考研管理类联考数学基础课程第1-3章
2020届管理类联考数学基础讲义
目录第一章算术 (1)第一节实数 (1)第二节绝对值和平均值 (6)第三节比和比例 (10)第四节习题 (13)第二章整式、分式和函数 (18)第一节整式 (18)第二节分式 (23)第三节集合与函数 (26)第四节习题 (29)第三章方程和不等式 (36)第一节简单方程(组)、不等式(组) (36)第二节一元二次函数、方程、不等式 (39)第三节特殊函数、方程和不等式 (44)第四节习题 (47)第四章应用题 (53)第一节各类应用题解法 (53)第二节习题 (63)第五章数列 (69)第一节数列的概念与性质 (69)第二节等差数列 (71)第三节等比数列 (75)第四节习题 (78)第六章平面几何与立体几何 (85)第一节平面几何 (85)第二节立体几何 (96)第三节习题 (99)第七章解析几何 (107)第一节平面直角坐标 (108)第二节直线 (109)第三节圆 (112)第四节习题 (116)第八章排列组合 (122)第一节排列组合 (122)第二节习题 (130)第九章概率和基本统计 (136)第一节概率 (136)第二节数据描述 (142)第三节习题 (145)第一章算术【大纲考点】1.整数(1)整数及其运算,(2)整除、公倍数、公约数,(3)奇数、偶数,(4)质数、合数;2.分数、小数、百分数;3.绝对值与平均值4.比与比例;【本章比重】本章约考2个题目,计6分。
第一节实数一.实数的分类1实数的分类(1)实数包括有理数和无理数:0Q ⎧⎫⎧⎧⎪⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎭⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数正有理数正分数有理数有限小数,无限循环小数负整数实数负有理数负分数正无理数无理数无限不循环小数负无理数(2)按照正负性分:⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实整负整数负有理数负实数负分数负无理数2.数的概念与性质(1)整数与自然数整数:,2,1,0,1,2,Z--00Z +-⎧⎫⎪⎬⎨⎭⎪⎩正整数Z 自然数N(最小的自然数为)负整数Z整数(2)质数与合数质数:如果一个大于1的正整数,只能被1和它本身整除(只有1和其本身两个约数),那么这个正整数叫做质数(质数也称素数).合数:一个正整数除了能被1和本身正除外,还能被其他的正整数整除(除了1和其本身之外,还有其他约束),这样的正整数叫做合数.▲质数与合数的重要性质:①质数和合数都在正整数范围,且有无数多个.②2是唯一的既是质数又是偶数的整数,即是唯一的偶质数.大于2的质数必为奇数.质数中只有一个偶数2,最小的质数为2.(★)③若正整数,a b ,a b 的积是质数p ,则必有a p =或b p =④1既不是质数也不是合数.(★)⑤如果两个质数的和或差是奇数,那么其中必有一个是2;如果两个质数的积是偶数,那么其中也必有一个是2.(★)⑥最小的合数为4,任何合数都可以分解为几个质数的积,能写成几个质数的积的正整数就是合数.互质数:公约数只有1的两个数为互质数,如9和16.(3)奇数与偶数奇数:不能被2整除的数.偶数:能被2整除的数.注意,0属于偶数.:21:2n n±⎧⎨⎩奇数整数Z 偶数注意:两个相邻整数必为一奇一偶.除了最小质数2是偶数外,其余质数均为奇数.题型1:考查质数、合数、奇数、偶数的性质【例1】三名小孩中有—名学龄前儿童(年龄不足6岁),他们年龄都是质数,且依次相差6岁,他们的年龄之和为()A 21B 27C 33D 39E 51【例2】:20以内的质数中,两个质数之和还是质数的共有()种.A 2B 3C 4D 5E 6【例3】:22m n -是4的倍数(1)m,n 都是偶数(2)m,n 都是奇数【例4】三个质数之积恰好等于它们和的5倍,则这三个质数之和为()(A)11(B)12(C)13(D)14(E)15(4)分数与小数分数:将单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.小数:实数的一种特殊的表现形式.所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号.其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数【例1记作a ,它的小数部分记作b ,则1a b -等于()A.1B.1- C.2D.2- E.3【例2】已知实数57+的小数部分为a ,75的小数部分为b ,则7a +5b 的值为()A B .0.504C .2D E.1(5)整除、倍数、约数1.数的整除:当整数a 除以非零整数b ,商正好是整数而无余数时,则称a 能被b 整除或a 能整除b 倍数,约数:当a 能被b 整除时,称a 是b 的倍数,b 是a 的约数.公约数:如果一个整数c 既是整数a 的约数,又是整数b 的约数,那么c 叫做a 与b 的公约数.2.最大公约数:两个数的公约数中最大的一个,叫做这两个数的最大公约数,记为(,)a b .若(,)1a b =,则称a 与b 互质.3.最小公倍数:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.数学上常用方括号表示,如[12,18,20]即12、18和20的最小公倍数.4.最大公约数和最小公倍数的求法:(★★★)①分解质因数法:22436223323,482222323=⨯⨯⨯=⨯=⨯⨯⨯⨯=⨯则2(36,48)2312=⨯=(取低次幂),42[36,48]23144=⨯=(取高次幂).求[12,18,20],因为2221223,1823,2025,=⨯=⨯=⨯所以22[12,18,20]235180.=⨯⨯=分解质因数法好处在于我们能通过将数化成幂的成积形式来判断其因数的个数1212n M M M n A x x x = ,则A 的因数个数为12(1)(1)(1).n N M M M =+++ ②短除法:求84与96的最大公约数与最小公倍数:③公式法:两个整数的成积等于他们的最大公约数和最小公倍数的成积,即(,)[,]ab a b a b = 例如,求[18,20],即得[18,20]1820(18,20)18202180.=⨯÷=⨯÷=5.求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止.最后所得的那个最小公倍数,就是所求的几个数的最小公倍数.【例1】两个正整数甲数和乙数的最大公约数是6,最小公倍数是90。
管理类联考综合—数学知识点汇总完整版3篇
管理类联考综合—数学知识点汇总完整版第一篇:概率论与数理统计概率论与数理统计是管理类联考中数学部分的重要内容,覆盖面广、难度大,考生需要认真掌握其中的知识点。
本篇将对概率论和数理统计的基础知识、常见分布、假设检验、方差分析等内容进行汇总整理。
一、基础知识1. 随机事件:指在一定条件下,可能产生多种不同结果的现象。
2. 随机变量:随机事件的结果可以用数值来表示,称为随机变量。
3. 概率:随机事件发生的可能性大小,用概率表示。
4. 条件概率:在已知某一事件发生的前提下,另一事件发生的概率称为条件概率。
5. 独立事件:相互之间不会影响发生概率的两个或两个以上事件称为独立事件。
二、常见概率分布1. 正态分布:以均值为中心,标准差为分散程度的分布,常用于描述和推测大量数据的分布情况。
2. 二项分布:描述在n次试验中,成功的次数符合的概率分布。
3. 泊松分布:描述单位时间或单位面积内随机事件发生次数的分布。
4. 均匀分布:每一个数据出现的概率是等概率的。
5. 指数分布:记录一些事件发生所需要的时间的分布。
三、假设检验假设检验是用来判断统计样本是否符合总体总体假设的方法。
1. 假设:有一个总体在某些方面具有某种规律性,这种规律性称为原假设。
2. 零假设:原假设通常都是虚假的,它不成立的反假设称为空假设。
3. 显著性水平:指进行检验所容忍的犯错的概率,包括α错误和β错误两种类别。
4. P值:在假设检验过程中,p值越小说明样本越不符合原假设,若p值小于显著性水平,则拒绝原假设。
四、方差分析又称为ANOVA分析,是一种多个样本数据分析的方法。
1. 单因素方差分析:分析的是同一处理因素水平的多个样本间差异性的情况。
2. 二因素方差分析:分析的是两个处理因素及其交互作用对不同样本变量均值之差的影响。
3. 多因素方差分析:将数据按照多个不同的因素分组,比较不同因素的变化如何影响样本。
以上就是概率论与数理统计的基础知识、常见分布、假设检验、方差分析等内容的汇总整理,考生们在备考过程中应该加强对这些知识点的学习,扎实掌握这一部分的考试内容。
199管理类联考数学知识点大家收好了
199管理类联考数学知识点大家收好了历年199管理类联考真题及解析点击文末领取。
在考研路上,金程考研与你并肩前行!第一部分:算数1.整数:注意概念的联系和区别及综合使用,【小整数用穷举法、大整数用质因数分解】(1)整数及其运算:(2)整除、公倍数、公约数:整除、余数问题用带余除法传化为等式;最小公倍数、最大公约数定义、求法、两者数量上关系、〖最小公倍数、最大公约数应用〗(3)奇数、偶数:奇偶性判定(4)质数、合数:定义,1既不是质数也不是合数,质数中只有2是偶数,质因数分解2.分数、小数、百分数:有理数无理数的区别,无理数运算(开方、分母有理化)3.比与比例:分子分母变化,正反比,〖联比(用最小公倍数统一)〗4.数轴与绝对值:【优先考虑绝对值几何意义】,〖零点分段讨论去绝对值〗,非负性,绝对值三角不等式,绝对值方程与不等式第二部分:代数1.整式:因式分解、【配方】、恒等(1)整式及其运算:条件等式化简基本定理(因式分解与配方运算)与常用结论,多项式相等,整式竖式除法(2)整式的因式与因式分解:常见因式分解(双十字相乘)、多项式整除,(一次)因式定理、〖余数定理〗2.分式及其运算:分式条件等式化简,齐次分式,对称分式,x+1/x型问题,分式联比,分式方程3.函数:注意定义域、〖函数建模〗、〖函数值域(最值)〗(1)集合:互异性、无序性,元素个数,集合关系,〖利用集合形式考查方程不等式〗(2)一元二次函数及其图像:【最值应用(注意顶点是否去得到)】,〖数形结合图像应用〗(3)指数函数、对数函数:图像(过定点),【单调性应用】4.代数方程:(1)一元一次方程:解的讨论(2)一元二次方程:(可变形)求解,判别式、韦达定理,【根的定性、定量讨论】(利用二次函数研究根的分布问题)(3)二元一次方程组:方程组的含义、应用题、解析几何联系5.不等式:(1)不等式的性质:等价、放缩、变形(2)均值不等式:【最值应用】(3)不等式求解:一元一次不等式(组):解的情况讨论;一元二次不等式:解的情况,解集与根的关系,二次三项式符号的判定;简单绝对值不等式:【零点分段或利用几何意义】,简单分式不等式:注意结合分式性质6.数列、等差数列、等比数列:【优先考虑特殊数列验证法】,数列定义,sn与an的关系,等差、等比数列的定义、判断、核心元素、中项,〖等差数列性质与求和公式综合使用、sn最值与变号问题〗,求和方法(转化为等差或等比,分式裂项,错位相减法)第三部分:几何1.平面图形:【与角度、边长有关的问题直接丈量,与圆有关的阴影部分面积问题直接蒙猜】〖不规则图形面积计算利用割补法、对称折叠旋转找全等、平行直角找相似,特别注意重叠元素,多个图形综合找共性元素〗(1)三角形:边、角关系,四心,面积灵活计算(等面积法,同底等高),特殊三角形(直角,等腰,等边),全等相似(2)四边形:矩形(正方形);平行四边形:对角线互相平分;梯形:【注意添高】,等腰、直角梯形(3)圆与扇形:面积与弧长,圆的性质,【注意添半径】2.