常州大学 化工原理(少学时)绪论共24页
化工原理绪论24页PPT
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
化工原理教学绪论课件PPT
解:(1)结晶产品量 P 及水分蒸发量 W
首先根据题意画出过程示意图。
水,W kg/h
料液
1000kg/h 20%KNO3
蒸发器
S kg/h
50%KNO3
R kg/h
37.5%KNO3
结晶器
结晶产品 P kg/h
4% 水
21
在图中绿色虚线方框所示的范围内作物料衡算。
因过例程0-2中b 无化学反应,且为连续稳定过程,故可写出总物
28
概括
主要内容
化
工
理论基础
原
理
工程学科
课程学习
研究化工 单元操作 的基本原理: 典型化工单元设备的原理、结构 选型以及工艺尺寸的计算。
高等数学 物理学 物理化学
综合运用基础知识,有目的地解决 工程实际问题
目的并不只是 认识一些自然现象, 而是解决真实的、复杂的生产问题。
从复杂事物中排除非主要因素,抽出 关键环节,以合理的简化方式建立物 理和数学模型,解决工程问题。
经验方法 相似准则:利用经验公式和实验曲线进行设计和工程放大。
量纲分析:得出无因次准数方程,使实验参数最少,简化实验。
注:该方法着眼于过程参数的整体变化,不究其微观机理, 得到的结果带局限性 ,不可任意推广。
理论方法 利用基本定律对过程的微观机理进行相应的数学描述——
建立数学模型。
10
课程研究主线
其目的是满足工艺要求。
6
2、化工原理课程的内容 ——具体的单元操作 化工常用单元操作
单元操作 目 的
物态
原 理 传递过程
流体输送 输 送
液或气 输入机械能
搅拌 过滤 沉降
混合或分散
化工原理绪论
生物化工原料的某些成分如蛋白质、酶之类都 是生物活性物质,在加工过程中会引起变性、 钝化或破坏。热敏性和氧化变质及易腐性是动 、植物原料的共有特点。
2.本课程的性质与任务
本课程是在高等数学、物理学及物理化学、化学 等课程的基础上开设的一门专业基础课程,其主要 任务是研究化工单元操作的基本原理,典型设备的 构造及工艺尺寸的计算或设备选型。
绪论
1.概述--化工生产过程与单元操作
化学工业:对原料进行化学加工以获得产品。 化工生产过程:用化工手段将原料加工成产品的生产 过程。
该生产过程的核心是化学反应过程,为使化学 反应经济有效的进行,反应前物料要达到一定纯度 ,即需要进行前处理;反应器内必须保持最佳反应条 件(压强、温度);反应后还要进行后处理,使产 物与反应物分开、产物精制。前、后处理中,绝大 多数过程是纯物理过程。
⊿p=p1-p2= (ρ0-ρ)g R =(1630–1000)×9.81×0.35=2163 (N/m2)
(2)管内流经气体时: ρ=2.5 kg/m3 ⊿p=p1-p2= (ρ0-ρ)g R =(1630–2.5 )×9.81×0.35=5588 (N/m2)
本课程作为化学工程学的一个基础组成部分,是 化工、生物、制药、食品等专业的主干课程之一( 学科基础课),其在基础课和专业课之间,起着承 上启下,由“理”过渡到“工”的桥梁作用。
3.本课程的内容,特点及学习方法
内容:以“三传”--流体流动过程(动量传递); 传热过程(热量传递);传质过程(质量传递 )为核心和主线,讲述单元操作的基本原理, 典型设备的结构原理,操作性能和设计计算。
1.1.2 流体的粘度 1.牛顿粘性定律
