形,D比三棱柱的侧面多出一个长方形,故选:C.7.下列说法正确的是()A.﹣3mn的系数是3B.多项式m2+m﹣3的次数是3C.3m3n中n的指数是0D.多项式a2b﹣3ab+5的项分别为a2b、﹣3ab和5【分析】根据单项式中的数字因数叫做单项式的系数判断A,根据多项式的次数判断B,根据字母的指定判断C,根据多项式的项即是组成多项式的每一个单项式判断D.【解答】解:A、单项式﹣3mn的系数是﹣3,故原题说法错误;B、多项式m2+m﹣3的次数是2,故原题说法错误;C、单项式3m3n中n的指数是1,故原题说法错误;D、多项式a2b﹣3ab+5的项分别为a2b、﹣3ab和5,故原题说法正确;故选:D.8.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=160°,则∠BOC等于()A.20°B.30°C.40°D.50°【分析】如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=160°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣160°=20°.故选:A.9.下列各式一定成立的是()A.(﹣a)2=a2B.(﹣a)3=a3C.|﹣a2|=﹣a2D.|a3|=a3【分析】直接利用有理数的乘方以及绝对值的性质分别化简得出答案.【解答】解:A、(﹣a)2=a2,一定成立,符合题意;B、(﹣a)3=﹣a3,原式不成立,不合题意;C、|﹣a2|=a2,原式不成立,不合题意;D、|a3|,a的符号不确定,不能直接化简,故此选项错误;故选:A.10.关于代数式a2+的值,以下结论不正确的是()A.当a取互为相反数的值时,a2+的值相等B.当a取互为倒数的值时,a2+的值相等C.当|a|>1时,|a|越大,a2+的值就越大D.当0<|a|<1时,|a|越大,a2+的值就越大【分析】根据倒数、相反数的定义以及不等式的性质来解决代数式的值.【解答】解:A、当a取互为相反数的值时,即取m和﹣m,当a=m时,a2+=m2+①.当a=﹣m时,a2+=(﹣m)2+=m2+②.此时①=②,故本选项不符合题意.B、当a取互为倒数的值时,即取m和,当a=m时,a2+=m2+①.当a=时,a2+=+m2②.此时①=②,故本选项不符合题意.C、可举例判断,当|a|>1时,取a=2,3(2<3),则22+=4+<32+=9+.故本选项不符合题意.D、可举例判断,当0<|a|<1时,取a=,().则()2+=4+<()2+=9+.故本选项符合题意.故选:D.二、填空题(7个题,每题4分,共28分)11.(4分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.12.(4分)用科学记数法表示水星的半径24400000m为 2.44×107m.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数数;当原数的绝对值<1时,n是负整数数.【解答】解:24400000=2.44×107.故答案为:2.44×107.13.(4分)比较大小:<.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣|==,|﹣|==,∴﹣<﹣.故答案为<.14.(4分)化简:2a+1﹣(1﹣a)=3a.【分析】直接去括号进而合并同类项得出答案.【解答】解:原式=2a+1﹣1+a=3a.故答案为:3a.15.(4分)若单项式﹣2x2y n与3x m y是同类项,则m﹣n=1.【分析】根据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,得出m,n的值,进而得出答案.【解答】解:∵﹣2x2y n与3x m y是同类项,∴m=2,n=1,∴m﹣n=2﹣1=1.故答案为:1.16.(4分)如图,OG是∠BOE的角平分线,若∠AOE=48°,则∠BOG的度数是66°.【分析】根据补角的定义求出∠BOE的度数,再根据角平分线的定义计算即可.【解答】解:因为∠AOE=48°,所以∠BOE=180°﹣∠AOE=132°,因为OG是∠BOE的角平分线,所以∠BOG===66°.故答案为:66°.17.(4分)如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为3.【分析】首先根据题意,可得:4x+(x+7)=x+19;然后根据解一元一次方程的方法,求出x的值为多少即可.【解答】解:根据题意,可得:4x+(x+7)=x+19,去括号,可得:4x+x+7=x+19,移项,可得:4x+x﹣x=19﹣7,合并同类项,可得:4x=12,系数化为1,可得:x=3.故答案为:3.三、解答题(一)(3个题,每题6分,共18分)18.(6分)计算:5×(﹣3+2)÷(﹣)3.【分析】先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:5×(﹣3+2)÷(﹣)3=5×(﹣1)÷(﹣)=﹣5÷(﹣)=40.19.(6分)先化简,后求值:2(a2b+ab2)﹣2(a2b﹣1)﹣2,其中a=2,b=﹣2.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:2(a2b+ab2)﹣2(a2b﹣1)﹣2=2a2b+2ab2﹣2a2b+2﹣2=2ab2,当a=2,b=﹣2时,原式=2×2×(﹣2)2=16.20.(6分)解方程:﹣=1.【分析】方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:去分母得:2(2x+1)﹣3(5x﹣1)=6,去括号得:4x+2﹣15x+3=6,移项得:4x﹣15x=6﹣2﹣3,合并得:﹣11x=1,解得:x=﹣.四、解答题(二)(3个题,每题8分,共24分)21.(8分)已知线段m、n(其中m>n).(1)尺规作图:作线段AC=m﹣n,其中AB=m,BC=n(保留作图痕迹,不用写作法);(2)在(1)的条件下,点M是AB的中点,点N是BC的中点,当m=3、n=1时,求线段MN的长.【分析】(1)根据线段定义即可作线段AC=m﹣n,其中AB=m,BC=n;(2)根据点M是AB的中点,点N是BC的中点,当m=3、n=1时,即可求线段MN 的长.【解答】解:(1)如图,线段AC即为所求;(2)如图,∵点M是AB的中点,点N是BC的中点,∴AM=BM=AB,CN=BN=BC,∵AB=m=3、BC=n=1,∴BM=,BN=,∴MN=BM﹣BN=﹣=1,答:线段MN的长为1.22.(8分)每天锻炼1小时,健康生活一辈子.为增强学生体质,某学校随机抽取部分学生对“我最喜爱课间活动”进行抽样调查,分别从跳绳、踢毽子、打羽毛球、打篮球、踢足球5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了统计图.结合图中信息,解答下列问题:(1)本次调查共抽取300名学生,喜欢打羽毛球的人数是45;(2)在扇形统计图中,踢足球的人数所占总数的百分比是25%,踢毽子所在扇形的圆心角度数是36°;(3)若学校共有3600名学生,请你估计参加打篮球的学生有多少人?【分析】(1)根据跳绳的人数和所占的百分比求出本次调查共抽取的总人数,用总人数减去其他活动项目的人数,求出喜欢打羽毛球的人数;(2)用踢足球的人数除以总人数求出踢足球的人数所占总数的百分比;用360°乘以踢毽子的人数所占的百分比即可得出踢毽子所在扇形的圆心角度数;(3)用该校的总人数乘以打篮球的学生所占的百分比即可.【解答】解:(1)本次调查共抽取的学生数是:60÷20%=300(名);喜欢打羽毛球的人数是:300﹣60﹣30﹣90﹣75=45(人).故答案为:300,45;(2)踢足球的人数所占总数的百分比是×100%=25%;踢毽子所在扇形的圆心角度数是:360°×=36°.故答案为:25%,36°;(3)根据题意得:3600×=1080(人),答:参加打篮球的学生有1080人.23.(8分)某学校组织学生义卖书籍活动,A、B两种书的单价分别是5元、8元.(1)若两种书共卖了1000本,得6650元,求每种书各卖了多少本?(2)卖1000本书时可能是5500元吗?请说明理由.【分析】(1)可根据总价来得到相应的等量关系:单价5元的书的总价+单价8元的书的总价=6650,把相关数值代入求解即可;(2)设单价为5元的书卖了y本,则单价为8元的书卖了(1000﹣y)本,根据一共付款5500元列出方程,如果方程的解是正整数,那么可能,否则不可能.【解答】解:(1)设A种书卖了x本,则B种书卖了(1000﹣x)本,依题意,得5x+8×(1000﹣x)=6650,解得x=450,则1000﹣450=650,答:A种书卖了450本,B种书卖了650本;(2)卖1000本书时不可能是5500元.理由如下:设单价为5元的书卖了y本,则单价为8元的书卖了(1000﹣y)本,依题意,得5y+8×(1000﹣y)=5500,解得y=833,833是分数,不合题意舍去.故卖1000本书时不可能是5500元.五、解答题(三)(2个题,每题10分,共20分)24.(10分)已知数轴上两点A、B对应的数分别为﹣1、3,点P从A出发,以每秒2个单位长度的速度沿数轴向正方向匀速运动,设P的运动时间为t秒.(1)AB=4;(2)求t为何值时,BP=2;(3)若Q点同时从B出发,以每秒1个单位长度的速度沿数轴向正方向匀速运动,求t 为何值时,PQ=AB?【分析】(1)根据两点间的距离公式即可求解;(2)先表示出运动t秒时P点表示的数,再根据BP=2列方程,求解即可;(3)先表示出运动t秒时P、Q两点表示的数,再根据PQ=AB列方程,求解即可.【解答】解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,∴AB=3﹣(﹣1)=4.故答案为:4;(2)t秒后,点P表示的数﹣1+2t,∵BP=2,∴|﹣1+2t﹣3|=2,解得t=1或3,故t为1或3时,BP=2;(3)∵t秒后,点P表示的数﹣1+2t,点Q表示的数为3+t,∴PQ=|(3+t)﹣(﹣1+2t)|=|4﹣t|,又∵PQ=AB=2,∴|4﹣t|=2,解得:t=2或6,∴当t为2或6时,PQ=AB;25.(10分)对于有理数a、b,定义了一种新运算“※”为:a※b=如:5※3=2×5﹣3=7,1※3=1﹣×3=﹣1.(1)计算:①2※(﹣1)=5;②(﹣4)※(﹣3)=﹣2;(2)若3※m=﹣1+3x是关于x的一元一次方程,且方程的解为x=2,求m的值;(3)若A=﹣x3+4x2﹣x+1,B=﹣x3+6x2﹣x+2,且A※B=﹣3,求2x3+2x的值.【分析】(1)根据新运算“※”法则列式计算;(2)根据新运算“※”法则列方程计算;(3)根据新运算“※”法则列方程计算.【解答】解:(1)①2※(﹣1)=2×2﹣(﹣1)=5;②(﹣4)※(﹣3)=﹣4﹣×(﹣3)=﹣2.故答案是:①5;②﹣2;(2)当3≥m时,2×3﹣m=﹣1+3×2,此时m=1;当3<m时,3﹣m=﹣1+3×2,此时m=﹣3,舍去;纵上所述,m的值是1;(3)当A≥B时,A﹣B≥0,即﹣x3+4x2﹣x+1﹣(﹣x3+6x2﹣x+2)≥0.解得x2≤﹣,不合题意,舍去.所以A<B.所以由A※B=﹣3,得A﹣B=﹣3,即﹣x3+4x2﹣x+1﹣(﹣x3+6x2﹣x+2)=﹣3,整理,得x3+x=8,所以2x3+2x=2(x3+x)=2×8=16.。

湖南省常德市2020-2021学年七年级上学期期末数学试题(含答案解析)

湖南省常德市2020-2021学年七年级上学期期末数学试题(含答案解析)