空间几何体:〖注意各几何体的内切球与外接球半径,等体积问题〗(1)长方体:体积、全面积、体对角线、全棱长及其关系(2)柱体:体积、侧面积、全面积,〖由矩形卷成或旋转成柱体、密封圆柱水面高度〗(3)球体:体积、表面积3.平面解析几何:【利用坐标系画草图,先定性判断再定量计算,复杂问题可用验证法】〖5种对称问题、3种解析几何最值问题,轨迹问题〗(1)平面直角坐标系:中点,截距,投影、斜率(2)直线方程:求直线方程,注意漏解情况,两直线位置关系;圆的方程:配方利用标准方程(3)两点间距离公式:两圆位置关系;点到直线的距离公式:【直线与圆的位置关系】第四部分:数据分析1.计数原理(1)加法原理、乘法原理:(2)排列与排列数(3)组合与组合数:排列组合解题按照方法来分,常用的方法有①区分排列与组合;②准确分类合理分步;③特殊条件优先解决;④正面复杂反面来解;⑤【有限问题穷举归纳】等.常见的类型有〖摸球问题〗、〖分房问题〗、〖涂色问题〗、定序问题、排队问题(相邻、等间隔、小团体问题、不相邻问题)、〖分组分派问题〗、配对问题、相同指标分配问题等.2.数据描述(1)平均值(2)方差与标准差:定义,计算、意义,线性变换,〖由统计意义快速计算〗,两组数据比较(3)数据的图表表示:【直方图(频数直方图,频率直方图)】,饼图,数表3.概率(1)事件及其简单运算:复杂事件的表示,事件的概率意义,概率性质(2)加法公式:【两事件独立、互斥、对立情况下加法公式】,三事件加法公式(3)乘法公式:【利用独立性计算概率】(4)古典概型:定义(等可能+有限),【用穷举法计算古典概型】,摸球问题(逐次(有放回与无放回)、一次取样;抽签与次序无关)、〖分房问题(生日问题)〗、随机取样(5)伯努利概型:【伯努利概型定义及条件,分段伯努利】第五部分:应用题考点1:列方程解应用题+不定方程求解〖整数解不定方程用穷举法〗考点2:比、百分比、比例应用题考点3:【价格问题、分段计价】考点4:【平均问题】考点5:浓度问题考点6:工程问题考点7:行程问题考点8:容斥原理〖(两个饼、三个饼集合计数)〗考点9:〖不等式应用、整数解线性规划用图像法+穷举法〗考点10:〖函数图形+分段函数〗考点11:【最值应用题(均值不等式、二次函数求最值)】考点12:数列应用题〖等差等比应用题(区别通项还是求和,注意项数),注意单利与复利问题〗考点13:抽屉原理〖至少至多问题,平均与极端思想〗来源:本文信息来自学长学姐投稿,由金程考研江澈整理发布,转载请联系(qq:)。
管理类联考数学3篇
管理类联考数学第一篇:管理类联考数学——概率论概率论是数学中的一个重要分支,也是管理类联考数学中的重要考点。
概率论主要研究随机事件的可能性及其规律性,以及随机现象的量化与分析。
1.基本概念1.1 随机事件:指在一定条件下,可能发生也可能不发生的事件。
1.2 样本空间:指一个实验中所有可能结果的集合。
1.3 事件的概率:事件发生的可能性大小,用P(A)表示。
1.4 互斥事件:指两个事件A、B不可能同时发生。
1.5 独立事件:指事件A的发生与事件B的发生是没有关系的。
2.概率的计算方法2.1 古典概型:指样本空间中每个元素出现的可能性相等的情况。
例如掷一枚骰子,其样本空间为{1,2,3,4,5,6},每个元素出现的可能性相等,即P({1})=P({2})= …=P({6})=1/6。
2.2 几何概型:指样本空间呈现连续或者区间状的情况。
例如在一条直线上取一个随机点,其样本空间为线段,事件的概率通过求面积或长度比例的方式来计算。
2.3 事件的概率:计算公式为P(A)=n(A)/n(S),其中n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的个数。
2.4 互斥事件概率的计算:P(A或B)=P(A)+P(B)。
2.5 独立事件概率的计算:P(A且B)=P(A)×P(B)。
3.应用与拓展3.1 事件的复合:当多个事件同时发生或不同时发生时的概率分别如何计算。
3.2 条件概率:指在已知某一事件发生的情况下,另一个事件发生的可能性。
3.3 贝叶斯公式:指用已知的先验概率来计算后验概率的公式。
即P(B|A)=P(A|B)×P(B)/P(A),其中P(B)为先验概率,P(B|A)为后验概率。
3.4 随机变量与概率密度函数:随机变量是指随机事件所有可能结果的变量。
概率密度函数则是反映连续随机变量概率大小的函数。
概率论作为管理类联考数学中的重要考点,需要掌握基本概念和计算方法,同时也需要结合实际情况进行应用与拓展。
高等数学(管理类)教材
高等数学(管理类)教材高等数学(管理类)教材高等数学是管理类专业中一门重要的课程,它为学生提供了与数学相关的理论和技能,以便他们在日后的管理职业中能够应用这些知识。
本教材将为学生提供全面而深入的高等数学学习体验,以帮助他们掌握这门学科。
第一章极限与连续在本章中,我们将介绍极限与连续的概念。
极限是高等数学的基础,它有助于我们理解函数的性质和变化趋势。
我们将学习如何计算和使用极限,以及它们在实际问题中的应用。
1.1 极限的定义与性质1.1.1 数列极限的概念1.1.2 数列极限的性质1.1.3 函数极限的概念1.1.4 函数极限的性质1.2 极限存在准则1.2.1 夹逼准则1.2.2 单调有界准则1.2.3 函数极限存在的条件1.3 无穷大与无穷小1.3.1 无穷大的定义与性质1.3.2 无穷小的定义与性质1.3.3 无穷小的比较1.4 连续与间断1.4.1 连续函数的定义1.4.2 连续函数的性质1.4.3 间断点与间断类型第二章导数与微分在本章中,我们将介绍导数与微分的概念。
导数是函数变化率的度量,它在实际问题中有广泛的应用。
我们将学习如何计算导数,并了解导数与函数的关系,以及它们在管理类问题中的应用。
2.1 导数的定义与性质2.1.1 导数的定义2.1.2 导数的基本性质2.1.3 高阶导数2.2 基本函数的导数2.2.1 幂函数的导数2.2.2 三角函数的导数2.2.3 指数与对数函数的导数2.3 导数的运算法则2.3.1 和差法则2.3.2 积法则2.3.3 商法则2.3.4 复合函数的导数2.4 高阶导数与隐函数求导2.4.1 高阶导数的定义2.4.2 隐函数求导2.5 微分的定义与性质2.5.1 微分的概念2.5.2 微分的性质第三章微分中值定理与泰勒展开在本章中,我们将介绍微分中值定理与泰勒展开的概念。
微分中值定理是微积分中的重要定理,它帮助我们研究函数的性质。
泰勒展开则用于近似计算,以及函数性质的推导与分析。
2024管综数学大纲
2024管综数学大纲2024管综数学大纲考试时间:2024年考试科目:数学考试范围:管综数学课程内容一、数学分析1. 函数与极限1.1 函数概念及性质1.2 极限的定义与性质1.3 极限运算法则1.4 常用函数的极限1.5 无穷小与无穷大2. 导数与微分2.1 导数的定义与性质2.2 基本微分法则2.3 高阶导数与导数应用2.4 微分中值定理2.5 泰勒展开与误差估计3. 积分与应用3.1 定积分的概念与性质3.2 基本积分法则3.3 不定积分的计算3.4 牛顿-莱布尼茨公式3.5 定积分的应用4. 微分方程与应用4.1 常微分方程的基本概念4.2 一阶线性微分方程4.3 高阶线性常系数微分方程 4.4 非齐次线性微分方程4.5 微分方程的应用二、线性代数1. 线性方程组1.1 线性方程组的概念与性质 1.2 矩阵与线性方程组的关系 1.3 矩阵的运算与性质1.4 线性方程组的解的判定1.5 线性方程组解的性质2. 矩阵与行列式2.1 矩阵的基本概念和运算2.2 逆矩阵与可逆矩阵2.3 行列式的基本概念和运算 2.4 方阵的特征值与特征向量 2.5 线性变换与相似矩阵3. 向量空间与线性变换3.1 向量空间的基本概念和性质 3.2 基与坐标3.3 线性变换的概念与性质3.4 线性变换的矩阵表示3.5 线性变换的应用4. 内积空间与正交变换4.1 内积空间的基本概念和性质4.2 内积空间的标准正交基4.3 向量的内积与长度4.4 正交变换的概念与性质4.5 正交变换的矩阵表示三、概率统计与随机过程1. 概率论基础1.1 随机事件与概率的概念1.2 概率的运算法则1.3 条件概率与独立性1.4 随机变量的概念与分布1.5 数理统计基本概念2. 随机变量与分布2.1 常见离散分布(如二项分布、泊松分布) 2.2 常见连续分布(如均匀分布、正态分布) 2.3 函数的随机变量2.4 随机变量的数学期望与方差2.5 大数定律与中心极限定理3. 统计推断3.1 抽样与抽样分布3.2 置信区间的估计3.3 假设检验3.4 方差分析与回归分析3.5 统计推断的应用4. 随机过程4.1 随机过程的基本概念4.2 随机过程的分类与性质4.3 马尔可夫链与转移概率矩阵4.4 平稳随机过程与自相关函数4.5 随机过程的应用注意事项:本大纲仅供参考,实际考试内容以官方发布的考试大纲为准。
MBA数学考试数学基础知识(1-3).doc
1MBA数学辅导关于条件充分性判断题目的几点说明:1.充分性命题定义对于两个命题A和B而言,若由命题A成立,肯定可以推出命题B也成立,则称命题A是命题B成立的充分条件,或称命题B是命题A成立的必要条件。
【注意】A是B的充分条件可以简单地理解为:有A必有B,无A时B不定。
2.解题说明与各选项含义本类题要求判断给出的条件(1)和(2)能否充分支持题干所陈述的结论,即只要分析条件是否充分即可,而不要考虑条件是否必要。
阅读条件(1)和(2)后选择:(A)条件(1)充分,但条件(2)不充分(B)条件(2)充分,但条件(1)不充分(C)条件(1)和(2)单独不充分,但条件(1)和(2)联合起来充分(D)条件(1)充分,条件(2)也充分(E)条件(1)和(2)单独不充分,但条件(1)和(2)联合起来也不充分3.图示描述(1)√(2)×(A)(1)×(2)√(B)2(1)×(2)×(1)(2)联合√(C)(1)√(2)√(D)(1)×(2)×(1)(2)联合×(E)4.常用的解题方法(1)直接定义分析法(即由A推导B)若由A推导出B,则A是B的充分条件;若由A推导出与B矛盾的结论,则A不是B的充分条件。
直接定义分析法是解条件充分性判断题的最基本的解法。
(2)题干等价推导法(寻找题干结论的充分必要条件)要判断A是否是B的充分条件,先找出B等价的充要条件C,再判断A是否是C的充分条件。
(3)特殊反例法由条件中的特殊值或条件的特殊情况入手,导出与题干矛盾的结论,从而得出条件不充分的选择。
【注意】该方法不能用在肯定性的判断上。
3第1章算术【大纲考点】实数的概念、性质、运算及应用。
【备考要点】这部分看似简单,但题目往往设有陷阱,容易出错,解题过程中需更加细心。
1.1 数的概念、性质与运算1 实数的概念与性质(1)整数自然数N: ?,2,1,0;整数Z: ??,2,1,0,1,2,??;分数: 把1分成q等份,表示其中p份的数,称为分数,记为qp,其中q表示分母,p表示分子,读为q分之p。
考研管综数学大纲考点梳理
考研管综数学大纲考点梳理天数学习时间学习章节备注第一周8h第一章实数的概念和运算1、数的性质及其应用:奇偶分析、整除分析;2、二元一次以及二元二次不定方程的解法;3、绝对值定义及绝对值函数;4、两个数的均值定理及三个数的均值定理;第二周10h第二章代数式1、因式分解:平方差公式、完全平方公式、十字相乘、双十字相乘;2、多个因式积的展开式;3、利用分式的性质解题;4、理解余式定理的推导过程,并能熟练运用余式定理来解题;第三周12h第三章方程和不等式(整式方程和不等式;分式方程和不等式)1、整式方程和分式方程的解法;2、对系数存在未知数的一元二次方程,会讨论方程根的情况,包括根的个数、根的正负性及根的区间问题;3、讨论分式方程及指数方程根的情况;4、各类不等式的解法。
