(完整版)基于matlab的人脸识别系统设计与仿真毕业论文

合集下载

基于MATLAB的人脸识别技术研究与应用

基于MATLAB的人脸识别技术研究与应用

基于MATLAB的人脸识别技术研究与应用人脸识别技术是一种通过对图像或视频中的人脸进行检测、识别和验证的技术。

随着计算机视觉和人工智能领域的不断发展,人脸识别技术在各个领域得到了广泛的应用,如安防监控、人脸支付、门禁系统等。

而MATLAB作为一种强大的科学计算软件,被广泛应用于人脸识别技术的研究和开发中。

本文将探讨基于MATLAB的人脸识别技术研究与应用。

人脸识别技术概述人脸识别技术是一种生物特征识别技术,通过对人脸图像进行采集、处理和比对,实现对个体身份的自动识别。

人脸识别技术主要包括人脸检测、特征提取、特征匹配等步骤。

在MATLAB环境下,可以利用其丰富的图像处理工具箱和深度学习工具箱来实现人脸识别算法的开发和优化。

基于MATLAB的人脸检测人脸检测是人脸识别技术中的关键步骤,其目的是在图像中准确地定位出人脸区域。

在MATLAB中,可以利用Haar级联分类器、HOG特征以及深度学习方法如卷积神经网络(CNN)来实现人脸检测算法。

这些方法可以有效地提高人脸检测的准确性和鲁棒性。

基于MATLAB的人脸特征提取在进行人脸识别时,需要从人脸图像中提取出具有区分性的特征信息。

常用的人脸特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。

在MATLAB中,可以通过调用相应的函数或自行编写代码来实现这些特征提取算法,并对提取到的特征进行降维和优化。

基于MATLAB的人脸特征匹配在获取到人脸图像的特征表示后,需要进行特征匹配来判断两幅图像是否属于同一个人。

常用的匹配方法包括欧氏距离、余弦相似度、支持向量机(SVM)等。

在MATLAB中,可以利用其强大的数学计算功能和机器学习工具箱来实现不同的特征匹配算法,并根据具体应用场景选择合适的匹配策略。

基于MATLAB的人脸识别系统开发基于上述步骤,可以在MATLAB环境下开发完整的人脸识别系统。

该系统可以包括图像采集模块、预处理模块、特征提取模块、匹配比对模块以及结果显示模块等功能。

基于MATLAB的人脸识别系统设计【毕业作品】

基于MATLAB的人脸识别系统设计【毕业作品】

BI YE SHE JI(20 届)基于MATLAB的人脸识别系统设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月I摘要MATLAB以强大的科学计算与可视化功能、简单易用、开放式可扩展环境成为当今最优秀的科技应用软件之一,针对不同学科领域都有不同的工具箱支持,使得它在许多科学领域中成为计算机辅助设计和分析、算法研究和应用开发大的基本工具平台。

主成分分析(Principal Component Analysis ,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。