湖南省常德市2020-2021学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.2的相反数是( ) A .2B .-2C .12D .12-2.已知:有理数a 、b 、c 满足0a b +>,0bc >,b c >,则将a 、b 、c 在数轴上可以表示为( ) A . B .C .D .3.已知线段AB=6cm ,C 为AB 的中点,D 是AB 上一点,CD=2cm ,则线段BD 的长为( ) A .1cmB .5cmC .1 cm 或5cmD .4cm4.如果单项式22m x y +-与n x y 的和仍然是一个单项式,则m 、n 的值是( ) A .2,2m n ==B .1,2m n =-=C .2,1m n ==-D .2,2m n =-=5.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则出售这两台空调永辉超市( )A .不赔不赚B .赚20元C .赚90元D .亏20元6.小明把自己一周的支出情况,用右图所示的统计图来表示,下面说法正确的是( )A .从图中可以直接看出具体消费数额B .从图中可以直接看出总消费数额C .从图中可以直接看出各项消费数额占总消费额的百分比D .从图中可以直接看出各项消费数额在一周中的具体变化情况7.如图所示的立方体,如果把它展开,可以是下列图形中的( )A .B .C .D .8.小颖按如图所示的程序输入一个正数x ,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个二、填空题9.2019年12月1日,我国自行研制的探月三期工程先导星“嫦娥三号”在西昌点火升空,准确入轨赴月“嫦娥三号”开始上升的飞行速度约10800米/秒,把这个数据用科学记数法表示为__________米/秒.10.已知∠α与∠β互余,且∠α=35°18′,则∠β=_____°_____′.11.如果关于x 的方程1237ax +=的根是5x =,则=a ________.12.某服装的标价是132元,若以8折售出,仍可获利a 元,则该服装的进价是_______元.13.单项式12ab 的系数是____________;次数是_____________.14.如图,已知长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF .将BEF ∠对折,点B 落在直线EF 上的点B '处,得折痕EM ,AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN ,则图中与B ME '∠互余的角是________(只需填写三个角).15.如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是______.16.1a 是不为1的有理数,我们把111a -记作2a ,211a -记作3a …依此类推,若已知114a =-,则2013a =_________.三、解答题 17.解方程: (1)32641632x x -=+ (2)13234x x+-=. 18.计算:(1)6(23)7(4)ab a a ab +--(2)()22373221a a a a a ⎡⎤-+---⎣⎦(3)221(2)(10)4---⨯- (4)4321(1)(0.751)(2)32⎡⎤⎛⎫--⨯-÷-+- ⎪⎢⎥⎝⎭⎣⎦19.先化简,再求值:()()226122269x x x x ++-++,其中12x =. 20.检修小组人员从A 地出发,在东西走向的路上检修线路,如果规定向东为正,向西为负,一天中每次行驶记录如下(单位:千米);-4,+7,-9,+8,+6,-4,-3. (1)收工时检修小组人员在A 地的哪个方向?距A 地有多远? (2)检修小组人员距A 地最远的是哪一次?(3)若每千米耗油0.3升,检修车从出发到收工共耗油多少升?21.为迎接2013年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息, 解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是_____________度.22.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果). (2)什么情况下两家商场的收费相同?23.已知AOB ∠是一个直角,作射线OC ,再分别作AOC ∠和BOC ∠的平分线OD 、OE .(1)如图∠,当70BOC ∠=︒时,求DOE ∠的度数;(2)如图∠,当射线OC 在AOB ∠内绕O 点旋转时,DOE ∠的大小是否发生变化,说明理由;(3)当射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,画出图形,直接写出相应的DOE ∠的度数(不必写出过程).24.已知数轴上两点A 、B 对应的数分别是 6,﹣8,M 、N 、P 为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.(1)若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?参考答案:1.B 【解析】 【详解】 2的相反数是-2. 故选:B. 2.C 【解析】 【分析】根据选项中数轴上点的位置,看看是否符合条件a +b >0,bc >0,b >c 即可. 【详解】解:∠0a b +>,0bc >,b c >, ∠A 、0a b +<,故本选项错误; B 、0a b +<,故本选项错误;C 、符合0a b +>,0bc >,b c >,故本选项正确;D 、0bc <,故本选项错误; 故选:C . 【点睛】本题考查了数轴和有理数的大小比较的应用,主要考查学生的理解能力和计算能力. 3.C 【解析】 【分析】根据题意画出图形,由于点D 的位置不能确定,故应分两种情况进行讨论. 【详解】解:线段6AB cm =,C 为AB 的中点,132AC BC AB cm ∴===. 当点D 如图1所示时,325BD BC CD cm =+=+=;当点D 如图2所示时,321BD BC CD cm =-=-=.∴线段BD 的长为1cm 或5cm .故选:C .【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解. 4.B 【解析】 【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m 和n 的值. 【详解】解:由单项式22m x y +-与n x y 的和仍然是一个单项式,得 22m x y +-与n x y 是同类项,21,2m n +==. 解得1,2m n =-=, 故选:B 【点睛】本题主要考查同类项的定义,根据同类项的定义列出关于m 和n 的等式是解决问题的关键. 5.D 【解析】 【分析】设盈利10%的这台空调的进价为x 元,亏损10%的这台空调的进价为y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:设盈利10%的这台空调的进价为x 元,亏损10%的这台空调的进价为y 元,由题意得 (110%)990,(110%)990x y +=-=,解得:900,1100x y ==,所以这次销售的进价为:90011002000+=元, ∠售价和为:9909901980+=元,-=-元.利润为:1980200020∠出售这两台空调永辉超市亏20元.故选:D.【点睛】本题考查了一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键,此题要运用销售问题的数量关系利润=售价-进价,此题难度不大.6.C【解析】【分析】因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一周中的具体变化情况,由此即可作出选择.【详解】解:因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一周中的具体变化情况.但是从图中可以直接看出各项消费数额占总消费数额的百分比,故选C.7.B【解析】【分析】根据圆面、正方向面、三角形面是临面,且圆面、正方形面与三角形面只有一个公共顶点,可得答案.【详解】解:根据图形得:A、C、D选项中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;B选项中折叠后与原立方体符合,所以正确的是B.故选:B【点睛】本题考查了几何体的展开图,根据题意得到圆面、正方形面与三角形面只有一个公共顶点是解题的关键.8.C【解析】【分析】结合题意,根据一元一次方程的性质计算,即可得到答案.【详解】∠输出结果是656,∠51656x+=,∠131x=,∠51131x+=,解得:26x=,5126x+=,解得:5x=,515x+=,解得:45x=,∠4 515 x+=解得:125 x=-∠小颖按如图所示的程序输入一个正数x,∠125x=-不符合题意∠输入的x的不同值最多可以是45,5,26,131,共4个故选:C.【点睛】本题考查了一元一次方程的知识,解题的关键是熟练掌握一元一次方程的性质,从而完成求解.9.41.0810⨯【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值1<时,n是负数.【详解】解:将10800用科学记数法表示为:41.0810⨯. 故答案为:41.0810⨯. 【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值. 10. 54 42 【解析】 【详解】由题意得∠β=90°-35°18′=54°42′. 11.5 【解析】 【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x =5代入方程ax +12=37就得到关于a 的方程,从而求出a 的值. 【详解】解:把x =5代入ax +12=37得:5a +12=37, 解得:a =5. 故答案为:5. 【点睛】本题考查了一元一次方程的解和解一元一次方程,关键是能根据题意得出一个关于a 的方程.12.(105.6)a - 【解析】 【分析】根据进价=售价−获利列式即可. 【详解】解:进价1320.8105.6a a =⨯-=-. 故答案为:(105.6)a -. 【点睛】本题考查了列代数式,解题关键是在于理清八折的意义.13.122.【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:由单项式的定义知,单项式12ab的系数是12,次数是2.故答案是:12;2.【点睛】考查了单项式的定义,解题的关键是确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数.14.∠B′EM,∠MEB,∠A′NE【解析】【分析】由折叠的性质得到∠MB′E=∠B=90°,∠NA′E=∠A=90°,∠MEB=∠MEB′,∠AEN=∠A′EN,再由平角的定义得到NE与ME垂直,根据同角(等角)的余角相等,即可在图中找出与∠B′ME互余的角.【详解】解:由折叠及长方形ABCD可得:∠MB′E=∠B=90°,∠NA′E=∠A=90°,∠MEB=∠MEB′,∠AEN=∠A′EN,∠∠MEB+∠MEB′+∠AEN+∠A′EN=180°,∠∠MEB+∠AEN=∠MEB′+∠A′EN=90°,则图中与∠B′ME互余的角是∠B′EM,∠MEB,∠A′NE.故答案为:∠B′EM,∠MEB,∠A′NE.【点睛】本题考查了余角和补角,以及翻折变换,熟练掌握图形折叠的性质是解本题的关键.15.8 ;【解析】【分析】根据数轴的单位长度,判断墨迹盖住部分的整数,然后求出其和.【详解】解:由图可知,左边盖住的整数数值是-2,-3,-4,-5;右边盖住的整数数值是0,1,2,3;所以他们的和是(-2)+(-3)+(-4)+(-5)+0+1+2+3=-8.故答案为:-8.【点睛】此题考查了数轴上表示的数,此题的关键是先看清盖住了哪几个整数值,然后相加. 16.5【解析】【分析】 已知114a =-,可依次计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2013除以3,即可得出答案.【详解】解:∠把111a -记作2a ,211a -记作3a …依此类推,114a =-, ∠2141514a ==⎛⎫-- ⎪⎝⎭, 315415a ==-,411154a ==--,… 每3个数据一循环,∠20133671÷=,∠201335a a ==.故答案为:5.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a 2、a 3、a 4,找出数字变化的规律.17.(1)6x =(2)4x =-【解析】【分析】(1)按解一元一次方程的一般步骤即可.(2)按解一元一次方程的一般步骤即可.(1)解:32641632x x -=+移项得:32163264x x -=+,合并同类项得:1696x =,系数化为1得:6x =.(2)13234x x +-=. 去分母得:4(1)924x x +-=,去括号得:44924x x +-=,移项得:49244x x -=-,合并同类项得:520x -=,系数化为1得:4x =-.【点睛】此题考查了一元一次方程的解法,解题的关键是:熟记解法的一般步骤.18.(1)1910ab a -(2)22+a(3)-21(4)5【解析】【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果;(3) 先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(4)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(1)解:原式=12182871910ab a a ab ab a +-+=-;(2)解:原式2223732422a a a a a a =-+-++=+;(3)解:原式=14-1004⨯42521=-=-; (4) 解:原式()=22=1112---8=1-4-8=1--62413323-⎡⎤⎛⎫⎛⎫⎛⎫⨯÷⨯⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1+4=5. 【点睛】本题考查了整式的加减,有理数的混合运算,熟练掌握运算法则和有理数混合运算顺序是解本题的关键.19.2416x -,-15【解析】【分析】先去括号,合并同类项算化简,然后把字母的值代入代数式计算即可.【详解】解:原式222612*********x x x x x =++---=-, 当12x =时,原式11615=-=-. 【点睛】先去括号,合并同类项化简,然后把字母的值代入代数式计算即可.20.(1)A 地的东边,距A 地1千米;(2)第5次;(3)12.3升【解析】【分析】(1)根据有理数的加减法,可得每次距A 地的距离,根据有理数的大小比较,可得答案;(2)根据有理数的加法,可得和,根据和的大小,可得答案;(3)根据行车就耗油,可得耗油量.【详解】解:(1) -4+7-9+8+6-4-3=+1,则收工时检修小组人员在A 地的东边,距A 地1千米;(2)第一次距A 地|-4|=4千米;第二次:|-4+7|=3千米;第三次:|-4+7-9|=6千米;第四次:|-4+7-9+8|=2千米;第五次:|-4+7-9+8+6|=8千米;第六次:|-4+7-9+8+6-4|=4千米;第七次:|-4+7-9+8+6-4-3|=1千米.所以检修小组人员距A 地最远的是第5次.(3)|-4|+|+7|+|-9|+|+8|+|+6|+|-4|+|-3|=4+7+9+8+6+4+3=41(千米)41×0.3=12.3(升)答:从A 地出发到收工回A 地检修车共耗油12.3升.【点睛】本题考查的知识点是正数和负数,解题关键是有理数的加法运算.21.(1)见解析(2)72【解析】【分析】(1)首先根据成绩类别为“差”的是8人,占总人数的16%,据此即可求得总人数,然后利用总人数乘以“中”的类型所占的百分比即可求出“中”的类型的人数,补全图统计图即可; (2)利用360°乘以对应的百分比即可求解.(1)解:总人数是:816%50÷=(人),则类别是“中”的人数是:5022%11⨯=(人). 条形统计图:(2)表示成绩类别为“优”的扇形所对应的圆心角是360(116%20%44%)=72⨯---︒度. 故答案是:72.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)37501250x +;4000x(2)当购买5台电脑时,两家商场的收费相同【解析】【分析】(1)根据题意分别求出两商场的费用,即可求解;(2)根据题意可得当(1)中两代数式的值相等时,两家商场的收费相同,列出方程,即可求解.(1)解:甲商场需要花费:50005000(125%)(1)37501250x x +⨯--=+;乙商场需要的花费为:5000(120%)4000x x ⨯-=;(2)解:由题意有375012504000x x +=,解得:5x =.答:当购买5台电脑时,两家商场的收费相同.【点睛】本题主要考查了列代数式,一元一次方程的应用,明确题意,准确得到数量关系是解题的关键.23.(1)45︒(2)DOE ∠的大小不变,理由见解析(3)45︒或135︒【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠BOC 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45°;(3)分两种情况考虑,利用角平分线的定义计算,如图3,∠DOE 为45°;如图4,∠DOE 为135°.(1)如图,9020AOC BOC ∠=︒-∠=︒,∠OD OE 、分别平分AOC ∠和BOC ∠, ∠1110,3522COD AOC COE BOC ∠=∠=∠︒∠==︒, ∠45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:1111()452222DOE COD COE AOC COB AOC COB AOB ∠=∠+∠=∠+∠=∠+∠=∠=︒; (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45︒;如图4,则DOE ∠为135︒,分两种情况:如图3所示,∠OD OE 、分别平分AOC ∠和BOC ∠,∠11,22COD AOC COE BOC ∠=∠∠=∠, ∠1()452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∠OD OE 、分别平分AOC ∠和BOC ∠, ∠11,22COD AOC COE BOC ∠=∠∠=∠, ∠11()27013522DOE COD COE AOC BOC ∠=∠+∠=∠∠︒+=⨯=︒. 【点睛】此题考查了角的计算,角平分线定义,注意分情况讨论是解本题的关键.24.(1)5;(2)72或13. 【解析】【详解】试题分析:(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过x 秒点P 到点M ,N 的距离相等,得出(2t+6)﹣t=(6t ﹣8)﹣t 或(2t+6)﹣t=t ﹣(6t ﹣8),进而求出即可.试题解析:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:26+1454x x +=,解方程,得5x =.答:经过5秒点M 与点N 相距54个单位.(算术方法对应给分)(2)设经过t 秒点P 到点M ,N 的距离相等.()()2668t t t t +-=--或()()2668t t t t +-=--,658t t +=-或685t t +=-,解得:72t =或13t =, 答:经过72或13秒点P 到点M ,N 的距离相等. 考点:1.一元一次方程的应用;2.数轴.。

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。

2020-2021学年七年级上学期期末考试数学试题(附答案)

2020-2021学年七年级上学期期末考试数学试题(附答案)

2020-2021学年七年级上学期期末考试数学试题一.选择题1.2020的相反数是()A.2020B.﹣2020C.D.﹣2.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 4.单项式﹣32xy2z3的次数和系数分别为()A.6,﹣3B.6,﹣9C.5,9D.7,﹣95.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0 6.按如图所示的运算程序,能使输出的结果为10的是()A.x=3,y=﹣2B.x=﹣3,y=2C.x=2,y=3D.x=3,y=﹣3 7.关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,则m的值为()A.0B.2C.﹣D.﹣28.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm9.已知代数式a+2b的值是5,则代数式2a+4b+1的值是()A.5B.10C.11D.不能确定10.仔细观察,探索规律:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…则22020+22019+22018+…+2+1的个位数字是()A.1B.3C.5D.7二.填空题11.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2019=.12.已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=.13.已知A,B,C三点在同一条直线上,AB=8,BC=6,M,N分别是AB、BC的中点,则线段MN的长是.14.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =度.15.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).16.如果m﹣n=5,那么﹣3m+3n﹣7的值是.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+2020n+c2021的值为.18.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是元.三.解答题(共19小题)19.计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|.20.先化简,再求值:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)的值,其中x=1,y=﹣2.21.解方程:(1)4﹣4(x﹣3)=2(9﹣x)(2).22.如图,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的结果是2x2﹣3x﹣2.(1)请你帮马小虎同学求出正确的结果;(2)x是最大的负整数,将x代入(1)问的结果求值.25.我校九年级163班所有学生参加体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级163班参加体育测试的学生共有多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求出等级C对应的圆心角的度数;(4)若规定达到A、B级为优秀,我校九年级共有学生850人,估计参加体育测试达到优秀标准的学生有多少人?26.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.27.观察下表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣24﹣8a﹣3264…第2行06﹣618﹣3066…第3行﹣12﹣48﹣16b…(1)第1行的第四个数a是;第3行的第六个数b是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.28.如图在数轴上有A,B两点,点A表示的数为﹣10,点O表示的数为0,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O 向右运动(点M,点N同时出发).(1)数轴上点B表示的数是.(2)经过几秒,点M,N到原点的距离相等?(3)点N在点B左侧运动的情况下,当点M运动到什么位置时恰好使AM=2BN?参考答案一.选择题1.【解答】解:2020的相反数是:﹣2020.故选:B.2.【解答】解:A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选:B.3.【解答】解:47.24亿=4724 000 000=4.724×109.故选:B.4.【解答】解:该单项式的次数为6,系数为﹣9,故选:B.5.【解答】解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.6.【解答】解:由题意得:x2+|2y|=10,当x=2,y=3满足x2+|2y|=10,故选:C.7.【解答】解:由3y﹣3=2y﹣1,得y=2.由关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,得2m+2=m,解得m=﹣2.故选:D.8.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN =BM﹣BN=5﹣2=3cm.故选:C.9.【解答】解:给a+2b=5两边同时乘以2,可得2a+4b=10,则2a+4b+1=10+1=11.故选:C.10.【解答】解:利用题中的式子得(x﹣1)(x2020+x2019+x2018+…+x+1)=x2021﹣1;当x=2时,22020+22019+22018+…+2+1=22021﹣1;∵21=2,22=4,23=8,24=16,25=32,而2021=505×4+1,∴22021的个位数字为2,∴22021﹣1的个位数字为1,即22020+22019+22018+…+2+1的个位数字是1.故选:A.二.填空题11.【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,故(a﹣b)2019=(3﹣2)2019=1.故答案为:1.12.【解答】解:|a+1|+|2013﹣b|=0,∴a+1=0,2013﹣b=0,a=﹣1,b=2013,∴a b=(﹣1)2013=﹣1,故答案为:﹣1.13.【解答】解:由AB=8,BC=6,M、N分别为AB、BC中点,得MB=AB=4,NB=BC=3.①C在线段AB的延长线上,MN=MB+NB=4+3=7;②C在线段AB上,MN=MB﹣NB=4﹣3=1;③C在线段AB的反延长线上,AB>BC,不成立,综上所述:线段MN的长7或1.故答案为7或1.14.【解答】解:∵点A、O、B在一条直线上,∠AOC=130°,∴∠COB=180°﹣130°=50°,∵OD是∠BOC的平分线,∴∠COD=∠BOC=25°.故答案为:25.15.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣816.【解答】解:当m﹣n=5时,﹣3m+3n﹣7=﹣3(m﹣n)﹣7=﹣3×5﹣7=﹣15﹣7=﹣22.故答案为:﹣22.17.【解答】解:∵m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,∴m=﹣1,n=0,c=1,∴m2019+2020n+c2021的=(﹣1)2019+2020×0+12021=﹣1+0+1=0故答案为:0.18.【解答】解:设该玩具的进价为x元.根据题意得:100×80%﹣x=25%x.解得:x=64.故答案是:64.三.解答题19.【解答】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=720.【解答】解:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)=5y2﹣x2+6x2﹣9xy﹣5x2﹣5y2=(5y2﹣5y2)+(﹣x2+6x2﹣5x2)﹣9xy=0+0﹣9xy=﹣9xy,∵x=1,y=﹣2,∴原式=﹣9×1×(﹣2)=18.21.【解答】解:(1)4﹣4x+12=18﹣2x,﹣4x+2x=18﹣4﹣12,﹣2x=2,x=﹣1.(2)2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,4x﹣5x=6﹣2﹣1﹣x=3,x=﹣3.22.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.23.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD =∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC =2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.24.【解答】解:(1)根据题意知B=2x2﹣3x﹣2﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3,则A﹣B=(3x2﹣x+1)﹣(﹣x2﹣2x﹣3)=3x2﹣x+1+x2+2x+3=4x2+x+4;(2)∵x是最大的负整数,∴x=﹣1,则原式=4×(﹣1)2﹣1+4=4﹣1+4=7.25.【解答】解:(1)九年级163班参加体育测试的学生共有15÷30%=50(人);(2)D等级的人数为:50×10%=5(人),C等级人数为:50﹣15﹣20﹣5=10(人);补全统计图如下:(3)等级C对应的圆心角的度数为:×360°=72°;(4)估计达到A级和B级的学生共有:×850=595(人).26.【解答】解:设每人加工x个零件,﹣=1解得:x=100答:甲加工了100个,乙加工了100个.27.【解答】解:(1)第1行的第四个数a是﹣8×(﹣2)=16;第3行的第六个数b是64÷2=32;故答案为:16;32.(2)若第1行的某一列的数为c,则第2行与它同一列的数为c+2.故答案为:c+2.(3)解:根据题意,这三个数依次为x,x+2,x得,x+x+2+x=2562,解得:x=1024.28.【解答】解:(1)故答案为:30;(2)设经过x秒,点M,N到原点的距离相等,分两种情况:①当点M,N在原点两侧时,根据题意列方程:得:10﹣3x=2x,解得:x=2②当点M,N重合时,根据题意列方程,得:3x﹣10=2x,解得:x=10所以,经过2秒或10秒,点M,N到原点的距离相等;(3)设经过y秒,恰好使AM=2BN根据题意得:3y=2(30﹣2y)解得:.又所以当点M运动到数轴上表示的点的位置时,AM=2BN。

漯河市召陵区2020学年人教版七年级上期末数学试卷含答案解析(A卷全套)

漯河市召陵区2020学年人教版七年级上期末数学试卷含答案解析(A卷全套)