第四周12h第三章方程和不等式(绝对值方程和不等式;对数、指数方程和不等式;无理方程和不等式;)1、掌握指数函数的图像、单调性及运算;利用指数的四则运算解指数方程,利用单调性来解不等式;2、掌握对数函数的图像、单调性及运算;利用对数的四则运算解对数方程,利用单调性来解不等式;第五周10h第四章应用题(一)1、利用比例来解决比例应用题,弄清楚打折和价格问题的百分数问题;2、掌握跑圈问题、追击问题、相遇问题、相对运动问题的解法3、掌握工程问题的解题方法和技巧;4、掌握浓度配比问题、稀释问题、浓缩问题的解法;5、理解交叉法,会运用交叉法解决平均数问题;第六周12h第四章应用题(二)1、针对年龄问题的特征,会解决年龄问题的应用题;2、掌握解决公倍数问题的方法;3、运用韦恩图解决容斥原理问题;4、用一元二次函数的最值和均值来解决最值问题;5、掌握解决质因数分解问题的方法;6、掌握不定方程的解法;第七周15h第五章数列1、一般数列通项公式及前n项和的求法;2、等差数列的公式及性质,等差数列的最值问题;3、等比数列的公式及性质;4、对一个等比数列进行同等变换变成一个新的等比数列.第八周14h第六章排列、组合1、理解并能够区分两个基本原理;2、理清排列组合的关系;3、排列数及组合数公式的准确计算;4、重点掌握排列组合的多种解题方法:两个原理的应用(重要)、分房问题、相邻问题、不相邻问题、隔板法、分组问题、分配问题、机会均等法、正难则反、对号入座问题等;第九周15h第六章概率1、明确随机试验、独立重复试验的概念;2、掌握古典概型的解法;3、掌握贝奴里概型的解法,重点掌握赛制问题;4、理解方差、标准差的意义;5、运用公式解决方差标准差的题目;第十周15h第七章几何(平面几何、空间几何体)1、掌握相似三角形的判定及性质,并能充分应用性质解题;2、掌握圆及扇形的面积及周长计算公式;3、利用规则图形的面积拼接来求解不规则图形的面积的解法需掌握;4、各种空间几何体的表面积和体积的求法;5、柱体的内切球和外接球;第十一周12h第七章(解析几何)1、重要的公式有两点间距离公式和点到直线的距离公式;2、对称问题中,特别掌握点关于点的对称,点关于特殊直线的对称,直线关于特殊直线的对称;3、将代数描述的问题转化为解析几何的问题;4、直线与圆的问题转化成圆心到直线的距离;5、圆与圆的问题转化为圆心到圆心的距离;6、方程的图像所围成图形面积的求法;。
管理类联考数学材料:各章复习重点—名师解读考试大纲
管理类联考数学材料:各章复习重点—名师解读考试大纲!在管理类联考备考各科中,相比英语,数学内容是大家所熟知的,比如:算术、代数、几何、数据分析等内容,但为什么很多人不能取得联考数学高分呢?这除了大家工作一段时间,对原本知识记忆减退之外,还有对数学备考方法与重点把握不清导致的。
为了让大家更有方向的进行备考,在此为大家分享:管理类联考数学考试大纲—名师解读,让你对各章节复习,更有重点~~管理类联考数学考试大纲与解析第一节算术一、整数知识点:(1)整数及其运算;(2)整除,公倍数,公约数:(3)奇数、偶数:(4)质数、合数.【名师解读】:本节主要考点是数的奇偶性判定、数的互质与公倍数、质因数分解与整除分析、质合奇偶联合分析(特别注意质数中唯一的偶数是2,其余均为奇数).近年来单独命题的数量不多,但可以综合到其他考点中进行考查,比如排列组合概率中涉及数量的问题、不定方程类应用题、平面儿何的边长等二、分数、小数、百分数【名师解读】:本节大纲仅列出了有理数的考点,实则无理数及其运算(主要是根号及运算)也属于考查范围.需要掌握有理数与无理数混合运算的结果判定(应特别注意特殊的有理数0),实数的乘方和开方运算、分数的化简等。
近年来单独命题的数量较少,但无理数的运算在平面几何(如三角形、梯形、扇形等)中一般都会涉及到。
百分数主要通过应用题考查,尤其是利润、打折和浓度类应用题,要注意百分比对应的基准量,也即谁比谁提升或降低了百分之几.三、比与比例【名师解读】:本节主要通过应用题考查。
比例和百分比类应用题自2009年至今每年必考.解这类题的基本方法是列方程,但有些问题列方程容易,解方程繁琐,特别是涉及到多个基准量、多个量联比、比例多次变化等题目.此时,可灵活采用特殊值、整除、比例统一等技巧求解。
四、数轴与绝对值【名师解读】:本节须掌握绝对值的代数意义和几何意义,尤其是几何意义·这样,在求解很多问规时会更加直观和简洁.如果考查绝对值的代数意义.,则特别要注意绝对值的自比性、非负性和三角不等式.自2009年至令,绝对值间题几平每年都考.更多的是结合函数,方程,不等式一起考。
2018年经济类、管理类考研数学基础班课程讲义
《附件3》----2018届管理类考研数学基础班课程讲义导论一、管理类联考数学考试大纲管理类专业学位联考(MBA,MPA,MPAc等)综合能力考试数学部分要求考生具有运用数学基础知识、基本方法分析和解决问题的能力.综合能力考试中的数学部分(75分)主要考查考生的运算能力、逻辑推理能力、空间想象能力和数据处理能力,以及分析问题和解决问题的能力,通过问题求解(15小题,每小题3分,共45分)和条件充分性判断(10小题,每小题3分,共30分)两种形式来测试.数学部分试题涉及的数学知识范围有:(一)算术1.整数(1)整数及其运算(2)整除、公倍数、公约数(3)奇数、偶数(4)质数、合数2. 分数、小数、百分数3.比与比例4.数轴与绝对值(二)代数1.整式(1)整式及其运算(2)整式的因式与因式分解2.分式及其运算3.函数(1)集合(2)一元二次函数及其图像(3)指数函数、对数函数4.代数方程(1)一元一次方程(2)一元二次方程(3)二元一次方程组5.不等式(1)不等式的性质(2)均值不等式(3)不等式求解:一元一次不等式(组),一元二次不等式,简单绝对值不等式,简单分式不等式.6. 数列、等差数列、等比数列(三)几何1.平面图形(1)三角形(2)四边形(矩形、平行四边形、梯形) (3)圆与扇形2.空间几何体(1)长方体(2)柱体(3)球体3.平面解析几何(1)平面直角坐标系(2)直线方程与圆的方程(3)两点间距离公式与点到直线的距离公式 (四)数据分析 1. 计数原理(1)加法原理、乘法原理 (2)排列与排列数 (3)组合与组合数 2.数据描述(1)平均值 (2)方差与标准差 (3)数据的图表表示:直方图,饼图,数表 3.概率(1)事件及其简单运算 (2)加法公式 (3)乘法公式 (4)古典概型 (5)伯努利概型二、数学基础两种考查题型数学基础共25道题,满分75分,有两种考查题型: 第一种是问题求解,1-15题,每道小题3分,共45分;第二种是条件充分性判断,16-20题,每道小题3分,共30分. 两种考查形式说明如下:1. 问题求解题型说明联考中的问题求解题型是我们大家非常熟悉的一般选择题,即要求考生从5个所列选项(A)、(B)、(C)、(D)、(E)中选择一个符合题干要求的选项,该题型属于单项选择题,有且只有一个正确答案.该题型有直接解法(根据题干条件推出结论)和间接解法(由结论判断题干是否成立)两种解题方法. 下面举例说明:【范例1】(200901)方程214x x -+=的根是().(A)5x =-或1x =(B)5x =或1x =-(C)3x =或53x =-(D)3x =-或53x =(E) 不存在 【答案】C2. 条件充分性判断题型说明这类问题是结论明确,反问需要什么数学条件可以推出已给的结论,进一步说明:1)充分性逻辑角度:如果条件A 成立,能推出结论B 成立,即A B ⇒,称A 是B 的充分条件. 集合角度: B A ⊆ (A 是B 的子集),则A 是B 的充分条件. 2)题目的设计:【题例】 题干(结论) (1)条件一 (2)条件二 3)选项设置【考题范例1】(2012)直线b x y +=是抛物线a x y +=2的切线.(1)b x y +=与a x y +=2有且仅有一个交点.(2)).(2R x a b x x ∈-≥-【答案】A【考题范例2】(2013)某单位年终共发了100万元奖金,奖金金额分别是一等奖1.5万元、二等奖1万元、三等奖0.5万元,则该单位至少有100人.(1)得二等奖的人数最多.(2)得三等奖的人数最多. 【答案】B【考题范例3】(2010) 设a 、b 为非负实数,则a b +≤54. (1)ab ≤116. (2)221a b +≤. 【答案】C【考题范例4】(2012)已知,m n 是正整数,则m 是偶数.(1)n m 23+是偶数. (2)2223n m +是偶数. 【答案】D【考题范例5】(2013)1+=mq p 为质数.(1)m 为正整数,q 为质数. (2),m q 均为质数. 【答案】E4)解题策略永远是从条件推结论,但可以将条件或者结论做等价化简. 解题策略1:如果条件是等号,则直接代入结论判断是否成立; 解题策略2:如果条件是范围,则看条件范围是否落入结论的范围; 解题策略3:可找特殊值证伪,一点即可说明不充分.考点精讲第一章 算术第一节整数一、 整数及其除法整数包括正整数、负整数和零.两个整数的和、差、积是整数,但两个整数的商不一定是整数. 1、 带余除法,使得,0||r b ≤<成立,且唯一,则称为被除所得的商叫做被除所得的余数.2、整除且,使得成立,则称整除,此时称为的约数(因数),称为的倍数,记为|b a . 3、整除的性质(1)|,||c b b a c a ⇒(2)|,||(),(,)c b c a c ma nb m n Z ⇒+∀∈ 4、整数的分类由带余除法,可根据余数将整数进行分类.例如,整数被2除的余数是0,1,从而可将整数分为两类:2,21()n n n Z +∈,即偶数和奇数;类似的,整数被3除的余数是0,1,2,从而可将整数分为三类:31,31,32()n n n n Z +++∈.5、整除数的特征被2整除的数的特征: 被5整除的数的特征: 被4,25整除的数的特征: 被8,125整除的数的特征: 被3,9整除的数的特征: 被6整除的数的特征: 被10整除的数的特征:,,a b Z ∀∈0,b ≠,p r Z ∃∈a pb r =+,p r p a b ,r a b ,,a b Z ∀∈0,b ≠p Z ∃∈a pb =b a b a a b被12整除的数的特征:【例1】当整数n 被6除时,余数为3,则下列哪项不是6的倍数?( )A.3n -B.3n +C.2nD.3nE.4n【例2】如果是一个正整数,那么一定有约数( ).A.4B.5C.6D.8E.9【例3】有一个四位数,它被131除余13,被132除余130,则此数的各位数字和为( ).A.22B.23C.24D.25E.26 二、 质数与合数 1、 定义质数:一个大于1的整数,如果它的正因数只有1和它本身,则称这个数是质数(素数). 合数:一个大于1的整数,如果除了1和它本身以外,还有别的正因数,则称这个数是合数.注:由定义知,1既不是质数也不是合数. 2、 质数的性质(1) 最小的质数是2;质数中只有2是偶数,其它都是奇数.(2) 若p 为质数,a 是任一整数,则|p a 或a 与p 互质(a 与p 的最大公因数是1) (3) 设12,,,n a a a 是n 个整数,p 为质数,若12|(,,,)n p a a a ,则p 至少能整除其中一个k a .3、 质数分解定理任何一个大于1的整数,都能分解成若干个质数的乘积,且分解形式是唯一的,即12n a p p p =⋅⋅⋅,其中1a >的整数,12,,,n p p p 均为质数【例4】三名小孩中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数(素数),且依次相差6岁,他们的年龄之和为( )岁.A .21B .27C .33D .39E .51n 3n n -【例5】设是小于12的不同质数(素数),且,则( ).A. 10B.12C. 14D.15E. 19 【例6】如果,,a b c 为3个连续的奇数,则30a b +=.