典型相关分析SPSS例析演示教学
SPSS统计分析第章相关分析(共26张PPT)

7.3 偏相关分析
(4) SPSS实现举例
【例7-3】 下表是四川绵阳地区3年生中山柏的数据,分析月生长 量与月平均气温、月降雨量、月平均日照时数、月平均湿度4个气 候因素中哪些因素有关。
月 份
月生 月平均 长量 气温
月降 雨量
月平均日 照时数
月平均 湿度
月份
月生 长量
月平均 气温
月降 雨量
月平均日 月平均 照时数 湿度
方位或大小等)。定序变量的相关系数用斯皮尔曼(Spearman)相关系 数和肯德尔(Kendall’s )相关系数来衡量。
Spearman相关系数及Z统计量
n
6
D
2 i
r
1
i1
n (n 2
1)
Z r n1
Kendall’s等级相关系数 及Z统计量
(UV) 2
n(n1)
Z
9n(n 1) 2(2n 5)
7.4 距离分析
相似性测度
对于定距数据主要使用皮尔逊相关系数和夹角余弦距离; 对于二值数据的相似性测度主要包括简单匹配系数、Jaccard相似性 指数、Hamann相似性测度等20余种。
其中的距离又分为个案(观测记录)之间的距离和变量之间的 距离两种。
(3) 分析步骤
距离分析中不存在假设检验问题,主要是通过SPSS自动计算
Spearman相关系数及Z统计量
Pearson 相关性
偏相关分析的任务就是在研究两个变量之间的线性相关关系时控制可能对其产生影响的变量,这种相关系数称为偏相关系数。
当≤|r时视为中度相关;
r r r r r r r r 当其偏|中相r时的 关说x距分y明离析,变z又的量分任之为务间个就的案是相(在关观研性测究x很记两y弱录个。)变2之量间之xz的间距的y离线z 和性变相2量关之关间系的时距控离制两可x种能y,。对z1其z2产生影响的变量x,y,这z1种2相关系xz数1称,z为2偏y相z2关,2系z1数。
典型相关分析的spss操作流程

典型相关分析的spss操作流程1.首先,打开SPSS软件并创建一个新的数据文件。
First, open the SPSS software and create a new data file.2.导入你要进行典型相关分析的数据到SPSS中。
Import the data for canonical correlation analysis into SPSS.3.确保数据变量的命名和类型是正确的。
Make sure the data variable names and types are correct.4.确认数据的缺失值情况,并进行适当的处理。
Check for missing values in the data and handle them appropriately.5.选择“分析”菜单中的“相关”选项。
Select the "Correlate" option from the "Analysis" menu.6.选择“典型相关”作为分析的方法。
Choose "Canonical Correlation" as the method for analysis.7.将想要进行分析的自变量和因变量添加到对应的框中。
Add the predictor and criterion variables to their respective boxes for analysis.8.确定是否需要进行变量的标准化处理。
Decide if standardization of variables is needed.9.点击“OK”开始进行典型相关分析。
Click "OK" to start the canonical correlation analysis.10.解释典型相关分析的结果和统计显著性。
Interpret the results and statistical significance of the canonical correlation analysis.11.对典型相关分析的结果进行图表展示。
SPSS相关分析实例操作步骤-SPSS做相关分析

