人教版八年级上册数学 《最短路径问题》轴对称PPT教学课件
合集下载
初中数学 人教版八年级上册13.4最短路径问题课件(共18张PPT)
N B
2020/8/2
9
合作探究
步骤2:能否在不改变AM+MN+BN的前提下把桥转化到一侧呢
如图,平移A到A1,使AA1等 于河宽,连接A1B交河岸于N 作桥MN,此时路径AM+M N+BN最短.
A
A1
M
N
B
2020/8/2
10
合作探究
步骤2:能否在不改变AM+MN+BN的前提下把桥转化到一侧呢
M M1
N
N1
B
2020/8/2
11
知识小结
知识点1 用轴对称解决最短路径问题 求直线同侧的两点到直线上一点距离的和最小的问题,找到其中一 个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直 线的交点即为所求的位置.
知识点2 用平移解决造桥选址问题 我们把河的两岸看成两条平行线,把河的宽度作为固定的数值,桥 的位置作为动点,通过平移使桥的一端与已知两点在同一条直线上时, 根据“两点之间线段最短”确定桥的一端的位置,再结合桥垂直于河岸, 即可得出桥的位置.
2020/8/2
B
·
A
·
l C
B′
6
合作探究
步骤4:你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC',B′C′ 由轴对称的性质知, BC =B′C,BC′=B′C′ ∴ AC +BC= AC +B′C = AB′
AC′+BC′= AC′+B′C′ 在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
2020/8/2
9
合作探究
步骤2:能否在不改变AM+MN+BN的前提下把桥转化到一侧呢
如图,平移A到A1,使AA1等 于河宽,连接A1B交河岸于N 作桥MN,此时路径AM+M N+BN最短.
A
A1
M
N
B
2020/8/2
10
合作探究
步骤2:能否在不改变AM+MN+BN的前提下把桥转化到一侧呢
M M1
N
N1
B
2020/8/2
11
知识小结
知识点1 用轴对称解决最短路径问题 求直线同侧的两点到直线上一点距离的和最小的问题,找到其中一 个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直 线的交点即为所求的位置.
知识点2 用平移解决造桥选址问题 我们把河的两岸看成两条平行线,把河的宽度作为固定的数值,桥 的位置作为动点,通过平移使桥的一端与已知两点在同一条直线上时, 根据“两点之间线段最短”确定桥的一端的位置,再结合桥垂直于河岸, 即可得出桥的位置.
2020/8/2
B
·
A
·
l C
B′
6
合作探究
步骤4:你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC',B′C′ 由轴对称的性质知, BC =B′C,BC′=B′C′ ∴ AC +BC= AC +B′C = AB′
AC′+BC′= AC′+B′C′ 在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
初中数学人教八年级上册第十三章轴对称最短路径问题PPT
B A
l
探究 活动 1
探究 活动 1
追问1 这是一个实际问题,我们需要对实际问题
怎么转化呢? 将A,B 两地抽象
·B
为两个点,将河l 抽 A·
象为一条直线.
l
上面的问题就转化为
B
:当点C 在l 的什么位
A
置时,AC 与CB 的和最
小(如图).
C
l
(Ⅱ) 两点在一条直线同侧
已知:如图,A、B在直线L的同一侧,在L上
求一点,使得PA+PB最小.
作法:① 作点B关于直线l的对称点B/.
② 连接AB/,交直线l于点P.
B
点P的位置即为所求. A
为什么这样做就能得 到最短距离呢?
MP
l
MA + MB′>PA+PB ′
即MA + MB′>PA+PB
B/
三角形任意两边之和大于第三边
巩固 强化意识
问题2:如图,将军骑马从A点出发,经过河
各取一个点 C, D ,使得四边形 CMND 的周长最小.、
课堂 练习
如图,四边形ABCD中,∠BAD=120°, ∠B=∠D=90°,在BC,CD上分别找一点M、N ,当△AMN周长最小时,∠AMN+∠ANM的 度数为多少?
A B
D A″
N
M A′
C
总结 促我进步
我的收获:
.