(1)1020a b c <<<<.(2)b c ,均为质数. 三、 最大公因数与最小公倍数 1、 定义(1) 公因数、最大公因数:设,a b 是两个整数,若整数d 满足|,|d a d b ,则称d 为,a b 的一个公因数(公约数),其中最大的公因数称为,a b 的最大公因数,记为(,)a b .注:若1(,)a b =,则称,a b 是互质的.(2) 公倍数、最小公倍数:设,a b 是两个整数,若整数d 满足|,|a d b d ,则称d 为,a b 的一个公倍数,其中最小的公倍数称为,a b 的最小公倍数,记为[,]a b .2、 性质(1) 若|,|a d b d ,则[,]|a b d . (2) (,)[,]a b a b a b ⋅=⋅(3) 若|a bc ,且1(,)a b =,则|a c .【例7】3018900(,),[,]a b a b ==(1)2100270,a b ==(2)140810,a b ==【例8】两个正整数的最大公约数是6,最小公倍数是90,满足条件的正整数共有( ),,a b c 8a b b c c a -+-+-=a b c ++=对.A .1B .2C .3D .4E .5第二节 实数及其运算一、 实数的分类整数有理数实数 分数(有限小数、无限循环小数)无理数(无限不循环小数)1、 实数的运算(1) 加、减、乘、除 (2) 乘方运算n na a a a =⋅⋅⋅,1n n a a -=,01a = (3) 开方运算n ma =1n mn maa-==2、 实数的整数部分和小数部分(1) 定义:,[]x R x ∀∈表示不超过x 的最大整数,令{}[]x x x =-,称[]x 是x 的整数部分,{}x 是x 的小数部分. (2) 性质:{}[]x x x =+01{}x ≤< 3、 有理数(1) 整数和分数统称为有理数,任何一个有理数都可以写成0,(,,)mm n Z n n∈≠的形式.最简分数:若1(,)m n =,称mn为最简分数或既约分数. (2)有理数之间的相互转化分数 小数 小数 分数4、无理数无限不循环小数称为无理数. (1) 无理数与有理数的运算“有”+、-、×、÷“有”= “有”+、-“无”= “有”×、÷“无”=注:若是有理,a b 00a a b +=⇒== (2)处理无理数的方法:乘方、配方、有理化【例9】若是最简分数,其中取19~中的整数,,则( ) A. B. C. D.24E.以上结果均不正确【例10】已知为无理数,为有理数,则下列正确的有( )个. ①必为无理数. ②必为无理数.③必为有理数. ④可能为有理数. A. 0 B.1 C. 2 D.3 E. 4a b ,a b 1192b a b +=+a b=675645a (1)(3)a a ++2a 2(1)a +2(2)a +(2)(2)a a +-【例11】已知为有理数,c =则( ).A. 2B.3C. 4D.5E. 7 【例12的整数部分为,小数部分为,则( ).11第三节 比和比例一、比、比例的定义 若或,则和为比例外项,和为比例内项,当时,称为和的比例中项,即2b ad =.二、比例的性质 1、比例的基本性质(1)ak a b k b=⇒=⋅(2),(0)a mam b mb =≠ (3)a cad bc b d=⇒=2、更比定理a c ab b dc d=⇒= 3、 合、分比定理,,a b c 222a b c ++=αβαβ=::a b c d =a cb d=a d b c ::a b b d =b a da c a mbc md b d b na d nc++=⇒=++ 4、 等比定理,(0)a c e a c e k k b d f b d f b d f++===⇒=++≠++【例13】已知非零实数,满足,则( ).A. 0B. 0或8-C. 2-或1D. 1或8-E. 8-【例14】设0a b m >>>,在有意义的条件下则的大小关系为( ).A. B. C.D. E.三、百分比问题1、定义:,即,则称为是的.2、增长率注:a 比b 大%100%%(1%)a b p p a b p b-⇔⨯=⇔=⋅+ b 比a 小%100%%(1%)a b p p b a p a-⇔⨯=⇔=⋅- 3、增加并存的恢复问题(1) 设价格为的商品,先提价,在降价后,则变化后的价格为.,,a b c b c a c a b b a c x a b c+-+-+-===3x =123,,a m a a m I I I b m b b m-+===-+321I I I <<213I I I <<123I I I <<231I I I <<132I I I <<100%%a r b⨯=%a b r =⋅a b %r 100%⨯后来值-原来值增长的百分比=原来值100%⨯原来值-后来值减少的百分比=原来值p %r %r(2) 设价格为的商品,先提价,则降价%,恢复原价.(3) 设价格为的商品,先降价,则提价%,恢复原价.【例15】某电子产品一月份按原定价的80%出售,能获利20%.二月份由于进价降低,按同样原定价的75%出售,却能获利25%,那么二月份的进价是一月份进价的( )(A )92% (B )90% (C )85% (D )80% (E )75%【例16】企业的职工人数今年比前年增加了20℅.(1)企业的职工人数去年比前年减少了20℅.(2)企业的职工人数今年比去年增加了50℅【例17】第一季度甲公司的产值比乙公司的产值低20%;第二季度,甲公司的产值比第一季度增长了20%,乙公司的产值比第一季度增长了10%;第二季度甲、乙公司的产值之比是( ).A.96:115B.92:115C.48:55D.24:25E.10:11p %r p %r A A A【例18】甲、乙、丙三种物品,已知甲与乙的价格之和与丙的价格之比是7:2;乙与丙的价格之和与甲的价格之比为8:3,则甲与丙的价格之和与乙的价格之比是( ).A.49:50B.37:50C.37:40D.47:60E.49:60第四节 绝对值一、 绝对值的定义和性质1、 定义和几何意义(1)定义:0||000a a a a a a >⎧⎪==⎨⎪-<⎩||0x a x a x a x a a x x a ->⎧⎪-==⎨⎪-<⎩(2)几何意义||a 表示点a 到原点的距离.||x a -表示点x 到a 的距离.2、 绝对值的性质(1)非负性:||0a ≥注:非负性的和为零,则每项均为零.(2)对称性:||||,||||a a a b b a =--=- (3)自比性:||||a a a -≤≤-1010||a a a a >⎧=⎨-<⎩,20,000||||20,0a b a b ab a b a b >>⎧⎪+=<⎨⎪-<<⎩ (4)平方、开方性222||||,||a a a a ===(5) 三角不等式:||||||||||||a b a b a b -≤±≤+注意:取等号的条件.||||||0a b a b ab +=+⇔≥||||||||0a b a b ab +=-⇔≤||||||0a b a b ab -=+⇔≤||||||||0a b a b ab -=-⇔≥【例19】已知2|1|(2)0x y x y -++-=,则log y x =( )A. 0B. 1C. -1D. 2E. -2【例20】(410)z x y -=(1) 实数,,x y z满足2(21)20x y x y z -+-+=(2) 实数,,x y z满足224521x xy y y +++=--【例21】若2112||33x x--=成立,则x 的取值范围是( ). A. 12x > B. 12x = C. 12x < D. 12x ≥ E.12x ≤【例22】成立.(1)(2)321x x +-+=-4.5x <-4.53x -≤≤-【例23】等式|27||2||5|m m m -=-+-成立,则实数m 的取值范围是( )A. 25m ≤≤B. 2x ≤-或5x ≥C. 25m -<<D. 2x ≤或5x ≥E. 5x ≤-或2x ≥-二、绝对值等式和不等式方法:(1)公式法;(2)零点分段讨论法;(3)平方1、绝对值等式.求解:①方程无解.②方程有唯一解.③方程有两个解.注:保证绝对值的非负性.2、绝对值不等式(1)解集为:,0,0b a b x a b b ∅≤⎧⎨-<<+>⎩(2)解集为:,0,0,0R b x a b x a b x a b b <⎧⎪≠=⎨⎪>+<->⎩或【例24】方程216x x --=的根为( ).A.或B.或73x =C.73x =或5x =-D.或E.5x =【例25】方程213x x ++-=无根.(1)1x >. (2)2x ≤-x a b -=0b <⇒0b =⇒x a =0b >⇒x a b =±x a b -<x a b ->5x =-1x =5x =3x =3x =-53x =【例26】可以确定||2x y x y+=-. (1)3x y =; (2)13x y =【例27=-x 的取值范围是( )A. 0x <B. 2x ≥-C. 20x -≤≤D. 20x -<<E. 20x -≤<【例28】方程2x x a -=有三个不同的解,则实数a 的取值范围是( ).(A) 0a = (B) 0a >或1a <- (C) 1a <- (D) 10a -<< (E) 0a >【例29】实数x 满足13||||222x x -+-<. (1)21||13x -< (2)21||11x x -≤+三、绝对值最值问题1、绝对值函数取最值的结论(1)()||||f x x a x b =-+-(2)()||||f x x a x b =---(3)()||||||f x x a x b x c =-+-+-【例30】的最小值为( ) (A )(B ) (C ) (D ) (E )【例31】若关于x 的不等式32x x a -+-<的解集是空集,则实数a 的取值范围是( ).(A) 1a < (B) 1a ≤ (C) 1a > (D) 1a ≥ (E) 1a ≠2、含有绝对值的确定取值范围的问题(1)恒成立、无解()f x a ≥恒成立()f x a ⇔<无解min ()f x a ⇔≥()f x a ≤恒成立()f x a ⇔>无解max ()f x a ⇔≤()f x a >恒成立()f x a ⇔≤无解min ()f x a ⇔>31()||||44f x x x =---1212-0114()f x a <恒成立()f x a ⇔≥无解max ()f x a ⇔<(2)有解设()f x 是绝对值的和或差构成的函数(连续),则()f x a =有解min ()f x a ⇔≤()f x a =无解min ()f x a ⇔>【例32】方程|1||1|x x a -++=无解.(1)1a = (2)2a <【例33】不等式24x x S -+-<无解.(1)2S ≤(2)2S >【例34】方程|4||1|x x a --+=有无穷多解.(1)5a =(2)5a =-【例35】|53||32|3x x ---=的解集是空集.(1)53x >(2)7563x <<第二章 代数式和函数第一节 整式一、 基本概念1、 代数式的分类单项式 整式有理式 多项式代数式 分式无理式2、一元n 次多项式1110()(0)n n n n n f x a x a x a x a a --=++++≠称为关于x 的一元n 次多项式.