2020学年河南省漯河市召陵区七年级(上)期末数学试卷一、选择题:每小题3分,共30分.1.|﹣2|等于()A.﹣2 B.﹣ C.2 D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚 B.2枚 C.3枚 D.任意枚3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D. +y=24.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.0.25×107B.2.5×107C.2.5×106D.25×1055.已知代数式3y2﹣2y+6的值是8,那么y2﹣y+1的值是()A.1 B.2 C.3 D.46.下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.7.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141° D.159°8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是() A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1﹣50%x)×80%=x+289.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178二、填空题:每小题3分,共30分.11.﹣3的倒数是.12.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.13.若x=2是方程8﹣2x=ax的解,则a=.14.计算:15°37′+42°51′=.15.如图1,把一个长为m、宽为n的长方形(m>n)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长(用含m,n的式子表示)为.16.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是.17.已知∠α=36°14′25″,则∠α的余角的度数是.18.某商品的进价是2020,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打折出售此商品.19.已知线段AB=10cm,线段BC=4cm,则线段AC的长是cm.2020如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.三、解答题:本题共6小题,共60分.21.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣8)+4÷(﹣2);(3)(﹣10)÷(﹣)×5;(4)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2].22.解方程:(1)(2)﹣=3.23.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.24.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.25.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.26.为了鼓励居民节约用水,某市自来水公司按如下方式对每户月用水量进行计费:当用水量不超过10吨时,每吨的收费标准相同;当用水量超过10吨时,超出10吨的部分每吨收费标准也相同.下表是小明家1﹣4月份用水量和交费情况:月份1234用水量(吨)8101215费用(元)16202635请根据表格中提供的信息,回答以下问题:(1)若小明家5月份用水量为2020则应缴水费多少元?(2)若小明家6月份交纳水费29元,则小明家6月份用水多少吨?2020学年河南省漯河市召陵区七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共30分.1.|﹣2|等于()A.﹣2 B.﹣ C.2 D.【考点】绝对值.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚 B.2枚 C.3枚 D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D. +y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.4.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.0.25×107B.2.5×107C.2.5×106D.25×105【考点】科学记数法—表示较大的数.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.【解答】解:根据题意:2500000=2.5×106.故选C.5.已知代数式3y2﹣2y+6的值是8,那么y2﹣y+1的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【分析】根据题意得出3y2﹣2y+6=8,求出y2﹣y=1,代入求出即可.【解答】解:根据题意得:3y2﹣2y+6=8,3y2﹣2y=2,y2﹣y=1,y2﹣y+1=1+1=2.故选B.6.下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.【考点】几何体的展开图.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.7.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141° D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是() A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1﹣50%x)×80%=x+28【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系:售价=进价+利润,根据此等式列方程即可.【解答】解:设这件夹克衫的成本是x元,则标价是:(1+50%)x元,以8折(标价的80%)出售则售价是:(1+50%)x×80%元,根据等式列方程得:(1+50%)x×80%=x+28.故选B.9.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B 港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【考点】规律型:数字的变化类.【分析】观察不难发现,左上角、左下角、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列式进行计算即可得解.【解答】解:根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4﹣0,22=4×6﹣2,44=6×8﹣4,∴m=12×14﹣10=158.故选B.二、填空题:每小题3分,共30分.11.﹣3的倒数是﹣.【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.12.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=2.【考点】多项式.【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.【解答】解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.13.若x=2是方程8﹣2x=ax的解,则a=2.【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.14.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.15.如图1,把一个长为m、宽为n的长方形(m>n)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长(用含m,n的式子表示)为.【考点】正方形的性质;解一元一次方程.【分析】设去掉的小正方形的边长是x,根据已知得到x+n=m﹣x,求出x即可.【解答】解:设去掉的小正方形的边长是x,∵把一个长为m、宽为n的长方形(m>n)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,∴x+n=m﹣x,∴x=.故答案为:.16.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【考点】绝对值;有理数大小比较;合并同类项;去括号与添括号.【分析】先根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后判断出(a+b),(a﹣c),(b﹣c)的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.17.已知∠α=36°14′25″,则∠α的余角的度数是53°45′35″.【考点】余角和补角;度分秒的换算.【分析】本题考查互余的概念,和为90度的两个角互为余角.【解答】解:根据定义,∠α的余角的度数是90°﹣36°14′25″=53°45′35″.故答案为53°45′35″.18.某商品的进价是2020,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打7折出售此商品.【考点】一元一次不等式的应用.【分析】进价是2020,则5%的利润是20205%元,题目中的不等关系是:利润≥20205%元.根据这个不等关系就可以就可以得到不等式,解出打折的比例.【解答】解:设售货员可以打x折出售此商品,依题意得:300×﹣202020205%解之得,x≥7所以售货员最低可以打7折出售此商品.19.已知线段AB=10cm,线段BC=4cm,则线段AC的长是14或6cm.【考点】两点间的距离.【分析】根据题意,分两种情况:(1)点B在点A、C的中间时;(2)点C在点A、B的中间时;求出线段AC的长是多少即可.【解答】解:(1)如图1,点B在点A、C的中间时,,AC=AB+BC=10+4=14(cm)(2)如图2,点C在点A、B的中间时,,AC=AB﹣BC=10﹣4=6(cm)∴线段AC的长是14或6cm.故答案为:14或6.2020如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是231.【考点】代数式求值.【分析】根据程序可知,输入x,计算出的值,若≤100,然后再把作为x,输入,再计算的值,直到>100,再输出.【解答】解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231,则最后输出的结果是231,故答案为:231.三、解答题:本题共6小题,共60分.21.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣8)+4÷(﹣2);(3)(﹣10)÷(﹣)×5;(4)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算除法运算,再计算加减运算即可得到结果;(3)原式从左到右依次计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣8﹣2=﹣10;(3)原式=10×5×5=250;(4)原式=(1﹣1+)×(2﹣9)=﹣.22.解方程:(1)(2)﹣=3.【考点】解一元一次方程.【分析】此题可先将分母去掉,然后再把括号去掉,再移项、合并同类项,系数化1即可得出x的值.【解答】解:(1)去分母得:3(x﹣1)=8x+6,去括号得:3x﹣3=8x+6移项得:3x﹣8x=6+3合并同类项得:﹣5x=9系数化为1得:;(2)﹣=3.去分母得:5x﹣10﹣(2x+2)=3去括号得:5x﹣10﹣2x﹣2=3移项得:5x﹣2x=10+2+3合并同类项得:3x=15系数化为1得:x=5.23.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.【考点】整式的加减.【分析】(1)把A、B代入3A+6B,再按照去括号法则去掉整式中的小括号,再合并整式中的同类项,将3A+6B化到最简即可.(2)根据3A+6B的值与x无关,令含x的项系数为0,解关于y的一元一次方程即可求得y的值.【解答】解:(1)3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=6x2+9xy﹣6x﹣3﹣6x2+6xy ﹣6=15xy﹣6x﹣9;(2)原式=15xy﹣6x﹣9=(15y﹣6)x﹣9要使原式的值与x无关,则15y﹣6=0,解得:y=.24.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【考点】角平分线的定义.【分析】根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE∴∠DOE=15°∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°故答案为75°.25.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.【考点】两点间的距离.【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.26.为了鼓励居民节约用水,某市自来水公司按如下方式对每户月用水量进行计费:当用水量不超过10吨时,每吨的收费标准相同;当用水量超过10吨时,超出10吨的部分每吨收费标准也相同.下表是小明家1﹣4月份用水量和交费情况:月份1234用水量(吨)8101215费用(元)16202635请根据表格中提供的信息,回答以下问题:(1)若小明家5月份用水量为2020则应缴水费多少元?(2)若小明家6月份交纳水费29元,则小明家6月份用水多少吨?【考点】一元一次方程的应用.【分析】(1)根据1月份的条件,当用水量不超过10吨时,每吨的收费2元.根据3月份的条件,用水12吨,其中10吨应交2020则超过的2吨收费6元,则超出10吨的部分每吨收费3元.则用水2020缴水费就可以算出;(2)中存在的相等关系是:10吨的费用2020超过部分的费用=29元.【解答】解:(1)从表中可以看出规定吨数位不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元,小明家5月份的水费是:10×2+(20200)×3=50元;(2)设小明家6月份用水x吨,29>10×2,所以x>10.所以,10×2+(x﹣10)×3=29,解得:x=13.小明家6月份用水13吨.2020年2月19日。

人教版初中数学七年级上册试卷含答案 河南省商丘市梁园区2020-2021期末

人教版初中数学七年级上册试卷含答案 河南省商丘市梁园区2020-2021期末
三.解答题(共8题,共75分)
16.计算:
(1)6﹣2﹣(﹣1.5);
(2)﹣(3﹣5)×32÷(﹣1)3;
(3)2(m2n+5mn3)﹣5(2mn3﹣m2n);
(4)2x﹣2[x﹣(2x2﹣3x+2)]﹣3x2.
17.解方程:
(1) ;
(3)
18.先化简,再求值: ,其中x,y满足
19.如图,平面内有四个点A,B,C,D.根据下列语句画图:
5.如果x=2是关于x的方程2x﹣3m﹣12=0的解,那么有理数m的值是( )
A. ﹣ B.9C. ﹣9D.
6.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()
A.1个B.2个C.3个D.4个
7.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()
正确画得射线AD及交点E,
正确画得线段BD及截取DF=BD(有弧线痕迹),
正确确定点O及标出O点,
如图,直线BC,射线AD及交点E,线段BD及射线DF,点O即为所求作的图形
20.【详解】(1)∵a=±5,b=±2,
又∵a>b,
∴a=5,b=2或a=5,b=−2,
∴a+b=7或3.
(2)∵
∴a+b⩽0,
∵点C为[P,Q]的“好点”,
∴当0≤t≤3时,11-(3t-1)=2(23-4t-11)或2[11-(3t-1)]=23-4t-11,
解得:t= 或t=6(不合题意,舍去);
当3<t≤6时,|11-(3t-1)|=2(4t-1-11)或2|11-(3t-1)|=4t-1-11,
即12-3t=8t-24或3t-12=8t-24或24-6t=4t-12或6t-24=4t-12,

2020-2021学年七年级上学期期末数学试卷(附答案解析)

2020-2021学年七年级上学期期末数学试卷(附答案解析)

2020-2021学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.a(a≠0)的相反数是()D. |a|A. aB. −aC. 1a2.若|a|=a,则表示a的点在数轴上的位置是()A. 原点的左边B. 原点或原点的左边C. 原点或原点右边D. 原点3.下列两个单项式中,是同类项的一组是()A. 4x2y与4y2xB. 2m与2nC. 3xy2与(3xy)2D. 3与−154.每年的6月14日,是世界献血日,据统计,某市义务献血达421000人,421000这个数用科学记数法表示为()A. 4.21×105B. 42.1×104C. 4.21×10−5D. 0.421×1065.如图,已知三点A,B,C画直线AB,画射线AC,连接BC,按照上述语句画图正确的是()A. B. C. D.6.若关于x的方程mx m−2−m+3=0是一元一次方程,则m的值为()A. m=1B. m=2C. m=3D. m=47.下列说法正确的是()A. 如果AC=CB,能说点C是线段AB的中点B. 将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C. 连接两点的直线的长度,叫做两点间的距离D. 平面内3条直线至少有一个交点8.如图,由4个相同的小正方体组成的几何体,则该几何体的俯视图是()A.B.C.D.9.如图,EF//MN,AC,BD交于点O,且分别平分∠FAB,∠ABN,图中与∠1互余的角有()A. 1个B. 2个C. 3个D. 4个10.某美术兴趣小组有x人,计划完成y个剪纸作品,若每人做5个,则可比计划多9个;若每人做4个,则将比计划少做15个,现有下列方程:①5x+9=4x−15;②y−95=y+154;③y+95=y−154;④5x−9=4x+15.其中正确的是()A. ①②B. ②④C. ②③D. ③④二、填空题(本大题共5小题,共15.0分)11.如图是一个数值转换机的示意图,若输入x的值为2,输入y的值为−2,则输出的结果为______ .12.单项式−3πxy22的系数是______ .13.由11x−9y−6=0,用x表示y,得y=______ ,y表示x,得x=______ .14.若关于x的方程是一元一次方程,则这个方程的解是____15.已知P,Q两点都在数轴上(点P在点Q的右侧),若点P所表示的数是3,并且PQ=6,则点Q所表示的数是______ .三、解答题(本大题共6小题,共55.0分)16.化简:3x2−3+x−2x2+5.17.解方程:(1)6x−2(2x−7)=−1(2)x=1+x+1.318.已知为的三边,且满足,试判断的形状。

人教版七年级上学期数学《期末考试卷》含答案解析

人教版七年级上学期数学《期末考试卷》含答案解析
19.解方程
(1)5(2﹣x)=﹣(2x﹣7);
(2)
[答案](1)x=1;(2)x=
[解析]
[分析]
(1)方程去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
[详解](1)去括号得:10﹣5x=7﹣2x,
移项得:﹣5x+2x=7﹣10,
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.-2020的相反数是()
A.-2020B.2020C. D.
13.计算:3+2×(﹣4)=_____.
14.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为_____度.
15.方程x+5= (x+3)的解是________.
16.若x、y为有理数,且|x+2|+(y﹣2)2=0,则( )2019的值为_____.
17.若代数式x2+3x﹣5 值为2,则代数式2x2+6x﹣3的值为_____.
A.1个B.2个C.3个D.4个
9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()
A.a+b>0B.ab>0C.a﹣b<oD.a÷b>0
10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()
(2)(﹣34)× +(﹣16)

福建省宁德市2019-2020学年七年级上学期期末数学试题(含答案)

福建省宁德市2019-2020学年七年级上学期期末数学试题(含答案)

初一数学试题 第 1 页 共 8 页宁德市2019-2020学年度第一学期期末七年级质量检测数 学 试 题(满分:100分;考试时间:90分钟)友情提示:所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效. 一、选择题(本大题共10小题,每小题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列四个数中比2-小的数是A .3-B .1-C .0D .12.单项式313a b -的系数是A .1-B .13-C .13D .43.为庆祝新中国成立70周年,天安门广场举行盛大国庆阅兵仪式,参加这次阅兵的有59个方队和联合军乐团,总规模约15 000人.将15 000用科学记数法表示为 A .0.15 ×105 B .1.5×104 C .15×103 D .1.5×1054.要清楚地反映近几日气温的变化情况,最适合制作的是A .折线统计图B .扇形统计图C .频数直方图D .频数分布表错误!未找到引用源。

5.如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是 A .长方体 B .球 C .圆柱D .圆锥6.下列运算正确的是A .33a b ab +=B .22232a a a -=C .3(1)31a a -=-D .(1)1a a --=--7.下列调查中,适宜采用抽样调查的是A .对飞机零部件质量的调查B .对全班45位同学身高的调查C .对动车站客流量的调查D .对全运会运动员使用兴奋剂的调查 8.关于53的意义,描述正确的是A .表示5个3相加B .表示3个5相加C .表示5个3相乘D .表示3个5相乘9.对有理数运算的描述,下列说法错误的是A .同号两数相加,取相同的符号,并把绝对值相加B .减去一个数,等于加上这个数的相反数C .两数相乘,同号得正,异号得负,并把绝对值相乘第5题图初一数学试题 第 2 页 共 8 页D .除以一个数等于乘这个数的绝对值10.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD 是正方形; 乙:如图2,盒子底面的四边形ABCD 是正方形;丙:如图3,盒子底面的四边形ABCD 是长方形,AB =2AD .将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是 A .甲>乙>丙 B .甲>丙>乙 C .丙>甲>乙D .丙>乙>甲二、填空题(本大题共6小题,每小题3分,满分18分) 11.12的相反数是 . 12.由321x x =-得321x x -=-,在此变形中,方程两边同时 .13.某班学生参加学校组织的“垃圾分类”知识竞赛,将学生成绩制成如图所示的频数分布直方图(每组数据包括左端值不包括右端值),其中成绩为“优良”(80分及80分以上)的学生有 人.14.比较两个角的大小关系:小明用度量法测得∠AOB =45°,∠COD =50°;小丽用叠合法比较,将两个角的顶点重合,边OB 与OD 重合,边OA 和OC 置于重合边的同侧,则边OA .(填序号:①“在∠COD 的内部”;②“在∠COD 的外部”;③“与边OC 重合” ) 15.如图,是一个数值转换机,若输入的数为5,则输出的数是 .16.若线段A 1A 2=1,在线段A 1A 2的延长线上取一点A 3,使A 2是A 1A 3的中点;在线段A 1A 3的延长线上取一点A 4,使A 3是A 1A 4的中点;在线段A 1A 4的延长线上取一点A 5,使A 4是A 1A 5的中点……,按这样操作下去,线段A 1A 2020= .图2 图3第13题图第15题图图1D C12初一数学试题 第 3 页 共 8 页三、解答题(本大题共7题,满分52分) 17.(本题满分12分)计算:(1)2113(2)4--÷--; (2)5218263-⨯-+1(); (3)22313()222a b ab a b ab ---.18.(本题满分5分)解方程:5122x x -+=.19.(本题满分5分)如图,∠COD =45°,∠BOD =13∠COD ,OC 是∠AOB 的平分线,求∠AOD 的度数.20.(本题满分6分)春节前,由35名同学组成的志愿者小分队,共制作了180个纸灯笼送给敬老院.平均每名男生制作4个,每名女生制作6个.求男生、女生各多少名.21.(本题满分6分)如图,用10个大小相同的小立方块搭成一个组合体. (1)请在指定位置画出该组合体从左面、上面看到的形状图; (2)在不改变该组合体中小立方块个数的前提下,从中移动一个小立方块,使所得新组合体与原组合体相比,从左面、上面看到的形状图保持不变,但从正面看到的形状图改变了,请画出新组合体从正面看到的所有可能的形状图.(所给的方格图不一定全用,不够可添)从左面看从上面看(原组合体)从正面看 (新组合体)O AB CD初一数学试题 第 4 页 共 8 页 22.(本题满分9分)在精准扶贫政策的扶持下,贫困户老李今年试种的百香果获得大丰收,共收获2 000千克.扶贫小组帮助他将百香果按照品质从高到低分成A ,B ,C ,D ,E 五个等级,并根据数据绘制了如下的扇形统计图和频数分布表:请根据图表信息解答下列问题:(1)m =__________;n =__________;a =__________; (2)求扇形统计图中“E ”所对应的圆心角的度数;(3)为了帮助贫困户老李销售百香果,扶贫小组联系了甲、乙两位经销商.他们分别给出如下收购方案:甲:全部按5元/千克收购;乙:按等级收购:C 等级单价为6.5元/千克,每提高一个等级单价提高1元/千克,剩下的D ,E 两个等级单价均为2元/千克.请你通过计算,判断哪个经销商的方案使老李盈利更多.23.(本题满分9分)如图,在数轴上点A 所表示的数是5-,点B 在点A 的右侧,AB =6;点C 在AB 之间, AC =2BC .(1)在数轴上描出点B ;(2)求点C 所表示的数,并在数轴上描出点C ;(3)已知在数轴上存在点P ,使P A +PC =PB ,求点P 所表示的数.A初一数学试题 第 5 页 共 8 页宁德市2019-2020学年度第一学期期末七年级质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. ⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10小题,每小题3分,满分30分)1.A 2.B 3.B 4.A 5.D 6.B 7.C 8.C 9.D 10.C 二、填空题:(本大题有6小题,每小题3分,满分18分)11.12-; 12.减去2x (加上(2x -)或2x -); 13.26; 14.①; 15.23; 16.20182.三、解答题(本大题共7题,满分52分) 17.(本题满分12分)解:(1)原式=1342--⨯+ ·································································· 2分=1122--+ ······································································ 3分 =11-; ······································································· 4分(2)原式=152181818263⨯-⨯+⨯ ······················································· 2分=91512-+ ······································································· 3分 =6; ················································································ 4分或原式=35418()666⨯-+ ································································ 2分=2186⨯ ············································································ 3分=6; ················································································ 4分 (3)原式=2231332222a b ab a b ab --+ ···················································· 2分=ab . ·············································································· 4分18.(本题满分5分)解: 4+512x x -=. ·············································································· 2分5241x x -=-+. ·········································································· 3分 33x =-. ············································································· 4分 1x =-. ············································································· 5分 19.(本题满分5分)解:因为∠COD =45°,∠BOD =错误!未找到引用源。