还需提升:
.
总结 促我进步
1.知识收获:利用轴对称,平移等几何知识进行 最佳路径设计
13.4 课题学习 最短路径问题
温故 新旧链接
1.如图1:从A点到B点有三条路,走 ② 路最近,依
据是 两点之间线段最短 ;
l
探究 活动 1
探究 活动 1
追问1 这是一个实际问题,我们需要对实际问题
怎么转化呢? 将A,B 两地抽象
·B
为两个点,将河l 抽 A·
象为一条直线.
l
上面的问题就转化为
B
:当点C 在l 的什么位
A
置时,AC 与CB 的和最
小(如图).
C
l
(Ⅱ) 两点在一条直线同侧
已知:如图,A、B在直线L的同一侧,在L上
求一点,使得PA+PB最小.
作法:① 作点B关于直线l的对称点B/.
② 连接AB/,交直线l于点P.
B
点P的位置即为所求. A
为什么这样做就能得 到最短距离呢?
MP
l
MA + MB′>PA+PB ′
即MA + MB′>PA+PB
B/
三角形任意两边之和大于第三边
巩固 强化意识
问题2:如图,将军骑马从A点出发,经过河
各取一个点 C, D ,使得四边形 CMND 的周长最小.、
课堂 练习
如图,四边形ABCD中,∠BAD=120°, ∠B=∠D=90°,在BC,CD上分别找一点M、N ,当△AMN周长最小时,∠AMN+∠ANM的 度数为多少?
A B
D A″
N
M A′
C
总结 促我进步
我的收获:
.
还需提升:
.
总结 促我进步
1.知识收获:利用轴对称,平移等几何知识进行 最佳路径设计
13.4 课题学习 最短路径问题
温故 新旧链接
1.如图1:从A点到B点有三条路,走 ② 路最近,依
据是 两点之间线段最短 ;
13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册
∙B A∙
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
人教版初中数学八年级上册第十三章13.4课题学习 最短路径问题(ppt课件)
拓展延伸
2. 某班举行文艺晚会,桌子摆成AB,AC两行,如图13-4-27,AB桌面上 摆满了橘子,AC桌面上摆满了糖果,小明现在P处,准备先去拿橘子再 去拿糖果,然后回到P处.请你帮他设计一条行走路线,使其所走的总 路程最短.(保留作图痕迹,并简单写出作法)
拓展延伸
3. 如图,小华每天都要到李奶奶家做好事,在途中她要先到草场打
对点练习
4. 如图,AD为等腰三角形ABC底边上的高,E为AC边上一点,在AD
上求一点F,使EF+CF最小.
对点练习
5.如图,M为正方形ABCD的边CD的中点,BM=10,在对角线BD上求 作一点N,使MN+CN的值最小,并求出这个最小值.
拓展延伸
1、如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接 游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船 的最短路径.【来源:2教育
E
一只在E处的蚂蚁要爬到圆柱内侧D点处,试
画出其最短路径。
对点练习
2.(河边饮马问题)如图所示,牧马人从A地出发,到一条笔直的河边L饮
马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?
对点练习
3.点P是直线l上的一点,线段AB∥l,能使PA+PB 取得最小 值的点P的位置应满足的条件是 ( C ) A.点P为点A到直线l的垂线的垂足 B.点P为点B到直线l的垂线的垂足 C.PB=PA D.PB=AB
学习难点
确定最短距离及理论说明.
知识回顾:
思考:
(1)图①中从点A走到点B哪条路最短? (2)图②中点C与直线AB上所有的连线中哪 条线最短? 以上路径选择基于什么原理?
类型一:两点之间,线段最短——直接应用
人教版八年级数学上册《最短路径问题》课件(共15张PPT)
联想:
如果点A、B在直线l的异侧时
A
C
l
B
分析:
B
A
A
C
l
l
C
B
思考:
能把A、B两点从直线 l 的同侧转化为异侧吗?
作法及思路分析
1.作点B关于直线 l 的对称点B′ ,连接
CB′。
B
A C
l
B′
2.由上步可知AC+CB=AC +CB′,
思考:当C在直线 l 的什么位置时AC +CB′最短?