流体流动时存在内摩擦力,流体流动时必须克 服内摩擦力作功。这种内摩擦力就是一种平行于 流体微元表面的表面力,通常又称作剪切力。
化工原理__绪论
学习《化工原理》的目的和要求
掌握规律 诊断过程 开发工艺 强化操作 创新设计
课程:干粮 猎枪 学习本课程中,应注意以下几个方面能力的培养: 单元操作和设备选择的能力 工程设计能力 操作和调节生产过程的能力 过程开发或科学研究能力 将可能变现实,实现工程目的,这是综合创造 能力的体现。
二.单位制及单位换算
Hale Waihona Puke 绪 论本讲要点1.化工原理是化学工程学的分支,它研究化工生产中共
有的物理操作过程的基本原理、典型设备及其选用、计算
方法,是一门工程性较强的技术基础课程。研究方法 :实
验法和数学模型法。
2.本课程以传递过程为主线,划分与安排教学内容;以
研究方法为纵向主线,展开各单元操作内容的讨论。
单元操作的特点
共同的研究对象——传递过程 物理性操作,即只改变物料状态或物性,不改变化学性质; 都是化工生产过程中共有的操作,但不同的化工过程中所 包含的单元操作数目、名称与排列顺序各异; 对同样的工程目的,可采用不同的单元操作来实现 ; 某单元操作用于不同的化工过程,其基本原理并无不同, 进行该操作的设备也往往是通用的。具体应用时也要结合 各化工过程的特点来考虑,如理化性质,生产规模等。 实际问题的复杂性—过程、体系、设备、工程性强、计算量大 三 传:《化工原理》的共同规律和联系 动量传递:流体内部由于动量、密度的空间分布不均而引 起动量在时空中的传递过程。 热量传递:内能在时空中的传递过程,是由温度在空间的 非均匀分布造成。 质量传递:浓度在时空中分布的不均匀性。
三.两条主线、五个概念
一.课程的由来发展、内容和性质
(一)由来和发展
萌牙时期:现代化工生产始于18世纪的法国,特点:以 研究某一产品的生产技术为 对象,形成了各种工艺学。 例如:纯碱工艺学、硫酸工艺学等 。 1922年美国化工学会年会 里特尔(A.D.LiThle) 提出建 立“单元操作” (Unit Operations)的概念 : “任何一个化学过程,不管它的规模如何,都可分解成为 一系列互相类同的被称作“单元操作”的组成部分, 如粉碎、混合、加热、焙烧、吸收、沉淀、结晶、过 滤、溶解等。这些基本单元操作的数目并不多,对于 一个特定的加工过程,可能只包括它们中的几个。要 使化学工程师们具备广博地适应职业需要的能力,只 能是对实际规模上所进行的过程作出分析并将其分成 多个单元操作来获得……”。
化工原理:绪论
表1 化工常用单元操作
单元操作 目的
物态
原理
传递过程
流体输送 搅拌 过滤 沉降 加热、冷却 蒸发
3、单元 操作的研究方法
化工原理是一门工程学科,对一些过程作出如实的、 逼真的数学描述几乎是不可能的。采用直接的数学描述 和方程求解的方法将是十分困难的。因此,探求合理的 研究方法是发展这门工程学科的重要方面。在这门学科 的历史发展中已经形成了两种基本的研究方法: (1)实验研究方法(经验方法)
依靠实验建立参数之间的相互关系式。 (2)数学模型方法(半理论半经验方法)
1、化工生产过程 称为单元操作
2、单元操作的特点及分类
1.特点 (1)它们都是物理性操作,即只改变物料的状态或其
物理性质,并不改变其化学性质 (2)它们都是轻化工生产过程中共有的操作 (3)某单元操作用于不同的化工过程,其基本原理相
同,进行该操作的设备往往也是通用的.