2020-2021学年烟台市莱州市七年级上学期期末数学试卷(含解析)

2020-2021学年烟台市莱州市七年级上学期期末数学试卷(含解析)

2020-2021学年烟台市莱州市七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各式正确的是()A. √(−5)2=−5B. −√22=2C. √−93=−3 D. ±√9=±32.下列语句:①±3都是27的立方根;②;③的平方根是±2;④;⑤,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个3.点(0,−2)在()A. x轴上B. y轴上C. 第三象限内D. 第四象限内4.直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,0)的点的个数是()A. 2B. 3C. 4D. 55.将一次函数y=−x−1的图象绕它与x轴的交点逆时针旋转75°后所得直线解析式为()A. y=√33x+√3 B. y=√3x+√3 C. y=√33x+√33D. y=√3x+√336.如图,在平面直角坐标系中,点A的坐标为(0,5),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=56x上,则点B与其对应点B′之间的距离为()A. 6B. 5C. 65D. 567.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A. √1010B. 100C. 0.01D. 0.18.一次函数y=kx+b和正比例函数y=kbx在同一坐标系内的图象大致是()A. B. C. D.9.已知AC平分∠PAQ,如图,点B、B′分别在边AP、AQ上,若添加一个条件,即可推出AB=AB′,则该条件不可以是()A. BB′⊥ACB. BC=B′CC. ∠ACB=∠ACB′D. ∠ABC=∠AB′C10.如图,在正方形ABCD中,E为BC上一点,过点E作EF//CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH//AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若BE EC =2,则S四边形DHECS△AHE=313.其中哪些结论是正确()A. ①②④⑤B. ②③④C. ①②③D. ②③④⑤二、填空题(本大题共10小题,共30.0分)11.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则BD的长为______ .12.若√a=1,b是3的相反数,则a+b的值为______.13. 如图,直线y =−√33x +1与x 轴、y 轴分别交于A 、B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,如果在第二象限内有一点p(a,12),且△ABP 的面积与△ABC 的面积相等,则a 的值为______.14. 等腰直角△ABC 中,∠BAC =90°,AD 是中线,点P 是重心.如果PD =1,那么BC 边的长为______ .15. 已知{x =2y =1是二元一次方程组{ax +by =11ax −by =−3的解,则a +b 的平方根为______. 16. 如图,在△ABC 中,∠C =90°,AB 的垂直平分线交AB 于D 点,交BC 于E 点,连接AE ,若CE =7,AC =24,则BE 的长是______.17. 若一次函数y =3x +b 的图象经过第一、三、四象限,则b 的值可以是______(写出一个即可)18. 如图,长方体盒子的长为15cm ,宽为10cm ,高为20cm ,点B 距离C 点5cm ,一只蚂蚁如果要沿着盒子的表面从点A 到点B .(1)蚂蚁爬行的最短距离是______cm ;(2)若从C 处想盒子里面插入一根吸管,要使吸管不落入盒子中,吸管应不少于______cm .19. 设m =√5,那么m +1m 的整数部分是______.20.小明从家里骑自行车出发,去永辉超市途中碰到妹妹小红走路回家.小明在超市买完东西回家,在回去的路上又碰到了小红,便载小红一起回家,结果小明比正常速度回家的时间晚了3分钟,二人离家的距离S(千米)和小明从家出发后的时间t(分钟)之间的关系如图所示,(假设二人之间交流时间忽略不计)(1)小明家离永辉超市的距离______ .(2)小明和小红第1次相遇时离永辉超市距离是多少?(3)小明从家里出发到回家所用的时间?三、解答题(本大题共9小题,共72.0分)21.用有理数估计下列各数的立方根的范围(精确到0.1).(1)35;(2)−95.22.如图,等腰△EDF的三个的顶点都在等腰△ABC的边上,且∠A=∠B=50°,∠DEF=∠DFE=65°.求证:△EAD≌△DBF.23.已知,如图,在四边形ABCD中,∠B=90°,AB=15,BC=20,CD=7,AD=24.(1)求∠ADC的度数;(2)求四边形ABCD的面积.24.已知:如图1,AB//CD,EF与AB,CD分别交于点G,H.(1)若∠GHD=80°,则∠AGH=______.(2)如图2,在(1)的条件下,作∠BGH的平分线,交CD于点M,则∠GMH=______.(3)如图3,在(1)(2)的条件下,作∠GHD的平分线交GM于点T,则∠GTH=______.(4)如图4,在题目条件下,把一个直角三角板PQN按图示摆放,使点N与点H重合,斜边QN在EF上,PQ与AB交于点R,若∠CHP=30°,求∠ARP的度数.25.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP//AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3√3,BG=6,求AC的长.26.甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲、乙两车距A地的路程y(km)与乙车行驶时间x(ℎ)之间的函数图象如图所示,请结合图象信息解答下列问题;①直接写出a的值,并求甲车的速度;②求图中线段EF所表示的函数y关于x的解析式;并直接写出自变量x的取值范围;③乙车出发后多少小时与甲车相距15千米?27.如图,按要求完成下列问题:作出这个小红旗图案关于y轴的轴对称图形,写出所得到图形相应各点的坐标.28.在平面直角坐标系xOy中,直线l1:y=kx+2(k>0)与x轴交于点A,与y轴交于点B,直线l2:kx+2与x轴交于点C.y=−12(1)求点B的坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,AC,BC围成的区域(不含边界)为G.①当k=2时,结合函数图象,求区域G内整点的个数;②若区域G内恰有2个整点,直接写出k的取值范围.29.小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回.小明去时骑自行车,返回时步行;爷爷去时步行.返回时骑自行车;爸爸往返都是步行.三个人步行的速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系是下面三个图象中的一个.请问完成一次往返,小明、爸爸、爷爷各用多少分钟?参考答案及解析1.答案:D解析:解:√(−5)2=5,故选项A错误,−√22=−2,故选项B错误,√−93已经是最简的三次根式,故选项C错误,±√9=±3,故选项D正确,故选:D.根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.本题考查立方根、平方根、算术平方根,解答本题的关键是明确它们各自的计算方法.2.答案:B解析:解:①3是27的立方根,故命题错误;②√125144=1312,故命题错误;③√16=4,4的平方根是±2,故命题正确;④3(−8)3=−8,故命题正确;⑤√(−6)2=6,故命题错误.所以正确的命题有2个,故选B.3.答案:B解析:解:∵横坐标为0,纵坐标不为0,∴点(0,−2)在y轴上.故选:B.根据点的坐标,确定点的位置,横坐标为0,点在y轴上.解答此题的关键是熟记平面直角坐标系中各个轴上点的坐标情况,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.答案:A解析:解:如图所示,“距离坐标”是(1,0)的点在直线l2上存在两个,分别在直线l1的两侧.故选:A.根据“距离坐标”的定义,“距离坐标”是(1,0)的点到直线l1和l2的距离分别是1和0,这样的点在直线l2上存在两个,分别在直线l1的两侧.本题考查了点的坐标以及点到直线的距离的概念,理解“距离坐标”的定义是解题的关键.5.答案:C解析:解:∵直线y=−x−1,x轴的交点坐标(−1,0),∴倾斜角为135°,∴它与x轴的交点逆时针旋转75°后的倾斜角为30°,∴k=√33,设所求的直线为y=√33x+b,把(−1,0)代入得b=√33,∴所求的直线为y=√33x+√33,故选:C.求出直线y=−x−1与x轴的交点坐标,逆时针旋转75°后得到直线的倾斜角为30°,即可得到k,进而求得解析式.本题考查了一次函数的图象与几何变换,求得旋转后的倾斜角是解题的关键.6.答案:A解析:解:∵点A的坐标为(0,5),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=56x 上,∴A′点纵坐标为:5,故5=56x,解得:x=6,即A到A′的距离为6,则点B与其对应点B′之间的距离为6.故选:A.根据题意得出A′点的纵坐标进而得出其横坐标,进而得出A点到A′的距离,进而得出点B与其对应点B′之间的距离.此题主要考查了坐标与图形的性质以及一次函数图象上点的坐标性质,得出A到A′的距离是解题关键.7.答案:C解析:根据题中的按键顺序确定出显示的数的规律,即可得出结论.此题考查了计算器−数的平方,弄清按键顺序是解本题的关键.=0.01,√0.01=0.1;解:根据题意得:102=100,1100=100,√100=10;…0.12=0.01,10.01∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.8.答案:B解析:解:A、∵一次函数的图象经过一、三、四象限,∴k>0,b<0;∴kb<0,∴正比例函数y=kbx应该经过第二、四象限.故本选项错误;B、∵一次函数的图象经过一、二、四象限,∴k<0,b>0.∴kb<0,∴正比例函数y=kbx应该经过第二、四象限.故本选项正确;C、∵一次函数的图象经过二、三、四象限,∴k<0,b<0.∴kb>0,∴正比例函数y=kbx应该经过第一、三象限.故本选项错误;D、∵一次函数的图象经过一、二、三象限,∴k>0,b>0.∴kb>0,∴正比例函数y=kbx应该经过第一、三象限.故本选项错误;故选:B.根据一次函数及正比例函数的图象对各选项进行逐一分析即可.本题考查的是一次函数及正比例函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.9.答案:B解析:解:如图:已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,A:若BB′⊥AC,在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,∴△ABC≌△AB′C,AB=AB′;B:若BC=B′C,不能证明△ABC≌△AB′C,即不能证明AB=AB′;C:若∠ACB=∠ACB′,则在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′;D:若∠ABC=∠AB′C,则∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′.故选:B.根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△ABC≌△AB′C即可.本题考查的是三角形角平分线的性质及三角形全等的判定;解题的关键是要结合已知条件在图形上的位置对选项逐个验证.10.答案:B解析:证明:①在正方形ABCD中,∠ADC=∠C=90°∵EF//CD∴∠EFD=90°,得矩形EFDC.在Rt三角形FDG中,H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD∴∠AFH=∠AFE+∠GFH=90°+45°=135°∠EGH=180°−∠EGB=180°−45°=135°∴∠AFH=∠EGH∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG∴∠AHF+AHG=∠FHG+∠AHG即∠FHG=∠AHE=90°∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠FAH=∠GEH,∵∠BAF=CEG=90°∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH∴EHF≌△AHD所以④正确.⑤设EC=FD=x,则BE=AF=EG=2x,∴BC=DC=DE=AD=3x,AH2=(52x)2+(12x)2=132x2,S四边形DHEC=S梯形EGDC−S△EGH=12(2x+3x)⋅x−12×2x⋅12x=2x2S△EHF=S△AHF=12AH2=134x2∴S四边形DHECS△AHE=2x2134x2=813.所以⑤不正确.故选:B.①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.本题考查了正方形的性质、矩形的判定和性质、全等三角形的判定和性质、直角三角形的性质、三角形和梯形的面积等内容,解题关键是综合利用以上知识解决问题.11.答案:9.6解析:根据勾股定理列出方程求出AD ,根据勾股定理计算即可.本题考查的是勾股定理的应用,掌握直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2是解题的关键.解:设AD =x ,由勾股定理得,AB 2−AD 2=BC 2−CD 2,即102−x 2=122−(10−x)2,解得,x =2.8,BD =√AB 2−AD 2=9.6,故答案为9.6.12.答案:−2解析:此题主要考查了算术平方根以及相反数,正确得出a ,b 的值是解题关键.直接利用相反数的定义结合算术平方根得出a ,b 的值进而得出答案.解:∵√a =1,b 是3的相反数,∴a =1,b =−3,∴a +b =−2.故答案为:−2.13.答案:√3−82解析:解:连接PO ,由已知易得A(√3,0),B(0,1),OA =√3,OB =1,AB =2,∵等腰Rt △ABC 中,∠BAC =90°,∴S △ABP =S △ABC =2,S △AOP =√34,S △BOP =−a2,S △ABP =S △BOP +S △AOB −S △AOP =2,即−a 2+12×√3×1−√34=2, 解得a =√3−82. 故答案为:√3−82.由已知求出A 、B 的坐标,求出三角形ABC 的面积,再利用S △ABP =S △ABC 建立含a 的方程,把S △ABP 表示成有边落在坐标轴上的三角形面积和、差,通过解方程求得答案.本题考查了一次函数的综合应用;解函数图象与面积结合的问题,要把相关三角形用边落在坐标轴的其他三角形面积来表示,这样面积与坐标就建立了联系;把S △ABP 表示成有边落在坐标轴上的三角形面积和、差是正确解答本题的关键.14.答案:6解析:解:如图,∵点P 是△ABC 的重心,∴AP =2PD =2,∴AD =AP +PD =3.∵等腰直角△ABC 中,∠BAC =90°,AD 是中线,∴BC =2BD ,AD =BD ,∴BC =2AD =6.故答案为6.先根据三角形重心的性质得出AD =3,再根据等腰直角三角形的性质得出BC =2AD ,即可求解. 此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍,同时考查了等腰直角三角形的性质.15.答案:±3解析:解:把{x =2y =1代入二元一次方程组{ax +by =11ax −by =−3得{2a +b =11 ①2a −b =−3 ②, ①+②得:4a =8,解得a =2,把a =2代入②得:b =7,则a +b =9,9的平方根为±3,故答案为:±3把{x =2y =1代入二元一次方程组{ax +by =11ax −by =−3得{2a +b =11 ①2a −b =−3 ②,解方程组可得a 、b 的值,然后可得a +b 的平方根.此题主要考查了二元一次方程组的解,以及算术平方根,关键是掌握方程组的解满足方程. 16.答案:25解析:解:∵AB 的垂直平分线交AB 于D 点,交BC 于E 点∴AE =BE ,∵CE =7,AC =24,∴由勾股定理得:AE =√AC 2+CE 2=√72+242=25,∴BE =AE =25,故答案为:25.根据线段垂直平分线的性质得出AE =BE ,根据勾股定理求出AE 即可.本题考查了线段的垂直平分线的性质和勾股定理,能根据性质得出AE =BE 是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.17.答案:−1解析:解:一次函数y =3x +b ,其中k =3,∴图象经过一、三象限;又∵图象经过第一、三、四象限,∴b <0,故答案−1(答案不唯一).根据题中k >0,可知图形经过一、三象限,又由图象还要经过四象限,判断b <0.本题考查一次函数的图象.掌握一次函数解析式中k ,b 对图象的影响是解题的关键.18.答案:25 5√29解析:解:(1)只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10cm ,高为20cm ,点B 离点C 的距离是5cm ,∴BD =CD +BC =10+5=15(cm),AD =20(cm),在直角三角形ABD 中,根据勾股定理得:∴AB =√BD 2+AD 2=√152+202=25(cm);只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴BD=CD+BC=20+5=25(cm),AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=√BD2+AD2=√102+252=5√29(cm);只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30(cm),在直角三角形ABC中,根据勾股定理得:∴AB=√AC2+BC2=√302+52=5√37(cm);∵25<5√29<5√37,∴蚂蚁爬行的最短距离是25(cm).故答案为:25;(2)盒子底面对角长为√152+102=√325,当吸管、长方体的高及底面对角线的长正好构成直角三角形时,插入盒子内的吸管长度最长,则吸管长度为:√(√325)2+202=5√29(cm),∴吸管应不少于5√29cm.故答案为:5√29.(1)要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答;(2)当吸管、长方体的高及底面对角线的长正好构成直角三角形时,插入盒子内的吸管长度最大,用勾股定理即可解答.本题考查的是平面展开−最短路径问题,根据题意画出长方体的侧面展开图,根据勾股定理求解是解答此题的关键.19.答案:2解析:解:m+1m =√5+√55.∵2<√5<3,∴2<m+1m =√5+√55<3,故答案为:2.根据2<√5<3,可得答案.本题考查了估算无理数的大小,利用算术平方根越大被开方数越大得出2<√5<3是解题关键.20.答案:7km解析:解:(1)根据图象知,小明家离永辉超市的距离为7km.故答案为:7km;(2)小明去超市的速度:7÷35=0.2(千米/分钟),小明去超市前15分钟的路程:0.2×15=3(千米),小明和小红第1次相遇时离永辉超市距离:7−3=4(千米),答:小明和小红第1次相遇时离永辉超市距离为4千米;(3)小明回家的速度:(7−2)÷(75−65)=0.5(千米/分钟),按照小明回家原有的速度需要的时间:7÷0.5=14(分钟),小明从家里出发到回家所用的时间:65+14+3=82(分钟),答:小明从家里出发到回家所用的时间82分钟.(1)根据图象即可得到结论;(2)速度、时间、路程之间关系即可得到结论;(3)根据题意列式计算即可.此题考查了函数的图象,一次函数问题,解题的关键是根据速度、时间、路程之间关系分析解答.21.答案:解:(1)∵33=27<35<43=64,3<4,∴3<√35∵3.23≈32.8<35<3.33≈35.9,3<3.3;∴3.2<√35(2)∵(−4.5)3≈−91.1>−95>(−4.6)3≈97.3,3>−4.6.∴−4.5>√−95解析:根据无理数的估计解答即可.本题考查了立方根的定义和立方根的性质,能熟记立方根的定义的内容是解此题的关键,注意:一个正数有一个正的立方根,0的立方根是0,一个负数有一个负的立方根.根据立方根的定义求出即可.22.答案:证明:∵∠DEF=∠DFE=65°,∴∠EDF=50°,又∵∠A=∠B=50°,∴∠BDF=130°−∠ADE,∠AED=130°−∠ADE,∴∠BDF=∠AED,在△BDF和△AED中,{∠B=∠A∠BDF=∠AED DF=ED,∴△BDF≌△AED(AAS).解析:先根据已知条件,得出∠BDF=130°−∠ADE,∠AED=130°−∠ADE,进而得到∠BDF=∠AED,再运用AAS判定△EAD≌△DBF即可.本题主要考查了全等三角形的判定以及等腰三角形的性质的运用,解题时注意:两角及其中一个角的对边对应相等的两个三角形全等.23.答案:解:(1)连接AC,∵在Rt△ABC中,∠B=90°,AB=15,BC=20,由勾股定理得:AC=√AB2+BC2=25,∵CD=7,AD=24,∴AD2+CD2=AC2,∴∠ADC=90°;(2)四边形ABCD的面积S=S△ABC+S△ADC=12×AB×BC+12×AD×DC=12×15×20+12×24×7=234.解析:连接AC,根据勾股定理求出线段AC长度,根据勾股定理的逆定理求出∠D=90°即可;(2)分别求出Rt△ADC和Rt△ABC的面积即可.本题考查了勾股定理,勾股定理的逆定理和三角形的面积,能熟记勾股定理的逆定理和勾股定理的内容是解此题的关键.24.答案:80°50°90°解析:解:(1)∵AB//CD,∴∠AGH=∠GHD=80°.故答案为:80°.(2)由(1)知:∠AGH=∠GHD=80°.∴∠BGH=180°−∠AGH=100°.又∵GM平分∠BGH,∴∠BGM=12∠BGH=12×100°=50°.又∵AB//CD,∴∠GMH=∠BGM=50°.故答案为:50°.(3)∵AB//CD,∴∠BGH+∠GHD=180°.∵GM平分∠BGH,HT平分∠GHD,∴∠MGH=12∠BGH,∠GHT=12∠GHD.∴∠TGH+∠GHT=12∠BGH+12∠GHD=12(∠BGH+∠GHD)=12×180°=90°.∴∠GTH=180°−(∠TGH+∠GHT)=90°.故答案为:90°.(4)如图4,延长QP交CD于O.由题意知:∠QPH=90°.∴∠OPH=180°−∠QPH=90°.∴∠POH=180°−(∠OPH+∠CHP)=180°−(90°+30°)=60°.又∵AB//CD,∴∠ARP=∠POH=60°.(1)根据平行线的性质解决.(2)根据角平分线的定义解决.(3)欲求∠GTH,需求∠TGH+∠GHT.由GM平分∠BGH,HT平分∠GHD,得∠MGH=12∠BGH,∠GHT=1 2∠GHD,得∠TGH+∠GHT=12∠BGH+12∠GHD=90°.(4)如图,延长QP交CD于O.欲求∠ARP,需求∠POH.由∠QPH=90°,得∠OPH=180°−∠QPH=90°,进而解决此题.本题主要考查平行线的性质、角平分线的定义以及三角形内角和定理,熟练掌握平行线的性质、角平分线的定义以及三角形内角和定理是解决本题的关键.25.答案:证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵{∠A=∠BCGAC=BC∠ACF=∠CBE,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC//AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)如图3,过E作EM⊥AG,交AG于M,∵S△AEG=1AG⋅EM=3√3,2由(2)得:△ACG≌△BCG,∴BG=AG=6,×6×EM=3√3,∴12EM=√3,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2√3,AM=√(2√3)2−(√3)2=3,∴M是AG的中点,∴AE=EG=2√3,∴BE=BG+EG=6+2√3,在Rt△ECB中,∠EBC=30°,BE=3+√3,∴CE=12∴AC=AE+EC=2√3+3+√3=3√3+3.解析:本题考查了全等三角形的性质和判定及等腰直角三角形的性质,证明两线段相等时,一般都是证明两线段所在的三角形全等,因此第一问只需要证明△BCG≌△CAF即可;第3问,如何得出30°角和作辅助线,利用到S△AEG=3√3列式是突破口.(1)根据ASA证明△BCG≌△CAF,则CF=BG;(2)先证明△ACG≌△BCG,得∠CAG=∠CBE,再证明∠PCG=∠PGC,即可得出结论;(3)作△AEG 的高线EM ,根据角的大小关系得出∠CAG =30°,根据面积求出EM 的长,利用30°角的三角函数值依次求AE 、EG 、BE 的长,所以CE =3+√3,根据线段的和得出AC 的长.26.答案:解:①a =4+0.4=4.5,甲车的速度=4604060+7=60(千米/小时);②设乙开始的速度为v 千米/小时,则4v +(7−4.5)(v −50)=460,解得v =90(千米/小时),4v =360,则D(4,360),E(4.5,360),设直线EF 的解析式为y =kx +b ,把E(4.5,360),F(7,460)代入得{4.5k +b =3607k +b =460, 解得{k =40b =180, 所以线段EF 所表示的y 与x 的函数关系式为y =40x +180(4.5≤x ≤7);③甲车前40分钟的路程为60×23=40(千米),则C(0,40),设直线CF 的解析式为y =mx +n ,把C(0,40),F(7,460)代入得{n =407m +n =460, 解得{m =60n =40, 所以直线CF 的解析式为y =60x +40,易得直线OD 的解析式为y =90x(0≤x ≤4),设甲乙两车中途相遇点为G ,由60x +40=90x ,解得x =43小时,即乙车出发43小时后,甲乙两车相遇,当乙车在OG 段时,由60x +40−90x =15,解得x =56介于0~43小时之间,符合题意;当乙车在GD 段时,由90x −(60x +40)=15,解得x =116,介于43~4小时之间,符合题意; 当乙车在DE 段时,由360−(60x +40)=15,解得x =6112,不介于4~4.5之间,不符合题意; 当乙车在EF 段时,由40x +180−(60x +40)=15,解得x =254,介于4.5~7之间,符合题意. 所以乙车出发56小时或116小时或254小时,乙与甲车相距15千米.+7)小时,然后利用解析:①由乙在途中的货站装货耗时半小时易得a=4.5;甲从A到B共用了(23速度公式计算甲的速度;②设乙开始的速度为v千米/小时,利用乙两段时间内的路程和为460列方程4v+(7−4.5)(v−50)=460,解得v=90(千米/小时),计算出4v=360,则可得到D(4,360),E(4.5,360),然后利用待定系数法求出线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);=40,则可得到C(0,40),再利用待定系数法求出直线CF的解析式为y=60x+40,③先计算60×23和直线OD的解析式为y=90x(0≤x≤4),然后利用函数值相差15列方程求解即可.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.答案:解:小红旗关于y轴的轴对称图形如图所示:A′(8,3),B′(8,5),C′(2,5).解析:根据关于y轴对称的两点,它们的纵坐标相同,横坐标互为相反数,可得出各点的坐标.本题考查了利用轴对称设计图案的知识,P(x,y)关于x轴的对称点坐标是(x,−y),点P(x,y)关于y轴的对称点坐标是(−x,y),点P(x,y)关于原点的对称点的坐标是(−x,−y).28.答案:解:(1)∵直线l1:y=kx+2(k>0)与y轴交于点B,∴当x=0时,y=2,∴点B的坐标为(0,2);kx+(2)①当k=2时,直线l1:y=2x+2,直线l2:y=−122,∴A(−1,0),C(2,0),结合函数图象,区域G内整点的个数为1;②若区域G内恰有2个整点,k的取值范围为1≤k<2.解析:(1)根据函数解析式即可得到结论;(2)①当k=2时,根据函数解析式得到A(−1,0),C(2,0),结合函数图象即可得到结论;②结合函数图象,即可得到结论.本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,正确的理解题意是解题的关键.29.答案:解:由图象可以看出,A对应爷爷,去时耗时长;B对应爸爸,去时返回耗时一样;C对应小明,去时用时短返回用时长,完成一次往返,小明、爸爸、爷爷各用21分钟、24分钟、26分钟.解析:由A、B、C图象可以看出,A去时用时长返回用时短,对应爷爷;B去时和返回用时一样长,对应爸爸;C去时用时短返回用时长,对应小明.此题考查函数图象,此题为一次函数图象与实际结合的题型,同学们要培养从图形中找信息的能力.。