根据前面的分析,我们认为的
人民教育出版社义务教育教科书八年级数学(上册)
第十三章 轴对称
13.4 课题学习 最短路径问题
饮马问题
如图,牧马人从马棚A牵马到河边 l 饮水,然后再到帐蓬B.问:在河边 的什么地方饮水,可使所走的路径最 短?
B B
AA l
l
分析:
B
B
A
A
l
CC
l
转化为数学问题 当点C在直线 l 的什么位置时,AC+CB的和最小?
谢谢观赏
You made my day!
我们,还在路上……
A
B
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
八年级数学人教版(上册)课件_13.4课题学习最短路径问题(共20张PPT)
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
线上的一个动点,当点C 在l 的什么位置时,AC 与CB
的和最小?
追问2 你能利用轴对称的
A··B源自有关知识,找到上问中符合条
l
件的点B′吗?
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
线上的一个动点,当点C 在l 的什么位置时,AC 与CB
八年级数学上册·人教版
第13章 轴对称
13.4 课题学习 最短路径问题
• 本节课以数学史中的一个经典问题——“将军饮 马问题”为载体开展对“最短路径问题”的课题研 究,让学生经历将实际问题抽象为数学的线段和最 小问题,再利用轴对称将线段和最小问题转化为 “两点之间,线段最短”(或“三角形两边之和大 于第三边”)问题.
B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;
探索新知
追问2 你能用自己的语言说明这个问题的意思,
并把它抽象为数学问题吗?
(3)现在的问题是怎样找出使两条线段长度之和为最
短的直线l上的点.设C 为直线上的一个动点,上
面的问题就转化为:当点C 在l 的什么位置时,
课件说明
• 学习目标: 能利用轴对称解决简单的最短路径问题,体会图形 的变化在解决最值问题中的作用,感悟转化思想.
• 学习重点: 利用轴对称将最短路径问题转化为“两点之间,线 段最短”问题.
引入新知
引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”.
13.4 课题学习 最短路径问题 课件(共15张PPT)人教版初中数学八年级上册
迁移应用
3.如图,点P是∠AOB内任意一点,点M和点N分别是射线OB和射线OA 上的动点,当△PMN的周长为最小时,画出点M,N的位置.
B P'
M P
O
N
A
P''
解:如图所示,点 M,N 即为所求
B
M
P
O
A N
课后延伸
1.课本P93,第15题 2.收集最短路径的其他模型
人教版八年级数学第十三章《轴对称》
课题学习—最短路径问题
情境引入
古从军行 唐·李颀
经验唤醒
如图所示,请规划从A地到B地最近的路线?为什么 这条路线最近?
A
B
AB即为最短路线,因为两点之间,线段最短
探究一
问题情境1
图形
将军从烽火台到河边饮马 在这个情境中我们 再回到营地,饮马点在什么位 分别把烽火台,营 置,可使将军所走的路径最短? 地,河流抽象成哪
种几何图形?
A. 点 B.线
A
l B
最短路径作法
直线异侧 “两定点”
连定点 得最短
A
l P
B
两点之间 线段最短
探究二
问题情境2
将军从烽火台到河边 饮马再回到营地,饮马点 在什么位置,可使将军所 走的路径最短?
图形
我们可以把情境 2抽象成怎样的几何 图形?
最短路径作法
直线同侧“两定点”
作对称 化折为直得最短
∴AM1+M1N1+BN1=AA1+A1N1+BN1 在△A1N1B中
因为A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN. ∴AM +MN+BN为最短路径.