2.分类 (1)按操作目的分类
5、学好本课程应注意的问题及培养的能力
理论教学 1、要理论联系实际 实验教学
课程设计
2、过程原理与设备并重 3、掌握研究的方法 4、着重培养自学能力、创新能力 5、通过本课程的学习,建立工程观点,培养工 程思维和解决工程实际问题的能力(P2)。
二、贯穿本课程的三大守恒定律
1、质量守恒定律——物料衡算
绪论
化工原理是化工、生工类本科生的一门综合性 技术基础课,从基础理论、设备构造、设计方法、 工程操作等多方面进行全面训练。该课程在教学内 容上与四大化学的不同在于接触单元操作、工程实 际,体现了所学的基础知识在实际中的应用,具有 工程性强、实践性强的特点。
化工原理绪论
5.混合物浓度的表示方法
(1)物质的量浓度 定义:物质的量浓度(amount concentration)是组分i的物质的量ni除以混合 物的体积Vi,以符号Ci表示,即Ci=ni/Vi,简称:物质的浓度. 单位:Kmol/m3。 (2)物质的量分数(摩尔分数) 定义:物质的量摩尔分数(amount fraction)是组分i的物质的量ni与混 合物的物质的量n之比值。对于液体混合物,以xi表示,即 xi=ni/n。 式中:n—混合物中各组分物质的量之总和,即n=n1+n2+···=∑n。
2
5. 化学反应工程:以化工过程中化学过程作为研究对象的一 门技术科学。
6. 化学工程:研究化工过程共性规律的一门技术科学。主要
由化工原理和化学反应工程两个分支组成。 (另外还有化工传递过程原理和化工热力学及 化工系统工程三个分支) 7. (过程):物系状态发生变化的经过 。
8.(物系):作为研究对象的物质 。
(3)体积分数:φi=Vi/V=ni/n
对理想气体混合物中各组分有下列关系: 摩尔分数=压力分数=体积分数
理想气体:指分子本身没有体积,分子间没有作用力的气体。它在任何 温度和压力下,均能服从气体状态方程 PV=nRT,适合对低压气体进行 计算。
ni Pi c (4)气体混合物中组分i的浓度ci: i V RT
化工原理
1
绪论
INTRODUCTION
一、化工过程与单元操作 1. 化工过程(化学工业过程):由若干物理过程和若干化学过 程组成的工业过程,或将原料改变或分离成有用产品的工业 过程。 2.单元操作:化工过程中不含化学反应物理过程。 3.化学过程:含有化学反应的过程。 4.化工原理:以单元操作为研究对象的一门技术科学。
化工原理PPT课件讲义
0.2本课程的性质、任务和内容、研究方法
• 0.2.1性质
• 化工原理是在高等数学、物理学、物理化学等课程的基 础上开设的一门技术基础课程,属工程学科,具有工程 性和实用性。
• 0.2.2任务
• 1掌握化工单元操作过程的基本原理,并能进行过程的选 择和计算(即对指定的产品,选择一个适宜的过程经济而 有效地满足工艺过程要求)。
• 2.连续操作:原料不断地从设备一端送入,产品不断从 另一端送出。
• 连续操作设备内,各个位置上,物料组成、温度、压 强、流速等参数可互不相同,但在任一固定位置上, 这些参数一般不随时间变化,属定态过程,即 参数= f(x,y,z)
• 0.4.1 单位0制.4 单位制与单位换算
• 任何物理量都由数字和单位联合表达的。运算时,数字 与单位一并纳入运算。如:
0.6 热量衡算 遵循能量守恒定律
• 同物料衡算一样,绘简图、定基准、划范围、列 算式,
• 1物料所具有的热量由显热与潜热两部分组成, 称为焓(H,kJ/kg)。焓值为一相对值,且与状态
有关,所以热量衡算时必须规定基准温度和基准 状态,通常基准选273K液态(即此时H=0)。
• 2热量除了伴随物料进出系统外,还可通过设备
• 2据生产需要,进行设备工艺尺寸的计算及其设备选型计 算。
• 3依据过程的不同要求,进行操作调节和控制。
• 4掌握强化过程途径,以提高过程和设备的能力、效率。
0.3 单元操作进行的方式
• 1.间歇操作:每次操作之初向设备内投入一批物料,经 过一番处理后,排除全部产物,再重新投料。