SPSS相关分析实例操作步骤-SPSS做相关分析SPSS(Statistical Product and Service Solutions)是目前在工业、商业、学术研究等领域中广泛应用的统计学软件包之一。
Correlation是SPSS的一个功能模块,可以用于分析两个或多个变量之间的关系。
下面是SPSS进行相关分析的具体步骤:1. 打开SPSS软件,选择“变量视图”(Variable View),输入相关的变量名,包括数字型变量和分类变量。
2. 进入“数据视图”(Data View),输入数据,并保存数据集。
3. 打开菜单栏中的“分析”(Analyze),选择“相关”(Correlate),再选择“双变量”(Bivariate)。
4. 在双变量窗口中,选择包含需要分析的变量的变量名,并将其移至右侧窗口中的变量框(Variables)。
5. 如果需要控制其他变量的影响,可以选择“控制变量”(Options)。
6. 点击“确定”(OK)按钮后,SPSS将输出结果,并将其显示在输出窗口中。
相关系数(Correlation Coefficient)介于-1和1之间,可以用来衡量两个变量之间的线性关系的强度。
7. 如果需要对结果进行图形化展示,可以选择“图”(Plots),并选择适当的图形类型。
需要注意的是,进行相关分析时需要确保变量之间存在线性关系。
如果变量之间存在非线性关系,建议使用其他统计方法进行分析。
同时,SPSS进行相关分析的结果只能描述变量之间的关系,不能用于说明因果关系。
以上是SPSS做相关分析的具体步骤,希望能对大家进行SPSS 数据分析有所帮助。
(CCA)典型相关在线SPSS操作实例讲解,SPSSAU文章

(CCA)典型相关在线SPSS操作实例讲解,SPSSAU文章相关分析是研究两两变量间关系的方法,在现实生活中,变量间的关系往往更加复杂。
比如,要考察多个变量与多个变量(即两组变量)之间的相关性,该如何分析呢?如果用普通的相关分析,不仅费时费力,也无法很好的解释结果,面对这样的数据最好的方法是使用典型相关分析。
典型相关分析(CCA)用于研究一组X与一组Y数据之间的相关关系情况。
它是借助主成分分析思想,从两组变量中提取出一个或少数几个综合变量(即典型变量),从而将对两组变量关系集中到少数几对典型变量间的关系之上。
分析步骤从步骤上讲:典型相关分析共分为三个步骤。
第一步:提取出典型相关变量【非常重要】第二步:寻找典型变量与研究变量之间的关系表达式,以及典型变量与研究变量间的关系情况第三步:典型冗余分析下面通过一个案例让大家对典型相关有更为直观的认识。
案例应用(1)背景为研究运动员体力和运动能力之间的相关关系情况。
共收集38个学生样本进行分析。
测试数据包括体力指标共7项(反复横向跳、纵跳、背力、握力、台阶试验指数、立定体前屈、俯卧向体后仰);运动能力指标共5项(50米跑时间、跳远、投球、引体向上、耐力跑)。
从上述背景来看,X共由7项表示,Y由5项表示。
若是研究X和Y这两组指标之间的相关关系情况,不能通过常规的相关分析直接研究,因而使用典型相关分析进行研究。
(2)操作步骤使用途径:SPSSAU→进阶方法→典型相关分析时如有需要可保存典型变量,用于后续研究。
(3)结果分析SPSSAU共输出4个表格:表格1用于典型变量表述典型变量之间的相关关系情况;表格2和表格3用于展示典型变量与研究变量间的数学表达式关系和相关有关系;表格4可用于典型冗余分析。
①典型相关系数及显著性结果表1 典型相关系数及显著性结果表1展现的是典型变量的提取情况,上表中共显示共有5个典型变量被提取,经过显著性检验,有2个典型变量呈现出显著性(P<0.01),因此,最终以两个典型变量为准进行后续研究。
SPSS相关性分析ppt课件

对于线性回归分析来讲,如果方程能够较好的 反映被解释变量的特征和规律性,那么残差序 列中应不包含明显的规律性。残差分析包括以 下内容:残差服从正态分布,其平均值等于0 ;残差取值与X的取值无关;残差不存在自相 关;残差方差相等。
精选版课件ppt