多项式相等定理:设1110()n n n n f x a x a x a x a --=++++,1110()nn n n g x b x b x b x b --=++++,则111100()(),,,n n n n f x g x a b a b a b a b --=⇔====二、 整式的运算1、乘法公式①②③④⑤注:2222221[()()()]2x y z xy yz xz x y y z z x ++---=-+-+-【例1】对任意实数x ,等式450ax x b -++=恒成立,则2015()a b +=( )A.0B.1C. 1-D. 20152E. 10072222()2x y x xy y ±=±+22()()x y x y x y -=+-2222()222x y z x y z xy yz xz ++=+++++3322()()x y x y x xy y ±=±+33223()33x y x x y xy y ±=±+±【例2】已知,则( )(A )83 (B )84 (C )85 (D )86 (E )87【例3】实数,,a b c 中至少有一个大于零.(1) ,,,x y z R ∈22,2a x y π=-+22,3b y z π=-+226c z x π=-+(2) x R ∈且1,x ≠1,a x =-1,b x =+21c x =-2、整式除法(1)竖式除法(2)带余除法任意多项式(),()(()0)f x g x g x ≠,则存在唯一的(),()p x r x ,使得()()()()f x g x p x r x =⋅+,其中()r x 的次数比()g x 的低,则称多项式()f x 除以()g x 商式为()p x ,余式为.3、整除(1)定义:当时,()()()f x g x p x =⋅,称整式()f x 能被整式()g x 整除,称()g x 为()f x 的一个因式,记为()|()g x f x .(2)性质:若,且,则.若,且,则.4、因式定理f x ()含有ax b -()因式⇔f x ()能被ax b -()整除⇔0b f a =().注:一次因式的零点恰为对应多项式方程的根.5、 余式定理239x x -=433275x x x --+=()r x ()0r x =()|()h x g x ()|()g x f x ()|()h x f x ()|()h x g x ()|()h x f x ()()|()()()()h x u x f x v x g x ±多项式f x ()除以ax b -()的余式为().b r f a=【例4】若多项式3223()f x x a x x a =++-能被1x -整除,则实数a =( )A.0B. 1C. 0或1D. 2或-1E. 2或1【例5】二次三项式26x x +-是多项式43221x x ax bx a b +-+++-的一个因式. (1)16a =(2)2b =【例6】若2x x m ++被5x +除,余式为3-,则m =( )A.21B.22C.-22D.23E.-23【例7】若f x ()被1x -除,余式为9;若f x ()被2x -除,余式为16,则f x ()被12x x --()()除的余式为( )A.72x +B.73x +C.74x +D.75x +E.27x +【例8】 若三次多项式g x ()满足1020324g g g g -====-()()(),(),多项式421f x x x =-+(),则34g x f x -()()被1x -除的余式为( )A.3B.5C.8D.9E.11三、 整式的因式分解把一个整式化为若干个其他的整式乘积的运算称为整式的因式分解. 常用的因式分解的方法: 1、 公式法2、 十字相乘法3、 待定系数法【例9】多项式326x ax bx ++-的两个因式是2x +和3x -,则第三个一次因式是( )A.6x -B.3x -C.1x +D.2x +E.3x +【例10】若12x y -+()是2244xy x y m ---的一个因式,则m =( )A.4B.1C.-1D.2E.0第二节 分式一、 分式的基本概念1、 定义(1)0AB B≠()称为分式,其中A 称为分子,B 称为分母. (2)最简分式(既约分式):分子和分母没有正次数的公因式的分式. 2、分式的基本性质(1)分子和分母同乘以(或除以)同一个不为零的式子,分式的值不变. (2)约分:把分式的分子与分母的公因式约去.(3)通分:把异分母的分式化为与原来的分式相等的同分母的分式. 3、分式的运算(1) 分式的加减运算(2) 分式的乘除运算(3)分式的乘方运算【例11】当20051949x y ==,时,代数式4422222x y y xx xy y x y --⋅-++的值为( )A.-3954B.3954C.-56D.56E.128【例12】已知0a b c ++=,则111111a b c b c a c a b+++++=()()()的值为( )A.0B.1C.2D.-2E.-3 二、1nnx x +类型 解题方法:递推公式222112k kk k x x x x +=+-() 2112111111k k k k k k x x x x x x x x+++++=++-+()()()【例13】若2510x x -+=,则441x x+的值为( ) A.527 B.257 C.526 D.256 E.356【例14】若正实数满足2421124a a a =++,则21a a a ++的值为( )A.12B.14 C.16D.112E.124三、分式方程1、 分式方程0A B =的解为0A B =⎧⎨≠⎩2、 增根:使得0A B =⎧⎨=⎩成立的根称为方程0A B =的增根【例15】若关于x 的方程2133m x x =---有增根,则m 的值为( ) A.0 B.3 C.-1 D.-2 E.-3【例16】42233402445815x x x x x --+=-+成立.(1)x =(2)x =第三节 函数一、 函数的基本属性1、 函数的三要素:定义域、对应法则、值域 注:常用的函数定义域的基本原则 (1) 分母不能为零;(2) 偶次根式中被开方数不能小于零;(3) 对数的真数大于零,底数大于零且不等于1; (4) 零指数幂的底数不等于零; (5) 实际问题要考虑实际意义等 2、 单调性设函数f x ()在区间a b [,]有定义,对于任意的12x x a b ∈,[,],(1) 单调增加:若12x x <,有12f x f x <()(),则称f x ()在区间a b [,]上单调增加; (2) 单调减少:若12x x <,有12f x f x >()(),则称f x ()在区间a b [,]上单调减少.(3)复合函数的单调性法则:单调性相同的两个函数复合,得到的新函数是单调增加的;单调性不同的两个函数复合,得到的新函数是单调减少的. 3、 奇偶性(1) 偶函数:若函数f x ()在定义域上满足f x f x -=()(),则称f x ()为偶函数; (2) 奇函数:若函数f x ()在定义域上满足f x f x -=-()(),则称f x ()为奇函数; (3) 性质:偶函数的图像关于y 轴对称,奇函数的图像关于原点对称. 二、一元二次函数1、一元二次函数的解析式(1)一般式:20f x ax bx c a =++≠()() (2)零点式:120f x a x x x x a =--≠()()()()(3)顶点式:224024b ac b f x a x a a a-=++≠()()() 2、一元二次函数的图像及其性质(1)图像:抛物线 开口 判别式 对称轴 零点 顶点(2)单调性:当0a >时,在2b a -∞-(,]上是单调减少的,在2ba -+∞[,)上是单调增加的; 当0a <时,在2b a -∞-(,]上是单调增加的,在2ba-+∞[,)上是单调减少的.(3)最值:一元二次函数在对称轴处取到最值当0a >时,开口向上,有最小值;当0a <时,开口向下,有最大值.注:限定区间的最值问题,有时还需要结合单调性来求出最值. (4)零点与韦达定理设12x x ,是一元二次函数20f x ax bx c a =++≠()()与x 轴的两个交点的横坐标(称为零点),则:12b x x a +=-12c x x a⋅=【例17】函数112x y -=在定义域上的单调性为( )A .在1-∞(,)上是增函数,在1+∞(,)上是增函数 B.减函数C .在1-∞(,)上是减函数,在1+∞(,)上是减函数 D.增函数 E .以上结论都不正确【例18】一元二次函数1y x x =-()的最大值是( )A.0.05B.0.1C.0.15D.0.2E.0.25【例19】设实数x y ,满足23x y +=,则222x y y ++的最小值是( )A.4B.5C.611【例20】若不等式210x ax ++≥对一切102x ∈(,)都成立,则a 的取值范围是( )A.0a ≥B.10a -<<C.512a -≤≤-D.52a ≥- E.1a ≤-三、指数函数和对数函数1、指数函数 (1)定义01x y a a a =>≠,(,),定义域为R ,值域为0+∞(,).(2)图像(3)单调性当1a >,xy a =是单调增加的;当01a <<,xy a =是单调减少的. (4)底数与图像的关系当1a >,a 值逆时针变大;当01a <<,a 值也是逆时针变大的. 2、对数函数(1)定义01a y x a a =>≠log ,(,),定义域为0+∞(,),值域为R .(2)图像(3)单调性当1a >,x y a =是单调增加的;当01a <<,xy a =是单调减少的. (4)对数与指数的关系:对数运算与指数运算是互逆运算ba a Nb N =⇔=log3、指数与对数的运算性质:,,,,,,,,,,, ,,,,,.【例21】若,则有( )(A ) (B ) (C )(D )(E )以上均不正确 b a N =01a =1a a =()nm mn a a =m n m n a a a +⋅=()nn n ab a b =⋅m n m n a a a -÷=mn a =1n na a-=log N a a N =1log 0a =log 1a a =loglog log M N M N aa a=+loglog log M M N N aa a =-log log nM Ma a n =log log logb bcaa c=1log log b a a b =log log m n b b a am n =32a -<<-13()0.32aa a >>10.3()32aa a>>1()0.332a a a>>130.3()2a aa >>【例22】744855285,,377a b c --⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的大小关系是( ). (A) a b c >> (B) a c b >> (C) b a c >> (D) c a b >> (E) 以上均不正确【例23】若330m n <<log log ,则m n ,满足条件( )A.1m n >>B.1n m >>C.01m n <<<D.01n m <<<E.无法判断【例24】函数223a f x x x =+-()log (),若20f >(),则f x ()的单调递减区间为( )A.1+∞(,)B.1-∞-(,)C.3-∞-(,)D.1-+∞(,)E.-∞+∞(,)【例25】已知函数2234x x f x +=-⨯(),且20x x -≤,则f x ()的最大值为( )A.0B.1C.2D.3E.4【例26】设164x ≤≤,函数42222812y x x x=+⋅(log )(log )log 的最大值和最小值分别是( )A.54,2B.81,9C.81,0D.54,0E.以上都不正确第三章方程和不等式函数、方程、不等式、平面解析几何等方面的问题本质上是同一个问题,只是研究的角度不同.【主要考点】1. 代数方程:一元一次方程,一元二次方程,二元一次方程组.2. 