• 间歇操作设备内,同一位置上,在不同时刻进行着不 同的操作步骤,因而同一位置上,物y,z,θ)
化工原理绪论
绪 论
四、 各单元操作的基本计算方法
化工原理课程涉及到的工程计算可分为设计型计算和操作型计算两 类。设计型计算是依据工艺上给定的条件(如温度、压力等)和要求的
工艺指标(如流量、产量、质量等),再通过工程方法来确定设备的结
构,计算设备的尺寸、外加功率、热交换量等,从而满足生产要求,完 成生产任务。操作型计算是在现有的生产设备运行过程中,某些操作参
绪 论
本课程的主要任务是培养学生能够运用单
元操作的基本原理进行过程的计算、设备的设 计和选型的能力;在工业生产过程中,能根据
生产的要求和变化,结合实际情况对操作参数
进行调节,降低生产成本,强化生产过程的能 力;对于常见的故障,能找到产生故障的原因
并具有一定的排除故障的能力。
绪 论
三、 工程观点和工程方法
(如温度、压力、流量、流速、物料组成等)都会对化工过
程产生影响,设备内部与物料接[JP]触的各种构件的形状、 尺寸和相对位置等因素也对化工过程产生着影响,并直接或 间接地影响传热和传质过程的进行。另外,当地气温和气压 变化范围、冷却水的来源及水温、环境保护、安全防火、设 备加工等客观上存在的制约因素也影响着化工生产过程。
绪 论
(二)能量衡算 大部分的单元操作需要与外界进行能量交换,用于改变 物料的温度或聚集状态,提供过程进行所需要的热量等。此 时,其间的关系可通过能量衡算确定。根据能量守恒定律, 对于连续稳定的系统,进入系统的总能量必等于系统输出的 总能量,即 ∑Q入=∑Q出
能量的形式很多,如机械能、热量、电能、化学能等,
绪 论
从以上基本关系可以看出,要提高过程进行 的速率,可以通过增大过程的推动力或减少过程 阻力的途径来实现,如在传热过程时可以提高温 度差,在传质过程时可以提高浓度差,在流体输 送时可加大输送管道的直径等。
化工原理 绪论
英文名: Principles of Chemical Engineering
课程类别: 化工类专业重要的技术基础课
• 内容:化工单元操作的基本原理,典型设备的结 构原理、操作性能和设计计算
三、物理量的单位和量纲
数值和单位, 基本量和基本单位, 导出量和导出单位, 单位制和SI单位制, SI单位制规定7个基本单位:长度(米,m); 时间(秒,s);质量(千克,kg); 热力学温度(开尔文,K);物质的量 (摩尔,mol);电流强度(安培,A); 发光强度(坎德拉,cd) 量纲和量纲一致性 单位一致性
四、混合物浓度的表示方法
质量浓度与质量分数 摩尔浓度与摩分数 摩尔比与质量比
X nA xA x nB xB 1 x
X ' mA wA w mB wB 1 w
五、单元操作中常用的基本概念
物料衡算 能量衡算 平衡关系 传递速率 经济核算
质量衡算 依据 质量守恒定律 能量衡算 依据 能量守恒定律、热力学第一定律
一、化工过程与单元操作
化工过程:以化学反应为特征的工业生产过程
一、化工过程与单元操作
一、化工过程与单元操作
单元操作:除化学反应外,其余步骤皆可 归纳为若干种基本的物理过程,如流体的 输送与压缩、沉降、过滤、传热、蒸发、 结晶、干燥、蒸馏、吸收、萃取等等。这 些基本的物理过程称为单元操作。
化工原理
英文名: Principles of Chemical Engineering
课程类别: 化工类专业重要的技术基础课
内容:化工单元操作的基本原理,典型设 备的结构原理、操作性能和设计计算
绪论
一、化工过程与单元操作 二、化工原理课程的性质与任务 三、物理量的单位和量纲 四、混合物浓度的表示方法 五、单元操作中常用的基本概念
化工原理答案(少学时)
