人教版七年级下册数学《二元一次方程组》各节练习题及答案

合集下载

(完整版)七年级下册数学二元一次方程组试卷及答案(人教版)

(完整版)七年级下册数学二元一次方程组试卷及答案(人教版)

一、选择题1.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天2.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40B .41C .45D .463.已知方程组263a b a b m -=⎧⎨-=⎩中,a ,b 互为相反数,则m 的值是( )A .4B .4-C .0D .84.两位同学在解方程组时,甲同学由24ax by cx y +=⎧⎨-=-⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把c 写错了解得22x y =-⎧⎨=⎩,则a b c ++的值为( )A .3B .0C .1D .75.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 的自然数解有3对;④若2x +y =8,则a =2.正确的结论有( )个. A .1B .2C .3D .46.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH DC ⊥,垂足为H .将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是( )A .24B .32C .36D .647.若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩8.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .1003100x y x y +=⎧⎨+=⎩D .100131003x y x y +=⎧⎪⎨+=⎪⎩9.已知x ,y 互为相反数且满足二元一次方程组2321x y kx y +=⎧⎨+=-⎩,则k 的值是( )A .﹣1B .0C .1D .210.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.13.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________.14.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是______.15.已知x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,则m +n 的值为 ___. 16.若实数a 与b 满足()24320a b a b -+-+=,则ab 的平方根为________.17.某中学七年级在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,则调整后二等奖比三等奖平均分数多______分.18.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.19.关于x ,y 的方程组215x ay bx y -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则6a b -的平方根是______.20.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则34m n -的立方根=________.三、解答题21.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()282122a b c -+-=-+,(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点, ①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.22.阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x y -=_______,x y +=_______;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=_______.23.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h +++==,求C 点的坐标; (2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.24.在平面直角坐标系xOy 中,点()4,0A -,点()0,3B ,点()3,0C .(1)ABC 的面积为______;(2)已知点()1,2D -,()2,3E --,那么四边形ACDE 的面积为______.(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m 表示格点多边形内的格点数,n 表示格点多边形边上的格点数,那么格点多边形的面积S 和m 与n 之间满足一种数量关系.例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m 边界格点数n格点多边形面积SABC611四边形ACDE 8 11 五边形ABCDE208根据上述的例子,猜测皮克公式为S =______(用m ,n 表示),试计算图②中六边形FGHIJK 的面积为______(本大题无需写出解题过程,写出正确答案即可).25.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?26.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.27.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B . (1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.30.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 光射线自AM 顺时针旋转至AN 便立即逆时针旋转至AM ,如此循环灯B 光射线自BP 顺时针旋转至BQ 便立即逆时针旋转至BP ,如此循环.两灯交叉照射且不间断巡视.若灯A 转动的速度是a 度/秒,灯B 转动的速度是b 度/秒,且a ,b 满足22(4)(5)0a b a b -++-=.若这一带江水两岸河堤相互平行,即//PQ MN ,且60BAN ∠=︒.根据相关信息,解答下列问题.(1)a =__________,b =__________.(2)若灯B 的光射线先转动24秒,灯A 的光射线才开始转动,在灯B 的光射线到达BQ 之前,灯A 转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯A 的光射线到达AN 之前,若两灯射出的光射线交于点C ,过点C 作CD AC ⊥交PQ 于点D ,则在转动的过程中,BAC ∠与BCD ∠间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨, 即早上下雨或晚上下雨都可称之为当天下雨, ①总天数﹣早晨下雨=早晨晴天; ②总天数﹣晚上下雨=晚上晴天;列方程组7(9)6y x y x -=⎧⎨--=⎩,解得411x y =⎧⎨=⎩,所以一共有11天, 故选B . 【点睛】本题考查二元一次方程组的应用.2.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.3.D解析:D 【分析】根据a 与b 互为相反数得到0a b +=,即=-b a ,代入方程组即可求出m 的值. 【详解】解:因为a ,b 互为相反数, 所以0a b +=, 即=-b a ,代入方程组得:364a a m =⎧⎨=⎩,解得:28a m =⎧⎨=⎩,故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,也考查了代入消元法解二元一次方程组以及相反数的意义.4.D解析:D 【分析】把甲的结果代入方程组两方程中,乙的结果代入第一个方程中,分别求出a ,b ,c 的值,即可求出所求. 【详解】解:把32x y =⎧⎨=-⎩代入方程组24ax by cx y +=⎧⎨-=-⎩得:322324a b c -⎧⎨+-⎩== , 把22x y =-⎧⎨=⎩代入ax +by =2得:-2a +2b =2,即-a +b =1,联立得:3221a b a b -⎧⎨-+⎩==,解得:45a b ⎧⎨⎩== , 由3c +2=-4,得到c =-2, 则a +b +c =4+5-2=7. 故选:D . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.C解析:C 【分析】先解出二元一次方程组得1222x a y a =+⎧⎨=-⎩,①当a =1时,方程组的解为30x y =⎧⎨=⎩,则x +y =3=2a +1;②x +y =1+2a +2﹣2a =3,无论a 取何值,x ,y 的值不可能是互为相反数;③3x y +=,,x y 是自然数,解得,x y 有4对解;④2x +y =2(1+2a )+(2﹣2a )=4+2a =8,则a =2. 【详解】解:25241?x y a x y a +=-⎧⎨-=-⎩①②,①﹣②,得y =2﹣2a , 将y =2﹣2a 代入②,得 x =1+2a ,∴方程组的解为1222x ay a =+⎧⎨=-⎩,当a =1时,方程组的解为30x y =⎧⎨=⎩,∴x +y =3=2a +1, ∴①结论正确;∵x +y =1+2a +2﹣2a =30≠,∴无论a 取何值,x ,y 的值不可能是互为相反数, ∴②结论正确;3x y +=,,x y 是自然数0123,,,,3210x x x x y y y y ====⎧⎧⎧⎧∴⎨⎨⎨⎨====⎩⎩⎩⎩共4对 ∴x ,y 的自然数解有4对, ∴③结论不正确;∵2x +y =2(1+2a )+(2﹣2a )=4+2a =8, ∴a =2, ∴④结论正确; 故选:C . 【点睛】本题考查了二元一次方程的解,二元一次方程组的解,解二元一次方程组 ,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.6.C解析:C 【分析】由图可知:重新拼成一个长方形BEMN ,长BN =8,宽BE =4,得二元一次方程组,解出可得结论. 【详解】 解:如图所示,由已知得:BN =8,S 长方形BNME =32, ∴BE =32÷8=4,则84x y x y +⎧⎨-⎩== , 解得:2x =12, ∴x =6,∴正方形ABCD 的面积是36, 故选:C . 【点睛】此题主要考查了几何图形和解二元一次方程组,正确得出长方形的长与宽是解题关键.7.A解析:A 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.【详解】 解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=, ∴113b =, 3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩. 故选:A .【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.8.D解析:D【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:D .【点睛】本题考查列二元一次方程组解决实际问题,是中考的常考题型,正确找到等量关系是关键 9.A解析:A【分析】根据x ,y 互为相反数得到0x y +=,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得x 和y 的值,最后代入求值.【详解】解:由题意可得021x y x y +=⎧⎨+=-⎩①②, ②﹣①,得:y =﹣1,把y =﹣1代入①,得:x ﹣1=0,解得:x =1,把x =1,y =﹣1代入2x +3y =k 中,k =2×1+3×(﹣1)=2﹣3=﹣1,故选:A .【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.10.C解析:C【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解.【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解, ∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题11.7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m =15,解得:m =3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值. 14.【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①解析:2 xy=⎧⎨=⎩【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩, ∴112222a c a c +=⎧⎨+=⎩, ∴c 1−a 1=2,c 2−a 2=2,∴111222a x y c a a x y c a +=-⎧⎨+=-⎩可化为1222a x y a x y +=⎧⎨+=⎩①②, ①−②,得(a 1−a 2)x =0,∴x =0,将x =0代入①中,得y =2,∴方程组的解为02x y =⎧⎨=⎩, 故答案为02x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解,会用加减消元法解方程组,并能灵活将方程组变形是解题的关键.15.0【分析】把x 、y 的值代入mx+ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m+n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx+ny =6的解,∴解析:0【分析】把x 、y 的值代入mx +ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m +n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,∴4626m n m n +=⎧⎨-=⎩①② ①+②,得6m =12解得:m =2,把m =2代入①,得8+n =6,解得:n =﹣2,∴m +n =2+(﹣2)=0,故答案为:0.【点睛】本题考查了二元一次方程及二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.16.±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵∴∴①②,得∴∴∴的平方根为±4故解析:±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵()24320a b a b -+-+= ∴()240320a b a b ⎧-=⎪⎨-+=⎪⎩∴40320a b a b -=⎧⎨-+=⎩①② ①-②,得2a =∴48b a ==∴16ab =∴ab 的平方根为±4故答案为:±4.【点睛】本题考查了乘方、绝对值、二元一次方程组、平方根的知识;解题的关键是熟练掌握乘方、绝对值、二元一次方程组、平方根的性质,从而完成求解.17.9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低解析:9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低1分,列出代数式,即可求出答案.【详解】解:设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,得:510351051532512x y z x y z x y ++=-+-+-⎧⎨=+⎩()()()①② 由①得:x+y -2z =24 ③将②代入③得:y +2+y -2z =24解得:y-z =11,则调整后二等奖比三等奖平均分数多=(y -3)-(z -1)=(y-z )-2=11-2=9(分). 故答案为:9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找到等量关系,列出方程组. 18.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩ 【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.19.±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将代入方程组,得:,解得:,∴=6×3﹣2=16,∴的平方根是±4,故答案为:±4.【点睛解析:±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将21xy=⎧⎨=⎩代入方程组215x aybx y-=⎧⎨+=⎩,得:41215ab-=⎧⎨+=⎩,解得:32ab=⎧⎨=⎩,∴6a b-=6×3﹣2=16,∴6a b-的平方根是±4,故答案为:±4.【点睛】本题考查二元一次方程组的解、代数式求值、平方根,理解方程组的解,正确求出a、b值和平方根是解答的关键.20.【分析】把x与y的值代入方程组求出m与n的值,即可确定出所求.【详解】解:把代入方程组得:,解得:,∵1的立方根为1,∴的立方根是1故答案为:1【点睛】此题考查了二元一次方解析:1【分析】把x 与y 的值代入方程组求出m 与n 的值,即可确定出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得: 2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, 34981m n ∴-=-=∵1的立方根为1,∴34m n -的立方根是1故答案为:1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.三、解答题21.(1)()0,8A ,()6,0B ,()0,2C -,30ABC S =;(2)n 的取值范围为40n -≤≤;(3)①4324x y +=;②()3,4M【分析】(1)根据()28212a b -+-=a 、b 、c 的值,由此求解即可;(2)分当D 点在直线l 上位于y 轴左侧时和当D 点在直线l 上位于y 轴右侧时讨论求解即可得到答案;(3)①由由AOB AON BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯,由此求解即可;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=,化简得,315x y +=,然后联立4324315x y x y +=⎧⎨+=⎩求解即可. 【详解】解:(1)∵()28212a b -+-=∴()282122=0a b c -+-++, ∴80a -=,2120b -=,20c +=, ∴8a =,6b =,2c =-,∴()0,8A ,()6,0B ,()0,2C -, ∴AC =10,OB =6,∴1302ABC S AC OB ==; (2)当D 点在直线l 上位于y 轴左侧时,由题意得,()()111510222ACD S AC m m =⨯⨯-=⨯⨯-≤△, 解得,32m ≥-, 当32m =-时,3,02D ⎛⎫- ⎪⎝⎭, 结合图形可知,当32m ≥-时,0n ≤; 同理可得,当D 点在直线l 上位于y 轴右侧时,32m ≤, 当32m =时,3,2D n ⎛⎫ ⎪⎝⎭, 12//,D D AB22,ACD BCD S S ∴=()()13113156262222222n n ⎛⎫⨯+⨯--⨯⨯-⨯⨯--= ⎪⎝⎭, 解得,4n =-,结合图形可知,当32m ≤时,4n ≥-,∴n 的取值范围为40n -≤≤; (3)①由AOB AOM BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯, 化简得,4324x y +=;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=, 化简得,315x y +=,联立方程组4324315x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, ∴()3,4M【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.22.(1)1-;5;(2)购买6支水笔、6块橡皮、6本记事本共需48元;(3)11-.【分析】(1)利用①−②可得x -y 的值,利用()13+①②可得出x +y 的值; (2)设铅笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,根据“买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①-②可得m n p ++的值,再乘5即可求得结果;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a b c ++的值,从而可求得结果.【详解】(1)2728x y x y +=⎧⎨+=⎩①②由①−②可得:x -y =-1,由()13⨯+①②可得x +y =5 故答案为:1-;5.(2)设水笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,依题意,得:203235395362m n p m n p ++=⎧⎨++=⎩①②, 由2⨯-①②可得8m n p ++=,6666848m n p ∴++=⨯=.故购买6支水笔、6块橡皮、6本记事本共需48元.(3)依题意得:35154728a b c a b c ++=⎧⎨++=⎩①②由3×①−2×②可得:11a b c ++=-即1*111=-故答案为:11-.【点睛】本题考查了二元一次方程组的应用及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x -y ,x +y 的值;(2)(3)找出等量关系,正确列出三元一次方程组. 23.(1)(-1,-2);(2)①结论:直线l ⊥x 轴.证明见解析;②结论:(s -m )+(t -n )=0.证明见解析【分析】(1)利用非负数的性质求出a ,b 的值,可得结论.(2)①求出A ,D 的纵坐标,证明AD ∥x 轴,可得结论.②判断出D (m +1,n -1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1)|3|0a +,又|3|0a +10,3a ∴=-,1b =-,(3,1)A ∴--,点A 先向右平移2个单位,再向下平移1个单位得到点C ,(1,2)C ∴--.(2)①结论:直线l x ⊥轴.理由:1b n =-,(,1)A a n ∴-,(,)B m n ,向右平移h 个单位,再向下平移1个单位得到点D ,(,1)D m h n ∴+-,A ,D 的纵坐标相同,//AD x ∴轴,直线l AD ⊥,∴直线l x ⊥轴.②结论:()()0s m t n -+-=.理由:E 是直线l 上一点,连接DE ,且DE 的最小值为1,(1,1)D m n ∴+-,点B ,D 及点(,)s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(,)x y 为坐标的点,∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③, ①-②得到0p q -=,p q ∴=,③-②得到,()()0p s m q t n -+-=,0pq ≠,0p q ∴=≠,()()0s m t n ∴-+-=.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.24.(1)10.5;(2)12.5;(3)10.5,12.5,23;12n m +-;30 【分析】(1)画出图形,根据三角形的面积公式求解;(2)画出图形,利用割补法求解;(3)设S =am +bn +c ,其中a ,b ,c 为常数,根据表中数据列方程组求出a ,b ,c ,然后根据公式即可求出六边形FGHIJK 的面积.【详解】(1)如图1,ABC 的底为7,高为3,所以面积为0.57310.5⨯⨯=,故答案为:10.5;(2)如图2,0.523320.5310.52236 1.5212.5S =⨯⨯+⨯+⨯⨯+⨯⨯=+++=,故答案为:12.5;(3)由(1)、(2)可填表格如下:形内格点数m 边界格点数n 格点多边形面积SABC 四边形ACDE 五边形ABCDE 设S = am +61110.581112.520823a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩, 解得1121a b c =⎧⎪⎪=⎨⎪=-⎪⎩, ∴皮克公式为12n S m =+-, ∵六边形FGHIJK 中,m =27,n =8,∴六边形FGHIJK 的面积为82712S =+-=30. 【点睛】本题考查了坐标与图形的性质,三角形的面积,三元一次方程组的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等, 人数为:1(40424)62--=(人); ∴(1)班得总分为:40656102420570⨯+⨯+⨯+⨯=(分);由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有(2)y z +人,∴(2)40y z y z +++=,∴3240y z +=,∴七(2)班得总分为:51020(2)453015(32)1540600y z y z y z y z +++=+=+=⨯=(分);∵570600<,∴七(2)班的总分高.【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是熟练掌握题意,正确掌握题目的等量关系,列出方程进行解题.26.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩,由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.27.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标; (2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.。