人脸的全局表达方式是一种十分有效的人脸识别方法。

它是图像压缩中的一种最优正交变换,在数据空间找一组向量以尽可能解释数据的方差,实现数据的降维,使数据更易处理。

BP神经网络是一种单向传播的多层前向网络,是一种有导师监督学习算法。

它能够实现一种特殊的非线性映射,将输入空间变换到由输出所张成的空间,使得在输出空间的分类问题变得简单易行。

本论文首先对PCA主成分分析方法进行了阐述,然后探讨了BP神经网络的集成识别方法,最后实现了基于MATLAB的人脸识别系统。

关键词:MATLAB,人脸识别,PCA主成分分析,BP神经网络IIAbstractMATLAB with a strong scientific computing and visualization capabilities, easy to use, open and scalable environment to become one of the best scientific and technological applications, has a different toolbox support for different disciplines, making it in many fields of science in computer-aided design and analysis, algorithm research and application development tool platform.The principal component analysis (Principal Component Analysis, the PCA) is the method of statistical analysis of the principal contradiction of a grasp of things, from diverse things, it can parse out the main factors to reveal the nature of things, to simplify complex issues. The global expression of the face is a very effective method of face recognition. It is the image compression in an optimal orthogonal transform , to the extent possible, explain the variance of the data in the data space to find a set of vectors, the dimensionality reduction of the data, make data easier to handle.BP neural network is a one-way transmission of multi-layer forward network, is a mentor supervised learning algorithm. It can achieve a special kind of nonlinear mapping the input space is transformed by the output into the space, makes the classification problem in the output space becomes simple.This paper first described the PCA principal component analysis method, then discusses the integration of BP neural network identification method, the final realization of the face recognition system based on MATLAB.Keywords:MATLAB, face recognition, PCA principal component analysis, BP neural networkIII目录摘要 (II)Abstract (III)目录 (III)第一章绪论 (1)1.1研究背景 (1)1.2国内外研究现状 (3)1.3 论文的主要任务 (4)第二章基于PCA主成分分析的人脸图像特征提取 (6)2.1经典主成分分析方法 (6)2.1.1K-L变换 (6)2.1.2PCA方法 (8)2.2特征脸法 (10)2.3本章小结 (10)第三章基于BP神经网络的人脸特征分类与识别 (12)3.1BP神经网络的算法及实现方法 (12)3.1.1基本BP神经网络的学习算法 (12)3.1.2神经网络综合优化学习训练算法 (14)3.2 BP神经网络的参数 (17)3.2.1隐含层数目的确定 (17)3.2.2选取隐含层内节点数目的方法 (18)3.2.3激活函数的选取 (19)3.3基于动态权值的BP神经网络的集成 (19)3.4集成BP神经网络的训练与识别过程 (20)3.5 本章小结 (21)第四章图像处理的MATLAB实现 (22)4.1与人脸识别相关问题的概述 (22)4.2 人脸识别的实现方法 (22)IV4.2.1 人脸图像的获取 (22)4.2.2 人脸图像预处理 (22)4.2.3 人脸表征 (24)4.2.4关于人脸检测的问题 (25)4.2.5 人脸判定 (26)4.3 本章小结 (27)第五章结论 (28)参考文献 (29)致谢 (31)附录 (32)附录一 (32)附录二 (33)附录三 (34)附录四 (37)V第一章绪论1.1研究背景人脸识别技术是一种基于生理特征的识别技术,通过计算机提取人脸特征,并根据这些特征进行身份识别和验证的一种技术。

基于MATLAB的人脸识别系统研究与实现毕业论文

基于MATLAB的人脸识别系统研究与实现毕业论文

基于MATLAB的⼈脸识别系统研究与实现毕业论⽂本科⽣毕业论⽂(设计) 题⽬:基于MATLAB的⼈脸识别系统研究与实现毕业设计(论⽂)原创性声明和使⽤授权说明原创性声明本⼈郑重承诺:所呈交的毕业设计(论⽂),是我个⼈在指导教师的指导下进⾏的研究⼯作及取得的成果。

尽我所知,除⽂中特别加以标注和致谢的地⽅外,不包含其他⼈或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历⽽使⽤过的材料。

对本研究提供过帮助和做出过贡献的个⼈或集体,均已在⽂中作了明确的说明并表⽰了谢意。

作者签名:⽇期:指导教师签名:⽇期:使⽤授权说明本⼈完全了解⼤学关于收集、保存、使⽤毕业设计(论⽂)的规定,即:按照学校要求提交毕业设计(论⽂)的印刷本和电⼦版本;学校有权保存毕业设计(论⽂)的印刷本和电⼦版,并提供⽬录检索与阅览服务;学校可以采⽤影印、缩印、数字化或其它复制⼿段保存论⽂;在不以赢利为⽬的前提下,学校可以公布论⽂的部分或全部内容。