2020年初一数学上期末试卷(及答案)

2020年初一数学上期末试卷(及答案)

2020年初一数学上期末试卷(及答案)一、选择题1.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 2.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯ 3.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个B .2个C .3个D .4个 4.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<0 5.下列运算结果正确的是( )A .5x ﹣x=5B .2x 2+2x 3=4x 5C .﹣4b+b=﹣3bD .a 2b ﹣ab 2=0 6.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x --=,整理得36x = 7.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( )A .不赚不亏B .赚8元C .亏8元D .赚15元8.下列结论正确的是( )A .c>a>bB .1b >1c C .|a|<|b| D .abc>0 9.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( )A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯10.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =-B .32824x x =+C .2232626x x +-=+D .2232626x x +-=- 11.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4AC B .CE =12AB C .AE =34ABD .AD =12CB 12.下列说法中:①一个有理数不是正数就是负数;②射线AB 和射线BA 是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有( )A .1个B .2个C .3个D .4个二、填空题13.若13a +与273a -互为相反数,则a=________. 14.观察下列算式: 222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母n 表示自然数,请把你观察到的规律用含有n 的式子表示出来:15.某同学做了一道数学题:“已知两个多项式为 A 、B ,B=3x ﹣2y ,求 A ﹣B 的 值.”他误将“A ﹣B”看成了“A+B”,结果求出的答案是 x ﹣y ,那么原来的 A ﹣B 的值应该是 .16.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.17.一个角的补角比它的余角的3倍少20°,这个角的度数是________18.已知A ,B ,C 三点在同一条直线上,AB=8,BC=6,M 、N 分别是AB 、BC 的中点,则线段MN 的长是_______.19.正方体切去一块,可得到如图几何体,这个几何体有______条棱.20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.在一条笔直的公路上,A 、B 两地相距300千米.甲乙两车分别从A 、B 两地同时出发,已知甲车速度为100千米/小时,乙车速度为60千米/小时.经过一段时间后,两车相距100千米,求两车的行驶时间?22.8x =5200x =6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m 元/台,则有:m (1+14%)=5700解得:m =5000答:这种品牌电脑的进价为5000元/台.【点睛】本题考查一元一次方程的实际运用,理解题意,搞清优惠的计算方法,找出题目蕴含的数量关系解决问题.23.某校组织七年级师生旅游,如果单独租用45座客车若干辆,则好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加旅游的人数.(2)已知租用45座的客车日租金为每辆250元,60座的客车日租金为每辆300元,在只租用一种客车的前提下,问:怎样租用客车更合算?24.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==.25.某区运动会要印刷秩序册,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)这个区印制多少份秩序册时两个印刷厂费用是相同的;(2)当印制200份、400份秩序册时,选哪个印刷厂所付费用较少;为什么.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D解析:D【解析】【分析】【详解】解:①3a+2b无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意;⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意;故选D4.C解析:C【解析】【分析】先根据数轴确定a .b ,c 的取值范围,再逐一对各选项判定,即可解答.【详解】由数轴可得:a<b<0<c ,∴a+b+c<0,故A 错误;|a+b|>c ,故B 错误;|a−c|=|a|+c ,故C 正确;ab >0 ,故D 错误;故答案选:C.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.5.C解析:C【解析】A.5x ﹣x =4x ,错误;B.2x 2与2x 3不是同类项,不能合并,错误;C.﹣4b +b =﹣3b ,正确;D.a 2b ﹣ab 2,不是同类项,不能合并,错误;故选C .6.D解析:D【解析】【分析】根据解方程的步骤逐一对选项进行分析即可.【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误; D . 方程110.20.5x x --=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确.【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.7.C解析:C【解析】试题分析:设盈利的进价是x 元,则x+25%x=60,x=48.设亏损的进价是y 元,则y-25%y=60,y=80.60+60-48-80=-8,∴亏了8元.故选C .考点:一元一次方程的应用.8.B解析:B【解析】【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案.【详解】解:由图可知1,01,1a b c <-<<>∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B .【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.9.B解析:B【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.解析:A【解析】【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.11.D解析:D【解析】【分析】由C ,D ,E 是线段AB 的四等分点,得AC =CD =DE =EB =14AB ,即可知A 、B 、C 均正确,则可求解【详解】由C ,D ,E 是线段AB 的四等分点,得AC =CD =DE =EB =14AB , 选项A ,AC =14AB ⇒AB =4AC ,选项正确 选项B ,CE =2CD ⇒CE =12AB ,选项正确 选项C ,AE =3AC ⇒AE =34AB ,选项正确 选项D ,因为AD =2AC ,CB =3AC ,所以2AD CB 3=,选项错误 故选D .【点睛】此题考查的是线段的等分,能理解题中:C ,D ,E 是线段AB 的四等分点即为AC =CD =DE =EB =14AB ,是解此题的关键 12.B【解析】【分析】根据有理数的分类可得A 的正误;根据射线的表示方法可得B 的正误;根据相反数的定义可得C 的正误;根据线段的性质可得D 的正误.【详解】①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB 与射线BA 是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确。