第一章1-1:4.157kPa (表压);1-2:(1)876.4Pa (真空度),(2)0.178m ;1-3:压差80.343kPa ,0.491m ;1-4:管径0.106m ,流速1.85m/s ;1-5:小管内流速1.274m/s ,质量流量4.60kg/s ,大管内流速0.885m/s ,质量流量为4.60kg/s ;1-6:57.76m 3/h ;1-7:0.0466m ;1-8:0.767J/kg ;1-9:0.1814m 3/s ;1-10:4.16m ;1-11:(1)2.58J/kg ,(2)不变;1-12:7.08m ;1-13:(1)层流,(2)7171.1m ;1-14:(1)3.33m 3/h ,(2)略;1-15:11.63%;1-16:(1)95.52 m 3/h ,(2)39166.7N/m 2;1-17:47.312=f f H H ,44.1213=f f H H ;1-18:3.18 m 3/h ;1-19:25.6m 3/h ;1-20:1.092m ;1-21:(1)4.44m ,(2)68.26mm ,(3)29.3;1-22:-0.823m ;1-23计算得安装高度为4.49m ,不能正常操作;1-24:50.4m ;1-25:539W ,51.3%;1-26:(1)439.8W ,0.733kW ;1-27:选B 泵;1-28:(1)6.67 m 3/h ,(2)13800Pa ;1-29:4.436kW ;1-30:42.39 m 3/h ;1-31:6.0 m 3/h (层流);1-32:22.0 m 3/h (层流);1-33:(1)14.76 m 3/h ,(2)3.61kW ;1-34:(1)855W ,(2)215.62kPa ;1-35:(1)51.5kPa ,(2)4.583kW ,(3)32m 。
第二章2-1:b2=0.14m ,243℃;2-2:4140kJ ;2-3:(1)608W/m 2,(2)t 2=739℃,t 3=678℃;2-4:(1)45W ,(2)59W ,(3)略;2-5:略;2-6:(1)351.7W ,(2)273.8℃;2-7:44.9W/(m.K),30mm ,119.8℃;2-8:1034.4kW ;2-9:221.3kW,0.0983kg/s ;2-10:3379kg/h ;2-11:3.482倍;2-12:比值为0.583;2-13:(1)5023.7W/(m 2.K),(2)5812.6 W/(m 2.K);2-14:(1)44.66 W/(m 2.K),(2)80.70 W/(m 2.K),(3)45.94 W/(m 2.K);2-15:(1)93.95 W/(m 2.K),(2)85.95 W/(m 2.K);2-16:2022 W/(m 2.K);2-17:446.03 W/(m 2.K),3521kg/h ;2-18:并流64.52℃,逆流84.90℃;2-19:并流39.9℃,逆流44.8℃;2-20:40.39 W/(m 2.K),174.1m 2;2-21:(1)7982kg/h ,(2)并流27.19℃,管长3.39m ,逆流32.74℃,管长2.813m ;2-22:15%;2-23:(1)124.2℃,(2)88.05℃;2-24:1.85m ;2-25:可用;2-26:(1)3m ,(2)92.02℃;2-27:(1)可用,(2)不可用,增大冷却水流量;2-28:(1)90.21 W/(m 2.K),(2)71.64 W/(m 2.K),(3)可用,(4)壁温107.65℃;2-29:(1)102.95kg/h ,(2)1.303m 2,(2)145.6℃;2-30:(1)359.2kg/h ,(2)378.76 W/(m 2.K),(3)50.81m ;2-31:73.08℃;2-32:37.54 W/(m 2.K),84.54℃;2-33:(1)321.57 W/(m 2.K),(2)不能;2-34:496218.75W ;2-35:116.6℃;2-36:(1)50.65℃,11.01m ;(2)9.58%;2-37:(1)124.3℃,(2)88.13℃;2-38:(1)1004.63 W/(m 2.K),(2)39.5%;2-39:(1)937.42 W/(m 2.K),(2)11.49m ,(3)71℃;2-40:(1)33.35m 2,(2)55.76℃;2-41:(1)不能,(2)103.85℃,302.17kg/h ;2-42:5.67×10-4 (m 2.K)/W ;2-43:(1)59.6℃,0.5072,(3)29.4℃,57.5℃,(4)4%;第三章3-1:0.0152Pa.s ;3-2:75.3μm ;3-3:0.02m/s ;3-4:17.5μm ;3-5:807m 3/h ;3-6:略;3-7:0.588;3-8:0.806mm/s ,72mm/s ;3-9:(1)10.92m 3/s ,(2)6.0m 3/s ;3-10:2.182hr ;3-11:0.0004m 2/s ;3-12:(1)1600s (26.67min ),(2)2.828m 3/m 2,(3)1140s (19min );3-13:(1)4595.6s (1.277h ),(2)2.07m 3,(3)2100s (35min );3-14:(1)2.83m 3,(2)3.282m 3;3-15:8100s (2.25h );3-16(1)2145s (0.671h ),(2)0.194m 3/h ;第四章4-1:(1)处于平衡,(2)吸收,(3)解吸;4-2:解吸,11.19kPa ;4-3:)/(1084.324s m kmol k y •×=−,)/(1002.122s m kmol k x •×=−,)/(10656.324s m kmol K y •×=−;4-4:略;4-5:0.01267;4-6:3.06m ;4-7:(1)0.0267,(2)不能用;4-8:(1)1.053,(2)0.0285,(3)19.0;4-9:(1)0.006,(2)5.9m ;4-10:(1)1.32,(2)0.0228,(3)7.84;4-11 :(1)0.0003,(2)0.505m ,(3)5.4m ;4-12:(1)4.6,(2)1.46倍;4-13:(1)0.695m ,)/(0467.02s m kmol H G a K OGy •==,(2)253kg/h ;4-14:0.002;4-15:(1)87%,(2)0.00325;第五章5-1:(1)65.33℃,(2)0.512;5-2:(1)81.36℃,(2)0.187;5-3:(1)0.228,(2)精:0.667,提:0.47,(3)精:0.8,提:0.595;5-4:D=17.1kmol/h ,W=82.9kmol/h ,xw=0.438;5-5:11kmol/h ;5-6:(1)D=20kmol/h ,W=80kmol/h ,(2)R=2;5-7:(1)D=43.8kmol/h ,W=56.2kmol/h ,(2)R=2.01;5-8:0.875;5-9:(1)0.8,(2)130kmol/h ,(3)精线方程y=0.6154x+0.3654;5-10:(1)R=3,xD=0.83,(2)1/3,(3)提线方程y=1.375x-0.01875;5-11:(1)精线方程y=0.76x+0.22,(2)提线方程y=1.52-0.021;5-12:16(含塔釜),第8板加料;5-13:15(含塔釜);5-14:0.75;5-15:0.125,精线方程y=0.75x+0.25,提线方程y=2x-0.125;5-16:194.0,889.0==W D x x ;第六章6-1:(1)E=64.1kg ,R=25.9kg ,064.0,50.000==A A x y ,(2)14.6;6-2:E=92.2kg ,R=87.8kg ,18.0,15.0==A A y x ,(2)⎪⎩⎪⎨⎧==kgR kg E 69.7831.2100,16.0,77.000==A A x y ;6-3:kg E kg R 5.130,6.88==,xA=0.1,yA=0.0854;6-4:(1)59kg ,(2)0.06;6-5:47.7kg ;6-6:44.9℃;6-7:138.3m 2/g ;6-8:6.83h ;6-9:5920.3kg/h ,0.0825,0.0125kg/(m 2.s),0.00436 kg/(m 2.s);第七章7-1:92.4%;7-2:干气水水kg kg W /0174.0=,干气kg