作者签名:⽇期:学位论⽂原创性声明本⼈郑重声明:所呈交的论⽂是本⼈在导师的指导下独⽴进⾏研究所取得的研究成果。

除了⽂中特别加以标注引⽤的内容外,本论⽂不包含任何其他个⼈或集体已经发表或撰写的成果作品。

对本⽂的研究做出重要贡献的个⼈和集体,均已在⽂中以明确⽅式标明。

本⼈完全意识到本声明的法律后果由本⼈承担。

作者签名:⽇期:年⽉⽇学位论⽂版权使⽤授权书本学位论⽂作者完全了解学校有关保留、使⽤学位论⽂的规定,同意学校保留并向国家有关部门或机构送交论⽂的复印件和电⼦版,允许论⽂被查阅和借阅。

本⼈授权⼤学可以将本学位论⽂的全部或部分内容编⼊有关数据库进⾏检索,可以采⽤影印、缩印或扫描等复制⼿段保存和汇编本学位论⽂。

涉密论⽂按学校规定处理。

作者签名:⽇期:年⽉⽇导师签名:⽇期:年⽉⽇注意事项1.设计(论⽂)的内容包括:1)封⾯(按教务处制定的标准封⾯格式制作)2)原创性声明3)中⽂摘要(300字左右)、关键词4)外⽂摘要、关键词5)⽬次页(附件不统⼀编⼊)6)论⽂主体部分:引⾔(或绪论)、正⽂、结论7)参考⽂献8)致谢9)附录(对论⽂⽀持必要时)2.论⽂字数要求:理⼯类设计(论⽂)正⽂字数不少于1万字(不包括图纸、程序清单等),⽂科类论⽂正⽂字数不少于1.2万字。

基于matlab的人脸识别系统设计论文

基于matlab的人脸识别系统设计论文

毕业设计 [论文] 题目:基于MATLAB的人脸识别系统设计摘要人脸识别是模式识别和图像处理等学科的一个研究热点,它广泛应用在身份验证、刑侦破案、视频监视、机器人智能化和医学等领域,具有广阔的应用价值和商用价值。

人脸特征作为一种生物特征,与其他生物特征相比,具有有好、直接、方便等特点,因此使用人脸特征进行身份识别更易于被用户所接受。

人脸识别技术在过去的几十年得到了很大的发展,但由于人脸的非刚性、表情多变等因素,使得人脸识别技术在实际应用中面临着巨大的困难。

本文针对近年来国外相关学术论文及研究报告进行学习和分析的基础上,利用图像处理的matlab实现人脸识别方法,这种实现简单且识别准确率高,但其缺点是计算量大,当要识别较多人员时,该方法难以胜任。

利用MATLAB实现了一个集多种预处理方法于一体的通用的人脸图像预处理仿真系统,将该系统作为图像预处理模块可嵌入在人脸识别系统中,并利用灰度图像的直方图比对来实现人脸图像的识别判定。

关键词:图像处理, Matlab, 人脸识别, 模式识别ABSTRACTHuman face recognition focuses on pattern recognition ,image proce ssing andother subjects.It is widely used in authentication,investigat ion,video surveillance,intelligent robots,medicine and other areas.Fac erecognition has wide application and business value.Facial feature as abiological characteristic,compared with others is direct,friendly and convenient.Facial featureemployed in authentication are user-friendly.The technology of face recognition in the past few years obtained the very big development, but due to the face of nonrigid, expression and changeablefactors, the face recognition technology in practical ap plication are facing great difficulties. This paper aimed at home and abroad in recent years the relevant papers and researchreports on stud y and on the basis of the analysis, some units within the data sensiti vity places need to enter personnel to carry out limitation design and develop a set of identity verification identification system, the sys tem uses PCA face recognition method, therealization is simple and the accuracy rate of recognition is high,but itsdrawback is that a large amount of calculation, when to identify more staff,this method is diff icult to do.The realization of a set of various pretreatment methods in one of the generic face image preprocessing simulation system based on MATLAB, the system is used as the image preprocessing module can be embedded in a face recognition system, and using the histogram matching gray image to realize the recognition of human face images to determine.Keywords: Imageprocessing , Matlab, Face recognition, Patternrecognition目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 研究背景 (1)1.2国外研究现状 (2)1.3 人脸图像识别的应用前景 (3)1.4 本文研究的问题 (3)1.5 识别系统构成 (4)1.6 论文的容及组织 (5)2 图像处理的Matlab实现 (6)2.1 Matlab简介 (6)2.2 数字图像处理及过程 (6)2.2.1图像处理的基本操作 (6)2.2.2图像类型的转换 (6)2.2.3图像增强 (6)2.2.4边缘检测 (7)2.3图像处理功能的Matlab实现实例 (7)2.4 本章小结 (10)3 人脸图像识别计算机系统 (11)3.1 引言 (11)3.2系统基本机构 (11)3.3 人脸检测定位算法 (12)3.4 人脸图像的预处理 (16)3.4.1 人脸图像预处理方法 (17)3.5人脸识别 (18)4 实验结果与分析 (25)5 结论 (26)参考文献 (27)致 (28)1 绪论当前,人脸检测越来越受到大家的关注,他作为生物特征识别中一个非常重要的一个分支,已成为计算机视觉与模式识别领域中非常活跃的一个研究领域。