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。

注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。

注:①在方程组中 相同未知数必须代表同一未知量。

②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。

例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100079909411x yx y+=⎧⎪⎨+=⎪⎩C.100079999x yx y+=⎧⎨+=⎩D.1000411999x yx y+=⎧⎨+=⎩2.如图,某农家乐老板计划在一块长130米,宽60米的空地开挖两块形状大小相同的垂钓鱼塘,它们的面积之和为5750平方米,两块垂钓鱼塘之间及周边留有宽度相等的垂钓通道,则垂钓通道的宽度为()A.4.5m B.5m C.5.5m D.6m3.已知方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则()()()()2213313230.951x yx y⎧-=++⎪⎨-=-+⎪⎩的解是()A.8.31.2xy=⎧⎨=⎩B.10.32.2xy=⎧⎨=⎩C.6.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩4.若关于x,y的二元一次方程组2245x y kx y k+=⎧⎨-=⎩的解满足1x y-=,则k的值是()A.1B.2C.3D.45.方程组233730x yx zx y z+=⎧⎪-=⎨⎪-+=⎩的解为()A .211x y z =⎧⎪=⎨⎪=-⎩B .211x y z =⎧⎪=-⎨⎪=⎩C .211x y z =⎧⎪=-⎨⎪=-⎩D .211x y z =⎧⎪=⎨⎪=⎩6.已知21x y =⎧⎨=-⎩是方程23x y m -=的解,则m 的值为( ) A .7 B .7- C .1 D .1-7.若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩的解是( ) A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩ B .1252m n ⎧=-⎪⎪⎨⎪=⎪⎩ C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩ D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩8.若等式||2(1)3m x m y +-=,是关于x ,y 的二元一次方程,则m 的值是( )A .1±B .1C .1-D .2±9.已知关于x ,y 的二元一次方程组=12+=3ax by ax by -⎧⎨⎩的解为=1=1x y ⎧⎨-⎩,那么代数式2a b -的值为( ) A .-2 B .2 C .3 D .- 310.若关于x 、y 的二元一次方程组3749ax y x y +=⎧⎨+=⎩与5358x y x by -+=⎧⎨+=⎩) A .1 B .1± C .2 D .2±11.若关于x ,y 的方程组()()()()111222a x y b x y c a x y b x y c ⎧+--=⎪⎨+--=⎪⎩,解为20222023x y =⎧⎨=⎩.则关于x ,y 的方程组1112221515a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩的解是( )A .80915x y =⎧⎪⎨=⎪⎩B .40451x y =⎧⎨=⎩C .20222023x y =⎧⎨=⎩D .2022520235x y ⎧=⎪⎪⎨⎪=-⎪⎩12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程组522ax by bx ay +=-⎧⎨-=⎩的解,则a +b 的值为( ) A .﹣5 B .﹣1 C .3 D .7二、填空题(本大题共8小题,每小题3分,共24分)13.若实数m ,n 满足5240m n m n --+-=∣∣,则3m n +=__________.14.若关于x ,y 的二元一次方程组9876x y m x y n -=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()()()91827162a b m a b n ⎧--+=⎪⎨-++=⎪⎩的解为_______. 15.已知x ,y ,z 满足438324x y z +++==,且212x y z -+=,则x =____________. 16.若关于x ,y 的方程()12m m x y --=是一个二元一次方程,则m 的值为_____________.17.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为________ 18.重庆某大学对重庆某村实施“技术助农”.该村种植有A 、B 、C 三种经济作物,助农前,A ,B ,C 三种作物亩数比例为2:5:3;助农后,三种经济作物的亩数都得以增加,其中B 作物增加的亩数占总增加亩数的16.助农前,C 作物的亩产量是B 作物亩产量的2.5倍,A ,B 两种作物的亩产量之和恰好是C 作物的亩产量;助农后,A ,B 两种作物的亩产量分别增加了13和12,A ,B 两种作物的亩产量之和恰好仍是C 作物的亩产量.若助农后,B 作物的产量比助农前A ,B 产量之和多332,而C 作物的产量比助农前A ,B ,C 三种作物产量的总和还多5%,则助农前后A 作物的产量之比为__________.19.已知关于x ,y 的二元一次方程组21346x y a x y a +=-+⎧⎨-=+⎩(a 是常数),若不论a 取什么实数,代数式kx y -(k 是常数)的值始终不变,则k =______.20.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c +=⎧⎨+=''''⎩ 有关的2x y ''-的值为_____.三、解答题(本大题共5小题,每小题8分,共40分)21.解下列二元一次方程组:(1)=23+10=0y x x y -⎧⎨⎩(2)2+3=53+2=5x y x y -⎧⎨⎩22.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:求此款“冰墩墩”和“雪容融”玩具的零售价格.23.解方程组:(1)231915x yx y+=-⎧⎨=-⎩(用代入消元法)(2)49231x yx y-=⎧⎨+=⎩(用加减消元法)24.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)请自行写出一个除上述你方程外的“和解方程”:______(3)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.25.已知一个三位数=m abc,如果它的百位数字加上2与十位数字加上5的和等于个位数字加上8,则称这个三位数叫“258数”.如:245,∵()()22455813+++=+=,∵245是“258数”;437,∵()()423514+++= 7815+=,14≠15,∵437不是“258数”.(1)请根据材料判断526和738是不是“258数”,并说明理由;(2)若“258数”=m abc (19a b c ≤<<≤,且a ,b 、c 均为整数)能被3整除,请求出所有符合题意的m 的值.参考答案:1.A2.B3.D4.A5.C6.A7.A8.C9.B10.C11.A12.B13.714.20a b =⎧⎨=⎩ 15.1416.-117.-618.90:27119.-120.16-21.(1)24x y =⎧⎨=⎩;(2)55x y =-⎧⎨=⎩.22.此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元23.(1)143x y =-⎧⎨=⎩ (2)21x y =⎧⎨=-⎩24.(1)92m=-(2)1643x(答案不唯一)(3)23,3m n=-=-25.(1)526是“258数”,738不是“258数”,(2)267、627、357、537。

(精练)人教版七年级下册数学第八章 二元一次方程组含答案

(精练)人教版七年级下册数学第八章 二元一次方程组含答案

人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、甲、乙、丙三辆车均在A、B两地间往返,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发()小时后,三辆车第三次同时汇合于A地.A.50B.51C.52D.532、小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A. B. C. D.3、某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有,耕地面积是林地面积的,设改还后耕地面积为,林地面积为,则下列方程组中正确的是A. B. C. D.4、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2005、若是方程组的解,那么a-b的值是( )A.5B.1C.-1D.-56、如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27、小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A.他身上的钱会不足95元B.他身上的钱会剩下95元C.他身上的钱会不足105元D.他身上的钱会剩下105元8、已知方程组:的解x,y满足x+3y≥0,则m的取值范围是()A.﹣≤m≤1B.m≥C.m≥1D.m≥﹣9、若方程组的解满足方程,则的值为()A. B. C. D.10、由方程组可得出x与y的关系是( )A.2x+y=4B.2x-y=4C.2x+y=-4D.2x-y=-411、已知关于x、y的方程组和方程组有相同的解,那么(a+b)2007的值为()A.﹣2007B.﹣1C.1D.200712、方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的()A.不可能是﹣1B.不可能是﹣2C.不可能是1D.不可能是213、把一根长的钢管截成长和长两种规格的钢管,如果保证没有余料,那么截取的方法有()A.2种B.3种C.4种D.5种14、若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是()A. B. C. D.15、解方程组时,某同学把c看错后得到,而正确的解是,那么a,b,c的值是( )A.a=4,b=5,c=2B.a,b,c的值不能确定C.a=4,b=5,c=-2D.a,b不能确定,c=-2二、填空题(共10题,共计30分)16、已知2x+3y=5,用含x的式子表示y,得:________.17、把方程3x+y-1=0写成用含x的代数式表示y的形式,则y=________.18、方程组的解中,x 与 y 的和等于 5,则 m=________.19、县城3路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔15分钟开过来一辆公交车,而迎面每隔10分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.20、二元一次方程3x+2y=15的正整数解为________21、若=0是关于x、y的二元一次方程,则a的值是________.22、已知关于x,y的二元一次方程组满足,则a的取值范围是________.23、已知是方程的一个解,则的值为________.24、二元一次方程组的解是:________ .25、在关于x,y的方程组:① :② 中,若方程组①的解是,则方程组②的解是________.三、解答题(共6题,共计25分)26、解方程组27、当k取何值时,等式的b是负数.28、将若干吨分别含铁和含铁的两种矿石混合后配成含铁的矿石70吨.求两种矿石分别需要多少吨?29、一农妇在市场卖葱,当时市场上的葱价是1.00元一斤,一葱贩对农妇说:“我想把你的葱分开来买,葱叶0.50元一斤,葱白0.50元一斤.”农妇听了葱贩的话,不假思索就把葱全部卖完.当农妇数过钱之后才发现只卖了一半钱.此时葱贩已不见踪影.聪明的你,请运用数学语言揭穿葱贩的把戏.过程如下:设总量z斤,葱叶x斤,葱白y斤,列方程∵x+y=z,∴卖给葱贩的钱为0.5x+0.5y=0.5z,而实际应卖的钱为1.0x+1.0y=1.0z,结果一目了然,那葱贩只用了一半钱就买了所有葱.(1)生活常识告诉我们,人们在吃葱的时候主要吃的是葱白,葱白应比葱叶卖的贵.假设一根葱的葱叶和葱白重量相同,葱叶和葱白的价钱之和仍是1.00元.请用数学语言说明此时农妇还是只卖了一半的钱.(2)假设一根葱的葱叶和葱白重量不同,且葱叶的重量大于葱白的重量,葱叶0.20元一斤,葱白0.80元一斤.请用数学语言说明此时农妇卖的钱少于一半.30、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、C5、C6、B7、B8、D9、C10、A11、C12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (87)