13
Spearman等级相关系数—定序变量之 间的相关性的度量
斯皮尔曼等级相关系数:
两个变量为定序变量。
一个变量为定序变量,另一个变量为尺度数据,且 两总体不是正态分布,样本容量n不一定大于30。
数据的秩:秩rank,是一种数据排序的方式,可以 知道某变量值在该列所有值中的名次。秩是对应数 值由大到小的,例如有100个数据都不一样的话, 最大的数值对应的秩就是100,最小的就是1。有 重复数据时候,会按同名称排列。
即:总离差平方和(SST)=剩余离差平方和(SST) +回归离差 平方和(SSR)其中;SSR是由x和y的直线回归关系引起的,可以 由回归直线做出解释;SSE是除了x对y的线性影响之外的随机因 素所引起的Y的变动,是回归直线所不能解释的。
精选版课件ppt
22
残差分析
残差是指由回归方程计算得到的预测值与实际 样本值之间的差距,定义为:
精选版课件ppt
6
相关分析的作用
判断变量之间有无联系 确定相关关系的表现形式及相关分析方法 把握相关关系的方向与密切程度 为进一步采取其他统计方法进行分析提供依据 用来进行预测
精选版课件ppt
7
相关分析和回归分析区别
相关分析:如果仅仅研究变量之间的相互关系 的密切程度和变化趋势,并用适当的统计指标 描述。
SPSS概览之数据分析实例详解(doc 180页)

SPSS概览之数据分析实例详解(doc 180页)第一章 SPSS概览--数据分析实例详解1.1 数据的输入和保存1.1.1 SPSS的界面1.1.2 定义变量1.1.3 输入数据1.1.4 保存数据1.2 数据的预分析1.2.1 数据的简单描述1.2.2 绘制直方图1.3 按题目要求进行统计分析1.4 保存和导出分析结果1.4.1 保存文件1.4.2 导出分析结果欢迎加入SPSS使用者的行列,首先祝贺你选择了权威统计软件中界面最为友好,使用最为方便的SPSS来完成自己的工作。
由于该软件极为易学易用(当然还至少要有不太高的英语水平),我们准备在课程安排上做一个新的尝试,即不急于介绍它的界面,而是先从一个数据分析实例入手:当你将这个例题做完,SPSS 的基本使用方法也就已经被你掌握了。
从下一章开始,我们再详细介绍SPSS各个模块的精确用法。
我们教学时是以SPSS 10.0版为蓝本讲述的--什么?你还在用7.0版!那好,由于10.0版在数据管理的界面操作上和以前版本有较大区别,本章我们将特别照顾一下老版本,在数据管理界面操作上将按9.0及以前版本的情况讲述,但具体的统计分析功能则按10.0版本讲述。
没关系,基本操作是完全一样的。
好,说了这么多废话,等急了吧,就让我们开始吧!希望了解SPSS 10.0版具体情况的朋友请参见本网站的SPSS 10.0版抢鲜报道。
例1.1 某克山病区测得11例克山病患者与13名健康人的血磷值(mmol/L)如下, 问该地急性克山病患者与健康人的血磷值是否不同(卫统第三版例4.8)?患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87让我们把要做的事情理理顺:首先要做的肯定是打开计算机(废话),然后进入瘟98或瘟2000(还是废话,以下省去废话2万字),在进入SPSS后,具体工作流程如下:1.将数据输入SPSS,并存盘以防断电。
SPSS教程03(带图)_相关分析_chenxy

第 11 页 共 19 页
两者之间不相关的程度 自身与自身之间必然为 0 该绝对值越小,则两者不相关程度越高,而相关性越高; 反之,则两者不相关程度越高,而相关性越低; 由表格 1 可知数据记录数为 6,且数据完整度为 100%,无缺失值; 由表格 2 可知 第一次测试结果和第二次测试结果呈正 不相关,且不相关程度为 0.010 第一次测试结果和第三次测试结果呈正 不相关,且不相关程度为 0.010 第二次测试结果和第二次测试结果呈正 不相关,且不相关程度为 0.010
t
r nk 2 1 r2
第 5 页 共 19 页