基于MATLAB的人脸识别系统的研究毕业论文

基于MATLAB的人脸识别系统的研究毕业论文

长沙民政职业技术学院毕业实践报告 题目:基于MATLAB 勺人脸识别系统的研扌旨导老师: ______ 谭刚林 ______________________ 系 另寸: 电子信息工程系 __________________ 班 级: ______________ 电子1133 ____________学号:1119013333 1119013334 1119013335 姓 名: 刘盼符思遥樊阳辉类型:2014年5月5日基于MATLAB勺人脸识别系统的研究符思遥、刘盼、樊阳辉指导老师:谭刚林苏宏艮马勇赞【摘要】人脸检测与识别技术是计算机视觉和模式识别等学科的研究热点之一,是进行身份认证最友好直接的手段,在出入境安全检查、内容检索、证件验证、门禁系统等领域都具有十分广泛的应用前景。

多年来,人脸识别技术中的很多问题都被深入地研究,而且大量的算法已经成功应用于人脸识别。

本文在研究了人脸检测和身份识别的关键技术和相关理论的基础上,重点讨论了在光照和背景不同的条件下,彩色静止图像的人脸检测和身份识别问题,它包括基于肤色分割的人脸粗检测、基于人眼检测的几何归一化和基于二维主成分分析法(2DPCA的身份识别。

本文主要工作如下:首先对彩色图像进行光照补偿,其次通过肤色检测获得可能的脸部区域并二值化,再用形态学开闭运算对图像进行滤波处理并通过一定规则确定人脸区域,然后运用水平垂直投影定位人眼坐标以此对人脸进行几何归一化,识别部分运用2DPCA勺图像映射方法对灰度图进行特征匹配,最后输出识别结果并进行语音播报。

实验结果表明,结合肤色和面部几何特征的算法能够对人脸进行较快速和准确的定位,同时2DPCAT法运用于身份识别也能达到较高的识别率。

本毕业设计对实际应用具有一定的参考价值,该系统的操作流程和输入输出方式是以实际应用为出发点,可应用于公安机关证件验证以及日常家庭的自动门禁系统等。

【关键词】人脸检测;肤色分割;人眼检测;2DPCA特征提取1绪论 (1)1.1选题的背景 (1)1.2人脸识别系统 (2)1.3人脸识别的典型方法 (2)2基于YCbCr颜色空间的肤色分割 (3)2.1三种色彩空间 (3)2.1.1 RGB色彩空间 (3)3基于2DPCA特征提取的身份识别 (4)3.1 2DPCA算法实验结果与分析 (5)3.1.1实验用数据库 (5)3.1.2实验结果与分析 (5)3.1.3 结论 (7)4人脸检测与识别系统设计与实现 (7)4.1系统环境 (7)4.2人脸检测与识别系统框图 (7)4.3系统功能模块 (8)4.4实验结果分析 (9)5总结与展望 (10)5.1总结 (10)5.2展望 (10)参考文献 (12)1绪论1.1选题的背景近年来随着计算机技术和互联网的发展,信息技术的安全变得越来越重要,生物特征识别技术得到广泛研究与开发,如人脸识别、指纹识别、掌形识别等。