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (87)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩ 【答案】1812m n =⎧⎨=⎩【解析】试题分析:首先将方程进行变形,然后利用加减消元法得出方程组的解.试题解析:将方程组变形可得:3278?4336?m n m n +=⎧⎨-=⎩①②,①×3+②×2得:9m+8m=306,解得:m=18, 将m=18代入①可得:3×18+2n=78,解得:n=12,∴原方程组的解为:1812m n =⎧⎨=⎩.52.解方程组:(1)326{2317x y x y -=+=;(2)414{3314312x y x y +=---=【答案】(1)43x y =⎧⎨=⎩ ;(2)3114x y =⎧⎪⎨=⎪⎩ .【解析】 【分析】(1)利用加减消法即可得解;(2)先对第二个方程进行整理和变形,然后再利用加减消元法即可. 【详解】解:(1)326 2317x yx y-=⎧⎨+=⎩①②,①×2,得:6x﹣4y=12 ①,①×3,得:6x+9y=51 ①,则①﹣①得:13y=39,解得:y=3,将y=3代入①,得:3x﹣2×3=6,解得:x=4.故原方程组的解为:43xy=⎧⎨=⎩.(2)4143314312x yx y+=⎧⎪⎨---=⎪⎩①②,方程①两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,化简,得:3x﹣4y=﹣2 ①,①+①,得:4x=12,解得:x=3.将x=3代入①,得:3+4y=14,解得:y=114.故原方程组的解为:3114xy=⎧⎪⎨=⎪⎩.53.已知232x y ax y a+=⎧⎨-=⎩,求xy的值.【答案】7【解析】【试题分析】先解关于x、y的二元一次方程组,再代入求值即可. 【试题解析】232x y a x y a +=⎧⎨-=⎩75715x a x y y a⎧=⎪⎪⇒⇒=⎨⎪=⎪⎩. 【方法点睛】本题目先将x 、y 用a 的代数式表示出来,再代入即可.54.甲乙两人同时解方程组832ax by cx y +=⎧⎨-=-⎩ ,甲正确解得11x y =⎧⎨=-⎩ ;乙因为抄错c 的值,解得26x y =⎧⎨=-⎩.求a ,b ,c 的值.【答案】1025a b c =⎧⎪=⎨⎪=-⎩【解析】试题分析:把11x y =⎧⎨=-⎩代入方程组,把26x y =⎧⎨=-⎩代入方程组中的第一个方程,即可得到一个关于a 、b 、c 的方程组,解方程组即可求解.试题解析:根据题意得:832268a b c a b -⎧⎪+-⎨⎪-⎩===,解得:1025a b c =⎧⎪=⎨⎪=-⎩.55.用合适的方法解下列方程组:(1)402? 3222? y x x y ①②=-⎧⎨+=⎩ (2)235? 421? x y x y +=⎧⎨-=⎩①② (3)6515?33? x y x y +=⎧⎨-=-⎩①②【答案】(1)5876x y =⎧⎨=-⎩;(2)131698x y ⎧=⎪⎪⎨⎪=⎪⎩;(3)03x y =⎧⎨=⎩【解析】【试题分析】(1)代入法;(2)加减法;(3)代入法或加减法都可以.【试题解析】(1)将①代入①得,32(402)22,x x+-=得:x=58,将x=58代入①,得:y=-76.故原方程组的解为:5876 xy=⎧⎨=-⎩(2)①×2得,4x+6y=10①,①-①得:8y=9,y=98,将y=98代入①,得:1316x=,故原方程组的解为:131698 xy⎧=⎪⎪⎨⎪=⎪⎩(3)①×5得:15x-5y=-15①,①+①得:21x=0,解得:x=0,将x=0代入①得:y=3.故原方程组的解为:3 xy=⎧⎨=⎩.56.用加减法解下列方程组:(1)3827x yx y+=⎧⎨-=⎩(2)379475m nm n+=⎧⎨-=⎩(3)92153410x yx y+=⎧⎨+=⎩(4)2343211x yx y+=⎧⎨-=⎩(5)()()()()31445135x yy x⎧-=-⎪⎨-=+⎪⎩(6)15357525x x yy x+-⎧=⎪⎨⎪=+⎩【答案】(1)31 xy=⎧⎨=-⎩;(2)237mn=⎧⎪⎨=⎪⎩;(3)4332xy⎧=⎪⎪⎨⎪=⎪⎩;(4)41131013xy⎧=⎪⎪⎨⎪=-⎪⎩;(5)57xy=⎧⎨=⎩(6)25 xy=⎧⎨=⎩【解析】【试题分析】利用加减消元法解二元一次方程组即可. 【试题解析】(1)3827x y x y +=⎧⎨-=⎩①+②得:5x=15,x=3,将x=3代入①得,y=-1, 故原方程组的解为:31x y =⎧⎨=-⎩. (2)379475m n m n +=⎧⎨-=⎩①+②得:7m=14,m=2,将m=2代入①得,37n =, 故原方程组的解为:237m n =⎧⎪⎨=⎪⎩; (3)92153410x y x y +=⎧⎨+=⎩①2⨯得,18x+4y=30 ③,③-②得,41520,3x x ==,将43x =代入①得,32y =, 故原方程组的解为:4332x y ⎧=⎪⎪⎨⎪=⎪⎩; (4)2343211x y x y +=⎧⎨-=⎩①2⨯得4x+6y=8,②3⨯得9x-6y=33,两式相加得:4113x = ,将4113x =代入①,得:1013y =-故原方程组的解为:41131013x y ⎧=⎪⎪⎨⎪=-⎪⎩(5)()()()()31445135x y y x ⎧-=-⎪⎨-=+⎪⎩方程组变形为:3413535207x y x x y y -=-=⎧⎧⇒⎨⎨-=-=⎩⎩故原方程组的解为:57x y =⎧⎨=⎩(6)15357525x x yy x +-⎧=⎪⎨⎪=+⎩ 10351035257251014505x y x y x x y x y y -=-==⎧⎧⎧⇒⇒⎨⎨⎨-=--=-=⎩⎩⎩ 故原方程组的解为:25x y =⎧⎨=⎩. 57.小明和小刚同时解方程组266ax by cx y +=⎧⎨+=⎩根据小明和小刚的对话,试求a ,b ,c 的值.【答案】a =5,b =-3,c =2.【解析】试题分析:根据小明的正确解,得出c的值,然后把两组解代入第一个方程ax+by=26,可求出a、b的值.试题解析:把4100xy=⎧⎨=-⎩、73xy=⎧⎨=⎩代入方程组的第1个方程中得42267326a ba b-=⎧⎨+=⎩,解得1100ab=⎧⎨=⎩,再把42xy=⎧⎨=-⎩代入方程cx+y=6中,得4c+(-2)=6,所以c=2.故a=5,b=-3,c=2.58.解方程组:230230x yx y-=⎧⎨+-=⎩.【答案】9767xx⎧=⎪⎪⎨⎪=⎪⎩.【解析】分析:用①﹣①×2消去x,得到关于y的一元一次方程,解这个方程求出y 的值,再把求得的y的值代入到①中求出x的值即可.详解:,①﹣②×2得:﹣7y=﹣6,即y=,将y=代入①,得x=,则原方程组的解为.点睛:本题考查了二元一次方程组的解法,其基本思路是消元,转化为一元一次方程求解,消元的方法有加减消元法和代入消元法两种,根据方程组的特点选择合适的方法是解答本题的关键.59.已知关于x ,y 的方程组51542ax y x by +=⎧⎨-=-⎩①②甲由于看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙由于看错了方程②中的b ,得到方程组的解54x y =⎧⎨=⎩.若按正确的a ,b 计算,则原方程组的解x 与y 的差x -y 的值是多少?【答案】8.2 【解析】试题分析:把31x y =-⎧⎨=-⎩代入到42x by -=-,可得10b =,把54x y =⎧⎨=⎩代入515ax y +=,可得: 1a =-,把110a b =-⎧⎨=⎩代入51542ax y x by +=⎧⎨-=-⎩可得:5154102x y x y -+=⎧⎨-=-⎩,解方程组可得:145.8x y =⎧⎨=⎩,最后代入x -y 计算即可.试题解析: 因为甲由于看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩,把31x y =-⎧⎨=-⎩代入②可得10b =, 乙由于看错了方程②中的b ,得到方程组的解54x y =⎧⎨=⎩,把54x y =⎧⎨=⎩代入①可得: 1a =-,把110a b =-⎧⎨=⎩代入51542ax y x by +=⎧⎨-=-⎩可得:515 4102x y x y -+=⎧⎨-=-⎩,解方程组可得:145.8x y =⎧⎨=⎩,则x -y=14-5.8=8.2.60.解下列方程组:(1)35231x y x y =⎧⎨-=⎩ (2)2232328x yx y ⎧+=⎪⎨⎪+=⎩(3)()()()1523254345x y x y ⎧+=+⎪⎨--+=⎪⎩ (4)()()23352121132x y x y ⎧+=--⎪⎨++-=⎪⎩【答案】(1)53x y =⎧⎨=⎩(2)412x y =-⎧⎨=⎩(3)41x y =⎧⎨=-⎩(4)720x y ⎧=⎪⎨⎪=⎩ 【解析】试题分析:(1)先由①可变形得:53x y =,把53x y =代入到②可得:10313y -=,解得:3y =,把3y =代入到①可得:5x =,(2)先由4⨯①可得:4283y x +=③,再由-③②可得:5203y =,解得12y =, 将12y =代入③可得:4x =-, (3)由①可得:59x y =+③,把③代入②可得:()()3101854345y y +--+=,1818,y =-解得:1y =-,把1y =-代入③可得:4x =,(4) 先由①可得:263510x y +=-+,可得257x y +=③, 由6⨯②可得:22636x y +--=,即267x y -=④, 由-③④可得:0y =,把0y =代入③可得72x =, 试题解析:(1)35231x y x y =⎧⎨-=⎩①②,由①可得:53x y =,把53x y =代入到②可得:10313y -=,解得:1y =-,把1y =-代入到①可得:5x =,所以方程组的解是51x y =⎧⎨=-⎩,(2)2232328x yx y ⎧+=⎪⎨⎪+=⎩①②,由4⨯①可得:4283yx +=③, 由-③②可得:5203y=,解得12y =, 将12y =代入③可得:4x =-,所以方程组的解是412x y =-⎧⎨=⎩.(3)()()()1523254345x y x y ⎧+=+⎪⎨--+=⎪⎩①②,由①可得:59x y =+③,把③代入②可得:()()3101854345y y +--+=,1818,y =-解得:1y =-,把1y =-代入③可得:4x =,所以方程组的解是41x y =⎧⎨=-⎩.(4)()()23352121132x y x y ⎧+=--⎪⎨++-=⎪⎩①②,由①可得:263510x y +=-+,可得257x y +=③, 由6⨯②可得:22636x y +--=,即267x y -=④, 由-③④可得:0y =,把0y =代入③可得72x =, 所以方程组的解是720x y ⎧=⎪⎨⎪=⎩.。

人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案

人教版七年级数学下册 第八章  二元一次方程组  8.2.2  用加减法解二元一次方程组  同步练习题 含答案

第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。

人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)

人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)