人教八年级数学上册《轴对称作图最短路径问题》课件(共23张PPT)
如图,A为马厩,B为帐篷,牧马人某一天要从马厩 牵出马,先到草地边某一处牧马,再到河边给马喝 水,然后回到帐篷,请你帮助他确定这一天的最短 路线。
有四个班的同学分别在M、
N两处参加劳动,另外四个 班的同学分别在道路AB、 AC两处劳动,现要在道路 AB、AC的交叉区域内设 一个荼水供应点P ,使P到
两条道路的距离相等,且
使 PM= PN,请你找出点 A
P的位置,并说明理由。
B
P
M N
C
轴对称变换的特征: 由一个平面图形可以得到它关于一条直 线l对称的图形,这个图形与原图形的 形状、大小完全一样; 新图形上的每一点,都是原图形上的某 一点关于直线l的对称点; 连接任意一对对应点的线段被对称轴垂 直平分。
路线:小明——P——A
A
P
小明
如果另一侧放着一些小木棍,小明先去捡球, 还要跑到另一侧去取木棍,则小明又应按怎 样的路线跑,去捡哪个位置的球,小木棍, 才能最快跑到目的地A处。
路线:按BDEA
DE
A
B
C
小明
■如图,OA、OB是两条相交的公路,点P 是一个邮电所,现想在OA、OB上各设立 一个投递点,要想使邮电员每次投递路 程最近,问投递点应设立在何处?
水管最短?
A
张村
B 李庄
C
A′
如图所示,水泵站修在 C 点可使所 用的水管最短.
思考: 为什么在C点的位置修建泵站,
就能使所用的管线最短呢?
总结: 实际上是通过轴对称变换,把
A,B在直线同侧的问题转化为在直 线的两侧,从而可利用“两点之间线 段最短”加以解决。
拓展应用,巩固提高
八年级某班同学做游戏,在活动区域边放了一 些球,则小明按怎样的路线跑,去捡哪个位 置的球,才能最快拿到球跑到目的地A处。
初中数学人教八年级上册第十三章轴对称人教版八年级上册-课题学习-最短路径PPT
·
处,满足直线l 上的任意一点
l
C,都保持CB 与CB′的长度
相等?
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
线上的一个动点,当点C 在l 的什么位置时,AC 与CB
的和最小?
追问2 你能利用轴对称的
A
·
有关知识,找到上问中符合条
件的点B′吗?
B
·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
(二)变式训练:如图,小河边有两个村庄A,B, 要在河边建一自来水厂向A村与B村供水.
(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂? (2)若要使厂部到A,B两村的水管最短,应建在什么地方?
(三)综合训练:茅坪民族中学八(2)班举行文艺晚 会,桌子摆成如图a所示两直排(图中的AO,BO), AO桌面上摆满了橘子,OB桌面上摆满了糖果,站 在C处的学生小明先拿橘子再拿糖果,然后到D处座
探索新知
利用轴对称的知识回答了这个问题.这个问题后来被称 为“牧童饮马问题”.
你能将这个问题抽象为数学问题吗?
B A
l
探索新知
追问1 这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直 线 .
·B A·
l
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
短的直线l上的点.设C 为直线上的一个动点,上
面的问题就转化为:当点C 在l 的什么位置时,
AC 与CB 的和最小(如图).
B
A
C
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
《最短路径问题》轴对称PPT免费课件
在△A1N1B中,因为A1N1+BN1>A1B. 因此AM1 +M1N1+BN1 > AM+MN+BN.
探究新知
证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A到B的路径长为
AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC,CD,DB,CE,则A到B的路径长
解:如图,P点即为该点.
探究新知
例2 如图,在直角坐标系中,点A,B的坐标分别为(1,4)和
(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条
直线上,当△ABC的周长最小时点C的坐标是( A )
A.(0,3)
B.(0,2)
C.(0,1)
D.(0,0)
C′
解析:作B点关于y轴对称点B′,连接AB′,交y轴于 B′
探究新知
如图,平移A到A1,使AA1等于 A 河宽,连接A1B交河岸于N作桥MN, A1
M M1
此时路径AM+MN+BN最短.
理由:另任作桥M1N1,连接AM1,BN1,A1N1.
N
N1
B
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1 +M1N1+BN1转化为AA1+ A1N1+BN1.
组成的三角形的周长最短,找出此点并说明理由.
(2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,
使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
探究新知
证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A到B的路径长为
AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC,CD,DB,CE,则A到B的路径长
解:如图,P点即为该点.