kJ /6.87Q =;7-3:见下表 干球温度℃ 湿球温度 ℃ 湿 度 kg 水/kg 干空气相对湿度% 热焓 kJ/kg 干空气水汽分压 kPa 露点 ℃80 40 0.0319 11.0 165 4.8 32.5 60 35 0.026 20 125 4.1 29 40 28 0.020 43 95 3.2 25 57 33 0.024 21 120 3.7 28 50 30 0.0196 25 98 3.0 23 7-4:(1)干气kg kJ I /25.1=Δ,(2)55.9℃,(3)54.7℃;7-5:自由水量为干料水kg kg /243.0,结合水量干料水kg kg /02.0,非结合水量为干料水kg kg /23.0;7-6:7.06h;7-7:21.08h;7-8:(1)250.75kg 干气/h,(2)45.58kJ/kg 干气,(3)13984.3kJ/h;7-9:(1)223kg/s,(2)163℃,(3)81.1%;7-10:(1)10.9 kg/s,78%,(2)6.59 kg/s,80.5%;。
化工原理绪论
原 材 输送 料
化学 反应 输送
产品或 中间体
三废 处理
2017/7/22
2017/7/22
2017/7/22
2017/7/22
2017/7/22
2:化工原理的研究对象 ——单元操作
具有共同的基本原理和通用的典型设备的物理 操作过程(共有的)——单元操作 化工生产过程:化学反应和若干个单元操作串联 而成
化工原理——研究各个独立的单元操作 包括单元操作的基本原理、过程计算和典型设备
2017/7/22
3:单元操作的特点 ①:所有的单元操作都是物理性操作,只改变物 料的状态或物理性质,并不改变化学性质。 ②:单元操作是化工生产过程中共有的操作,只是 不同的化工生产中所包含的单元操作数目、名称与 排列顺序不同。 ③:单元操作作用于不同的化工过程时,基本原理 相同,所用的设备也是“通用”的。
物理量的数字之间的关系,又叫数字公式 。
特点:公式中所用的单位一般都是指定的,在计算 中只要将数字代入,算出结果,然后加上规定的单 位就行了。 量纲:用一定单位制度的基本物理量来表示某一物 理量,称为该物理量的量纲; 基本物理量的量纲是规定的。
如:SI制:质量M、长度L、时间T、热力学温度θ
力MLT-2;在工程制中:力F;质量?
4:单元操作的分类
根据单元操作所遵循的基本规律,分为四类:
2017/7/22
•流体动力过程 ——遵循流体动力学基本规律,用
动量传递理论研究 如:流体输送、沉降、过滤、固体流态化 •热过程 ——遵循传热基本规律,用热量传递理论研究 如:传热、冷凝、蒸发等 •传质过程 ——遵循传质基本规律,用质量传递理论研 究 如:蒸馏、吸收、萃取、浸取…
1 溶液带入的热量: Q2 1.0 3.56 25 0 89kw
化工原理-绪论
2020/3/20
化工原理
• 课程的性质及重要性
该课程是化工类及相近专业一门重要的技术基础课,是理科转向工 科的一个桥梁,为以后专业课的学习打下基础。兼有“科学”与“技术” 的特点,它是综合运用数学,物理,化学等基础知识。分析和解决化工 生产中各种物理过程的工程问题的学科。本课程强调工程观点,定量用 算,实验技能及设计能力的培养,强调理论联系实际。
2020/3/20
冷凝水带出的热量: Q 3 0 .0 9 55 .0 6 3 7 4.8 7 kw
溶液带出的热量: Q 4 1 . 0 3 . 5 8 6 0 0 2 . 8 k 8 w 4
Q 0 Q 3 Q 4 4 . 8 2 7 . 8 8 3 . 6 k 4 3 w 2
2020/3/20
三、单位制与单位换算
1.单位及单位制
物理量的大小以数值加单位表示
压力:p=100KPa
数值
单位
单位有基本单位和导出单位之分 单位制:基本单位与由这些基本单位导出的导出单位的集合 常用单位制:国际单位制(SI)、工程单位制、物理单位制等 基本单位:根据使用方便的原则制定的基本量的单位。 导出单位:导出量的单位称为导出单位,均由基本单位相乘、除而构成的 。