8.1 二元一次方程组基础题知识点1 认识二元一次方程(组)1.下列方程中,是二元一次方程的是(D )A .3x -2y =4zB .6xy +9=0C .1x +4y =6D .4x =y -242.下列方程组中,是二元一次方程组的是(A )A .⎩⎪⎨⎪⎧x +y =42x +3y =7 B .⎩⎪⎨⎪⎧2a -3b =115b -4c =6C .⎩⎪⎨⎪⎧x 2=9y =2x D .⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.(龙口市期中)在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为(C )A .-2B .2或-2C .2D .以上答案都不对4.写出一个未知数为a ,b 的二元一次方程组:答案不唯一,如⎩⎪⎨⎪⎧2a +b =1,a -b =2等.5.已知方程x m -3+y2-n=6是二元一次方程,则m -n =3.6.已知xm +n y 2与xym -n的和是单项式,则可列得二元一次方程组⎩⎪⎨⎪⎧m +n =1m -n =2.知识点2 二元一次方程(组)的解7.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是(B )A .⎩⎪⎨⎪⎧x =0y =-12 B .⎩⎪⎨⎪⎧x =1y =1 C .⎩⎪⎨⎪⎧x =1y =0 D .⎩⎪⎨⎪⎧x =-1y =-1 8.(丹东中考)二元一次方程组⎩⎪⎨⎪⎧x +y =5,2x -y =4的解为(C )A .⎩⎪⎨⎪⎧x =1y =4B .⎩⎪⎨⎪⎧x =2y =3C .⎩⎪⎨⎪⎧x =3y =2D .⎩⎪⎨⎪⎧x =4y =1 9.若⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程ax ―3y =1的解,则a 的值为(D )A .-5B .-1C .2D .7知识点3 建立方程组模型解实际问题10.(温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是(A )A .⎩⎪⎨⎪⎧x +y =7x =2y B .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x 11.(盘锦中考)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是(A )A .⎩⎪⎨⎪⎧2x +3y =15.55x +6y =35B .⎩⎪⎨⎪⎧2x +3y =355x +6y =15.5C .⎩⎪⎨⎪⎧3x +2y =15.55x +6y =35D .⎩⎪⎨⎪⎧2x +3y =15.56x +5y =35 中档题12.(大名县期末)若方程x |a|-1+(a -2)y =3是二元一次方程,则a 的取值范围是(C ) A .a >2 B .a =2 C .a =-2 D .a <-213.(萧山区期中)方程y =1-x 与3x +2y =5的公共解是(B )A .⎩⎪⎨⎪⎧x =-3y =-2B .⎩⎪⎨⎪⎧x =3y =-2C .⎩⎪⎨⎪⎧x =-3y =4D .⎩⎪⎨⎪⎧x =3y =2 14.(内江中考)植树节这天有20名同学种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是(D )A .⎩⎪⎨⎪⎧x +y =523x +2y =20B .⎩⎪⎨⎪⎧x +y =522x +3y =20C .⎩⎪⎨⎪⎧x +y =202x +3y =52D .⎩⎪⎨⎪⎧x +y =203x +2y =52 15.(齐齐哈尔中考)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(B )A .1种B .2种C .3种D .4种16.(滨州模拟)若⎩⎪⎨⎪⎧x =a ,y =b 是方程2x +y =0的解,则6a +3b +2=2.17.已知两个二元一次方程:①3x -y =0,②7x -2y =2.(1)对于给出x 的值,在下表中分别写出对应的y 的值; x -2 -1 0 1 2 3 4 y ① -6 -3 0 3 6 9 12 y ②-8-4.5-12.569.513(2)请你写出方程组⎩⎪⎨⎪⎧3x -y =0,7x -2y =2的解.解:⎩⎪⎨⎪⎧x =2,y =6.18.已知甲种物品每个重4 kg ,乙种物品每个重7 kg ,现有甲种物品x 个,乙种物品y 个,共重76 kg .(1)列出关于x ,y 的二元一次方程; (2)若x =12,则y =4;(3)若乙种物品有8个,则甲种物品有5个; (4)写出满足条件的x ,y 的全部整数解. 解:(1)4x +7y =76.(4)由4x +7y =76,得x =76-7y4.又由题意得y 为正整数,当y =0时,x =19; 当y =1时,x =76-74=694,不合题意;当y =2时,x =76-2×74=312,不合题意;当y =3时,x =76-3×74=554,不合题意;当y =4时,x =76-4×74=12;当y =5时,x =76-5×74=414,不合题意;当y =6时,x =76-6×74=172,不合题意;当y =7时,x =76-7×74=274,不合题意;当y =8时,x =76-8×74=5;当y =9时,x =76-9×74=134,不合题意;当y =10时,x =76-10×74=32,不合题意;当y =11时,x =76-11×74<0,不合题意.∴满足x ,y 的全部整数解是⎩⎪⎨⎪⎧x =5,y =8,⎩⎪⎨⎪⎧x =12,y =4,⎩⎪⎨⎪⎧x =19,y =0.19.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得⎩⎪⎨⎪⎧x +y =13,0.8x +2y =20.(2)设有x 只鸡,y 个笼,根据题意得⎩⎪⎨⎪⎧4y +1=x ,5(y -1)=x.综合题20.甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2 016+(-110b)2 017.解:把⎩⎪⎨⎪⎧x =-3,y =-1代入方程②中,得4×(-3)-b ×(-1)=-2,解得b =10.把⎩⎪⎨⎪⎧x =5,y =4代入方程①中,得5a+5×4=15,解得a=-1.∴a2 016+(-110b)2 017=(-1)2 016+(-110×10)2 017=1+(-1)=0. 不用注册,免费下载!【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (110)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (110)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案)已知2521a b a b +=⎧⎨-=⎩,则3a b +的值是_______. 【答案】6【解析】【分析】令方程组中两个方程分别为①和②,将两个方程相加即可求解.【详解】2521a b a b +=⎧⎨-=⎩①② ①+②,得3a b +=6故答案为:6【点睛】本题考查了二元一次方程组的应用,已知二元一次方程组,求解代数式的值,可将两个方程相加或相减直接求解.如果用此方法求解不了,再求出方程组的解,代入即可.92.若方程组31x y x y +=⎧⎨-=⎩与方程组23x my nx y -=-⎧⎨-=⎩同解,则mn =_____. 【答案】8【解析】【分析】先求出方程组31x y x y +=⎧⎨-=⎩的解,再把x 、y 的值代入方程组23x my nx y -=-⎧⎨-=⎩中,得到关于m 、n 的二元一次方程组,求出m 、n 的值,代入代数式求解即可.【详解】解方程组31x y x y ①②+=⎧⎨-=⎩, ①+②得,24=x ,解得2x =,①-②得,22y =,解得1y =.把2x =,1y =代入方程组23x my nx y -=-⎧⎨-=⎩, 得22213m n -=-⎧⎨-=⎩, 解得4m =,2n =.故428mn =⨯=.【点睛】本题考查的是二元一次方程组的解法,解答此题的关键是先求出x 、y 的值,得到关于m 、n 的二元一次方程组,再求出m 、n 的值.93.甲乙两人同解方程组278ax by cx y +=⎧⎨-=⎩时甲正确解得32x y =⎧⎨=-⎩,乙因抄错c 而得22x y =-⎧⎨=⎩则a+c=_______ 【答案】2【解析】【分析】根据方程组解的定义,无论c 是对是错,甲和乙求出的解均为ax +by =2的解.将32x y =⎧⎨=-⎩和22x y =-⎧⎨=⎩分别代入ax +by =2,组成方程组,从而得出a 的值.将甲的正确解32x y =⎧⎨=-⎩代入cx −7y =8,从而得出c 的值.【详解】根据方程组解的定义,无论c 是对是错,甲和乙求出的解均为ax +by =2的解.故将32x y =⎧⎨=-⎩和22x y =-⎧⎨=⎩分别代入ax +by =2, 得322222a b a b -⎧⎨-+⎩==, 解得a =4,把32x y =⎧⎨=-⎩代入cx −7y =8,得3c +14=8, 所以c =−2.故a+c=4-2=2,故答案为:2.【点睛】本题考查二元一次方程组的解和二元一次方程的解的定义,解题的关键是知道不定方程有无数个解.94.将方程5x+2y=11变形为用含x 的式子表示y ,________. 【答案】5211x y -=【解析】【分析】要用含x 的代数式表示y ,或用含y 的代数式表示x ,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【详解】解:移项得, 2y=11-5x ,系数化为1得,5211x y -=. 故答案是:5211x y -=. 【点睛】本题考查了二元一次方程的变形,用其中一个未知数表示另一个未知数,解题时可以参照一元一次方程的解法,把一个未知数当做已知数,利用等式的性质解题.95.已知方程组3496527x y x y +=⎧⎨+=⎩,则88x y +=_______. 【答案】32【解析】【分析】方程组两方程相加可先求出x+y 的值,从而可求出8x+8y 的值.【详解】解:3496527x y x y +=⎧⎨+=⎩①②, ①+②得,9x+9y=36,∴9(x+y)=36,∴x+y=4,∴8x+8y=8(x+y )=32.故答案为:32.【点睛】此题考查了加减消元法,利用了整体思想是解本题的关键.96.用加减法解方程组5212528x y x y +=⎧⎨-=⎩时,若先求出x 的值,则应将两个方程_______;若先求出y 的值,则应将两方程______.【答案】相加相减【解析】【分析】根据方程组中两个方程x、y的系数特点:含x的项系数相同,含y的项系数互为相反数,求x两式相加消去y,求y两式相减消去x.【详解】解:∵方程组中的两个方程,含x的项系数相同,含y的项系数互为相反数,∴求x的值,应将两个方程相加,消去y,求y的值,应将两个方程相减,消去x.故答案为:相加;相减.【点睛】本题考查了用加减消元法解方程组的一般方法,需要熟练掌握.97.若2344514x yx y+=⎧⎨-=-⎩,则8x y+=_________.【答案】-6【解析】【分析】先根据加减消元法求出方程组的解,再将x,y的值代入即可得出结果.【详解】解:2344514x yx y+=⎧⎨-=-⎩①②,由①×5得:10x+15y=20①,由①×3得:12x-15y=-42①,③+④得:22x=-22,解得x=-1,把x=-1代入①得:-2+3y=4,解得y=2,∴原方程组的解是12xy=-⎧⎨=⎩,∴8x+y=-8+2=-6.故答案为:-6.【点睛】本题主要考查了二元一次方程组的解法以及代数式的求值,掌握基本运算法则是解题的关键.98.在二元一次方程5630x y+=中,若x与y互为相反数,则x=_____.【答案】-30【解析】【分析】根据x与y互为相反数,得出x+y=0,与5x+6y=30组成方程组,解方程组即可.【详解】解:根据题意得,5630x yx y+=⎧⎨+=⎩,解得3030xy=-⎧⎨=⎩,故答案为:-30.【点睛】本题考查了方程组的解法和相反数的知识,正确解方程组是关键.99.下面是二元一次方程组的不同解法,请你把下列消元的过程填写完整:对于二元一次方程组24326x yx y+=⎧⎨+=⎩①②(1)方法一:由 ①,得 24y x=-③把 ③ 代入 ②,得________________. (2)方法二:3⨯①,得3612x y +=④-④②,得________________. (3)方法三:()1⨯-① ,得 24x y --=-⑤+⑤②,得________________. (4)方法四:由 ②,得 ()226x x y ++=⑥把 ① 代入⑥,得________________. 【答案】346x x +-= 46y = 22x = 246x +=【解析】【分析】根据代入消元法和加减消元法的步骤解二元一次方程组即可得出相应的过程.【详解】解:24326x y x y +=⎧⎨+=⎩①②, (1)方法一:由①,得24y x =-③,把③代入②,得346x x +-=;(2)方法二:①×3,得3612x y +=④ ④-②,得46y =;(3)方法三:①×(﹣1),得24x y --=-⑤⑤+②,得22x =;(4)方法四:由②,得()226x x y ++=⑥,把①代入⑥,得246x +=.故答案为:(1)346x x +-=;(2)46y =;(3)22x =;(4)246x +=.【点睛】此题考查运用加减消元和代入消元解二元一次方程组的方法,实际上是运用等式的性质来进行消元.100.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩,则x -y 的值为_______; 【答案】1【解析】【分析】方程组中两个方程相加即可求出x -y 的值.【详解】345254x y x y +=⎧⎨+=⎩中的第一个方程减去第二个方程得:x -y=1, 故答案为1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两个方程都成立的未知数的值.。

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (58)

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (58)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)已知=2=-1xy⎧⎨⎩是方程组+=4-=+5ax y bx by a⎧⎨⎩的解,求a,b的值.【答案】=-2 =-5. ab⎧⎨⎩【解析】试题分析:把=2=-1xy⎧⎨⎩代入方程组+=4-=+5ax y bx by a⎧⎨⎩,解出关于a、b的二元一次方程组即可.试题解析:解:把=2=-1xy⎧⎨⎩=代入+=4-=+5ax y bx by a⎧⎨⎩,得:2-1=8+=+5a bb a⎧⎨⎩①②.把①代入①,得:8+(2a-1)=a+5,解得:a=-2.把a=-2代入①,得:2×(-2)-1=b,解得:b=-5.①25ab=-⎧⎨=-⎩.点睛:本题考查了二元一次方程组的解的定义及二元一次方程组的解法,是基础知识,需熟练掌握.62.用代入法解下列方程组:(1)5+2=15 8+3=-1x yx y①②⎧⎨⎩(2)3-2=-17 2-1=5-8y xx y ⎧⎨⎩()()(3)+-+=6323+-2-=28. x y x yx y x y ()()⎧⎪⎨⎪⎩【答案】(1)=-47=125.xy⎧⎨⎩(2)=-73=-28.xy⎧⎨⎩(3)=8=4xy⎧⎨⎩【解析】试题分析:(1)由①解出x,代入②即可;(2)方程整理后用代入消元法求解即可;(3)方程整理后用代入消元法求解即可.试题解析:解:(1)5+2=15 8+3=-1x yx y⎧⎨⎩①②由①,得:x=3-25y.①把①代入①,得:8(3-25y)+3y+1=0.解得:y=125.把y=125代入①,得:x=-47.①原方程组的解是47125xy=-⎧⎨=⎩.(2)3-2=-17 2-1=5-8y xx y ⎧⎨⎩()()原方程组变形为=3+112-5=-6x yx y①②.⎧⎨⎩将①代入①,得:2(3y+11)-5y=-6,6y+22-5y=-6.解得:y=-28.把y=-28代入①,得:x=3×(-28)+11=-73.①原方程组的解是7328xy=-⎧⎨=-⎩.(3)+-+=6323+-2-=28.x y x yx y x y⎧⎪⎨⎪⎩()()原方程组可化为5-=36+5=28x y x y ⎧⎨⎩①② ,由①,得:y =5x -36,①把①代入①,得:x +5(5x -36)=28,解得:x =8. 把x =8代入①,得:y =4.①这个方程组的解是84x y =⎧⎨=⎩.63.小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g ?【答案】大苹果的重量为200g ,小苹果的重量为150g 【解析】试题分析:根据1个大苹果=1个小苹果+50克砝码重量,1个大苹果+1个小苹果=350克砝码重量,列方程求解即可.试题解析:解:根据题意,得:=+50+=300+50x y x y ⎧⎨⎩,解得:=200=150x y ⎧⎨⎩. 答:大苹果的重量为200 g ,小苹果的重量为150 g . 64.用代入法解下列方程组:(1) 2431y x x y =-⎧⎨+=⎩①②(2)=3-2+3=7 y xx y⎧⎨⎩①②(3)3=52-3=1 m nm n①②⎧⎨⎩(4)3+2=19 2-=1x yx y⎧⎨⎩①②【答案】(1)12.xy=⎧⎨=-⎩(2)21.xy=⎧⎨=⎩(3)53.mn=⎧⎨=⎩(4)35.xy=⎧⎨=⎩【解析】试题分析:用代入消元法解答即可.试题解析:解:(1)24 31 y xx y=-⎧⎨+=⎩①②把方程①代入方程①,得:3x+2x-4=1.解得:x=1.把x=1代入①,得:y=-2.①原方程组的解为12xy=⎧⎨=-⎩.(2)=3-2+3=7y xx y⎧⎨⎩①②把①代入①,得:2x+3(3-x)=7.解得:x=2.把x=2代入①,得:y=1.①原方程组的解是21xy=⎧⎨=⎩.(3)3=52-3=1m nm n⎧⎨⎩①②将①变形为m =53n .① 把①代入①,得:2×53n-3n =1.解得:n =3.把n =3代入①,得:m =533⨯=5. ①原方程组的解为 53m n =⎧⎨=⎩.(4)3+2=192-=1x y x y ⎧⎨⎩①②由①,得:y =2x -1.①将①代入①,得:3x +4x -2=19. 解得:x =3.将x =3代入①,得:y =5.①原方程组的解为35x y =⎧⎨=⎩.65.阅读下列材料,然后解答后面的问题.我们知道方程2312x y +=有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2312x y +=,得1222433x y x -==-,( x 、y 为正整数) 0{1220x x >∴-> 则有06x <<.又243y x =-为正整数,则23x 为整数.由2与3互质,可知: x 为3的倍数,从而3x =,代入2423y x =-=.2312x y ∴+=的正整数解为3{2x y ==.问题:(1)若62x -为自然数,则满足条件的正整数x 值有_____________个; (2)请你写出方程25x y +=的所有正整数解:_________________________; (3)若(x+3)y=8,请用含x 的式子表示y ,并求出它的所有整数解.【答案】(1)4;(2)13x y =⎧⎨=⎩,21x y =⎧⎨=⎩;(3)28x y =-⎧⎨=⎩,14x y =-⎧⎨=⎩,12x y =⎧⎨=⎩,51x y =⎧⎨=⎩.【解析】试题分析:(1)根据已知代数式为自然数,确定出x 的值即可; (2)用x 表示出y ,确定出方程的正整数解即可; (3)用x 表示出y ,确定出方程的整数解即可.试题解析:(1)由题意得:x-2=1,x-2=2,x-2=3,x-2=6, 解得:x=3,x=4,x=5,x=8,共4个; 故答案为4;(2)方程整理得:y=-2x+5, 当x=1时,y=3;当x=2时,y=1, 则方程的正整数解为1{3x y ==,2{1x y ==;故答案为1{3x y ==,2{1x y ==(3)根据题意得:y=83x +, 根据题意得:x+3=1,x+3=2,x+3=4,x+3=8, 解得:x=-2,x=-1,x=1,x=5, 相应的y=8,y=4,y=2,y=1,∴它的所有整数解为28x y ==-⎧⎨⎩,14x y -⎧⎨⎩==,12x y ==⎧⎨⎩,51x y ⎧⎨⎩==.66.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染32{?5x y x y 口-=+=∆,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是2{1x y ==-,你能帮助他补上“口”和“△”的内容吗?说出你的方法.【答案】8和9 【解析】试题分析:把方程组的解代入两方程即可帮助他补上方框的内容. 试题解析:把x=2,y=-1代入两方程,得 3×2-2×(-1)=8,5×2-1=9. ∴被污染的内容是8和9.67.已知方程10mx ny +=,有两个解分别是1{?2x y =-=和2{1x y ==-,求m n -的值.【答案】0 【解析】试题分析:将x 与y 的两对值代入方程得到关于m 与n 的方程组,求出方程组的解得到m 与n 的值,即可确定出m-n 的值.试题解析:将1{2x y =-=和2{1x y ==-代入方程mx+ny=10,得 210210.m n m n -+⎧⎨-⎩==, 解得:1010m n ⎧⎨⎩==,则m-n=10-10=0. 68.解方程组: (1) 4{22x y x y -=+=-①②,(2)414 {3314312x yx y+=---=①②【答案】(1)2{2xy==-; (2)3{114xy==.【解析】试题分析:(1)根据加减消元法可以解答此方程组;(2)先化简,然后根据加减消元法即可解答本题.试题解析:(1)422 x yx y-⎧⎨+-⎩=①=②①×2+②,得3x=6,解得,x=2,将x=2代入①,得y=-2,故原方程组的解是2{2xy==-;(2)414{3314312x yx y①②+=---=,化简,得414342x yx y+⎧⎨--⎩=③=④①+①,得4x=12,解得,x=3,将x=3代入③,得y=114,故原方程组的解是3 {114 xy==.69.解方程组:(1)24{?4523x yx y-=-=-(2)11{?233210.x yx y+-=+=【答案】(1)436{313xy==;(2)=3{1=2xy【解析】试题分析:(1)用减法消元法解;(2)先化简方程,再用加减消元法解试题解析:(1)24 4523x yx y-=⎧⎨-=-⎩①②由①⨯5,得:10x-5y=20③由③-②,得6x=43x=436把x=436代入①中得y=313所以方程组的解为:436313xy⎧=⎪⎪⎨⎪=⎪⎩.(2)11 23 3210 x yx y+⎧-=⎪⎨⎪+=⎩整理方程组得:328 3210 x yx y-=⎧⎨+=⎩①②由①+②得:6x=18x=3把x=3代入②中得y=12所以方程组的解为:312 xy=⎧⎪⎨=⎪⎩.70.(1)解方程:2(3x﹣2)=x﹣4(2)解方程组:.【答案】(1)x=0(2)432 xy⎧=⎪⎨⎪=-⎩【解析】试题分析:(1)先去括号,再移项合并,系数化为1;(2)先去分母,化为整系数方程组,再用加减消元法解方程组求解. (1)去括号得:6x﹣4=x﹣4,移项合并得:x=0;(2)方程组整理得:,①+②得:6x=8,解得:x=,把x=代入②得:y=﹣2,则方程组的解为.。