其他类型的方程:绝对值方程,分式方程,根式方程,对数方程,指数方程.3. 不等式:不等式的性质,一元一次不等式,一元二次不等式,简单的一元高次不等式.4. 不等式组:由一元一次不等式和一元二次不等式等组成的不等式组.5. 其他类型的不等式:绝对值不等式,分式不等式,根式不等式,指数不等式,对数不等式.6. 均值不等式,三角不等式.7. 线性规划问题:不等式组约束下的最值问题. 8. 应用问题.第一节方程一、基本概念1.方程、解(根)含有未知数的等式称为方程.能使方程左右两端相等的未知数的值,称为方程的解或根.考试只要求方程的实根,即方程在实数域内的解.2.方程的元和次“元”指的是方程中不同未知数的个数,“次”指的是方程中未知数的最高次数.二、一元一次方程1.方程的形式:ax b =2.解方程(1)若方程中的所有系数均为已知的实数,可利用代数式运算的法则求解方程; 实例:325x +=,解得1x =.(2)若方程中含有参数,特别是未知数的系数中含有参数,通常需要分情况讨论.3.分情况讨论:①当0a ≠时,方程有唯一解b x a=; ②当0,0a b ==时,方程有无穷多解,x R ∈;③当0,0a b =≠时,方程无解.4.解析几何中的直观解释:【例 3.1】能够推出x 的方程22()0a b x a b -++=有无穷多解,下列说法中正确的个数为()①0a b +=;②0a b +≠;③220a b -=;④0a b -=.(A)0(B)1 (C)2 (D)3(E)4【例 3.2】直线2(1)y a x a a =+-+与直线2y =-有且只有一个交点,则交点的坐标为()(A)(1,1)a + (B)(1,2),1a a +-≠- (C)(2,1),1a a --≠-(D)(1,2)a +- (E) (2,2),1a a --≠-三、一元二次方程1.形式:20(0)ax bx c a ++=≠注:如果0a =,则退化为前一种情况.2.等价形式:220(0)0b c x x a x px q a a++=≠⇔++= 3.配方形式:222424b b ac x a a -⎛⎫+= ⎪⎝⎭ 4.一元二次方程的判别式:24b ac ∆=-5.讨论:①0∆>,方程有两个不相等的实根.②0∆=,方程有两个相等的实根.③0∆<,方程无实根.6.求根公式:1,2,02b x a-±=∆≥ 7.因式分解形式(十字相乘):若12,x x 为方程的两个实根,则212()()0ax bx c a x x x x ++=--=.反之成立.8.韦达定理或根与系数关系:1212,b c x x x x a a+=-=. (1)为什么?(2)推广到一元三次方程20(0)ax bx c d a +++=≠,假定123,,x x x 为三个实根,则 123123,x x x x x x ++==(3)与韦达定理有关的代数式运算1211x x +=,2212x x +=3312x x +=,4412x x +=12x x -=,3312x x -= 【例 3.3】设12,x x 是方程250x px +-=的两个实根,若1211x x +的算术平均数为6,则p 的值为()(A)50- (B)60- (C)50(D)60(E)30【例3.4】方程2780x x -+=的两个实根为121,1x x ++.(1)方程2520x x -+=的两个实根为12,x x(2)方程2520x x ++=的两个实根为12,x x【例3.5】已知方程220x ax x a +-+=有实根,则两根之积的最大值与最小值之差为()(A)1 (B)89 (C)29 (D)19(E)无法确定【例3.6】已知一元三次方程32210x x -+=的根为1231,,x x x =,则2223x x +=() (A)1- (B)12 (C)1 (D)2(E)3【例 3.7】设一元三次方程320x bx cx d +++=的三个实根为123,,x x x ,则22212311x x x ++=.(1)1,5,6b c d =-=-=(2)1,5,6b c d ==-=-【例3.8】方程210x ax ++=与210x x a ++-=有一公共实根.(1)2a =(2)1a =四、二元一次方程组1.形式:111222a xb yc a x b y c +=⎧⎨+=⎩ 2.求解(1)当1110a b c ≠时,几何解释 ①2211a b a b ≠,方程有唯一解. ②222111a b c a b c =≠,方程无解. ③222111a b c a b c ==,方程有无穷多组解. (2)其他情况,针对具体问题具体分析.3.重点:利用方程组解决应用问题,包括工程问题、行程问题、浓度问题、比例问题等.【例3.9】一列火车驶过铁路桥,从车头上桥到车尾离开桥公用1分25秒,随后列车又穿过一条隧道,从车头进入隧道到车尾离开隧道用了2分40秒,能确定火车的速度及车身的长度(假定火车始终匀速行驶).(1)铁路桥长为900米.(2)隧道长为1800米.五、其他类型的方程1.分式方程(1)形式:()()f x ag x = (2)求解方法①去分母,验增根:先求方程()()0f x ag x -=的根,再验证()0g x ≠是否成立. ②()()0()()0()f x ag x f x a g x g x -=⎧=⇔⎨≠⎩【例3.10】方程213111x x x x x ++=+--的所有根之和为() (A)1(B)1- (C)2 (D)2-(E)0【例3.11】一满桶纯酒精倒出10升后,加满水搅匀,再倒出4升后,再加满水.此时,桶中的纯酒精与水的体积之比是2:3,则桶的体积是()升(A)15 (B)18 (C)20 (D)22(E)252.绝对值方程(1)形式:含有绝对值的方程.(2)一般形式:①直接取正负去掉绝对值,注意检验增根. 实例:1x =-②讨论范围去掉绝对值.(3)特殊形式:通常与绝对值函数有关.【例3.12】方程214x x -+=的所有根之积为()(A)3(B)5 (C)3- (D)5-(E)6【例3.13】方程1222x x x a -+-+-=无实根.(1)1a ≤(2)0.5a =3.根式方程(1)形式:含有根式的方程.(2)求解:平方去根式,检验增根.【例3.14】2=的所有根之积为()(A)56 (B)48 (C)36 (D)28(E)244.指数方程和对数方程(1)形式:含有指数或对数的方程.(2)求解:只考查简单的指数方程和对数方程,通常利用换元法进行化简.【例3.15】方程1332x x --=的所有根之积为()(A)1- (B)0 (C)13 (D)1(E)3【例3.16】方程11442x x a -----⨯=有实根,则a 的取值范围是()(A)30a -<< (B)3a ≤-或0a ≥ (C)30a -≤<(D)3a ≤-或0a > (E) 以上答案都不对第二节不等式一、基本概念1.不等号≥等价于>或=,例11≥.2.不等式的性质①a b b a >⇔<②,a b b c a c >>⇒>③,0a b c ac bc >>⇒>;,0a b c ac bc ><⇒<二、一元一次不等式1.形式:ax b >或0ax b ->2.分情况讨论:几何解释①当0a >时,b x a>; ②当0a <时,b x a <; ③当0,0a b =≥时,无解;④当0,0a b =<时,x R ∈.【例3.17】1211x -<<-. (1)0x <(2)32x >三、一元二次不等式1.形式:20ax bx c ++>或20ax bx c ++<.2.解集:注:只讨论0a >的情况.若0a <,既可不等式两边乘以1-后转化为正系数的情况,也可做类似的分析.【例3.18】已知不等式220ax bx ++>的解集为11,32⎛⎫- ⎪⎝⎭,则a b +=() (A)12- (B)10- (C)6-(D)4-(E)6【例3.19】关于x 的不等式22(1)(1)10a x a x ----<恒成立.(1)1a ≤(2)35a >-【例3.20】若不等式2210x ax -+≥对于一切()0,1x ∈成立,则a 的取值范围是()(A)11a -<≤ (B)2a < (C)12a -≤≤ (D)1a ≤(E)2a ≤ 四、一元高次不等式1.形式:通常为几个因式乘积的形式.2.解法:穿线法.①去掉恒正或恒负的项,调整最高次幂的系数为正,写出等价形式.②在数轴上标出零点,判断实心或空心.③从右向左依次穿线.④奇穿偶不穿.【例3.21】不等式22(28)(2)(226)0x x x x x ----->恒成立.(1)(2,1]x ∈--(2)4x >或2x <【例3.22】不等式(2)ln 0(1)(3)x e x x x x -≥--恒成立. (1)(0,1)(1,2](3,)x ∈+∞(2)[2,3)x ∈五、不等式组1.形式:若干个不等式联立组成不等式组.2.解法:取各个不等式解集的交集.【例3.23】方程2(2)0x a x a +-+=的两个实根均在(1,1)-内,则a 的取值范围是()(A)142a -<≤+ (B)142a -≤≤- (C)142a <≤+(D)142a <≤- (E)142a <<+【例3.24】某单位年终共发50万元奖金,奖金金额分别为一等奖4万元,二等奖2万元,三等奖1万元,则该单位至少有25人.(1)得二等奖的人数最多(2)得三等奖的人数最多六、其他类型的不等式1.分式不等式:移项,通分,穿线.【例3.25】0x << (1)223211x x ->- (2)当01x <<时,223211x x ->-2.绝对值不等式:讨论法,两侧法,图像法.【例3.26】123x x +<+.(1)1x <-(2)54x >-【例3.27】2521x x x -->-(1)4x >(2)1x <-3.根式不等式:讨论法,图像法.【例3.28】x a -≥对于1x ≥恒成立. (1)34a <(2)34a =4.对数不等式和指数不等式:结合图像进行讨论.【例3.29】不等式221log ()2x x <-≤(11x ≤<-(2)2x <≤六、均值不等式和三角不等式1.均值不等式(1)2a b +≥(0,0)a b ≥≥,当且仅当a b =时等号成立. 等价表述:两个非负实数的算术平均数大于等于它们的几何平均数.两个非负实数的等差中项大于等于它们的等比中项.222a b ab +≥,当且仅当a b =时等号成立. (2)适用范围:①乘积为定值时,可求和的最小值.②和为定值时,可求乘积的最大值.(3)注意事项:一定要判断取等条件.如果不满足取等条件,则无法取得相应的最值.(4)3a b c ++≥(0,0,0)a b c ≥≥≥,当且仅当a b c ==时等号成立. 实例:对号函数1y x x =+【例3.30】已知0x >,函数223y x x=+的最小值是()(A)((C) (D)5(E)【例3.31】若40y x x --<对一切正实数x 均成立,则y 的取值范围是() (A)2y = (B)2y < (C)2y ≤ (D)4y ≤(E)4y <2.三角不等式(1)a b a b a b -≤+≤+,当且仅当0ab ≥时右侧的等号成立,当且仅当0ab ≤时左侧的等号成立.(2)()a b a b a b a b a b a b -≤-≤+⇔--≤+-≤+-, 当且仅当0ab ≤时右侧的等号成立,当且仅当0ab ≥时左侧的等号成立.【例3.32】a b a b a b -=-=+(1)0ab ≥(2)0ab ≤七、线性规划1.解法①根据约束条件即不等式组画出可行域.②求出可行域的所有“尖点”,注意题目中是否有整数的要求.③代入目标函数,比较函数值得出结论.【例3.33】,x y 满足236x y +≤且24x y +≤,则x y +的最大值为52(1),x y R ∈(2),x y N ∈第一章例题答案1-5 DCDCD 6-10 EABAD 11-15 AEDAB 16-20 CCAAB 21-25 EDDEA 26-30 ECAEB 31-35 BDADE第二章例题答案1-5 CDDEE 6-10 EACCC 11-15 AEBCD 16-20 DBEAD 21-25 BADCB 26 C第三章例题答案1-5 CEDAA 6-10 EDECC 11-15 CDBBD 16-20 CDBCD 21-25 ABDEB 26-30 BADDA 31-33 ECA。