选择:为了达到或实现某一工程目的,能否对过程和设备作合理的选择 和组合。
设计:对已掌握了性能的过程和设备作直接的设计计算以及对性能不十 分掌握的过程和设备通过必要的试验,测取设计数据,做逐级放大。
操作:如何根据基本原理发现操作上可能出现的各种不正常现象,寻找 其原因及可能采取的调节措施
2020/3/20
作为一门综合性技术学科的重要组成部分,主要研究个单元操作的 基本原理,所用的典型设备结构,工艺尺寸设计和设备的选型的共性问 题,是一门重要的专业基础课
化工原理少学时课件和辅导教程考试重点例题复习题及课后答案24热辐射
Eb-黑体的辐射能力,W/m2 σ -斯蒂芬-波尔兹曼常数,5.67×10-8W/(m2·K4) T-黑体表面的热力学温度,K
应用时,常表示为:
Eb Cb(1T00)4
Cb-黑体的辐射系数, 5.67W/(m2·K4)
例4-22 试计算一黑体的表面温度分别为20℃和600℃ 时的辐射能力的变化。
参数的计算: 1.两个面积无限大(或很大)而距离很近的平行 平壁,每个壁面所发射的辐射能全部投射到对方 的壁面上。(辐射传热面积A=A1=A2,φ=1)
C12
1
Cb 1
Байду номын сангаас
1
1 2
式中,Cb为黑体的辐射系数,为5.76 W/(m2·K4)
2.两个面积大小有限且相等的平行平壁,每个壁 面所发射的辐射能只有部分投射到对方的壁面上。 (辐射传热面积A=A1=A2,φ<1)
E
/
Eb,Eb
T C b ( 100
)4
E
C
b
T ( 100
)4
或 E C ( T )4 100
C-实际物体的辐射系数, C= 5.67εW/(m2·K4)
黑体的辐射能力:
Eb
C
T b ( 100
)4
实际物体的辐射能力:
E
C
b
(
T 100
)4= C ( T 100
)4
2.黑度ε
在同一温度下,实际物体的辐射能力E恒小于 黑体的辐射能力Eb,ε<1。黑度表示实际物体的 辐射能力接近黑体辐射能力的程度,实际物体 的黑度越大,其辐射能力就越大。
(一)黑体的辐射能力与斯蒂芬-波尔兹曼定律 物体在一定温度下,单位表面积,单位时间内所发 射的全部辐射能(波长从0到),称为该物体在该 温度下的辐射能力(emissive power),以E表示。
【化工原理】 绪论
量的名称
单位名称
长度 质量 时间 电流 热力学温度 物质的量 发光强度
米 千克
秒 安培 开尔文 摩尔 坎德拉
单位符号
m kg s A K mol cd
表0-2 国际单位制的辅助单位
量的名称
平面角 立体角
单位名称
弧度 球面角
单位符号
rad sr
表0-3 国际单位制中具有专门名称的导出单位
量的名称
单位名称
物理单位制 基本单位:长度(厘米cm),质量(克g),
CGS制
时间(秒s),温度(ºC);
工程单位制 基本单位:长度(米m),重量或力(千克 力kgf),时间(秒s),温度(ºC) 。
我国法定单位制为国际单位制,
即SI (System International d’Unites)制。
表0-1 国际单位制的基本单位
0.3 物理量的单位与量纲 一、基本单位与导出单位
基本单位:选择几个独立的物理量,根据方便原 则规定单位;
导出单位:由有关基本单位组合而成。
单位(计量)制度:由基本单位和导出单位组成的 一系列计量单位的总称。
二、常用单位制
国际单位制
SI制
基本单位:7个,化工中常用有5个,即长度 (米m),质量(千克kg),时间(秒s), 温度(开尔文K),物质的量(摩尔mol);
B lg ps A t C
求出甲醇在该状态下的饱和蒸气压ps.
(2) 空气中甲醇的组成:
以摩尔分数表示:
yA ps / p0
以质量分数表示:
A yA M C H4O / M
M M空气(1 yA) yA M C H4O
A 32.04 ps /[28.395( p0 ps ) 32.04 ps ]
常州大学 化工原理(少学时)绪论共26页文档
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非