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案) (69)

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案) (69)

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案)(1)计算:322-+⎭; (2)解方程组:22345x y x y ⎧+=⎪⎨⎪-=⎩. 【答案】;(2)23x y =⎧⎨=⎩. 【解析】【分析】(1)根据实数的运算法则进行运算,即可得出结论;(2)将原方程组进行化简,化简后用加减消元法求解即可得出结论.【详解】解:(1)原式=3242=+⎭13222⎛=--+ ⎝=1;(2)方程组整理得:321245x y x y +=⎧⎨-=⎩①②, ①+②×2得:11x =22,解得:x =2,把x =2代入①得:6+2y =12,解得:y =3,则方程组的解为23x y =⎧⎨=⎩. 【点睛】此题考查了实数运算和解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.82.解下列方程组:(1)y x y 4x 15=⎧+=⎨⎩; (2)5x 2y 12x 3y 4-=⎧-=-⎨⎩. 【答案】(1){x 3y 3==;(2){x 1y 2==.【解析】【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)y x y 4x 15=⎧+=⎨⎩①②, 将①代入①得x+4x=15,解得:x=3,由①知y=3,则方程组的解为{x 3y 3==;(2)5x 2y 12x 3y 4-=⎧-=-⎨⎩①②,①×3得,15x-6y=3①,①×2得,4x-6y=-8①,由①-①得11x=11,解得:x=1,把x=1代入①得y=2,则方程组的解是{x1y2==.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.83.(1)计算:9×(﹣13)2﹣|﹣8|;(2)解方程组:371 x yx y-=⎧⎨-=-⎩.【答案】(1)-5;(2)45xy=⎧⎨=⎩.【解析】【分析】(1)原式利用乘方的意义,算术平方根定义,以及绝对值的代数意义计算即可求出值;(2)方程组利用加减消元法求出解即可.【详解】解:(1)原式=1+2﹣8=﹣5;(2)371x yx y-=⎧⎨-=-⎩①②,①﹣②得:2x =8,解得:x =4,把x =4代入①得:y =5,则方程组的解为45x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.84.下列方程:①257x y +=;②21x y=+;③21x y +=;④()()28x y x y +--=;⑤210x x --=;⑥132x y x y -+=-; (1)请找出上面方程中,属于二元一次方程的是:________(只需填写序号);(2)请选择一个二元一次方程,求出它的正整数解;(3)任意选择两个二元一次方程组成二元一次方程组,并求出这个方程组的解.【答案】(1)①④⑥;(2)选择①,正整数解为:11x y =⎧⎨=⎩;(3)选择①和④,方程组的解为:199x y =-⎧⎨=⎩. 【解析】【分析】(1)根据二元一次方程的定义,即可解答;(2)根据方程求出整数解,即可解答;(3)根据二元一次方程组的解法,即可解答.【详解】解:(1)方程中,属于二元一次方程的是①④⑥,故答案为:①④⑥;(2)选择①257x y +=,则正整数解为:11x y =⎧⎨=⎩; (3)选①和①,则()()25728y x x y x y +-+=⎧-=⎪⎨⎪⎩, 整理得:73825x y x y +=⎨=+⎧⎩①②, ②×2得:2616x y +=③,③-①得:9y =,把9y =代入①得:2597x +⨯=,解得:19x =-,∴方程组的解为:199x y =-⎧⎨=⎩. 【点睛】本题考查了二元一次方程、解二一次方程组,解决本题的关键是解二元一次方程组.85.若关于x ,y 的方程组3523518x y m x y m -=⎧⎨+=-⎩的解满足x <0且y <0,求m 的范围.【答案】﹣18<m <6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m 的范围.【详解】解:3523518x y m x y m -=⎧⎨+=-⎩①②, ①+②,得:6x =3m ﹣18,解得:x =m 62-, ②﹣①,得:10y =﹣m ﹣18,解得:y =m 1810--, ∵x <0且y <0, ∴60218010m m -⎧⎪⎪⎨--⎪⎪⎩<<, 解得:﹣18<m <6.【点睛】本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.86.解方程组:(1)729y x x y =+⎧⎨-=⎩(2)324237x y x y +=⎧⎨-=⎩【答案】(1) 1623x y =⎧⎨=⎩;(2) 21x y =⎧⎨=-⎩. 【解析】(1)将第一个方程代入第二个方程消去y求出x的值,进而求出y的值,即可确定出方程组的解;(2)先用加减消元法求出x的值,再用代入法求出y的值即可.【详解】(1)729y xx y=+⎧⎨-=⎩①②,把①代入②得:2x﹣7﹣x=9,解得:x=16,把x=16代入①得:y=23,则方程组的解为:1623xy=⎧⎨=⎩;(2)324237x yx y①②+=⎧⎨-=⎩,①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为:21xy=⎧⎨=-⎩.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.87.解方程组:21 3211 x yx y+=⎧⎨-=⎩.【答案】31 xy=⎧⎨=-⎩【解析】【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【详解】解:213211x yx y①②+=⎧⎨-=⎩,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是31xy=⎧⎨=-⎩.【点睛】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.88.(1)233x-=12x+﹣1(2)20 346 x yx y+=⎧⎨+=⎩【答案】(1)x=79(2)63xy=⎧⎨=-⎩【解析】【分析】(1) 先去分母,再去括号,最后移项,化系数为1,从而解得方程;(2) 先利用加减消元法求出y,然后利用代入法求出x即可.【详解】(1) 233x-=12x+﹣1 2(2-3x)=3(x+1)-6,4-6x=3x+3-6,-9x=-7,x=79;(2)20346x yx y+=⎧⎨+=⎩①②, ①×3-②得6y-4y=-6,解得y=-3,把y=-3代入①得x-6=0,解得x=6,所以方程组的解为63xy=⎧⎨=-⎩.【点睛】本题考查了解一元一次方程和二元一次方程组,解题的关键是熟练掌握解一元一次方程的步骤和解二元一次方程组的基本方法.89.解方程组415 323x yx y+=⎧⎨-=⎩.【答案】33 xy=⎧⎨=⎩【解析】【分析】直接利用加减消元法解方程得出答案.【详解】解:415 323, x yx y+=⎧⎨-=⎩①②①×2+②得:11x=33,解得:x=3,把x=3代入①得:12+y=15,解得:y=3,故方程组的解为33xy=⎧⎨=⎩.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.90.(阅读理解)在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组2()3 +1x x yx y++=⎧⎨=⎩①②(2)已知432109+7525x y zx y z①②++=⎧⎨+=⎩,求x+y+z的值解:(1)把②代入①得:x+2×1=3.解得:x=1.把x=1代入②得:y=0.所以方程组的解为1xy=⎧⎨=⎩,(2)①×2得:8x+6y+4z=20.③②﹣③得:x+y+z=5.(类比迁移)(1)若133523x y zx y z++=⎧⎨++=⎩,则x+2y+3z=.(2)解方程组22025297x yx yy--=⎧⎪⎨-++=⎪⎩①②(实际应用)打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?【答案】【类比迁移】(1)18;(2)34xy=⎧⎨=⎩;【实际应用】比不打折少花了288元.【解析】【分析】(1)133523x y zx y z++=⎧⎨++=⎩中的两式相加再除以2即可得出答案;(2)先对①移项得到2x﹣y=2,再将2x﹣y=2带入②,即可求出答案;【实际应用】设打折前A商品每件x元,B商品每件y元,由题意得:39x+21y=1080,即可求出答案.【详解】(1)133523x y zx y z++=⎧⎨++=⎩①②,(①+②)÷2,得:x+2y+3z=18.故答案为:18.(2)22025297x yx yy--=⎧⎪⎨-++=⎪⎩①②,由①得:2x﹣y=2③,将③代入②中得:1+2y=9,解得:y=4,将y=4代入①中得:x=3.∴方程组的解为34xy=⎧⎨=⎩.(实际应用)设打折前A商品每件x元,B商品每件y元,根据题意得:39x+21y=1080,即13x+7y=360,将两边都乘4得:52x+28y=1440,1440﹣1152=288(元).答:比不打折少花了288元.【点睛】本题考查解二元一次方程组和二元一次方程组的应用,解题的关键是掌握解二元一次方程组的方法和根据题意列二元一次方程组.。

七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标

七年级数学下册 二元一次方程组经典练习题+答案解析100道  人教新课标

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

人教版初中七年级数学下册第八单元《二元一次方程组》(含答案解析)

人教版初中七年级数学下册第八单元《二元一次方程组》(含答案解析)