探究新知
例2 如图,在直角坐标系中,点A,B的坐标分别为(1,4)和
(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条
直线上,当△ABC的周长最小时点C的坐标是( A )
A.(0,3)
B.(0,2)
C.(0,1)
D.(0,0)
C′
解析:作B点关于y轴对称点B′,连接AB′,交y轴于 B′
探究新知
如图,平移A到A1,使AA1等于 A 河宽,连接A1B交河岸于N作桥MN, A1
M M1
此时路径AM+MN+BN最短.
理由:另任作桥M1N1,连接AM1,BN1,A1N1.
N
N1
B
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1 +M1N1+BN1转化为AA1+ A1N1+BN1.
组成的三角形的周长最短,找出此点并说明理由.
(2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,
使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
人教版八年级数学上册教学课件-13.4 课题学习 最短路径问题14优质课件PPT
∵直线l 是对称轴,
∴BC = B′C ,BC′= B′C′ (轴对称的性质)·.B
∴路径AC +BC
A
·
= AC +B′C = AB′(等量代换)
路径AC′+BC′ = AC′+B′C′(等量代换)
C′ C
l
B′
知识讲解 难点突破 (四)尝试用所学的知识证明“最短路径”AC +BC最短。
在△AB′C′中,
∵AB′<AC′+B′C′
A
·
(三角形两边之和大于第三边)
C′
(或者:两点之间,线段最短)
C
∴ AC + B′C <AC′+BC′(等量代换)
∴ AC +BC<AC′+BC′(等量代换)
即 AC +BC 最短.
B
·
l B′
课堂练习
难点巩固
(一)尝试解决变式问题: 1、已知:P、Q是∆ABC的边AB、 AC上的点,你能在BC上 确定一点R, 使∆PQR的周长最短吗?请你动手试一试。
转化 轴对称
两点之间,线段最短
·B l
B′
证明 逻辑推理
3、体会轴对称的“桥梁”作用,感悟转化思想,提升数学素养。
小结
(二) 通过学习,我们是如何利用轴对称找 到最短路径的?
1、确定对称轴,找出定点的对称点。
2、连接对称点与另一点确定所求位置点(或 者连接各对称点确定所求位置点)。 (可结 合变式题1、2认真体会)
在科学的道路上没有平坦的大道,只有 不畏艰难,沿着陡峭山路攀登的人,才能达 到光辉的顶点。
--------马克思
拓展延伸
(三)“最短路径”拓展延伸---台球碰撞问题:
八年级数学上册 第十三章 轴对称 13.4 课题学习 最短路径问题课件 新人教版
上述方法都能做到使AM+MN+BN 不变吗?请检验.
1、2两种方法改变了. 怎样调整呢? 把A或B分别向下或上平移一个桥长 那么怎样确定桥的位置呢?
精选教育课件
13
探索新知
如图,平移A到A1,使 AA1等于河宽,连接 A1B交河岸于N作桥M N,此时路径AM+M N+BN最短.
精选教育课件
14
典题精讲
精选教育课件
4
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程
最短?
B
A
l
M
s精选教育课件
N
5
探索新知
如图,点A,B 在直线l的异侧, 点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
精选教育课件
18
课堂练习
如图:牧马人从A地出发,先到草地边某一 牧马,再到河边饮马,然后回到B处,请 画出最短路径。
草地
N
河
M
A
B
精选教育课件
P
19
课堂练习
草地
A′
N
河
B′
M
A
B
P
精选教育课件
20
课堂练习
已知直线m∥n,直线m,n外分别有 两点A,B如图所示,分别在直线m,n上 确定P,Q两点(PQ⊥m),使得 AP+PQ+QB最小。
精选教育课件
9
典例精讲
造桥选址问题
如图,A和B两地在一条河的两岸,现 要在河上造一座桥MN.桥造在何处才 能使从A到B的路径AMNB最短?(假 定河的两岸是平行的直线,桥要与河 垂直) A
新人教版八年级数学上册《最短路径问题》课件(共15张PPT)
谢谢观赏
You made my day!