2024年管理类联考数学考试大纲
考试大纲一、考试性质管理类联考数学是为了考查考生是否具有在相关管理工作中运用数学知识和方法解决实际问题的能力。
它主要涵盖了集合的概念、不等式、数列、方程、函数性质以及几何概念等基本内容,同时也有一定比例的难题用于测试考生的综合素质。
二、考试内容1.集合(1)集合的概念及其表示方法;(2)集合之间的包含和相等关系;(3)集合的运算性质。
2.不等式(1)不等式的概念和性质;(2)不等式的基本类型及其解法。
3.数列(1)数列的概念及其表示方法;(2)等差数列和等比数列的基本性质;(3)数列求和的常用方法。
4.方程与不等式组的解法(1)方程和方程组的解法;(2)线性规划问题及其解法。
5.函数性质与几何概念(1)函数的概念及其表示方法;(2)函数的单调性、奇偶性、周期性及其应用;(3)几何图形与面积、体积的基本概念。
三、考试要求1.理解基本概念:考生应能理解数学基本概念、原理和方法,能够正确表述其含义。
2.解决问题能力:考生应能够运用所学数学知识和方法解决实际问题,能够分析问题和发现问题的本质。
3.综合素质能力:考生应具备较高的综合素质,能够灵活运用所学知识解决实际问题,能够运用数学方法进行推理和论证。
四、考试形式和试卷结构1.考试时间为3小时,试卷满分为150分。
2.试卷包括选择题、填空题和解答题三个部分。
其中选择题占40分,填空题占50分,解答题占60分。
3.试卷难度适中,既有基础知识的考查,也有综合能力的考查。
考生需要具备良好的数学基础和逻辑思维能力,能够运用所学知识解决实际问题。
4.试卷结构合理,试题难度分布适当,既有简单题,也有中等难度题和难题。
考生需要具备扎实的基础知识和较高的综合素质,才能取得好成绩。
五、答题策略和技巧1.认真审题:考生在答题时一定要认真审题,理解题意,把握好题目所给的条件和要求。
2.合理安排时间:考生要合理安排答题时间,对于容易题要快速解答,对于中等难度和难题要认真思考和分析,逐步解答。
管理类联考数学知识点
管理类联考数学知识点管理类联考数学知识点概述一、实数1. 实数的性质与运算- 有理数与无理数的定义- 实数的四则运算规则- 绝对值的概念及性质- 根号的运算及其性质2. 绝对值不等式- 绝对值不等式的解法- 绝对值不等式的解集表示3. 指数与对数- 指数函数的性质- 对数函数的性质- 指数与对数的转换关系- 指数方程与对数方程的解法二、代数表达式与方程1. 代数表达式的简化- 因式分解- 配方法- 公式法2. 一元一次方程与不等式 - 一元一次方程的解法 - 一元一次不等式的解法 - 线性规划问题的求解3. 二次方程与不等式- 二次方程的求解- 判别式的应用- 二次不等式的解法4. 不等式组- 不等式组的解集求解 - 不等式组的图形表示三、函数1. 函数的基本概念- 函数的定义- 函数的表示方法- 函数的性质2. 常见函数- 一次函数- 二次函数- 幂函数- 指数函数- 对数函数- 三角函数3. 函数的运算- 函数的四则运算- 复合函数- 反函数4. 函数的应用- 函数的极值问题- 函数的最值问题- 函数的单调性四、几何1. 平面几何- 点、线、面的基本性质 - 三角形的性质- 圆的性质- 四边形的性质2. 空间几何- 空间直线与平面的关系 - 简单几何体的性质- 空间向量及其运算3. 解析几何- 直线与曲线的方程- 圆锥曲线的性质- 坐标变换五、概率与统计1. 概率基础- 随机事件的概率- 条件概率与独立事件- 贝叶斯定理2. 随机变量及其分布- 随机变量的定义- 离散型与连续型分布 - 期望值与方差3. 统计基础- 数据的描述性分析 - 抽样与估计- 假设检验六、数列1. 等差数列与等比数列 - 数列的通项公式- 数列的求和公式2. 数列的极限- 极限的概念与性质 - 极限的运算法则3. 无穷级数- 级数的收敛性- 级数的求和公式七、逻辑与推理1. 逻辑基础- 命题逻辑- 逻辑运算2. 推理方法- 演绎推理- 类比推理- 归纳推理3. 逻辑应用- 逻辑在数学问题中的应用- 逻辑在解题策略中的作用以上是管理类联考数学的主要知识点概述。
坚持到底——管理联考之数学基础概念(三)
坚持到底——管理联考之数学基础概念(三)整式、分式和函数提示:此部分内容有难度,大家需要扎实掌握因式分解的部分大纲考点:1.整式:(1)整式及其运算,(2)整式的因式与因式分解;2.分式及其运算;3.函数(1)集合,(2)指数函数、对数函数.考查内容:代数主要考查的是表达式的运算,其内容包括:乘法公式、整式的乘法和除法、整式的因式分解、分式的恒等变形(通分、约分);函数主要掌握指数和对数,对于管理类专业硕士考试,三角函数和反三角函数不做要求.本章在考试中的分值和题目较少,一般2 个题目左右,但本章是学习数学的基础,尤其是解方程和不等式的基础,所以仍要引起重视.知识体系:坚持学习,进程已近1/3!考试要点剖析一、基本定义1.单项式【注意】数与字母之间是乘积关系.2.多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式.多项式中的符号,看作各项的性质符号;多项式中,次数最高项的次数,就是这个多项式的次数.(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.对于有两个或两个以上字母的多项式,排列时注意:要先确认按照哪个字母的指数来排列;然后再根据次字母的升幂还是降幂进行排列.3.整式单项式和多项式统称为整式.4.分式分式基本性质续表5.最简分式分式的分子与分母没有公因式时,叫做最简分式.一个分式的最后形式必须是最简分式. 分式化为最简分式时通常采用约分的方法.【注意】分式计算的几个原则及技巧:(1)低级(加减)运算先通分;(2)高级运算莫忘提式(公因式)约分;(3)分母为因式积时要考虑拆开;(4)涉及求未知数值,莫忘分母不为零;(5)变形技巧为乘“1”.6.有理式整式和分式统称有理式.二、整式的除法【开心提示:重点、难点】1.因式定理2.余式定理三、分解因式1.分解因式的概念把一个多项式化成几个整式的积的形式,这种变形叫做分解因式(又叫因式分解).(1)因式分解的实质是一种恒等变形,是一种化和为积的变形;(2)因式分解与整式乘法是互逆的;(3)在因式分解的结果中,每个因式都必须是整式;(4)因式分解要分解到不能再分解为止.2.因式分解的基本方法(1)运用公式法;(2)分组分解法;(3)十字相乘法;(4)双十字相乘法.3.因式分解的一般步骤一提二套三分组.四、集合的有关概念【了解内容,略】经典例题【例 1】如果a2 + b2 + 2c2 + 2ac - 2bc = 0 ,则a + b 的值为().(A) 0 (B)1 (C) -1(D) -2(E) 2【解析】a2 + b2 + 2c2 + 2ac - 2bc = (a + c)2 + (b - c )2 = 0 ,根据非负性,所以a = -c ,b = c ,从而a + b = 0 ,故选 A.【评注】也可以采用特值法求解.。
管理类联考数学手册
管理类联考数学手册第一章:概率论概率论是管理类联考数学中的重要内容,主要包括概率的基本概念、概率的运算规则、概率分布以及随机变量等内容。
在概率论中,我们需要掌握如何计算事件的概率、如何利用概率分布进行推断以及如何解决与概率相关的实际问题等。
第二章:统计学统计学在管理类联考数学中也扮演着重要的角色,主要包括数据的描述、数据的分布、统计推断以及假设检验等内容。
通过学习统计学,我们可以了解如何利用样本数据对总体特征进行推断、如何进行参数估计以及如何进行假设检验等。
第三章:线性代数线性代数是管理类联考数学中的另一个重要内容,主要包括线性方程组、矩阵运算、特征值与特征向量等内容。
通过学习线性代数,我们可以掌握如何解决线性方程组、如何进行矩阵运算以及如何对特征值与特征向量进行分析等。
第四章:微积分微积分是管理类联考数学中不可或缺的内容,主要包括导数、微分、积分以及微分方程等内容。
通过学习微积分,我们可以了解如何求导、如何进行积分、如何解决微分方程以及如何应用微积分解决实际问题等。
第五章:决策与优化决策与优化是管理类联考数学中的重要内容,主要包括最优化理论、决策分析、线性规划以及动态规划等内容。
通过学习决策与优化,我们可以了解如何进行最优化决策、如何进行线性规划、如何进行决策分析以及如何应用动态规划解决实际问题等。
第六章:数理逻辑数理逻辑在管理类联考数学中也有一定的应用,主要包括命题逻辑、谓词逻辑、集合论以及证明方法等内容。
通过学习数理逻辑,我们可以了解如何进行逻辑推理、如何进行定理证明以及如何利用集合论解决问题等。
结语管理类联考数学作为管理类专业的入门课程,对于提升我们的数学素养和解决实际问题的能力有着重要的意义。
只有通过扎实的数学基础知识学习和实践,我们才能在管理领域中脱颖而出。
希望这本数学手册可以为广大管理类联考考生提供帮助,更好地备战考试和提升数学水平。
2021考研管理类联考数学基础课程讲义(二)
2021 考研管理类联考数学基础课程第四章函数第一节一次函数一次函数:一般地,形如 y=kx+b(k≠0,k,b 是常数),那么 y 叫做 x 的一次函数。
当 b=0时,y=kx+b 即 y=kx,即正比例函数(并不是自变量与因变量成正比),其函数图像则为一条直线。
所以说正比例函数是一种特殊的一次函数,但不能说一次函数是正比例函数。
基本性质:1.当 x=0 时,b 为一次函数图像与 y 轴交点的纵坐标,该点的坐标为(0, b)。
2.当 b=0 时,一次函数变为正比例函数。
当然正比例函数为特殊的一次函数。
3.对于正比例函数,y 除以 x 的商是一定数(x≠0)。
4.在两个一次函数表达式中:①当两个一次函数表达式中的 k 相同,b 也相同时,则这两个一次函数的图像重合;②当两个一次函数表达式中的 k 相同,b 不相同时,则这两个一次函数的图像平行;③当两个一次函数表达式中的 k 不相同,b 也不相同时,则这两个一次函数的图像相交;④当两个一次函数表达式中的 k 不相同,b 相同时,则这两个一次函数图像交于 y 轴上的同一点(0,b);⑤当两个一次函数表达式中的 k 互为负倒数时,则这两个一次函数图像互相垂直。
5.直线 y=kx+b 的图象和性质与 k、b 的关系如下表所示:k>0,b>0:经过第一、二、三象限k>0,b<0:经过第一、三、四象限k>0,b=0:经过第一、三象限(经过原点)结论:k>0 时,图象从左到右上升,y 随 x 的增大而增大。
k<0,b>0:经过第一、二、四象限k<0,b<0:经过第二、三、四象限k<0,b=0:经过第二、四象限结论:k<0时,图象从左到右下降,y随x的增大而减小。
2021 考研管理类联考数学基础课程第二节反比例函数:如果两个变量的每一组对应值的乘积是一个不等于 0 的常数,那么就说这两个变量成反比例。
2020考研管理类联考综合数学基础大纲原文
2020考研管理类联考综合数学基础大纲原文数学基础综合能力考试中的数学基础部分主要考查考生的运算能力、逻辑推理能力、空间想象能力和数据处理能力,通过问题求解和条件充分性判断两种形式来测试。