一、选择题1.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( ) A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩ B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩ D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩ A 解析:A【分析】 根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组. 2.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或5C解析:C【解析】∵2x +1·4y =128,27=128,∴x +1+2y =7,即x +2y =6.∵x ,y 均为正整数, ∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩ ∴x +y =4或5.3.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t = C解析:C【分析】运用加减消元法求解即可.【详解】 解:解方程组232261s t s t +=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1), 即,9t=3,故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 5.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x 只,树有y 棵,由题意可列方程组( )A .3551y x y x +=⎧⎨-=⎩B .3551y x y x -=⎧⎨=-⎩C .15355x y y x ⎧+=⎪⎨⎪=-⎩D .5315x y x y -⎧=⎪⎪⎨⎪=-⎪⎩ D 解析:D根据“三个坐一棵,五个地上落;五个坐一棵,闲了一棵树”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设乌鸦有x只,树有y棵,依题意,得:5315xyxy-⎧=⎪⎪⎨⎪=-⎪⎩.故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.2256x yx y+=⎧⎨=⎩B.2265x yx y+=⎧⎨=⎩C.22310x yx y+=⎧⎨=⎩D.22103x yx y+=⎧⎨=⎩A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】 当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确 解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A .【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键. 8.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =- C解析:C将x 看做常数移项求出y 即可得.【详解】由2x-y=3知2x-3=y ,即y=2x-3,故选C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .9.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2-B .2C .6-D .6C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】 2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键.10.方程组320x y x y +=⎧⎨-=⎩的解是( ) A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .30x y =⎧⎨=⎩ B 解析:B【分析】二元一次方程组的求解方法有两种:(1)加减消元法;(2)代入消元法,此题用加减消元法求解更为简便;【详解】 ∵320x y x y +=⎧⎨-=⎩①② , ①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为12x y =⎧⎨=⎩,【点睛】本题考查了二元一次方程组的解法,正确利用加减消元法求解是解题的关键.二、填空题11.重庆某快递公司规定:寄件不超过1kg 的部分按起步价计费,超过1kg 不足2kg ,按照2kg 收费;超过2kg 不足3kg 按照3kg 收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a 元,超过部分b 元/kg ;寄往北京的起步价为()7a +元,超过部分()4b +元/kg .已知一个寄往重庆市内的快件,质量为2kg ,收费13元;一个寄往北京的快件,质量为4.5kg ,收费42元.如果一个寄往北京的快件,质量为2.8kg ,应收费______元.30【分析】根据分别寄快递到上海和北京的快递质量和费用即可得出关于ab 的二元一次方程组解之然后根据28kg 按照3kg 收费即可得出应收费【详解】解:依题意得:解得寄往北京市快件重28kg 按照3kg 收费解析:30【分析】根据分别寄快递到上海和北京的快递质量和费用,即可得出关于a ,b 的二元一次方程组,解之,然后根据2.8kg 按照3kg 收费即可得出应收费.【详解】解:依题意,得:137(51)(4)42a b a b +=⎧⎨++-+=⎩, 解得112a b =⎧⎨=⎩, 寄往北京市快件重2.8kg 按照3kg 收费,应收费:7(31)(4)1172(24)30a b ++-+=++⨯+=元,故答案为:30.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两 解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键. 13.若1,3x y =-⎧⎨=⎩是关于x ,y 的二元一次方程组5,x y m x my n +=⎧⎨-=⎩的解,则n 的值为______.5【分析】将代入方程组求解即可【详解】将代入方程组得解得故答案为:5【点睛】此题考查二元一次方程组的解解二元一次方程组正确计算是解题的关键 解析:5【分析】将13x y =-⎧⎨=⎩代入方程组求解即可. 【详解】 将13x y =-⎧⎨=⎩代入方程组5x y m x my n +=⎧⎨-=⎩,得 213m m n =-⎧⎨--=⎩解得25m n =-⎧⎨=⎩, 故答案为:5.【点睛】此题考查二元一次方程组的解,解二元一次方程组,正确计算是解题的关键.14.已知37m m n x y +-与653x y 是同类项,则m n -=_______.【分析】先根据同类项的定义可得mn 的值再代入计算即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了同类项二元一次方程组的应用熟练掌握同类项的定义是解题关键解析:1-【分析】先根据同类项的定义可得m 、n 的值,再代入计算即可得.【详解】由题意得:365m m n =⎧⎨+=⎩, 解得23m n =⎧⎨=⎩, 则231m n -=-=-,故答案为:1-.【点睛】本题考查了同类项、二元一次方程组的应用,熟练掌握同类项的定义是解题关键. 15.为落实习总书记“绿水青山就是金山银山”的发展理念,我区府部门决定由甲、乙、丙三个工程队负责完成一条总工作量为a 的公园改造的施工任务.经过一段时间,甲、乙、丙三个工程队完成的工程量之比是3:4:5为更合理的分任务,经测算,将剩余工程量的916交给了丙队,其余工程量由甲、乙两个工程队共同完成,乙工程队再工作一段时间后因另有任务先离开.工程结束时发现,丙队完成的工程量占总工程量的1940,甲、乙两队完成其余工程的工程量之比为4:3.则乙队完成的工程量与总工程量之比是:______.【分析】设一开始甲乙丙三个工程队完成的工程量为b 则剩余工程量为a-b 然后表示出丙队完成的工程量根据丙队完成的工程量占总工程量的列出等式从而得到a 与b 的数量关系再表示出乙队完成的工程量把a 与b 的数量关解析:11:40.【分析】设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b ,然后表示出丙队完成的工程量,根据丙队完成的工程量占总工程量的1940列出等式,从而得到a 与b 的数量关系,再表示出乙队完成的工程量,把a 与b 的数量关系代入计算即可.【详解】解:设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b ,∴丙队完成的工程量为()951612a b b -+, ∴()9519161240a b b a -+=, 解得,35b a =, 乙队一开始完成的工程量为412b ,后来完成的工程量为()()73316716a b a b -⨯=-, ∴乙队完成的工程量为()43433311121612516540b a b a a a a ⎛⎫+-=⨯+-= ⎪⎝⎭, ∴乙队完成的工程量与总工程量之比是11:40.故答案是:11:40.【点睛】本题考查工程问题,考查学生分析解决问题的能力,正确求出一开始完成的工程量与总工程量的数量关系是关键.16.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.【分析】设松鹤长春欢乐远长健康长寿三种花束的销量分别为:(单位:束)再分别求解一束松鹤长春欢乐远长健康长寿的单价根据重阳节当天销售这三种花束共2549元其中百合花的销售额为458元列方程组再求解剑兰解析:216.【分析】设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束),再分别求解一束“松鹤长春”“欢乐远长”“健康长寿”的单价,根据重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,列方程组,再求解剑兰的销量:22y z +,即可得到答案.【详解】解:设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束), 由题意可得:一束“松鹤长春”的单价为:318+16=204⨯⨯(元), 一束“欢乐远长”花束的单价为:316+16+52=284⨯⨯⨯(元), 一束“健康长寿”花束的单价为:314+12+25=234⨯⨯⨯(元),8644582028232549x y z x y z ++=⎧∴⎨++=⎩①② ②2⨯-①5⨯得:40564640302050982290,x y z x y z ++---=-26262808,y z ∴+=108,y z ∴+=22216,y z ∴+=即剑兰的销量为:216枝.故答案为:216.【点睛】本题考查的是三元一次方程组的应用,利用整体法求解方程组中的量是解题的关键. 17.一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63,则原来的两位数是________________.81或92【分析】结合题意设原来的两位数十位数字为x 个位数字为y 根据新得到的两位数比原数小63进行分析即可得到答案【详解】设原来的两位数十位数字为x 个位数字为y 根据题意得:∴∵一个两位数交换个位与十解析:81或92【分析】结合题意,设原来的两位数,十位数字为x ,个位数字为y ,根据新得到的两位数比原数小63进行分析,即可得到答案.【详解】设原来的两位数,十位数字为x ,个位数字为y根据题意得:()101063x y y x +-+=∴7x y -=∵一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63∴6x >当7x =时,0y =,即原两位数为:70,新得到的为:7,不是两位数,故不符合题意; 当8x =时,1y =,即原两位数为:81,新得到的为:18;当9x =时,2y =,即原两位数为:92,新得到的为:29;故答案为:81或92.【点睛】本题考查了二元一次方程的应用;解题的关键是熟练掌握用代数式表示两位数,从而完成求解.18.已知,方程12230a b x y -+-+=是关于,x y 的二元一次方程,则a b +=________.1【分析】利用二元一次方程的定义得出关于的方程解方程并代入代数式即可【详解】∵方程是关于的二元一次方程∴解得∴故答案为:1【点睛】本题考查了二元一次方程的定义熟练掌握二元一次方程的定义是解本题的关键【分析】利用二元一次方程的定义得出关于a ,b 的方程,解方程并代入代数式即可.【详解】∵方程12230a b x y -+-+=是关于x ,y 的二元一次方程,∴11a -=,21b +=,解得2a =,1b =-,∴211a b +=-=.故答案为:1.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键. 19.若方程2(3)31a a x y --+=是关于x ,y 的二元一次方程,则a 的值为_____.-3【分析】根据二元一次方程的定义:含有两个未知数并且含有未知数的项的次数都是1像这样的方程叫做二元一次方程可得|a|-2=1且a-3≠0再解即可【详解】解:由题得解得a=-3故答案为:-3【点睛】解析:-3【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得|a|-2=1,且a-3≠0,再解即可.【详解】 解:由题得,2130a a ⎧-⎨-≠⎩= , 解得a=-3,故答案为:-3.【点睛】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.20.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225x y ⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.三、解答题21.某水果店有甲,乙两种水果,它们的单价分别为a 元/千克,b 元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a 和b 的值;(2)甲种水果涨价m 元/千克(02)m <<,乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m 的代数式表示).解析:(1)a 的值为3,b 的值为5;(2)52m- 【分析】(1)根据等量关系:购买甲5千克,乙2千克,共花费25元;购买甲3千克,乙4千克,共花费29元;列出方程组求解即可;(2)可设购买甲种糖果x 千克,则购买乙种糖果(10-x )千克,根据花了45元,列出方程即可求解;【详解】解:(1)依题意有52253429a b a b +=⎧⎨+=⎩,解得35a b =⎧⎨=⎩. 故a 的值为3,b 的值为5;(2)设购买甲种水果x 千克,则购买乙种水果(10)x -千克,依题意有:(3)5(10)45m x x ++-=, 解得:52x m=-; 故购买甲种水果52m-千克. 【点睛】 本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.22.解方程组:()()41622358x y x y ⎧+=-⎪⎨-=-⎪⎩①② 解析:9412x y ⎧=-⎪⎪⎨⎪=-⎪⎩【分析】将原方程化简整理后再运用加减消元法求解即可.【详解】解:原方程组可化为233,252,x y x y -=-⎧⎨-=-⎩③④③-④,得21y =-, 12y , 将12y 代入③,得94x =-. 所以原方程组的解是9,41.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(1)解方程组:21035x yx y+=⎧⎨-=⎩;(2)解不等式组:2(1)35423xxx+-<⎧⎪-⎨-≥⎪⎩.解析:(1)81xy=⎧⎨=⎩;(2) 13x≤<.【分析】(1)利用加减消元法,先消去x,求得y,后代入求得x,从而得到方程组的解;(2)分别求得不等式组中每一个不等式的解集,再确定出公共部分即可.【详解】(1)由21035x yx y+=⎧⎨-=⎩①②,①-②,得5y=5,解得y=1;把y=1代入①,解得x=8,所以原方程组的解为=81 xy⎧⎨=⎩.(2)由2(1)35423xxx+-<⎧⎪⎨--≥⎪⎩①②,解不等式①得 x<3;解不等式②得x≥1;所以原不等式组的解集为1≤x<3.【点睛】(1)考查了二元一次方程组的解法,熟练掌握加减消元法是解题的关键;(2)考查了一元一次不等式组的解法,熟练求解,利用数形结合思想,灵活确定解集是解题的关键.24.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?解析:(1)6218x y ++;(2)3600元【分析】(1)根据长方形的面积=长×宽,表示各部分的面积,于是可表示出总面积.(2)根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,列出方程组求解,可求出总面积,再根据单价可求出铺地砖的总费用.【详解】解:(1)卧室的长=2+2=4,厨房的长=6-3=3,∴地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得64236218152x x y y =⨯⨯⎧⎨++=⨯⎩解得:41.5x y =⎧⎨=⎩∴地面总面积为:S=6x+2y+18=45(m 2),∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点睛】本题考查二元一次方程组的应用,关键是能根据等量关系列出方程组.25.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为 M 的“立达数”,如 34 的“立达数”为 36. (1)求证:对任意一个两位正整数 A ,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值.解析:(1)见解析;(2) B 的值为68或59.【分析】(1)设A 的十位数字为a ,个位数字为b ,其“诚勤数”为100a+20+b 、“立达数”为10a+b+2,作差整理即可得;(2)设B=10a+b ,1≤a≤9,0≤b≤9(B 加上2后各数字之和变小,说明个位发生了进位),根据““立达数”的各位数字之和是B 的各位数字之和的一半”列出关于a 、b 的方程,求解可得.【详解】解:(1)设A的十位数字为a,个位数字为b,则A=10a+b,它的“诚勤数”为100a+20+b,它的“立达数”为10a+b+2,∴100a+20+b-(10a+b+2)=90a+18=6(15a+3),∵a为整数,∴15a+3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B=10m+n,1≤m≤9,0≤n≤9(B加上2后各数字之和变小,说明个位发生了进位),∴B+2=10m+n+2,则B的“立达数”为10(m+1)+(n+2-10),∴m+1+n+2﹣10=12(m+n),整理,得m+n=14,∵1≤m≤9,0≤n≤9,∴m8n6=⎧⎨=⎩、m6n8=⎧⎨=⎩、m9n5=⎧⎨=⎩、m5n9=⎧⎨=⎩、m7n7=⎧⎨=⎩,经检验:77、86和95不符合题意,舍去,∴所求两位数为68或59.【点睛】本题主要考查了数字问题,根据题意表示出A、B两数的“立达数”、“诚勤数”及其变化是解题的关键.26.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?解析:(1) 18辆;(2) 租45座的客车2辆,租60座客车最省钱.【分析】(1)设单租45座客车x辆,则参加春游的师生总人数为45x人,根据人数与客车的数量关系建立方程求出其解即可;(2)等量关系为:45座客车能坐的人数+60座客车能坐的人数=秋游的师生总人数,选取正整数解,比较即可.【详解】解:(1)设单租45座客车x辆,则参加春游的师生总人数为45x人.根据题意,得45x=60(x−4)−30,解得:x=18.答:只租45座的客车,需要18辆车;(2)解:45×18=810(人)设租45座客车x 辆,60座客车y 辆.根据题意得:45x +60y =810.∵x ,y 均为正整数,∴x =2,y =12;或x=6,y=9;或x=10,y=6;或 x=14,y=3.2500×2+3000×12=41000(元)2500×6+3000×9=42000(元)2500×10+3000×6=43000(元)2500×14+3000×3=44000(元)∵41000﹤42000﹤43000﹤44000∴租45座的客车2辆,租60座客车12辆最省钱.【点睛】本题主要考查了用一元一次方程及二元一次方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.27.解方程组:(1)379x y x y +=⎧⎨=-⎩; (2)5217345x y x y -=⎧⎨+=⎩. 解析:(1)54x y =-⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)利用代入消元法即可解方程求解;(2)利用加减消元法①×2+②得出x 的值,进而代入②求出y 的值即可.【详解】解:()3719x y x y +=⎧⎨=-⎩,①,② 把②代入①,得937y y -+=,解得4y =,把4y =代入②,得495x =-=-,所以方程组的解为54.x y =-⎧⎨=⎩, ()52172345x y x y -=⎧⎨+=⎩,①,② ①2⨯+②,得103345x x +=+,解得3x =,把3x =代入②,得945y +=,解得1y =-,所以方程组的解为31.x y =⎧⎨=-⎩, 【点睛】本题考查解二元一次方程组,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.28.把y ax b =+(其中a 、b 是常数,x 、y 是未知数)这样的方程称为“雅系二元一次方程”当y x =时,“雅系二元一次方程y ax b =+”中x 的值称为“雅系二元一次方程”的“完美值”.例如:当y x =时,雅系二元一次方程”34y x =-化为34x x =-,其“完美值”为2x =.(1)求“雅系二元一次方程”56y x =-+的“完美值”;(2)3x =是“雅系二元一次方程”3y x m =+的“完美值”,求m 的值;(3)“雅系二元一次方程”1y kx =+(0k ≠,k 是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.解析:(1)x =1;(2)m =﹣6;(3)当k =1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x =11k - 【分析】(1)由已知得到式子x=-5x+6,求出x 即可;(2)由已知可得x=3x+m ,将x=3代入即可求m ;(3)假设存在,得到x=kx+1,所以(1-k )x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x=11k -. 【详解】(1)由已知可得,x =-5x+6,解得x =1,∴“雅系二元一次方程”y =-5x+6的“完美值”为x =1;(2)由已知可得x =3x+m ,x =3,∴m =﹣6;(3)若“雅系二元一次方程”y =kx+1(k≠0,k 是常数)存在“完美值”,则有x =kx+1,∴(1﹣k )x =1,当k =1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x =11k-. 【点睛】本题考查新定义,能够理解题意,将所求问题转化为一元一次方程求解是关键.。