我们,还在路上……
l CC A’
解(:1)作AB的中垂线交l于点C,如图. (2)如图.
A1 B
C
解:如图所示,B、C为两个加A油2 站的位置.
本课时学习了生活中的最短路径可以转化 为数学中最值问题.
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
A1
B
m
A
C
A2
n
解析:利用轴对称的性质和两点之间线段最短确定B、C的位置,从而使AB+B Nhomakorabea+CA最小.
解:①作A关于m的对称点A1,再作A关于n的对称点A2;
②连接A1A2交m于B,交n于C,连接AB、AC.
由于两点之间线段最短,且AB=A1B,AC=A2C,
∴AB+BC+CA最小.
1
B处
B A
探究二:造桥选址问题中的最短路径问题
3.如图,A和B两地在一条河的两岸,现要在河上造 一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假设两岸是平行的直线,桥要与河垂直)
A
C
例:如图所示,点A是货运总部,想在公路m上建一
个分部B,在公路n上建一个分部C,要使AB+BC+CA最小,
You made my day!
我们,还在路上……
l CC A’
解(:1)作AB的中垂线交l于点C,如图. (2)如图.
A1 B
C
解:如图所示,B、C为两个加A油2 站的位置.
本课时学习了生活中的最短路径可以转化 为数学中最值问题.
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
A1
B
m
A
C
A2
n
解析:利用轴对称的性质和两点之间线段最短确定B、C的位置,从而使AB+B Nhomakorabea+CA最小.
解:①作A关于m的对称点A1,再作A关于n的对称点A2;
②连接A1A2交m于B,交n于C,连接AB、AC.
由于两点之间线段最短,且AB=A1B,AC=A2C,
∴AB+BC+CA最小.
1
B处
B A
探究二:造桥选址问题中的最短路径问题
3.如图,A和B两地在一条河的两岸,现要在河上造 一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假设两岸是平行的直线,桥要与河垂直)
A
C
例:如图所示,点A是货运总部,想在公路m上建一
个分部B,在公路n上建一个分部C,要使AB+BC+CA最小,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎么确定取最小时的N点呢?
你能证明这个结论吗?
连接A’B,与直线b的交点就 是所求.
证明 证明:如图,在直线b上取一个不与N重合的点N’,作 M’N’⊥a于点M’,连接AM’,BN’,A’N’. 由平移的性质可知, AM’=A’N’,AM=A’N ∵A’N’+N’B>A’B ∴AM’+N’B>AM+NB ∴AM’+N’B>AM+NB ∴AM’+M’N’+N’B>AM+MN+NB
最有三条路可供选择,你会选走哪条路最近 ?你的理由是什么?
选第②条 两点之间,线段最短
两点在一条直线异侧 已知:如图,A,B在直线L的两侧,在l上求一点P ,使得PA+PB最小.
这是为什么呢? 两点之间,线段最短
连接AB,线段AB与直线l的交点P ,就是所求.
一开始的时候我们就讨论过点A,B在直线异侧的情况, 你还记得是怎么做的吗? 连接两点,交点就是所求 同侧的情况也能直连接两点吗?不行
探究
如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
能不能把点在同侧的问题转化 为点在异侧的问题呢? 提示:将点B“移”到l 的另一侧 B′处,得满足直线l 上的任意一 点C,都保持CB 与CB′的长度相 等 你.想到怎么做了吗?
提示:这本质上是“两定一动 ” 求线段和最小的将军饮马问题 .
练习 如图,一个旅游船从大桥AB的P 处前往山脚下的Q 处接游客,然 后将游客送往河岸BC上,再返回P 处,请画出旅游船的最短路径 . 提示1:先把问题抽象为数学问题.
提示2:这本质上是“两定一动” 求线段和最小的将军饮马问题.
造桥选址问题
探究 相传,古希腊亚历山大里亚城里有一位久负盛名的学者, 名叫海伦.有一天,一位将军专程拜访海伦,求教一个百 思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地 .到河边什么地方饮马可使他所走的路线全程最短?