2020年七年级数学上册期末试卷 含解析

2020年七年级数学上册期末试卷   含解析

七年级(上)期末数学试卷一、仔细选一选(每小题2分,共20分)下列每个小题都给出四个备选答案,其中只有一个是符合题意的,请把符合题意选项的字母填在下表相应的方格内1.如图是太原市某天的天气预报图.根据图中提供的信息,太原市这天的最高气温与最低气温的温差是()A.3℃B.13℃C.﹣3℃D.﹣13℃2.如图,有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|<|b| B.﹣a<﹣b C.a<﹣b D.a2<b23.下面现象中,能反映“两点之间,线段最短”这一基本事实的是()A.用两根钉子将细木条固定在墙上B.木锯木料先在木板上画出两个点,再用墨盒过这两个点弹出一条墨线C.测量两棵树之间的距离时,要拉直尺子D.砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线4.有一种正方体如图所示,下列图形是该方体的展开图的是()A.B.C.D.5.从正面看如图所示的立体图形,得到的平面图形是()A.B.C.D.6.在如图所示方位角中,射线OA表示的方向是()A.东偏南30°B.南偏东60°C.西偏南30°D.南偏西60°7.如图,是用大小相同的正方形摆放成的一组有规律的图案,图案(1)需要3个正方形,图案(2)需要5个正方形,图案(3)需要7个正方形,图案(4)需要9个正方形,…按此规律摆下去,第n个图案需要正方形()A.2n﹣1 B.2n+1 C.4n﹣1 D.4n﹣38.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=6,那么x=3C.如果x﹣3=y﹣3,那么x﹣y=0D.如果mx=my,那么x=y9.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额完成5个,问:规定时间是多少?设规定时间为x小时,则可列方程为()A.38x﹣15=42x+5 B.38x+15=42x﹣5C.42x+38x=15+5 D.42x﹣38x=15﹣510.某工厂2015年的工业生产值为a元,2016年的工业生产值受产业结构调整的影响,工业生产值下降了15%,2017年由于产业结构逐步优化,工业生产值上升了20%,则2017年该工厂的工业生产值为()A.(1﹣15%)(1+20%)a元B.(1﹣15%)20%a元C.(1+15%)(1﹣20%)a元D.(1+20%)15%a元二、填空题(每小题3分,共18分)11.某单项式含有字母x,y,次数是4次.则该单项式可能是.(写出一个即可)12.已知∠A=34°47′.则∠A的补角的度数是.13.2017年“一带一路”建设取得重大进展,据商务部数据显示,今年前11个月,我国与沿线国家贸易额达9831亿美元,这一数据用科学记数法可表示为美元.14.如图,点D为线段AB上一点,C为AB的中点,且AB=8m,BD=2cm,则CD的长度为cm.15.在我们日常用的日历中,有许多有趣的数学规律.如在图1所示某月的日历中,用带阴影的方框圈出4个数,这四个数具有这样的性质:上下相邻的两个数相差7,左右相邻的两个数相差1,…如果我们在某年某月的日历上按图2所示方式圈出4个数,若这4个数的和为78,则这4个数中最小的数为.16.一般地,任何一个无限循环小数都可以写成分数形式,如0.=0.777…,它的循环节有一位,设0.=x,由0.=0777…,可知,10x=7.777…,所以10x﹣x=7,得x=.于是,得0.=,再如0.=0.737373…,它的循环节有两位,设0.=x,由0.=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程得x=.于是,得0.=,类比上述方法,无限循环小数0. 3化为分数形式为.三、解答(本大题共6个小題,共52分,解答题应写出文字说明、证明过程或演算步骤)17.(1)计算:﹣52×+0.75×(﹣25)(2)计算:﹣5﹣[(1﹣0.2×)÷2]18.先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2017.19.解方程:20.元旦期间,小明家购买了一套x(x大于50)平方米的房间准备装修,需要给地面铺设地砖,经过市场了解,他们看中的同一款地砖在甲、乙两家商店的报价均为80元/平方米.经过讨价还价,甲商店的经理说:“销售价格可以在报价的基础上给予9折优惠”,乙商店的经理说:“50平方米的地砖按报价销售,超出50平方米的部分按报价的8折优惠”.(1)若小明家的房间大小为90平方米,则在哪一家商店购买比较合算?(2)小明家的房间大小为多少平方米时,在两家商店购买的费用一样?(3)若小明家在两家商店中选择其中的一家购买地砖,请你帮助小明做出决策,如何根据房间的大小选择较为节省的购买方式?(直接写出答案即可)21.截止2017年10月.太原市将所有的燃油出租车更换为纯电动出租,成为全国第一个使用纯电动出租车的城市.太原某快速充电站现有17辆汽车需要充电,计划先由2台大型充电桩T作10个小时,剩余的汽车由1台中型充电桩和1台小型充电桩共同完成,已知1台大型充电桩、1台中型充电桩、1台小型充电桩充满1辆汽车所需时间分别为2小时、3小时、4小时.(1)求按计划需1台中型充电桩和1台小型充电桩共同共作多少小时?(2)若太原市实施了“油改电”的出租车有9000辆,汽油价格按7元/升计算,一辆普通汽车百公里平均油耗10升.电动汽车百公里平均耗电20度,每度电所需成本为1元,则太原市的出租车实施“油改电”后百公里节约的总费用为多少元?22.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MDN 的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.参考答案与试题解析一.选择题(共10小题)1.如图是太原市某天的天气预报图.根据图中提供的信息,太原市这天的最高气温与最低气温的温差是()A.3℃B.13℃C.﹣3℃D.﹣13℃【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:8﹣(﹣5)=8+5=13(℃),则太原市这天的最高温度与最低温度的温差是13℃,故选:B.2.如图,有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|<|b| B.﹣a<﹣b C.a<﹣b D.a2<b2【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【解答】解:∵由图可知﹣3<a<﹣2,1<b<2,∴|a|>|b|,﹣a>﹣b,a<﹣b,a2>b2.故选:C.3.下面现象中,能反映“两点之间,线段最短”这一基本事实的是()A.用两根钉子将细木条固定在墙上B.木锯木料先在木板上画出两个点,再用墨盒过这两个点弹出一条墨线C.测量两棵树之间的距离时,要拉直尺子D.砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线【分析】根据线段的性质:两点之间线段最短进行解答即可.【解答】解:A、用两根钉子将细木条固定在墙上,是两点确定一条直线,故此选项错误;B、木锯木料先在木板上画出两个点,再用墨盒过这两个点弹出一条墨线,是两点确定一条直线,故此选项错误;C、测量两棵树之间的距离时,要拉直尺子,可用基本事实“两点之间,线段最短”来解释,正确;D、砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线,是两点确定一条直线,故此选项错误;故选:C.4.有一种正方体如图所示,下列图形是该方体的展开图的是()A.B.C.D.【分析】同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,依据折叠后所得到正方体,即可得到结论.【解答】解:A选项中,折叠后所得到正方体中,三个面的对角线交于一个顶点,不合题意;B选项中,折叠后所得到正方体中,三个面的对角线中一条与其它两条无公共点,不合题意;C选项中,折叠后所得到正方体中,三个面的对角线组成一个三角形,符合题意;D选项中,折叠后所得到正方体中,三个面的对角线中一条与其它两条无公共点,不合题意;故选:C.5.从正面看如图所示的立体图形,得到的平面图形是()A.B.C.D.【分析】从正面看到的平面图形即是该几何体的主视图,即可得出答案.【解答】解:如图所示:从正面看如图所示的立体图形,得到的平面图形是:.故选:A.6.在如图所示方位角中,射线OA表示的方向是()A.东偏南30°B.南偏东60°C.西偏南30°D.南偏西60°【分析】用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,根据方位角的概念,写出射线OA表示的方向即可.【解答】解:根据方位角的概念,射线OA表示的方向是南偏东60度.故选:B.7.如图,是用大小相同的正方形摆放成的一组有规律的图案,图案(1)需要3个正方形,图案(2)需要5个正方形,图案(3)需要7个正方形,图案(4)需要9个正方形,…按此规律摆下去,第n个图案需要正方形()A.2n﹣1 B.2n+1 C.4n﹣1 D.4n﹣3【分析】由图(1)中正方形的个数3=2×2﹣1,图(2)中正方形的个数5=2×3﹣1,图(3)中正方形的个数7=2×4﹣1,可得答案.【解答】解:∵图(1)中正方形的个数3=2×2﹣1,图(2)中正方形的个数5=2×3﹣1,图(3)中正方形的个数7=2×4﹣1,……∴图n中正方形的个数2(n+1)﹣1=2n+1,故选:B.8.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=6,那么x=3C.如果x﹣3=y﹣3,那么x﹣y=0D.如果mx=my,那么x=y【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【解答】解:A、如果s=ab,那么b=,当a=0时不成立,故A错误,B、如果x=6,那么x=12,故B错误,C、如果x﹣3=y﹣3,那么x﹣y=0,C正确,D、如果mx=my,那么x=y,如果m=0,式子不成立,故D错误.故选:C.9.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额完成5个,问:规定时间是多少?设规定时间为x小时,则可列方程为()A.38x﹣15=42x+5 B.38x+15=42x﹣5C.42x+38x=15+5 D.42x﹣38x=15﹣5【分析】设规定时间为x小时,根据“每小时生产38个零件,在规定时间内还差15个不能完成;若每小时生产42个,则可超额完成5个”表示出零件个数得出方程即可.【解答】解:设规定时间为x小时,则38x+15=42x﹣5.故选:B.10.某工厂2015年的工业生产值为a元,2016年的工业生产值受产业结构调整的影响,工业生产值下降了15%,2017年由于产业结构逐步优化,工业生产值上升了20%,则2017年该工厂的工业生产值为()A.(1﹣15%)(1+20%)a元B.(1﹣15%)20%a元C.(1+15%)(1﹣20%)a元D.(1+20%)15%a元【分析】根据2017年该工厂的工业生产值=2015年该工厂的工业生产值×(1﹣15%)×(1+20%),依此列出代数式即可求解.【解答】解:依题意有2017年该工厂的工业生产值为(1﹣15%)×(1+20%)a元.故选:A.二.填空题(共6小题)11.某单项式含有字母x,y,次数是4次.则该单项式可能是x2y2.(写出一个即可)【分析】根据单项式的定义即可求出答案.【解答】解:由题意可知:x2y2,故答案为:x2y212.已知∠A=34°47′.则∠A的补角的度数是145°13′.【分析】根据如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角进行计算.【解答】解:180°﹣34°47′=145°13′,故答案为:145°13′.13.2017年“一带一路”建设取得重大进展,据商务部数据显示,今年前11个月,我国与沿线国家贸易额达9831亿美元,这一数据用科学记数法可表示为9.831×1011美元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9831亿=9.831×1011.故答案为:9.831×1011.14.如图,点D为线段AB上一点,C为AB的中点,且AB=8m,BD=2cm,则CD的长度为2 cm.【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【解答】解:∵点C是线段AB的中点,AB=8cm,∴BC=AB=×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为:2.15.在我们日常用的日历中,有许多有趣的数学规律.如在图1所示某月的日历中,用带阴影的方框圈出4个数,这四个数具有这样的性质:上下相邻的两个数相差7,左右相邻的两个数相差1,…如果我们在某年某月的日历上按图2所示方式圈出4个数,若这4个数的和为78,则这4个数中最小的数为16 .【分析】设最小的一个数为x,表示出其他三个数,根据之和为96列出方程,求出方程的解即可得到结果.【解答】解:设最小的一个数为x,依题意得:x+x+1+x+6+x+7=78解得x=16故答案是:16.16.一般地,任何一个无限循环小数都可以写成分数形式,如0.=0.777…,它的循环节有一位,设0.=x,由0.=0777…,可知,10x=7.777…,所以10x﹣x=7,得x=.于是,得0.=,再如0.=0.737373…,它的循环节有两位,设0.=x,由0.=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程得x=.于是,得0.=,类比上述方法,无限循环小数0. 3化为分数形式为.【分析】仿照给出的无限小数写成分数的方法,把无限循环小数0. 3化为分数.【解答】解:设无限循环小数0. 3=x,则1000x=735.735735…,∴1000x﹣x=735,解方程,得x==.故答案为:.三.解答题(共6小题)17.(1)计算:﹣52×+0.75×(﹣25)(2)计算:﹣5﹣[(1﹣0.2×)÷2]【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)﹣52×+0.75×(﹣25)=﹣25×=(﹣25)×()=(﹣25)×=;(2)﹣5﹣[(1﹣0.2×)÷2]=﹣5﹣[]=﹣5﹣[]=﹣5﹣()=﹣5+=﹣4.18.先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2017.【分析】先去括号,再合并同类项即可化简原式,再将x的值代入计算可得.【解答】解:原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2017时,原式=﹣+=.19.解方程:【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母,得:2(5x+7)﹣(x+17)=12,去括号,得:10x+14﹣x﹣17=12,移项,得:10x﹣x=12﹣14+17,合并同类项,得:9x=15,系数化为1,得:x=.20.元旦期间,小明家购买了一套x(x大于50)平方米的房间准备装修,需要给地面铺设地砖,经过市场了解,他们看中的同一款地砖在甲、乙两家商店的报价均为80元/平方米.经过讨价还价,甲商店的经理说:“销售价格可以在报价的基础上给予9折优惠”,乙商店的经理说:“50平方米的地砖按报价销售,超出50平方米的部分按报价的8折优惠”.(1)若小明家的房间大小为90平方米,则在哪一家商店购买比较合算?(2)小明家的房间大小为多少平方米时,在两家商店购买的费用一样?(3)若小明家在两家商店中选择其中的一家购买地砖,请你帮助小明做出决策,如何根据房间的大小选择较为节省的购买方式?(直接写出答案即可)【分析】(1)根据两家商店给定的优惠方案,分别求出在两件店购买90平方米的地砖所需费用,比较后即可得出结论;(2)根据在两家商店购买的费用一样,即可得出关于x的一元一次方程,解之即可得出结论;(3)结合(1)(2)结论,找出当50<x<100,x=100,x>100时的选择.【解答】解:(1)若在甲商店购买,所需费用为:80×0.9×90=6480(元),若在乙商店购买,所需费用为:50×80+(90﹣50)×80×0.8=6560(元).∵6480元<6560元,∴当小明家的房间大小为90平方米时,在甲商店购买比较合算.(2)根据题意得:80×0.9x=50×80+80×0.8(x﹣50),解得:x=100,∴当小明家的房间大小为100平方米时,在两家商店购买的费用一样.(3)根据(1)(2)的结论,可知:当50<x<100时,在甲商店购买比较节省费用;当x=100时,在两家商店购买的费用一样;当x>100时,在乙商店购买比较节省费用.21.截止2017年10月.太原市将所有的燃油出租车更换为纯电动出租,成为全国第一个使用纯电动出租车的城市.太原某快速充电站现有17辆汽车需要充电,计划先由2台大型充电桩T作10个小时,剩余的汽车由1台中型充电桩和1台小型充电桩共同完成,已知1台大型充电桩、1台中型充电桩、1台小型充电桩充满1辆汽车所需时间分别为2小时、3小时、4小时.(1)求按计划需1台中型充电桩和1台小型充电桩共同共作多少小时?(2)若太原市实施了“油改电”的出租车有9000辆,汽油价格按7元/升计算,一辆普通汽车百公里平均油耗10升.电动汽车百公里平均耗电20度,每度电所需成本为1元,则太原市的出租车实施“油改电”后百公里节约的总费用为多少元?【分析】(1)根据题意,可以列出相应的一元一次方程,本题得以解决;(2)根据题意可以得到费用与汽车数量之间关系,从而得解.【解答】解:(1)设1台中型充电桩和1台小型充电桩共同共作x小时,根据题意,得+(+)x=17.解得x=12.答:1台中型充电桩和1台小型充电桩共同共作12小时;(2)9000×(10×7﹣20×1)=450000.答:太原市的出租车实施“油改电”后百公里节约的总费用为450000元.22.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为135 °.图3中∠MDN 的度数为135 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.【分析】(1)根据角平分线的定义和角的和差即可得到结论;(2)根据已知条件得到∠AOC+∠BOD=180°﹣∠COD=90°,根据角平分线的定义得到∠MOC+∠NOD=∠AOC+∠BOD=(∠AOC+∠BOD)=45°,于是得到结论;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,根据角平分线的定义得到∠MOC=∠AOC=(180°﹣x°)=90°﹣x°,∠BON=∠BOD=(90°﹣x°)=45°﹣x°,根据角的和差即可得到结论.【解答】解:(1)图2中∠MON=×90°+90°=135°;图3中∠MDN=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD)+90°=90°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=∠AOC+∠BOD=(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=∠AOC=(180°﹣x°)=90°﹣x°,∠BON=∠BOD=(90°﹣x°)=45°﹣x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣x°)+x°+(45°﹣x°)=135°.。

七年级上册期末数学试卷(2020年最新)

七年级上册期末数学试卷(2020年最新)

2020年最新七年级上册期末数学试卷(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.等于( ) 2- A .-2B .C .2D .12-122.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是 ( ) A .1枚B .2枚C .3枚D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( ) A .与1B .(-1)2与1C .与1D .-12与1)1(--1-5.下列各组单项式中,为同类项的是( ) A .a 与a B .a 与2a C .2xy 与2x D .-3与a 3212226.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a+b>0B .ab >0C .110a b -< D.110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )ABCD第8题图8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )A .70°B .90°C .105°D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A . B .C .D .32428-=x x 32428+=x x 3262262+-=+x x 3262262-+=-x x12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式xy 2的系数是_________.12-62224204884446……A第8题图15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-×[2-(-3)] .14222.(本小题满分6分) 一个角的余角比这个角的少30°,请你计算出这个角的大小.21共43共94元23.(本小题满分7分) 先化简,再求值:(-4x 2+2x -8)-(x -1),其中x =. 41212124.(本小题满分7分)解方程:-=1. 513x +216x -25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…… (1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为;(5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数.27.(本小题满分8分)如图,已知线段AB 和CD 的公共部分BD =AB =CD ,线段AB 、CD 的中点E 、F 之间距离是131410cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?OAAE DBFC(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.数学试题参考答案及评分说明一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B . 二、填空题(每题3分,共24分) 13.;14.;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 31-21-三、解答题(共60分) 21.解:原式= -1-×(2-9) ………………………………………………………3分 14=-1+…………………………………………………………………………5分 47=……………………………………………………………………………6分 4322.解:设这个角的度数为x . ……………………………………………………………1分由题意得:………………………………………………3分 30)90(21=--x x 解得:x =80…………………………………………………………………5分答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 = ………………………………………………3分1212212+--+-x x x =………………………………………………………………4分12--x 把x =代入原式: 21原式==……………………………………………………………5分12--x 1)21(2-- = ……………………………………………………………………………7分 45-24.解:.……………………………………………2分6)12()15(2=--+x x .………………………………………………………4分 612210=+-+x x 8x =3.…………………………………………………………6分. …………………………………………………………7分 83=x25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分(5)54.………………………………………………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =∠AOB =45°, ………………………………………………………2分 12∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分∴∠COE =∠COD -∠DOE =90°-15°=75° (8)分27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm .…………………………1分∵点E 、点F 分别为AB 、CD 的中点, ∴AE =AB =1.5x cm ,CF =CD =2x cm . ……………………………………………3分 1212∴EF =AC -AE -CF =2.5x cm . ………………………………………………………4分 ∵EF =10cm ,∴2.5x=10,解得:x=4.………………………………………………………………6分∴AB=12cm,CD=16cm.……………………………………………………………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ………………………1分由题意得:30x+45(x+4)=1755 ……………………………………………3分解得:x=21则x+4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.………………………………………………7分解之得:y=44.5 (不符合题意) .……………………………………………………8分所以王老师肯定搞错了.……………………………………………………………9分(3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。