操作步骤 1 (数据见文件 20151029_偏相关分析) 定义变量 旅游区号(ordinal) 商业投资(scale) 经济增长率(scale) 游客增长率(scale) Analyze ->Correlate -> Partial Correlation 添加控制的若干变量
第 3 页 共 19 页
输出结果
操作步骤 2 相关分析 Analyze ->Correlate -> Bivariate 添加 Variable
Person 系数表示两个变量的 积矩相关系数 Kendall’s tau-b 和 Spearman 表示两个变量的等级相关系数
第 4 页 共 19 页
α 值得确定 正常情况取 0.05 当数据有显著性标志时 * 或者 ** 由具体说明规定
比较两次输出结果不同
4.4 距离相关分析
距离相关分析是对样本之间或变量之间的相似或不相似程度的一种测量;
第 9 页 共 19 页
距离相关分析可用于同一变量内部各个取值间考察其相互接近程度; 操作步骤 1 ( 数据见文件 20151105_距离相关分析_变量相似) 变量之间的相关分析(定义的为变量,列数据) 定义变量 第一次测试结果(scale) 第二次测试结果(scale) 第三次测试结果(scale) 1. Analyze->Correlate->Distance 选择 similarities
第七章SPSS的相关分析PPT课件

2024/10/14
25
基本操作步骤
• 菜单选项:analyze->correlate->partial
选择参与分析的 变量
选择一个或多个 控制变量
option选项:
– zero-order correlations:输出简单相关系数
20• 将家庭常住人口数作为控制变量,对家庭收入与计划购房面积做偏相 关分析
• 利用住房状况调查数据,分析家庭收入和计划购买的住房面积之间的 关系
• 两变量均为定距变量,采用简单相关系数
2024/10/14
21
偏相关分析
• 研究商品的需求量和价格、消费者收入之间的关系. – 需求量和价格之间的相关关系包含了消费者收入对商品需求量的 影响;同时收入对价格也产生影响,并通过价格变动传递到对商 品需求量的影响中
相关分析 须面对的 四个问题
关系的 强度如何
※这种关系 是否为因果
关系
这种关系 能否从样本推
到总体
2024/10/14
9
相关系数
• 相关系数以数值的方式精确地反映了两个变量间线性相关的强弱程度 • 利用相关系数进行变量间线性关系的分析的步骤
1. 计算样本相关系数r – 相关系数r的取值在-1~+1之间 – R>0表示两变量存在正的线性相关关系;r<0表示两变量存在负的
线性相关关系 – R=1表示两变量存在完全正相关;r=-1表示两变量存在完全负相
关;r=0表示两变量不相关 – |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示两变量之间的
线性关系较弱 2. 对样本来自的两总体是否存在显著的线性关系进行推断
2024/10/14
spss-数据分析实例详解图文

优化策略
根据数据分析结果调整销售策略 ,如定价、促销方式等。
预测模型
利用时间序列分析、神经网络等 模型预测未来销售趋势。
相关性分析
探究销售量与价格、促销活动等 因素的关系。
实例三:人力资源数据分析
总结词
通过SPSS进行人力资源数据分析,可以优化人员 配置和提高员工满意度。
数据收集
收集员工信息,包括年龄、性别、学历、绩效等。
01
描述性统计分析是对数据进行初步处理和分析的过程,包括计 算数据的均值、中位数、众数、标准差等统计指标。
02
在SPSS中,可以通过选择“分析”菜单中的“描述统计”选项
来进行描述性统计分析。
描述性统计分析可以帮助我们了解数据的分布情况、异常值和
03
数据的中心趋势等。
数据可视化
数据可视化是将数据以图形或图表的形式呈现的过程,可以帮助我们更好地理解数 据和发现数据中的规律和趋势。
大数据处理
云端化服务
为了更好地满足用户的灵活性和可扩 展性需求,SPSS可能会推出基于云端 的服务模式,提供更加便捷和高效的 数据分析服务。