试题涉及的数学知识范围有:(一)算术1.整数(1)整数及其运算(2)整除、公倍数、公约数(3)奇数、偶数(4)质数、合数2.分数、小数、百分数3.比与比例4.数轴与绝对值(二)代数1.整式(1)整式及其运算(2)整式的因式与因式分解2.分式及其运算3.函数(1)集合(2)一元二次函数及其图像(3)指数函数、对数函数4.代数方程(1)一元一次方程(2)一元二次方程(3)二元一次方程组5.不等式(1)不等式的性质(2)均值不等式(3)不等式求解一元一次不等式(组),一元二次不等式,简单绝对值不等式,简单分式不等式。
6.数列、等差数列、等比数列(三)几何1.平面图形(1)三角形(2)四边形矩形、平行四边形、梯形(3)圆与扇形2.空间几何体(1)长方形(2)柱体(3)球体3.平面解析几何(1)平面直角坐标系(2)直线方程与圆的方程(3)两点间距离公式与点到直线的距离公式(四)数据分析1.计数原理(1)加法原理、乘法原理(2)排列与排列数(3)组合与组合数2.数据描述(1)平均值(2)方差与标准差(3)数据的图表表示直方图,饼图,数表。
3.概率(1)事件及其简单运算(2)加法公式(3)乘法公式(4)古典概型(5)伯努利概型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎨ ⎩ ⎪⎪ ⎩第一章 实数1、实数的分类(1)按定义分类:⎧ ⎧ ⎧奇数 ⎪ ⎪整数⎨ ⎪⎪ ⎩偶数 ⎪有理数⎪ ⎧真分数(分子 < 分母) 实数⎪ ⎨ ⎪分数⎪> 分母) ⎪ ⎪⎪ ⎪⎪⎩ ⎪⎩无理数⎨假分数(分子 ⎪带分数 (2)按正负分类:⎧ ⎧ ⎧ ⎧1 ⎪ ⎪ ⎪ ⎪⎪ ⎪正有理数⎪正整数⎨质数 正实数⎪⎨ ⎪合数 ⎨ ⎪ ⎪ ⎪⎪ ⎪⎩正无理数⎪ ⎨零⎪ ⎧负有理数⎪⎩ ⎪⎩正分数⎪负实数⎨ ⎪ 负无理数 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩2、有理数、无理数2.1 :定义 1:有理数:整数和分数(有限小数、无限循环小数)无理数:无限不循环小数2.2 :定义 2:在于能否写成两个整数比的形式 2.3 :有理数的四则运算结果皆为有理数 无理数的四则运算结果皆为无理数或有理数 有理数与无理数的加减运算结果必为无理数有理数乘以无理数结果为有理数则有理数必为 0. 【例 1】、下列说法正确的是( ).(A )小数都是有理数 (B )无限小数都是无理数 (C )无理数是开方开不尽的数 (D )零的平方根和立方根都是零 (E )对数是无理数实数【例2】、已知x是无理数,且(x +1)(x +3)是有理数,则下列叙述有()个正确:(1)(x-1)(x-3)是无理数;(3)(x+2)2是有理数;(4)(x-1)2是无理数.x 2 是有理数;(2)(A)2 (B)3 (C)4 (D)1 (E)0【例3】、化简(3 + 2 )2019 (3 - 2 )2021 的结果为().(A) 5 - 2 3 (B)5 - 6 (C) 6 - 2 6(D)5 + 2 6 (E) 5 - 2 63、奇数、偶数3.1:奇数、偶数的概念:两两一组无剩余,偶数;两两一组有剩余,奇数3.2:奇数:末位为1、3、5、7、9偶数:末位为0、2、4、6、83.3:间隔式排布3.4:运算【例4】:在1、2、3⋯2020 数字前任意添加+、—,其结果为(奇数/偶数)4、质数、合数4.1:质数:一个数的约数只有1 和它本身合数:一个数的约数除了1 和它本身外,还有其他的约数4.2:1 既不是质数也不是合数【例5】、记不超过15的质数的算术平均数为M,则与M最接近的整数是().(A)5 (B)7 (C)8 (D)11 (E)6【例6】、20 以内的质数中,两个质数之和还是质数的共有()种.(A)2 (B)3 (C)4 (D)5 (E)6【例7】、某人左右两手分别握了若干颗石子,左手中石子数乘3 加上右手中石子数乘4 之和为29,则右手中石子数为().(A)奇数(B)偶数(C)质数(D)合数(E)以上结论均不正确5、约数、倍数【例8】、三个质数的积是其和的7 倍,求这三个质数6、互质数:如果两个数的公约数只有 1,则称这两个数为互质数。
7、最大公约数、最小公倍数a =(a, b)⋅c ,b =(a, b)⋅d ,则[a, b]=(a, b)⋅c ⋅d ;ab =[a, b](a, b)【例9】、两个正整数的最大公约数是6,最小公倍数是210,满足条件的两个正整数组成的大数在前的数对共有()。
(A)0 对(B)1 对(C)2 对(D)3 对(E)以上都不对【例10】、有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米.现在要把它们截成相1+ 2 2 + 33+2等的小段,每根都不能有剩余,每小段最长为 a 厘米,一共可以截成 b 段,则 a + b =( ).(A )55 (B )65 (C )60 (D )70 (E )75 【例 11】、甲每 5 天进城一次,乙每 9 天进城一次,丙每 12 天进城一次,某天三人在城里相遇,那么下次相遇至少要( ).(A )60 天 (B )180 天 (C )270 天 (D )300 天 (E )360 天8、三个基本概念1、相反数:两个实数的和为零,则称两个数互为相反数。
2、倒数:两个实数的积为 1,则称两个数互为倒数。
3、算数平方根:非负实数的非负平方根。
9、实数的运算p 1q ap= aq= a - p 、a p1 = 1 - 1 ;n (n + 1) n n + 11 = 1 ( 1 - 1 )n (n + k ) k n n + k【 例 12 】、 1+ 1 + 1++1=( )1⨯ 2 2⨯ 3 3⨯ 42020⨯ 2021A.20202021B.2019 2021C.2019 2020D.2021 2020 E. 1 【例 13】、( 1+1 + 1 + + 2020 + 2021 )(1 + 2021) = ( )A. 2019B. 2020C. 2021D. 1011E. 101010、整除及带余数问题10.1 :数字整除的判定 10.2 :带余除法 【例 14】、正整数 N 的 8 倍与 5 倍之和,除以 10 的余数为 9,则 N 的最末一位数字为( ).(A )2 (B )3 (C )5 (D )9 (E )7【例 15】、一个盒子装有不多于 200 颗糖,每次 2 颗,3 颗,4 颗或 6 颗的取出,最终盒内都只剩下一颗糖,如果每次以 11 颗的取出,那么正好取完,则盒子里共有 m 颗糖,m 的各个数位之和为( ).(A )8 (B )10 (C )4 (D )12 (E )6 【例 16】、一盒围棋子,4 只 4 只数多 3 只,6 只 6 只数多 5 只,15 只 15 只数多 14 只,这盒围棋子在 150~200 之间.则这盒围棋子 11 只的数,最后余( )只.(A )2 (B )3 (C )4 (D )5 (E )6【例17】、有一个四位数,它被131 除,余数为13,被132 除,余数为130,则此四位数,则此四位数各数位的数字之和为()A. 23B. 24C. 25D. 26E. 2711、循环小数化分数【例18】、纯循环小数0.abc 写成最简分数时,分子与分母之和是58,这个循环小数是().(A)0.567(B)0.537(C)0.517(D)0.569(E)0.56212、[x]和{x}的问题第二章比与比例、绝对值、平均值第一节:比与比例1、比的定义:两个数相除,又称为这两个数的比。
即a : b = a(b ≠ 0) b2、比的基本性质: a : b =pa : pb( p ≠ 0) a : b =n ⇒a =bn3、比例的定义4、比例中项:当a : b =b : c 时,称b 为a, c 的比例中项5、比例的性质1、更比定理:a=c⇔a=b b dc d2、反比定理:a=c⇔b=d b d a c3、合比定理:a=c b d4、分比定理:a=cb d⇔a +bb⇔a -bb=c +dd=c -dd5、合分比定理:a=c⇔a +b=c +d b d a -b c -d6、增减性定理(a, b > 0 )a> 1 b a +m<ab +m b( m >0)0 <a< 1ba +m>ab +m b( m >0)cx ⎨-1, x < 0 ⎪-⎪7、等比定理:a=c=eb d f=a +c +eb +d +f,其中b +d +f ≠ 0【例1】设1 : 1 : 1 = 4 : 5 : 6 ,则使x +y +z = 74 成立的y值是().x y z(A)24 (B)36 (C)743(D)372(E)26【例2】若非零实数a,b,c,d 满足等式a=b=c=d=n ,则n的值为().b +c +d a +c +d a +b +d a +b +c(A)-1或14(B)13(C)14(D)-1 (E)-1或13第二节:绝对值1、绝对值的定义(1)a⎧a , a >0=⎨0 , a =0⎩ a , a <0(2)a = 0 ⇔ a = 0 a =a ⇔a ≥ 0 ;a =-a ⇔a ≤ 0(3)遇到绝对值,去掉绝对值2、绝对值的非负性(1)⎪a⎪表示数轴上实数 a 对应的点到原点的距离,可以说距离就是绝对值。
(2)若干个非负数的和为0 时,只有这若干个非负数同时为0。
(3)a +b2 += 0 ⇒a =b =c = 0【例1】设x、y、z满足3x+y-z-2+(2x+y-z)2=求x+y+z的值为().,试(A)4006 (B)4004 (C)4012 (D)4016 (E)40023、自反性=x=⎧1, x > 0x ⎩ (1)只能取值±1 x(2)最大值为 1,最小值为-1a b 【例 2】: -= -2ab(1)a 〈 0(2)b 〉 0【例 3).(A )1 (B ) -1(C ) ±1 (D ) 1 3 (E ) 1 24、三角不等式定理与应用(1)-|a| ≤ a ≤ |a|,即任意实数的绝对值不小于它自身,而绝对值的相反数不大于它自身。
当且仅当 a≤(≥) 0 时,左(右)边等号成立。
(2)三角不等式, |a + b| ≤ |a| + |b|等号成立的条件:ab ≥ 0 |a - b| ≤ |a| + |b|等号成立的条件:ab ≤0【例 4】已知 2x -a ≤1, 2x - y ≤1,则 y -a 的最大值为().(A )1(B )3(C )2(D )4(E )5【例 5】已知x ∈[2,5], a =5-x , b = x -2,则 b -a 的取值范围是().(A ) [-3,5] (B ) [0,5] (C ) [1,3](D ) [3,5](E ) [0,3]5、特殊的绝对值函数(1)形如 x - a + x - b 的最小值为 a - b 无最大值,在 x ∈ [a ,b ]取到最值(2)形如 x - a - x - b 的最大值 a - b 与最小值- a - b ,在 x ≤ a 或 x ≥ b 取到最值【例 6】 若不等式 x -1 + x - 3 < a 的解集是空集,则 a 的取值范围是第三节:平均值1、平均值定义(1)算术平均值:n 个实数 x ,x ,......,x 的算术平均值 x =x 1 + x 2 + ...... + x n12nn++= 1,则⎫2021 ⎛ ⋅⎫⎝ ⎪ ÷ ⎭(2)几何平均值:n个正实数x1,x2,......,xn的几何平均值Xg=,注意:几何平均值只对正实数有定义,而算术平均值对任何实数都有定义。
【例1】三个实数1,x-2和x的几何平均值等于4,5和-3的算术平均值,则x的值为().(A)-2 (B)4 (C)2 (D)-2或4 (E)2 或42、基本定理:当x1,x2,......,x n为n个正实数时,它们的算术平均值不小于它们的几何平均值,即x1+x2+ ...... +xn ≥(x > 0, i= 1,..., n )n i当且仅当x1 =x2 = ...... =x n 时,等号成立。