2020人教版七年级上册期末数学测试题(附答案)

2020人教版七年级上册期末数学测试题(附答案)

人教版七年级上册期末数学测试题一、选择题(共8小题,每小题3分,满分24分)1.既不是正数,也不是负数的数是()A.5 B.﹣5 C.9 D.02.整数和分数统称为()A.有理数B.无理数C.实数D.虚数3.﹣2的相反数是()A.0 B. 2 C.﹣2 D.44.乘积是1的两个数互为()A.倒数B.相反数C.绝对值D.有理数5.单项式与多项式统称为()A.分式B.整式C.等式D.方程6.用科学记数法表示9.06×105,则原数是()A.9060 B.90600 C.906000 D.90600007.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体8.关于直线、射线和线段的描述正确的是()A.直线、射线和线段的长度都不确定B.射线是直线长度的一半C.直线最长,线段最短D.直线没有端点,射线有一个端点,线段有两个端点二、填空题(每题3分,共24分)9.如果把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作米.10.=.11.(﹣5)+(﹣3)=.12.﹣(8)5中,指数是.13.用式子表示x的3倍与y的5倍的和是.14.某商品降价20%以后的价格是120元,则降价前的价格是元.15.在梯形面积公式s=(a+b)h中,已知s=60,b=4,h=12,则a=.16.线段AB=9cm,C是线段AB上的一点,BC=3cm,则AC=.三、解答题(共72分)17.(1)计算:18+(﹣7)(2)计算:(+3)×(﹣2)(3)计算:﹣32+(﹣2)3×2(4)化简:﹣(x2﹣2x﹣3)﹣2(﹣x2+x+1)(5)解方程:2x+4=16.18.一个三角形的三边长分别是3x,4x,5x,周长是24,求各边的长.19.如图所示,C是线段AB的中点,D是线段AC的中点,已知线段AB长度是36,求线段DB的长度.20.分别画出下列平面图形:长方形,正方形,三角形,圆.21.用式子表示:(1)一个数x的与6的和;(2)甲数为x,乙数比甲数的一半大5,则乙数为多少?22.当x为何值时,代数式3x+的值比2x﹣的值大1.23.先化简,再求值:ab﹣2ab+3b2+b2+2ab,其中,b=.24.一份试卷共25道题,每道题都给出了四个答案,其中只有一个是正确的.要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分.如果一个学生得90分,那么他选对几道题?现有500名学生参加考试,有得83分的同学吗?为什么?参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.既不是正数,也不是负数的数是()A.5 B.﹣5 C.9 D.0考点:正数和负数.分析:根据正数和负数的意义,可得答案.解答:解:大于零的数是正数,小于零的数是负数,0既不是正数也不是负数.故选:D.点评:本题考查了正数和负数,0既不是正数也不是负数.2.整数和分数统称为()A.有理数B.无理数C.实数D.虚数考点:有理数.分析:根据有理数的定义,可得答案.解答:解:A、整数和分数统称有理数,故A正确;B、无理数是无限不循环小数,故B错误;C、有理数和无理数统称实数,故C错误;D、含有i的数是虚数,故D错误;故选:A.点评:本题考查了有理数,整数和分数统称有理数,有理数和无理数统称实数,实数和虚数统称复数.3.﹣2的相反数是()A.0 B. 2 C.﹣2 D.4考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣2的相反数是2.故选B.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.4.乘积是1的两个数互为()A.倒数B.相反数C.绝对值D.有理数考点:倒数.分析:根据倒数的定义,可得答案.解答:解:乘积是1的两个数互为倒数,故A正确;故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.单项式与多项式统称为()A.分式B.整式C.等式D.方程考点:整式.分析:直接利用整式的定义作答.解答:解:单项式与多项式统称为整式.故选:B.点评:此题主要考查了整式的定义,正确把握定义是解题关键.6.用科学记数法表示9.06×105,则原数是()A.9060 B.90600 C.906000 D.9060000考点:科学记数法—原数.分析:根据科学记数法的定义,由9.06×105的形式,可以得出原式等于9.06×100000=906000,即可得出答案.解答:解:9.06×105=906000,故选:C.点评:本题主要考查科学记数法化为原数,得出原式等于9.06×100000=906000是解题关键.7.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.解答:解:A、球体的三视图都是圆,不符合题意;B、长方体的三视图都是矩形,不符合题意;C、圆锥体的主视图,左视图都是等腰三角形,俯视图是圆和中间一点,不符合题意;D、圆柱体的主视图,左视图都是长方形,俯视图是圆,符合题意.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.8.关于直线、射线和线段的描述正确的是()A.直线、射线和线段的长度都不确定B.射线是直线长度的一半C.直线最长,线段最短D.直线没有端点,射线有一个端点,线段有两个端点考点:直线、射线、线段.分析:根据直线、射线及线段的定义解答即可.解答:解:A、线段的长度可以确定,故本选项错误;B、射线和直线都能无限延伸,是没有长度的,故本选项错误;C、直线没有长度,故本选项错误;D、直线没有端点,射线有一个端点,线段有两个端点,故本选项正确.故选:D.点评:本题考查直线、射线及线段的知识,属于基础题,注意基本概念的掌握.二、填空题(每题3分,共24分)9.如果把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作﹣5米.考点:正数和负数.分析:根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.解答:解:把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作﹣5米,故答案为:﹣5.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.10.=6.考点:相反数.分析:根据相反数的定义求解即可.解答:解:本题就是求(﹣6)的相反数,故﹣(﹣6)=6.点评:本题考查了相反数的定义.根据定义我们知道只有符号不同的两个数,我们就说其中一个是另一个的相反数.11.(﹣5)+(﹣3)=﹣8.考点:有理数的加法.分析:根据同号相加,取相同符号,并把绝对值相加即可求解.解答:解:(﹣5)+(﹣3)=﹣8.故答案为:﹣8.点评:考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.12.﹣(8)5中,指数是5.考点:有理数的乘方.分析:根据有理数的乘方的定义解答即可.解答:解:﹣(8)5中,指数是5.故答案为:5.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.13.用式子表示x的3倍与y的5倍的和是3x+5y.考点:列代数式.分析:用x乘3加上y乘5列式即可.解答:解:表示x的3倍与y的5倍的和是3x+5y.故答案为:3x+5y.点评:此题考查列代数式,理解题意,找出叙述的运算方法是解决问题的关键.14.某商品降价20%以后的价格是120元,则降价前的价格是150元.考点:一元一次方程的应用.分析:可设降价前的价格是x元,根据等量关系:某商品降价20%以后的价格是120元,列出方程求解即可.解答:解:设降价前的价格是x元,依题意有(1﹣20%)x=120,解得x=150.答:降价前的价格是150元.故答案为:150.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.在梯形面积公式s=(a+b)h中,已知s=60,b=4,h=12,则a=6.考点:解一元一次方程.专题:计算题.分析:把s,b,h代入梯形面积公式求出a的值即可.解答:解:把s=60,b=4,h=12代入公式s=h(a+b)得:60=×12×(a+4),解得:a=6,故答案为:6点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.线段AB=9cm,C是线段AB上的一点,BC=3cm,则AC=6cm.考点:两点间的距离.分析:当点C在线段AB上时,AC+BC=AB,可据此求出AC的长度.解答:解:当点C在AB上时,∵AB=9cm,BC=3cm,∴AC=AC﹣BC=6cm;故答案为:6cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差关系是解答此题的关键.三、解答题(共72分)17.(1)计算:18+(﹣7)(2)计算:(+3)×(﹣2)(3)计算:﹣32+(﹣2)3×2(4)化简:﹣(x2﹣2x﹣3)﹣2(﹣x2+x+1)(5)解方程:2x+4=16.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用异号两数相乘的法则计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式去括号合并即可得到结果;(5)方程移项合并,把x系数化为1,即可求出解.解答:解:(1)原式=+(18﹣7)=11;(2)原式=﹣(3×2)=﹣6;(3)原式=﹣9+(﹣16)=﹣(9+16)=﹣25;(4)原式=﹣x2+2x+3+2x2﹣2x﹣2=x2+1;(5)方程移项合并得:2x=12,解得:x=6.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.一个三角形的三边长分别是3x,4x,5x,周长是24,求各边的长.考点:一元一次方程的应用.分析:根据等量关系:一个三角形的周长是24,列出方程求解即可.解答:解:依题意有:3x+4x+5x=24,解得x=2,3x=3×2=6,4x=4×2=8,5x=5×2=10.答:这个三角形的各边的长分别是6、8、10.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.如图所示,C是线段AB的中点,D是线段AC的中点,已知线段AB长度是36,求线段DB的长度.考点:两点间的距离.分析:先根据C是线段AB的中点,D是线段AC的中点,AB=36得出AC=CB,AD=DC,再由DB=DC+CB即可得出结论.解答:解:∵C是线段AB的中点,D是线段AC的中点,AB=36,∴AC=CB=18,AD=DC=9,∴DB=DC+CB=9+18=27.点评:本题考查的是两点间的距离,先根据中点的性质得出DC及CB的长是解答此题的关键.20.分别画出下列平面图形:长方形,正方形,三角形,圆.考点:认识平面图形.分析:根据长方形:有一个角是直角的平行四边形是矩形,可得长方形;根据正方形:有一个角是直角的菱形是正方形,可得答案;根据三条线段首位顺次连接的图形是三角形,可得答案;根据到定点的距离等于定长的店的集合是圆,可得答案.解答:解:如图:.点评:本题考查来了认识平面图形,利用了图形的定义.21.用式子表示:(1)一个数x的与6的和;(2)甲数为x,乙数比甲数的一半大5,则乙数为多少?考点:列代数式.分析:(1)先求x的再加上6即可;(2)用甲数的一半加上5即可.解答:解:(1)x+6;(2)x+5.点评:此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.22.当x为何值时,代数式3x+的值比2x﹣的值大1.考点:解一元一次方程.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:由题意得:3x+﹣1=2x﹣,移项,得3x﹣2x=﹣﹣+1,合并同类项,得x=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.23.先化简,再求值:ab﹣2ab+3b2+b2+2ab,其中,b=.考点:整式的加减—化简求值.专题:计算题.分析:原式合并同类项得到最简结果,把a与b的值代入计算即可求出值.解答:解:ab﹣2ab+3b2+b2+2ab=(ab﹣2ab+2ab)+(3b2+b2)=ab+4b2,当a=﹣,b=时,原式=﹣+1=.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.一份试卷共25道题,每道题都给出了四个答案,其中只有一个是正确的.要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分.如果一个学生得90分,那么他选对几道题?现有500名学生参加考试,有得83分的同学吗?为什么?考点:一元一次方程的应用.专题:应用题.分析:设某同学做对了x道题,那么他做错或不做的(25﹣x)道题,他的得分应该是4x ﹣(25﹣x)×1,列出方程求解即可;利用上一问列方程的方法求出即可,看得出的答案是否为整数.解答:解:设该同学做对了x题,那么他做错或不做的(25﹣x)道题,根据题意列方程得:4x﹣(25﹣x)×1=90,解得:x=23,答:他做对了23道.设某同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=83,解得:x=21.6.∵21.6不是整数,∴没有得83分的同学.答:没有得83分的同学.点评:此题主要考查了一元一次方程的应用,解题的关键是读懂题意,找到符合题意的等量关系式,解此类(2)问题时,要注意未知数的限制条件,在本题中应是正整数.。