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案) (33)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案) (33)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)用“加减法”将方程组5x 3y 55x 4y 1-=-⎧+=-⎨⎩中的未知数x 消去后得到的方程是( ) A .y=4B .7y=4C .-7y=4D .-7y=14【答案】B【解析】 分析:根据题意,用第二个方程减去第一个方程即可消去未知数x.详解:5x 3y 55x 4y 1-=-⎧+=-⎨⎩①② ②-①得7y=4.故选:B.点睛:此题主要考查了加减消元法解二元一次方程组,关键是观察特点,选择合适的方式消去未知数x ,比较简单.二、解答题22.解方程组:(1)150243300x y x y =-⎧⎨+=⎩ (2)3005%53%25%300x y x y +=⎧⎨+=⨯⎩【答案】⑴ 3060x y =⎧⎨=⎩;(2)175125x y =⎧⎨=⎩【解析】分析:(1)直接利用代入消元法求解即可;(2)先将②化简,去掉百分号再利用加减消元法解答.详解:(1)150243300x y x y =-⎧⎨+=⎩①②, ①代入②得,4(150-2y )+3y=300,解得y=60,把y=60代入①得,x=150-2×60=30,所以,方程组的解是3060x y =⎧⎨=⎩; (2)3005%53%25%300x y x y +=⎧⎨+=⨯⎩①② ①×5-②得,-48y=-6000,解得:y=125,把y=125代入①得:x+125=300,x=175,于是方程组的解为:175125x y =⎧⎨=⎩. 点睛:本题要求同学们要熟悉二元一次方程组的解法:加减消元法和代入消元法,解题时要根据方程组的特点进行有针对性的计算.23.(1)计算:()()1200802009123 1.523π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)解方程组:743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 【答案】(1)52-;(2)6024x y =⎧⎨=-⎩; 【解析】分析:(1)根据零指数幂、负整数指数幂、有理数的乘方等知识点进行解答;(2)原方程组去分母后,用加法消元法求解即可.详解:(1)原式=1﹣2﹣2008233()322⨯⨯=52-; (2)方程整理得:34842348x y x y +=⎧⎨+=⎩①②, ①×2-②×3得:y =-24,把y =-24代入②得:x =60,∴原方程组的解为)6024x y =⎧⎨=-⎩点睛:需要注意的知识点是:a ﹣p =1pa ;解二元一次方程组的关键是熟练运用方程组的解法,本题属于基础题型.24.按要求解二元一次方程组:(1)用代入法解:528x y x y +=⎧⎨+=⎩①② (2)用加减法解:3272322x y x y -=⎧⎨+=⎩①② 【答案】(1) 32x y =⎧⎨=⎩;(2) 54x y =⎧⎨=⎩【解析】 分析:(1)根据代入消元法的方法,先由x+y=5用x 表示y ,然后直接代入2x+y=8进行解题即可;(2)把方程3x-2y=7乘以3,方程2x+3y=22乘以2,然后利用加减消元法消去y 即可求解.详解:(1)由①得,5y x =-⑴把③代入②得,258x x +-=解得,3x =.把3x =代入③得,2y =.∴这个二元一次方程组的解为32x y =⎧⎨=⎩. (2)⑴×3得,9621x y -=⑴⑴×2得,4644x y +=⑴由③+④得,1365x =.解得,5x =把5x =代入①得,3527y ⨯-=解得,4y =∴这个二元一次方程组的解为54x y =⎧⎨=⎩点睛:此题主要考查了二元一次方程的解法,关键是根据方程的特点,按照要求,选择加减消元法和代入消元法求解,比较简单.25.已知方程组4234ax by x y -=⎧⎨+=⎩与2432ax by x y +=⎧⎨-=⎩的解相同,试求a+b 的值. 【答案】32. 【解析】分析:根据题意先解方程组234432x y x y +=⎧⎨-=⎩, 再求a b ,的值即可. 详解:依题意可有234432x y x y +=⎧⎨-=⎩, 解得123x y =⎧⎪⎨=⎪⎩,所以,有243223a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得332a b =⎧⎪⎨=-⎪⎩, 因此333.22a b +=-= 点睛:考查解二元一次方程组,常用的方法有加减消元法和代入消元法.26.已知二元一次方程28px y +=,564x y -=,2580x y +-=有公共解,求p 的值. 【答案】5817【解析】【分析】先解方程组5642580x y x y -=⎧⎨+-=⎩,再把求得的解代入28px y +=,可求p.【详解】解:解方程组5642580x y x y -=⎧⎨+-=⎩得68373237x y ⎧=⎪⎪⎨⎪=⎪⎩, 代入28px y +=,得6832283737p +⨯=,解得5817p =. 【点睛】本题考核知识点:解二元一次方程组.解题关键点:熟练解方程组.27.解方程组:(1)6x y x y =⎧⎨+=⎩ ; (2)3213 325x y x y +=⎧⎨-=⎩.【答案】(1)33x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩【解析】【分析】(1)用代入法解方程组;(2)用加减法解方程组.【详解】解:(1)6x y x y =⎧⎨+=⎩①②, 把①代入②得:26y =,即3y =,把3y =代入①得:3x =,则方程组的解为33x y =⎧⎨=⎩; ()32132325x y x y +=⎧⎨-=⎩①②, ①+②得:618x =,即3x =,①-②得:48y =,即2y =,则方程组的解为32x y =⎧⎨=⎩. 【点睛】本题考核知识点:解二元一次方程组.解题关键点:掌握二元一次方程组的解法.28.解方程组:(1)623x y x y -=⎧⎨-=⎩(2)22(1)2(2)(1)5x y x y -=-⎧⎨-+-=⎩ 【答案】(1)39x y =-⎧⎨=-⎩;(2)42x y =⎧⎨=⎩【解析】【分析】(1)用加减法可求解;(2)先化简再运用加减法求解.【详解】解:(1) (1)623x y x y -=⎧⎨-=⎩①② ①-②,得-x=3,所以,x=-3把x=-3代入①得-3-y=6,解得y=-9所以方程组的解是39x y =-⎧⎨=-⎩. (2)方程组可化为20210x y x y -=⎧⎨+=⎩①② ①+②×2,得5x=20解得x=4.把x=4代入②,得2×4+y=10解得y=2.所以,方程组的解是42x y =⎧⎨=⎩. 【点睛】本题考核知识点:解方程组. 解题关键点:熟记方程组的一般解法.29.解方程组:521x y x y +=⎧⎨-=⎩①② 【答案】23x y =⎧⎨=⎩【解析】分析:本题用加减消元法或代入消元法均可.详解:解方程组:521x y x y +=⎧⎨-=⎩①② 解:①+②得:3x=6x=2把x=2代入①得:y=3.∴23x y =⎧⎨=⎩点睛:这类题目的解题关键是掌握方程组解法中的加减消元法和代入消元法.30.解方程组:22120y x x xy y -=⎧⎨--=⎩【答案】21x y =-⎧⎨=-⎩ ,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩【解析】【分析】分析:根据题意,把方程②因式分解为ab=0的形式,然后构造二元一次方程组,再根据加减消元法或代入消元法求解方程即可.【详解】详解:22120y x x xy y -=⎧⎨--=⎩①② 由⑴得:(x ﹣2y )(x+y )=0x ﹣2y=0或x+y=0原方程组可化为120y x x y -=⎧⎨-=⎩,10y x x y -=⎧⎨+=⎩解得原方程组的解为21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩⑴原方程组的解是为21x y =-⎧⎨=-⎩, 点睛:此题主要考查了二元一次方程组的特殊解法,利用加减消元法或代入消元法解方程组,应用因式分解法对方程变形是解题关键,有一定的难度,是中考扩展型的题目.。

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (100)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (100)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案)已知4x-y=6,用含x的代数式表示y,则y=______________.【答案】-6+4x.【解析】【分析】把x当作已知数,求出关于y的方程的解即可.【详解】解:∵4x-y=6,∴-y= 6-4x,∴ y= -6+4x,故答案为:-6+4x【点睛】本题考查了解二元一次方程,解题关键是把x当作已知数表示y.92.|5212||326|0x y x y+-++-=,则2x+4y=________.【答案】0【解析】【分析】根据非负数的性质列出方程组,求出x、y的值代入所求代数式计算即可.【详解】由题意得52120 3260x yx y+-⎧⎨+-⎩==,两个方程相减得:2x=6,解得x=3.把x=3代入5x+2y-12=0得,5×3+2y-12=0,解得y=-32.把x=3,y=-32代入2x+4y得:原式=2×3+4×(-32)=0.故答案为:0.【点睛】此题考查绝对值的非负性,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.93.对于方程238x y+=,用含x的代数式表示y,则可以表示为________.【答案】823xy-=【解析】【分析】根据等式的基本性质移项、系数化1即可.【详解】解:238x y+=移项,得382y x=-系数化1,得823xy-=故答案为:823xy-=.【点睛】此题考查的是用含一个字母的式子表示另一个字母,掌握等式的基本性质是解决此题的关键.94.已知 x ,y 是方程组2624x y x y +=⎧⎨+=⎩的解,则 x −y 的值为_____. 【答案】2【解析】【分析】用①-②可直接求解.【详解】2624x y x y +=⎧⎨+=⎩①② ①-②得:x −y=2故答案为:2【点睛】本题考查的是解二元一次方程组-加减消元法,掌握加减消元的方法是关键.95.以方程组2123y x y x =+⎧⎨=--⎩的解为坐标的点(,)x y 在第__________象限. 【答案】三【解析】【分析】解出x ,y 的值,再通过符号判断出在第几象限即可.【详解】解:由方程组2123y x y x =+⎧⎨=--⎩可得11x y =-⎧⎨=-⎩, 根据第三象限点的特点可知,点(-1,-1)在第三象限,故答案为:三.【点睛】本题考查了二元一次方程组的解法及直角坐标系中各象限点的坐标特点,解题的关键是熟记各象限点的坐标特点.96.几个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是68x y =⎧⎨=⎩,求方程组111222326326a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以6,通过换元替换的方法来解决.”参考他们的讨论,你认为这个题目的解应该是_______.【答案】1224x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以6,通过换元替代的方法即可得到一个关于x ,y 的方程组,即可求解.【详解】第二个方程组的两个方程的两边都除以6得:11122211231123a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是68x y =⎧⎨=⎩,∴162183xy⎧=⎪⎪⎨⎪=⎪⎩,解得1224xy=⎧⎨=⎩.故答案为:1224xy=⎧⎨=⎩.【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.97.若25(4)0x y x y+++--=,则___________xy=【答案】94【解析】【分析】根据非负数性质列出方程组,再用加减法解方程组可得.【详解】因为25(4)0x y x y+++--=,且250;(4)0x y x y+≥--≥+所以250;(4)0x y x y+=--=+所以5040 x yx y++=⎧⎨--=⎩解得1292 xy⎧=-⎪⎪⎨⎪=-⎪⎩,所以xy=94故答案为:94【点睛】 考核知识点:解二元一次方程组.利用非负数性质列方程组,再运用加减法求解是关键.98.小明用加减消元法解二元一次方程组236223x y x y +=⎧⎨-=⎩①②.由①-②得到的方程是________.【答案】53y =【解析】【分析】直接利用两式相减进而得出消去x 后得到的方程.【详解】236223x y x y +=⎧⎨-=⎩①②, ①-①得:53y =.故答案为:53y =.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.99.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩的值为_____. 【答案】9727x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据二元一次方程组的加减消元法,即可求解.【详解】345254x y x y +=⎧⎨+=⎩①②, ①×5﹣②×4,可得:7x =9,解得:x =97, 把x =97代入①,解得:y =27, ∴原方程组的解是:9727x y ⎧=⎪⎪⎨⎪=⎪⎩. 故答案为:9727x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.100.若3126x y x y -=⎧⎨+=⎩,则2x y -=________. 【答案】7【解析】【分析】解方程求出x 、y 的值,然后代入求值即可.3126x y x y -=⎧⎨+=⎩①② ①-②得-5y=-5,解得,y=1,把y=1代入①,得:x=4,∴2x-y=8-1=7.故答案为:7【点睛】此题主要考查了二元一次方程组的解法,解二元一次方程组的方法有代入消元法和加减消元法.。

七年级数学(下)第八章《二元一次方程组》练习题含答案

七年级数学(下)第八章《二元一次方程组》练习题含答案

七年级数学(下)第八章《二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式中是二元一次方程的是A.2x+y=6z B .1x+2=3y C .3x-2y=9 D.x-3=4y2【答案】C2.下列方程组中不是二元一次方程组的是A.34xy=⎧⎨=⎩B.303xx y-=⎧⎨+=⎩C.33xx yy=⎧⎪-=⎨⎪=⎩D.96x yx a+=⎧⎨+=⎩【答案】D【解析】经过观察后可发现,只有D选项有3个未知数,不符合二元一次方程组的定义.故选D.3.方程组233x yx y-=⎧⎨+=⎩的解是A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩【答案】B【解析】233x yx y-=⎧⎨+=⎩①②,①+②得:36x=,即2x=,把2x=代入①得:1y=,原方程组的解为:21xy=⎧⎨=⎩,故选B.4.若方程6kx-2y=8有一组解32xy=-⎧⎨=⎩,则k的值等于A.-16B.16C.23D.-23【答案】D【解析】把32x y =-⎧⎨=⎩代入6kx -2y =8得-18k -4=8,∴k =23-.故选D . 5.二元一次方程x +3y =10的非负整数解共有A .1对B .2对C .3对D .4对【答案】D【解析】∵x +3y =10,∴x =10-3y ,∵x 、y 都是非负整数,∴y =0时,x =10;y =1时,x =7;y =2时,x =4;y =3时,x =1.∴二元一次方程x +3y =10的非负整数解共有4对.故选D .6.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩【答案】B二、填空题:请将答案填在题中横线上.7.若33125m n x y ---=是二元一次方程,则m =__________,n =__________.【答案】43;2 【解析】∵33125m n xy ---=是二元一次方程,∴3m -3=1且n -1=1,解得:43m =,n =2. 故答案为:43;2. 8.若方程组的解为42x y ==⎧⎨⎩,则写出这个方程组为__________. 【答案】62x y x y +=-=⎧⎨⎩(答案不唯一) 【解析】此题是一个开放型的题,只要是符合一元二次方程组的概念即可,如:62x y x y +=-=⎧⎨⎩(答案不唯一).故答案为:62x y x y +=-=⎧⎨⎩(答案不唯一).9.若12x y =⎧⎨=⎩是方程x -my =1的一个解,则m =__________. 【答案】0【解析】将12x y =⎧⎨=⎩代入方程x -my =1中,得1-2m =1,解得m =0.故答案为:0. 10.写出一个未知数为a ,b 的二元一次方程组:__________.【答案】答案不唯一,如212a b a b +=⎧⎨-=⎩等 【解析】未知数为a ,b 的二元一次方程组答案不唯一,如212a b a b +=⎧⎨-=⎩等,故答案为:答案不唯一,如212a b a b +=⎧⎨-=⎩等. 11.二元一次方程2x +y =6的所有正整数解是__________.【答案】12122124x x y y ==⎧⎧⎨⎨==⎩⎩, 三、解答题:解答应写出文字说明、证明过程或演算步骤.12.已知方程(2m -6)x |m -2|+(n -2)23ny -=0是二元一次方程,求m ,n 的值. 【解析】根据题意,得2|2|131m n -=⎧⎨-=⎩,26020m n -≠⎧⎨-≠⎩, ∴m =1,n =-2.13.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚? (2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?【解析】(1)设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩,(2)设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.14.已知关于x,y的二元一次方程组+4=273ax yx by⎧⎨-=-⎩的解是12xy=⎧⎨=⎩,求(a+b)99的值.【解析】把12xy=⎧⎨=⎩代入二元一次方程组+4=273ax yx by⎧⎨-=-⎩得,422723ab+⨯=⎧⎨-=-⎩,解得65ab=-⎧⎨=⎩,∴(a+b)99=-1.15.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②,由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩,看错了方程②中的b,得到方程组的解为54xy=⎧⎨=⎩,计算201820191()10a b+-的值.【解析】根据题意把31xy=-⎧⎨=-⎩代入4x-by=-2,得-12+b=-2,解得:b=10,把54xy=⎧⎨=⎩代入ax+5y=15,得5a+20=15,解得a=-1,所以a2018+(-110b)2019=(-1)2018+(-110×10)2019=0.。