随着大数据时代的来临,SPSS可能会 加强在大数据处理和分析方面的能力, 以应对大规模数据集的处理需求。
THANKS FOR WATCHING
感谢您的观看
探索性统计
进行因子分析、主成分分析等,深入挖掘数据背后的结构。
可视化问题
图表选择
根据分析目的选择合适的图表类型,如柱状 图、折线图、饼图等。
图表组合
将多个图表组合在一起,形成综合性的可视 化报告。
图表定制
调整图表样式、颜色、字体等,提高图表的 可读性和美观度。
动态可视化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型相关分析
典型相关分析(Canonical correlation )又称规则相关分析,用以分析两组变量间关系的一种方法;两个变量组均包含多个变量,所以简单相关和多元回归的解惑都是规则相关的特例。
典型相关将各组变量作为整体对待,描述的是两个变量组之间整体的相关,而不是两个变量组个别变量之间的相关。
典型相关与主成分相关有类似,不过主成分考虑的是一组变量,而典型相关考虑的是两组变量间的关系,有学者将规则相关视为双管的主成分分析;因为它主要在寻找一组变量的成分使之与另一组的成分具有最大的线性关系。
典型相关模型的基本假设:两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;典型相关还要求各组内变量间不能有高度的复共线性。
典型相关两组变量地位相等,如有隐含的因果关系,可令一组为自变量,另一组为因变量。
典型相关会找出一组变量的线性组合**=i i
j
j
X a x Y b y
=
∑∑与 ,称为典型变量;以
使两个典型变量之间所能获得相关系数达到最大,这一相关系数称为典型相关系数。
i a 和j b 称为典型系数。
如果对变量进行标准化后再进行上述操作,得到的是标准化的典型系数。
典型变量的性质
每个典型变量智慧与对应的另一组典型变量相关,而不与其他典型变量相关;原来所有变量的总方差通过典型变量而成为几个相互独立的维度。
一个典型相关系数只是两个典型变量之间的相关,不能代表两个变量组的相关;各对典型变量构成的多维典型相关,共同代表两组变量间的整体相关。
典型负荷系数和交叉负荷系数
典型负荷系数也称结构相关系数,指的是一个典型变量与本组所有变量的简单相关系数,交叉负荷系数指的是一个典型变量与另一组变量组各个变量的简单相关系数。
典型系数隐含着偏相关的意思,而典型负荷系数代表的是典型变量与变量间的简单相关,两者有很大区别。
重叠指数
如果一组变量的部分方差可以又另一个变量的方差来解释和预测,就可以说这部分方差与另一个变量的方差之间相重叠,或可由另一变量所解释。
将重叠应用到典型相关时,只要简单地将典型相关系数平方(2CR ),就得到这对典型变量方差的共同比例,代表一个典型变量的方差可有另一个典型变量解释的比例,如果将此比例再乘以典型变量所能解释的本组变量总方差的比例,得到的就是一组变量的方差所能够被另一组变量的典型变量所能解释的比例,即为重叠系数。
例1:CRM (Customer Relationship Management )即客户关系管理案例,有三组变量,分别是公司规模变量两个(资本额,销售额),六个CRM 实施程度变量( W EB 网站,电子邮件,客服中心,DM 快讯广告Direct mail 缩写,无线上网,简讯服务),三个CRM 绩效维度(行销绩效,销售绩效,服务绩效)。
试对三组变量做典型相关分析。
数据的格式如上所示,以下对三组变量两两做典型相关分析。
首先对公司规模和CRM实施程度做典型相关分析
SPSS并未提供典型相关分析的交互窗口,只能直接在synatx editor 窗口中呼叫SPSS的CANCORR程序来执行分析。
并且cancorr不能读取中文名称,需将变量改为英文名称。
打开文件后
File-→ new --→synatx editor打开语法窗口
输入语句
INCLUDE 'D:\spss19\Samples\English\Canonical correlation.sps'.