A
B
l
将军饮马问题
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马问题” 你能将这个问题抽象为数学问题吗?
如图,A、B两地在一条河 的两岸,现要在河上建一座 桥MN,桥造在何处才能使 从A到B的路径AMNB最短 ?(假设河的两岸是平行的 直线,桥要与河垂直)
你能把这个问题抽象成一 个数学问题吗?
抽象
可以把河的两岸看成两条平行线a和b, N为直线b上的一个动点,MN 垂直于直线b,交直线a于点M, 当点N在直线b的什么位置时,AM+MN+NB最小?
AC ′+BC ′= AC ′+B ′C ′, ∵ AC ′+B ′C ′>AB ′, ∴ AC ′+BC ′> AC +BC, 即AC+BC最短.
归纳总结
将军饮马问题
条件特点 简称为:两定一动 直线同侧的两个定点和直线上一个动点 问题特点 求线段和最小 求解思路 利用轴对称,化折为直 求解原理 两点之间,线段最短
例题
某供电部门准备在输电干线上连接一个分支线路,分支点为 M ,同时向 A,B 两个居民小区送电 . (1) 如果居民小区 A,B 在主干线 l 的两旁,如图(1)所示 ,那么分支点 M 在什么地方时总线路最短?在图上标注位置, 并说明理由.
例题
某供电部门准备在输电干线上连接一个分支线路,分支点为 M
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
作点B 关于直线l 的对称点B ′;
B’
你能证明此时 AC+BC最短吗?
连接AB ′,与直线l 相交于点C 则点.C 即为所求.
证明 证明此时AC+CB 最短
证明:如图,在直线l 上任 取一点C ′(与点C 不重合) ,连接AC ′,BC ′,B ′C ′. 由轴对称的性质知, BC =B ′C,BC ′=B ′C ′. ∴AC +BC= AC +B ′C = AB ′,
A
B
l
探究 将A,B 两地抽象为两个点,将河l 抽象为一条直线.
你能要自己的语言重新描述一下问题吗?
探究 将A,B 两地抽象为两个点,将河l 抽象为一条直线.
C
你能要自己的语言重新描述一下问题吗? C是l上一个动点, 当点C在l的什么位置时,AC+BC最小?
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
分析
这又是求线段和最小的问题 ,你能想到什么呢?
能变成这种基 本类型就好了
AM,MN,NB这三条线段的长度都会变化吗? 只有AM和NB会变,MN是不变的. 所以当AM+NB最小时,AM+MN+NB最小.
思考
怎么把这个问题转化为基本类型呢?
将AM沿着垂直于河岸的方向 平移一个河宽的距离到A'N.
现在就变成基本类型了.
,同时向 A,B 两个居民小区送电 .
(2) 如果居民小区 A,B 在主干线 l 的同旁,如图(2) 所示
,那么分支点 M 在什么地方时总线路最短?在图上标注位置,
并说明理由 .
作A的对称
点可以吗
?
B’
练习
如图,P,Q是△ABC的边AB,AC上的两定点,在BC上求 作一点M,使△PMQ的周长最短.
提示2:分别作A点关于OM, ON的对称点.
将军饮马问题的变式
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小 答.案:分别作点A关于OM ,ON的对称点A′,A″;连 接A′,A″,分别交OM, ON于点B、点C,则点B、 点C即为所求.
归纳总结 条件特点
造桥选址问题
平行间的垂线段的端点到两侧定点的距离之和
问题特点 求线段和最小
求解思路 利用平移,转移线段
求解原理 两点之间,线段最短
将军饮马问题的变式
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小 . 提示1:利用轴对称,化折为直.
将军饮马问题的变式
如图,牧区内有一家牧民,点A处有一个马厩,点B处是他的家 , 是草地的边沿, 是一条笔直的河流 . 每天,牧民要从马厩 牵出马来,先去草地上让马吃草,再到河边饮马,然后回到家B 处 . 请在图上画出牧民行走的最短路线 ( 保留作图痕迹 ) .