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (74)

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (74)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)用代入法解方程组227x yx y+=⎧⎨-=⎩,①,②正确的解法是()A.先将①变形为2x y=+,再代入②B.先将①变形为2x y=-,再代入②C.先将②变形为72y x=-,再代入①D.先将②变形为72yx-=,再代入①【答案】B【解析】根据解二元一次方程的代入法,将①变形为x=2-y后可知,变形后A是错误的,B是正确的;将②变形为x=7+y2或y=2x-7可知,变形后C和D都是错误的.故选B.22.已知a,b满足方程组,则a+b=()A.2 B.3 C.4 D.5【答案】D【解析】+②得2a+2b=10,∴a+b=5.故选D.23.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.5【答案】D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+①得:3(x+y)=15,则x+y=5,故选D24.将点B(5,-1)向上平移2个单位得到点A(a+b,a-b).则()A.a=2,b=3 B.a=3,b=2 C.a=-3,b=-2 D.a=-2,b=-3【答案】B【解析】【分析】本题考查坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:将点B向上平移2个单位①点B的横坐标不变,纵坐标加2①a+b=5,-1+2= a-b①a=3,b=2故选B.二、解答题25.在解方程组134ax bycx y-=⎧⎨-=⎩时,小张因看错了b的符号,从而得解为32xy=⎧⎨=⎩,小李由于忽略了方程组中的C得到方程组的解为51xy=⎧⎨=⎩,求a+b+c的值【答案】a+b+c=7.【解析】试题分析:根据题意由两个同学的做法可得到三个等式,从而可求得a+b+c 的值.试题解析:由题意知3213513324a ba bc+=⎧⎪-=⎨⎪-=⎩,解得322abc=⎧⎪=⎨⎪=⎩,所以a+b+c=7.26.计算:(1)(﹣3)2(2)﹣|2|(3)3125x yx y+=-⎧⎨-=⎩;(4)5344(1)32x xx x-<⎧⎨-+≥⎩.【答案】(1)8;(2);(3)21xy=⎧⎨=-⎩;(4)12≤x<3.【解析】试题分析:(1)原式利用乘方、平方的定义计算即可;(2)原式利用平方和立法的定义以及绝对值进行计算即可;(3)原方程利用加减消元法即可解得;(4)分别解不等式的解集,再求公共部分即可.试题解析:(1)原式=9+2-3=8;(2)原式=2-(2)-(-2);(3)3125x y x y +=-⎧⎨-=⎩①② ①+②×3,得7x=14,解得x=2,把x=2代入②,得2×2-y=5,解得y=-1,所以原方程组的解为21x y =⎧⎨=-⎩; (4)()5344132x x x x -<⎧⎪⎨-+≥⎪⎩①② 解①,得x<3,解②,得x ≥12, 所以原不等式组的解集为:12≤x <3 27.已知关于x ,y 的方程组27243x y a x y a +=+⎧⎨-=-⎩的解是正数,且x 的值小于y 的值.(1)求a 的范围.(2)化简:|8a +11|-|10a +1|.【答案】(1)111<a<-.810-(2) 18a +12. 【解析】试题分析:(1)先求出y ,x ,再组成不等式求a 的范围即可.(2)由a 的范围求解即可.试题解析:(1)解方程组+=2+7243x y ax y a⎧⎨-=-⎩得8+11=3102=.3axay⎧⎪⎪⎨-⎪⎪⎩根据题意,得8+113102381110233aaa a⎧>⎪⎪-⎪>⎨⎪+-⎪<⎪⎩①②③解不等式①,得a>-118. 解不等式②,得a<5.解不等式③,得a<-110.∴不等式组的解是-118<a<-110.(2)∵-118<a<-110,∴8a+11>0,10a+1<0.∴|8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a +12.28.已知方程组42ax byax by-=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,求2a-3b的值.【答案】6.【解析】试题分析:根据方程组的解的定义,将21xy=⎧⎨=⎩代入方程组42ax byax by-=⎧⎨+=⎩中可得关于a,b的二元一次方程组,解方程组求出a,b的值,最后代入式子求值.试题解析:由已知可得24 22 a ba b-=⎧⎨+=⎩,解得321a b ⎧=⎪⎨⎪=-⎩, ∴()32323162a b -=⨯-⨯-=. 29.解方程组:(1)(加减法)21242x y x y +=⎧⎨-=⎩①② (2)(代入法)23322x y x y -=⎧⎨+=-⎩①② 【答案】(1) 1,0;x y =⎧⎨=⎩(2)01x y =⎧⎨=-⎩【解析】试题分析:根据二元一次方程组的解法—加减消元法和代入消元法求解方程组即可.试题解析:(1)21242x y x y ①②+=⎧⎨-=⎩, ①×2得2x+4y=2, ③③+②得4x=4,解得x=1,把x=1代入①得y=0,所以原方程组的解为1,0;x y =⎧⎨=⎩(2)23322x y x y ①②-=⎧⎨+=-⎩, 由②得x=-2y-2, ③把③代入①得2(-2y-2)-3y=3,解得y=-1,把y=-1代入③得x=0,所以原方程组的的解为0.1x y =⎧⎨=-⎩30.图中的折线ABC 表示某汽车的耗油量(/)y L km 与速度(/)x km h 之间的函数关系(30120x ≤≤).已知线段BC 表示的函数关系中,该汽车的速度每增加1km /h ,耗油量增加0.002L /km .(1)求图像中AB 段与BC 段分别对应的y 与x 的函数关系式.(2)该汽车的速度是多少时,耗油量最低?最低是多少?【答案】(1)AB :0.0010.18y x =-+,BC :0.0020.06y x =- (2)速度是80km /h 时,该汽车的耗油量最低,最低是0.1/L km【解析】(1)先把()30,0.15和()60,0.12,()90,0.12和()100,0.14分别代入y kx b =+中,利用待定系数法求出AB 、BC 的解析式;(2)观察图形发现,两线段的交点即为最低点,因此求出两函数解析式组成的方程组的解即可.解:(1)设AB 的解析式为:y kx b =+,把()30,0.15和()60,0.12代入y kx b =+中得:300.15600.12k b k b +=⎧⎨+=⎩解得110000.18k b ⎧=-⎪⎨⎪=⎩, ∴:0.0010.18AB y x =-+, 设BC 的解析式为:y kx b =+, 把()90,0.12和()100,0.14代入y kx b =+中得: 900.121000.14k b k b +=⎧⎨+=⎩解得0.0020.06k b =⎧⎨=-⎩, ∴:0.0020.06BC y x =-,(3)根据题意得0.0010.180.0020.06y x y x =-+⎧⎨=-⎩解得800.1x y =⎧⎨=⎩, 答:速度是80km /h ,该汽车的耗油量最低,最低是0.1L /km .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 二元一次方程组§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____ __。

2、在x+3y=3中,若用x 表示y ,则y=__ ___,用y 表示x ,则x=_ _____。

3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=___ ___;当y=0时,则x=__ ____。

5、方程2x+y=5的正整数解是___ ___。

6、若(4x-3)2+|2y+1|=0,则x+2=_____ _。

7、方程组⎩⎨⎧==+b xy ay x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是my x 25与2214-++n m n y x同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx 7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( )A、k=6 B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+cy ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

§8.2消元一、用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2)⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-qp q p 451332二、用加减法解下列方程组 (1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x(3)⎩⎨⎧=--=-7441156y x y x (4)⎩⎨⎧-=+-=-53412911y x y x(5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( 其中a 为常数)三、解答题1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。

2、求满足方程组⎩⎨⎧=-=--20314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy+的值。

3、列方程解应用题一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。

§8.3再探实际问题与二元一次方程组列方程解下列问题1、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?2、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?3、某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。

4、某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?5、甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。

求A、B两人骑自行车的速度。

(只需列出方程即可)6、已知甲、乙两种商品的原价和为200元。

因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。

求甲、乙两种商品的原单价各是多少元。

7、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。

8、12支球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分。

若有一支球队最终的积分为18分,那么这个球队平几场?9、现有A、B、C三箱橘子,其中A、B两箱共100个橘子,A、C两箱共102个,B、C两箱共106个,求每箱各有多少个?第八单元测试一、选择题(每题3分,共24分)1、表示二元一次方程组的是()A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=222,11xy x x y x 2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( )A 、⎩⎨⎧=-=;3,1y x B 、⎩⎨⎧-==;1,3y x C 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.3,1y x3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x ( ) A 、12 B 、121-C 、12-D 、.1214、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A 、;3,2-B 、;2,3-C 、;3,2-D 、.2,3- 5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时, =y ( )。

A 、23B 、-13C 、-5D 、13 7、关于关于y x 、的方程组⎩⎨⎧-=+-=-5m212y 3x 4m113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )A 、0B 、1C 、2D 、21 8、方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( )A 、01043=--x xB 、8543=+-x xC 、8)25(23=--x xD 、81043=+-x x二、填空题(每题3分,共24分)1、21173+=x y 中,若,213-=x 则=y _______。

2、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

3、如果⎩⎨⎧=-=+.232,12y x y x 那么=-+-+3962242y x y x _______。

4、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =______,b =______。

5、购面值各为20分,30分的邮票共27枚,用款6.6元。

购20分邮票_____枚,30分邮票_____枚。

6、已知⎩⎨⎧==⎩⎨⎧=-=310y 2x y x 和是方程022=--bx ay x 的两个解,那么a = , b =7、如果b a a b y x y x 4222542-+-与是同类项,那么 a = ,b = 。

8、如果63)2(1||=---a x a 是关于x 的一元一次方程,那么aa 12--= 。

三、用适当的方法解下列方程(每题4分,共24分)1、⎩⎨⎧=-=+-6430524m n n m2、⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x3、⎩⎨⎧=-=+110117.03.04.0y x y x4、⎪⎩⎪⎨⎧=+=+-722013152y x y x5、⎩⎨⎧-=+=--c y x c y x 72963112(c 为常数)6、⎩⎨⎧-=++=--c d y x d c y x 23434(d c 、为常数)四、列方程解应用题(每题7分,共28分)1、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

问一工多少名学生、多少辆汽车。

2、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。

3、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。

(用两种方法求解)4、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。

第八章§8.1一、1、-4,-0,34,38-- 2、y x x y 33,33-=-= 3、-1,1 4、2,35、⎩⎨⎧==⎩⎨⎧==12,31y x y x6、2.757、,23⎩⎨⎧==y x 8、11.5二、ADDBCCAADB三、1、当32≠≠a a 且时,=x 32-a 2、略 3、⎪⎩⎪⎨⎧==232y x §8.2一、1、⎪⎪⎩⎪⎪⎨⎧-==75720y x 2、⎩⎨⎧-=-=118y x 3、⎩⎨⎧-==12y x 4、⎩⎨⎧-=-=21y x 5、⎪⎪⎩⎪⎪⎨⎧-==196195y x6、⎪⎪⎩⎪⎪⎨⎧=-=75673y x 二、1、⎪⎩⎪⎨⎧==212n m 2、⎪⎪⎩⎪⎪⎨⎧-==2123y x 3、⎪⎪⎩⎪⎪⎨⎧-==221163y x 4、⎪⎩⎪⎨⎧==733y x 5、⎪⎪⎩⎪⎪⎨⎧==17121714y x 6、⎩⎨⎧==0y a x 三、1、⎩⎨⎧-==43b a 2、3 3、长3216、宽322 §8.3 1、⎩⎨⎧==250150y x 2、⎪⎩⎪⎨⎧===163050z y x 3、2.25Km 4、体操队10人,排球队15人,篮球队12人 5、设甲的速度是x 千米/小时,乙的速度是y 千米/小时,⎪⎩⎪⎨⎧=-=+2130302y x y x 6、7、⎩⎨⎧==24y x 8、平5场或3场或1场 9、⎪⎩⎪⎨⎧===545248C B A 第八单元测试一、DBCABDCD二、1、4 2、1169,9611+-y x 3、2 4、718 5、15 6、2,31- 7、53,115- 8、2-=a 三、1、⎪⎩⎪⎨⎧=-=143y m 2、⎪⎪⎩⎪⎪⎨⎧==11121130y x 3、⎩⎨⎧==11y x 4、⎪⎪⎩⎪⎪⎨⎧==1136225y x 5⎪⎪⎩⎪⎪⎨⎧-==c y c x 2145 6、⎪⎪⎩⎪⎪⎨⎧+-=+=1361113115d c y d c x 四 1、240名学生,5辆车 2、及格的70人,不及格的50人 3、原数是684、A 的速度5.5千米/时,B 的速度是4.5千米/时。

相关文档
最新文档