CANCORR Set1=Capital Sales
/Set2=Web Mail Call DM Mobile ShortM.
小写字母也行,但是变量名字必须严格一致
include 'D:\spss19\Samples\English\Canonical correlation.sps'.
cancorr set1=Capital Sales
/set2=Web Mail Call DM Mobile ShortM.
注意第三行的“/”不能为“\”
run→all得到典型相关分析结果
第一组变量间的简单相关系数
第一对典型变量的典型相关系数为CR1=0.434,第二对典型变量的典型相关系数为CR2=0.298.
此为检验相关系数是否显著的检验,原假设:相关系数为0.
每行的检验都是对此行及以后各行所对应的典型相关系数的多元检验。
第一行看出,第一对典型变量的典型相关系数是不为0的,相关性显著。
第二行sig值P=0.263>0.05,在5%显著性水平下不显著。
第一个典型变量的标准化典型系数为-0.287和-0.774.
CV1-1=--0.287capital--0.774sales, CV1-2=--1.4capital+1.2sales
CV2-1=--0.341web+0.117mail+0.027call—0.091DM—0.767mobile—0.174shortm CV2-2=--0.433web—0.168mail—1.075call+0.490DM+0.139mobile+0.812shortm
典型负荷系数和交叉负荷系数表
重叠系数分析Redundancy index 0.157=21CR *0.833=0.434^2*0.833 0.08=21*0.425CR =0.434^2*0.425
此为计算的典型变量,保存到原文件后部。
公司规模与CRM绩效的典型相关分析
CRM绩效与CRM实施程度典型相关分析
自变量因变量规则相关系数检验的P值公司规模CRM实施程度0.434 0.05 CRM实施程度CRM绩效0.368 0.00
公司规模CRM绩效0.358 0.112
由上表知,公司规模与CRM实施程度显著相关,且公司规模越大实施程度越高;此外CRM 实施程度越高越能实现CRM绩效,但公司规模与CRM绩效并不显著相关;就整体而言,公司规模不直接影响CRM绩效,而是通过CRM实施程度间接影响CRM绩效。
影响CRM绩因素很多,光靠较大公司规模还不是CRM绩效的保证,还有其他因素影响CRM绩效。
例2:全国30省市自治区农村收入与支出的指标,x1—x4反映农村收入,y1---y8反映农村生活费支出,对收入与支出进行典型相关分析。
语法输入
INCLUDE 'D:/spss19/Samples/English/Canonical correlation.sps'.
cancorr set1=x1 x2 x3 x4
/set2=y1 y2 y3 y4 y5 y6 y7 y8.
只有前两对典型相关系数是显著的;分别为CR1=0.982和CR2=0.910.
CV1-1=-0.511x1-0.039x2-0.448x3-0.142x4
CV1-2=-1.046x1-0.293x2+1.459x3-0.319x4
CV2-1=-0.199y1+0.017y2+0.442y3-0.615y4+0.096y5-0.415y6-0.07y7-0.22y8
CV2-2=-0.117y1-1.512y2-1.515y3+1.320y4-0.03y5+0.705y6+0.453y7+0.274y8
第一对典型变量说明靠劳动报酬和转移收入为主的家庭其对应的消费主要在家庭设备和服务,交通和通讯支出上,在居住支出上比较少。
例三:已知294个被调查者的cesd(抑郁症),health与sex , age ,education,income两组指标建立数据文件。
对两组进行典型相关分析。
语法输入
INCLUDE 'D:/spss19/Samples/English/Canonical correlation.sps'.
CANCORR Set1=cesd health
/Set2=sex age educ income.
结果选录
从第一对典型变量的表达式看出,年龄较大,教育程度较低,相对的无抑郁症趋势;显然健康比较差。
第二对典型变量表明,年龄小,教育度低,收入低的女性相对的有抑郁症。