贵州省黔南州2020学年人教版七年级上期末数学试卷含答案解析

贵州省黔南州2020学年人教版七年级上期末数学试卷含答案解析

贵州省黔南州2020~2020学年度七年级上学期期末数学试卷一、选择题(本题共小题,每小题3分,共36分)1.﹣2的相反数是()A.B.﹣C.2 D.﹣22.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是() A.5 B.±5 C.7 D.7或﹣33.从左面看如图所示的几何体可得到的平面图形是()A.B.C.D.4.下列式子中正确的是()A.﹣3﹣2=﹣1 B.3a+2b=5ab C.5xy﹣5yx=0 D.2÷×(﹣)=﹣25.如图,下列说法不正确的是()A.OC的方向是南偏东30°B.OA的方向是北偏东45°C.OB的方向是西偏北30°D.∠AOB的度数是75°6.下列各组数中,大小关系正确的是()A.32<23B.﹣22=(﹣2)2C.﹣|﹣3|>|﹣3| D.﹣23=(﹣2)37.把一个周角七等分,求每一份是多少?下列用四舍五入法取近似值正确的是() A.50°25′48″ B.51°26′C.51.42°(精确到0.01°) D.51.4°(精确到0.01°)8.如图中,不是正方体的展开图的是()A.B.C.D.9.下列式子正确的()A.x﹣(y﹣z)=x﹣y﹣z B.﹣a+b+c+d=﹣(a﹣b)﹣(﹣c﹣d)C.x+2y﹣2z=x﹣2(z+y) D.﹣(x﹣y+z)=﹣x﹣y﹣z10.如果2x3n y m+5与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣1,n=3 B.m=1,n=3 C.m=1,n=﹣3 D.m=3,n=211.已知x=a是方程x﹣2=a+x的解,则a的值等干()A.B.﹣C.3 D.﹣312.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为()A.30°B.45°C.50°D.60°二、填空题(本题共6小题,每小题3分,共18分)13.一天有86400秒,请把86400用科学记数法表示为.14.若|x﹣3|+(y+2)2=0,则x+2y的值为.15.观察下面一列数:﹣,,﹣,,﹣,…探求其规律,得到第2020个数是.16.a、b在数轴上得位置如图所示,化简:|a+b|﹣2|b﹣a|=.17.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于.18.种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺14棵树苗.问有多少人参加种树?设有x人参加种树,可列出方程.三、解答题(本题共5小题,共46分)19.计算(1)2×(﹣3)﹣(﹣6)+1(2)(﹣2)2﹣|﹣7|+3÷(﹣1)3﹣2×(﹣)(3)x﹣2=7x+1(4)=2﹣.2020知a、b互为相反数,m、n互为倒数,x的绝对值为2,求﹣2mn+﹣x的值.21.如图,线段AB=1cm,延长AB到C,使得BC=AB,反向延长AB到D,使得BD=2BC,在线段CD上有一点P,且AP=2cm.(1)请按题目要求画出线段CD,并在图中标出点P的位置;(2)求出线段CP的长度.22.某电视台组织知识竞赛,共设2020择题,每题必答,如表记录了3个参赛者的得分情况.(1)参赛者小婷得76分,她答对了几道题?(2)参赛者小明说他得了80分.你认为可能吗?为什么?参赛者答对题数答错题数总得分甲20 0 100乙19 1 94丙14 6 6423.如图,已知直线AB上有一点O,射线OD平分∠AOE,∠AOC:∠EOC=1:4,且∠COD=36°.(1)求∠AOC的度数;(2)求∠BOE的度数.贵州省黔南州2020~2020学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共小题,每小题3分,共36分)1.﹣2的相反数是()A.B.﹣C.2 D.﹣2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣3【考点】数轴.【分析】此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【解答】解:与点A相距5个单位长度的点表示的数有2个,分别是2+5=7或2﹣5=﹣3.故选D.【点评】要求掌握数轴上的两点间距离公式的运用.在数轴上求到已知点的距离为一个定值的点有两个.3.从左面看如图所示的几何体可得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左面看,是叠放2个正方形.故选:A.【点评】考查了几何体的三种视图和学生的空间想象能力.4.下列式子中正确的是()A.﹣3﹣2=﹣1 B.3a+2b=5ab C.5xy﹣5yx=0 D.2÷×(﹣)=﹣2【考点】合并同类项;有理数的混合运算.【分析】利用合并同类项法则进而化简求出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3a+2b,无法合并,故此选项错误;C、5xy﹣5yx=0,正确;D、2÷×(﹣)=2××(﹣)=﹣,故此选项错误;故选:C.【点评】此题主要考查了合并同类项法则,正确掌握相关运算法则是解题关键.5.如图,下列说法不正确的是()A.OC的方向是南偏东30°B.OA的方向是北偏东45°C.OB的方向是西偏北30°D.∠AOB的度数是75°【考点】方向角.【分析】根据方向角的定义对各选项进行逐一分析即可.【解答】解:A、∵∠COG=60°,∴∠COF=90°﹣60°=30°,∴OC的方向是南偏东30°,故本选项正确;B、∵∠AOG=45°,∴∠AOD=90°﹣45°=45°,∴OA的方向是北偏东45°,故本选项正确;C、∵∠BOE=30°,∴OB的方向是西偏北30°,故本选项正确;D、∵∠AOD=45°,∠BOD=90°﹣30°=60°,∴∠AOB=∠AOD+∠BOD=45°+60°=105°,故本选项错误.故选D.【点评】本题考查的是方向角,熟知方向角的定义是解答此题的关键.6.下列各组数中,大小关系正确的是()A.32<23B.﹣22=(﹣2)2C.﹣|﹣3|>|﹣3| D.﹣23=(﹣2)3【考点】有理数大小比较.【分析】先求出每一个式子得值,再根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,)进行比较即可.【解答】解:A、32=9,23=8,则32>23,故本选项错误;B、﹣22=﹣4,(﹣2)2=4,故本选项错误;C、﹣|﹣3|=﹣3,|﹣3|=3,则﹣|﹣3|<|﹣3|,故本选项错误;D、﹣23=﹣8,(﹣2)3=﹣8,则﹣23=(﹣2)3,故本选项正确;故选D.【点评】此题考查了有理数的大小比较,关键是掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.把一个周角七等分,求每一份是多少?下列用四舍五入法取近似值正确的是()A.50°25′48″ B.51°26′C.51.42°(精确到0.01°) D.51.4°(精确到0.01°)【考点】近似数和有效数字;角的概念.【分析】根据周角定义得到每一份是,然后根据近似数的精确度进行近似计算即可.【解答】解:≈51°26′,≈51.43°26′(精确到0.01°).故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.8.如图中,不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、是1﹣4﹣1的正方体的展开图,不符合题意;B、是1﹣4﹣1的正方体的展开图,不符合题意;C、是1﹣4﹣1的正方体的展开图,不符合题意;D、“田”字格的展开图都不是正方体的表面展开图,符合题意.故选:D.【点评】本题考查了几何体的展开图.只要有“田”字格的展开图都不是正方体的表面展开图.9.下列式子正确的()A.x﹣(y﹣z)=x﹣y﹣z B.﹣a+b+c+d=﹣(a﹣b)﹣(﹣c﹣d)C.x+2y﹣2z=x﹣2(z+y) D.﹣(x﹣y+z)=﹣x﹣y﹣z【考点】合并同类项;去括号与添括号.【分析】根据去括号的法则:括号前是负数去括号全变号,括号前是正数去括号不变号,可得答案.【解答】解:A、括号前是负数去括号全变号,故A错误;B、括号前是负数添括号全变号,故B正确;C、括号前是负数添括号全变号,故C错误;D、括号前是负数去括号全变号,故D错误;故选:B.【点评】本题考查了去括号与添括号,括号前是负数去(添)括号全变号,括号前是正数去(添)括号不变号.10.如果2x3n y m+5与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣1,n=3 B.m=1,n=3 C.m=1,n=﹣3 D.m=3,n=2【考点】同类项.【分析】根据同类项是字母项相同且相同字母的指数也相同,可得答案.【解答】解:由2x3n y m+5与﹣3x9y2n是同类项,得3n=9,m+5=2n.解得n=3,m=1,故选:B.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2020届中考的常考点.11.已知x=a是方程x﹣2=a+x的解,则a的值等干()A.B.﹣C.3 D.﹣3【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=a代入方程计算即可求出a的值.【解答】解:把x=a代入方程得:a﹣2=a+a,解得:a=﹣3,故选D.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为()A.30°B.45°C.50°D.60°【考点】角的计算.【专题】计算题.【分析】由∠AOC=∠BOD=90°,∠AOD=150°,可求出∠BOC的度数,再根据角与角之间的关系求解.【解答】解:∵∠AOC=∠BOD=90°,∠AOD=150°,∴∠BOC=∠AOC+∠BOD﹣∠AOD=180°﹣150°=30°,故选:A.【点评】此题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和∠BOC相比,多加了∠BOC一次.二、填空题(本题共6小题,每小题3分,共18分)13.一天有86400秒,请把86400用科学记数法表示为8.64×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将86400用科学记数法表示为8.64×104.故答案为:8.64×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.若|x﹣3|+(y+2)2=0,则x+2y的值为﹣1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y 的值,再代入x+2y中即可求解.【解答】解:依题意得:x﹣3=0,y+2=0,解得x=3,y=﹣2则x+2y=3﹣4=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.15.观察下面一列数:﹣,,﹣,,﹣,…探求其规律,得到第2020个数是﹣.【考点】规律型:数字的变化类.【分析】由题意可知:分子是从1开始的连续自然数,分母是对应比分子大1的自然数,奇数位置为负,偶数位置为正,由此得出第n个数为(﹣1)n,进一步代入求得答案即可.【解答】解:∵第n个数为(﹣1)n,∴第2020个数是﹣.故答案为:﹣.【点评】此题考查数字的变化规律,根据数字特点,找出数字之间的运算规律,利用规律解决问题.16.a、b在数轴上得位置如图所示,化简:|a+b|﹣2|b﹣a|=﹣3a+b.【考点】整式的加减;数轴;绝对值.【分析】通过数轴可以得出a>0,b<0,|a|<|b|,从而可以去掉绝对值符号,再去括号后合并同类项就可以了.【解答】解:通过数轴可以得出结论:a>0,b<0,且|a|<|b|,则原式=﹣(a+b)﹣2(a﹣b)=﹣a﹣b﹣2a+2b=﹣3a+b.故答案为:﹣3a+b.【点评】本题考查了整式的加减,去括号法则的运用,数轴的运用和去绝对值的方法.在解答中要注意变形前符号的确定.17.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于100°.【考点】角平分线的定义.【分析】根据角平分线定义得出∠AOC=2∠COD,∠AOB=2∠AOC,代入求出即可.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOC=2∠COD=50°,∠AOB=2∠AOC=100°,故答案为:100°.【点评】本题考查了角平分线定义的应用,能理解角平分线定义是解此题的关键.18.种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺14棵树苗.问有多少人参加种树?设有x人参加种树,可列出方程10x+6=12x﹣14..【考点】由实际问题抽象出一元一次方程.【分析】设有x人参加种树,根据如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺14棵树苗可列方程求解.【解答】解:设有x人参加种树,10x+6=12x﹣14.故答案为:10x+6=12x﹣14.【点评】本题考查理解题意的能力,设出人数以棵数做为等量关系列方程求解.三、解答题(本题共5小题,共46分)19.计算(1)2×(﹣3)﹣(﹣6)+1(2)(﹣2)2﹣|﹣7|+3÷(﹣1)3﹣2×(﹣)(3)x﹣2=7x+1(4)=2﹣.【考点】有理数的混合运算;解一元一次方程.【专题】计算题;实数.【分析】(1)原式先计算乘法运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=﹣6+6+1=1;(2)原式=4﹣7﹣3+1=﹣5;(3)方程移项合并得:﹣6x=3,解得:x=﹣0.5;(4)去分母得:5(y﹣1)=2020(y+2),去括号得:5y﹣5=2020y﹣4,移项合并得:7y=21,解得:y=3.【点评】此题考查了有理数的混合运算,以及解一元一次方程,熟练掌握运算法则是解本题的关键.2020知a、b互为相反数,m、n互为倒数,x的绝对值为2,求﹣2mn+﹣x的值.【考点】代数式求值;相反数;绝对值;倒数.【分析】由a、b互为相反数,m、n互为倒数,x的绝对值为2,可得a+b=0,mn=1,x=±2,再代入计算即可.【解答】解:∵由a、b互为相反数,m、n互为倒数,x的绝对值为2,∴a+b=0,mn=1,x=±2,当x=2时,﹣2mn+﹣x=﹣2+0﹣2=﹣4,当x=﹣2时,﹣2mn+﹣x=﹣2+0+2=0.【点评】本题主要考查相反数、倒数及绝对值的计算,掌握互为相反数的两数的和为0、互为倒数的两数积为1是解题的关键.21.如图,线段AB=1cm,延长AB到C,使得BC=AB,反向延长AB到D,使得BD=2BC,在线段CD上有一点P,且AP=2cm.(1)请按题目要求画出线段CD,并在图中标出点P的位置;(2)求出线段CP的长度.【考点】两点间的距离.【分析】(1)根据题意作图即可;(2)分点P在点A的右边和点P在点A的左边两种情况,根据题意和线段中点的性质解答即可.【解答】解:(1)线段CD和点P的位置如图1、2所示;(2)∵AB=1cm,∴BC=AB=cm,∴BD=2BC=3cm,当点P在点A的右边时,CP=AB+BC﹣AP=cm;当点P在点A的左边时,点P与点D重合,CP=BD+BC=cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想和分情况讨论思想是解题的关键.22.某电视台组织知识竞赛,共设2020择题,每题必答,如表记录了3个参赛者的得分情况.(1)参赛者小婷得76分,她答对了几道题?(2)参赛者小明说他得了80分.你认为可能吗?为什么?参赛者答对题数答错题数总得分甲20 0 100乙19 1 94丙14 6 64【考点】一元一次方程的应用.【分析】(1)根据甲、乙的得分情况可知答对一题得5分,答错一题倒扣1分,然后设小婷答对x道,则答错道,然后根据得分为76列方程求解即可;(2)设小明答对x道,则答错道,然后根据得分为76列方程求解即可做出判断.【解答】解:(1)由图表可知:答对一题得5分,答错一题不但不给分,还要倒扣1分.设小婷答对x道题,根据题意得方程:5 x﹣=76,解得:x=16.答:小婷答对了10道题.(2)不可能.设小明答对x道,则答错道.根据题意有:5x﹣=80解得x=16.66,答对题数不是整数,所以不可能.【点评】本题主要考查的一元一次方程的应用,根据题目表格得到答对一题的5分,答错一题倒扣1分是解题的关键.23.如图,已知直线AB上有一点O,射线OD平分∠AOE,∠AOC:∠EOC=1:4,且∠COD=36°.(1)求∠AOC的度数;(2)求∠BOE的度数.【考点】角的计算;角平分线的定义.【分析】(1)根据题意设∠AOC=x,∠EOC=4x,于是得到∠AOE=5x,根据角平分线的定义得到∠AOD=∠AOE=x,列方程即可得到结论;(2)由∠AOE=5x,根据角的和差即可得到结论.【解答】解:(1)设∠AOC=x,∠EOC=4x,∴∠AOE=5x,∵OD平分∠AOE,∴∠AOD=∠AOE=x,∴∠COD=x﹣x=x=36°,∴x=24°,∴∠AOC=24°;(2)∵∠AOE=5x,∴∠BOE=180°﹣∠AOE=180°﹣5×24°=180°﹣1202060°.【点评】本题主要考查角的有关计算,根据图形能找到角之间的和差关系是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:∵∠AOB=∠COD=90°,∠AOD=125°,
∴∠BOD=∠AOD-∠AOB=125°-90°=35°,
∴∠BOC=∠COD-∠BOD=90°-35°=55°.
故答案为C.
【点睛】
本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.
3.C
解析:C
【解析】
【分析】
根据合并同类项法则逐一判断即可.
设亏损的进价是y元,则y-25%y=60,
y=80.
60+60-48-80=-8,
∴亏了8元.
故选C.
考点:一元一次方程的应用.
7.C
解析:C
【解析】
【分析】
设白色的部分面积为x,由题意可知a=36-x,b=25-x,根据整式的运算即可求出答案.
【详解】
设白色部分的面积为x,
∴a+x=36,b+x=25,
【详解】
x=1时, ax3﹣3bx+4= a﹣3b+4=7,
解得 a﹣3b=3,
当x=﹣1时, ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.
故答案为:1.
【点睛】
本题考查了代数式的求值,整体思想的运用是解题的关键.
17.35°【解析】【分析】设这个角为x度根据一个角的补角比它的余角的3倍少20°构建方程即可解决问题【详解】解:设这个角为x度则180°-x=3(90°-x)-20°解得:x=35°答:这个角的度数是3
解析:18块(4n+2)块.
【解析】
【分析】
由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.
【详解】
解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,
所以第4个图应该有4×4+2=18块,
∴ ,A错误;
,B正确;
,C错误;
,D错误
故选B.
【点睛】
本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.
9.A
解析:A
【解析】
【分析】
通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值
【详解】
16.1【解析】【分析】把x=1代入代数式求出ab的关系式再把x=﹣1代入进行计算即可得解【详解】x=1时ax3﹣3bx+4=a﹣3b+4=7解得a﹣3b=3当x=﹣1时ax3﹣3bx+4=﹣a+3b+4
解析:1
【解析】
【分析】
把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.
12.B
解析:B
【解析】
【分析】
根据数轴上的两数位置得到a>0、b<0,b距离远点距离比a远,所以|b|>|a|,再挨个选项判断即可求出答案.
【详解】
A. a+b<0故此项错误;
B. ab<0故此项正确;
C. |a|<|b|故此项错误;
D. a+b<0, a﹣b>0,所以a+b<a﹣b,故此项错误.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
【详解】
解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,
∴全班共送:(x﹣1)x=2070,
故选A.
【点睛】
本题考查由实际问题抽象出一元二次方程.
2.C
解析:C
【解析】
【分析】
由△AOB与△COD为直角三角形得到∠AOB=∠COD=90°,则∠BOD=∠AOD-∠AOB=125°-90°=35°,然后利用互余即可得到∠BOC=∠COD-∠BOD=90°-35°.
23.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;
商场
优惠方案

全场按标价的六折销售

单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.
根据以上信息,解决以下问题
(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.
7.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a,b(a>b),则a-b等于( )
A.9
B.10
C.11
D.12
8.下列结论正确的是()
A.c>a>bB. >
C.|a|<|b|D.abc>0
9.若|a|=1,|b|=4,且ab<0,则a+b的值为()
A. B. C.3D.
10.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….
由 ,去分母得4(x﹣1)﹣3(2x+3)=24,故选项C错误;
由3x﹣(2﹣4x)=5,去括号得,3x﹣2+4x=5,故选项D正确,
故选:D.
【点睛】
本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.
6.C
解析:C
【解析】
试题分析:设盈利的进价是x元,则
x+25%x=60,
x=48.
A. B. C. D.
3.下列计算正确的是()
A.2a3a2b=5a2bD.2a2﹣3a2=﹣a
4.下列关于多项式5ab2-2a2bc-1的说法中,正确的是( )
A.它是三次三项式B.它是四次两项式
C.它的最高次项是 D.它的常数项是1
5.下列方程变形中,正确的是( )
故选B.
【点睛】
本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.
二、填空题
13.18块(4n+2)块【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:61014所以可以发现每一个图形都比它前一个图形多4个白色地砖所以可以得到第n个图案有白色地面砖(4n+2)
第n个图应该有(4n+2)块.
【点睛】
此题考查了平面图形,主要培养学生的观察能力和空间想象能力.
14.40°【解析】解:由角的和差得:∠AOC=∠AOD-∠COD=140°-90°=50°由余角的性质得:∠COB=90°-∠AOC=90°-50°=40°故答案为:40°
解析:40°
【解析】
解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.
二、填空题
13.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:
(1)第4个图案有白色地面砖______块;
(2)第n个图案有白色地面砖______块.
14.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.
15.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2020的值为___.
故选C
考点:探索规律
11.C
解析:C
【解析】
【分析】
根据流程图,输出的值为6时列出两个一元一次方程然后再进行代数式求值即可求解.
【详解】
解:当输出的值为6时,根据流程图,得
x+5=6或 x+5=6
解得x=2或-2.
故选:C.
【点睛】
本题考查了列一元一次方程求解和代数式求值问题,解决本题的关键是根据流程图列方程.
19.若2x﹣1的值与3﹣4x的值互为相反数,那么x的值为_____.
20.若a-2b=-3,则代数式1-a+2b的值为______.
三、解答题
21.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣ ,b= .
22.已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.
15.﹣1010【解析】【分析】先求出前6个值从而得出据此可得答案【详解】当a1=0时a2=﹣|a1+1|=﹣1a3=﹣|a2+2|=﹣1a4=﹣|a3+3|=﹣2a5=﹣|a4+4|=﹣2a6=﹣|a5
解析:﹣1010.
【解析】
【分析】
先求出前6个值,从而得出 ,据此可得答案.
【详解】
当a1=0时,
商场
甲商场
乙商场
实际付款/元
(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?
24.解方程:
(1)4x﹣3(20﹣x)=3
(2) 2
25.如图,已知∠AOC=90°,∠COD比∠DOA大28°,OB是∠AOC的平分线,求∠BOD的度数.
解:∵|a|=1,|b|=4,
∴a=±1,b=±4,
∵ab<0,
∴a+b=1-4=-3或a+b=-1+4=3,
故选A.
【点睛】
本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.
10.C
解析:C
相关文档
最新文档