(完整word版)基于MATLAB的人脸识别

(完整word版)基于MATLAB的人脸识别

图像识别题目:基于MATLAB的人脸识别院系:计算机科学与应用系班级:姓名:学号:日期:目录引言 (1)1 人脸识别技术 (2)1.1人脸识别的研究内容 (2)1.1.1人脸检测(Face Detection) (2)1.1.2人脸表征(Face Representation) (2)1.2几种典型的人脸识别方法 (3)1.2.1基于几何特征的人脸识别方法 (3)1.2.2基于K-L变换的特征脸方法 (4)1.2.3神经网络方法 (4)1.2.4基于小波包的识别方法 (5)1.2.5支持向量机的识别方法 (5)2 人脸特征提取与识别 (5)2.1利用PCA进行特征提取的经典算法——Eigenface算法 (6)2.2 PCA人脸识别流程 (6)2.3特征向量选取 (8)2.4距离函数的选择 (9)2.5 基于PCA的人脸识别 (9)MATLAB人脸识别程序 (10)3 MATLAB软件程序编写 (10)3.1.创建图片数据库 (10)3.2 主程序 (11)3.3最终程序结果 (12)4 心得与体会 (12)参考文献 (13)引言随着社会的发展及技术的进步,社会各方面对快速高效的自动身份验证的需求可以说无处不在,并与日俱增。

例如,某人是否是我国的居民,是否有权进入某安全系统,是否有权进行特定的交易等。

尤其是自2001年美国“9.1l”恐怖袭击发生以来,如何在车站、机场等公共场所利用高科技手段,迅速而准确地发现并确认可疑分子成了目前世界各国在反恐斗争中普遍关注的问题。

为此,各国都投入大量人力、物力研究发展各类识别技术,使得生物特征识别技术得到了极大的发展。

生物特征识别技术主要包括:人脸识别、虹膜识别、指纹识别、步态识别、语音识别、笔迹识别、掌纹识别以及多生物特征融合识别等。

人类通过视觉识别文字,感知外界信息。

在客观世界中,有75%的信息量都来自视觉,因此让计算机或机器人具有视觉,是人工智能的重要环节。

基于matlab的人脸识别技术

基于matlab的人脸识别技术

基于matlab 的人脸识别技术论文摘要:随着计算机技术的飞速发展,人脸识别技术逐渐发展壮大起来,并应用到众多领域。

人脸识别是指在人脸检测的基础上针对输入的人脸图像,通过特征提取与特征匹配,找出与人脸库中匹配的人脸图像,从而达到识别效果。

当前主要采取的人脸识别方法有:基于几何特征的方法 ,基于模板的方法和基于模型的方法。

这些方法较适合于人脸信息的验证,即待识别者是否为预先指定的对象。

不足之处在于,需要建立一个拥有庞大人脸信息的训练样本库,因此就降低了输出结果的时效性和准确性。

在应用领域中存在局限性,不适于具有庞大人脸样本训练库的身份鉴别领域。

鉴于种种不足,本文提出了一种基于可变人脸库的快速人脸识别方法,使人脸识别技术适用于更多的行业。

网络信息化时代的一大特征就是身份的数字化和隐性化,如何准确鉴定一个人的身份,保护信息安全是当今信息化时代必须解决的一个关键社会问题。

正在悄然兴起的人脸识别技术正好可以解决这一问题。

关键词:模式识别,K-L 变换,人脸识别,图像处理,matlab,图像增强,边缘检测,图像预处理,灰度直方图,特征提取1.1识别系统构成自动人脸识别系统具有如图所示的一半框架并完成相应功能的任务。

(1)人脸图像的获取:一般来说,图像的获取都是通过摄像头摄取,氮摄取的图像可以是真人,也可以是人脸的图片或者为了相对简单,可以不考虑通过摄像头来摄取头像,而是直接给定要识别的图像。

(2)人脸的检测:人脸检测的任务是判断静态图像中是否存在人脸。

若存在人脸,给出其在图像中的坐标位置,人脸区域大小等信息。

而人脸跟踪需要进一步输出所检测到的人脸位置,大小等状态随时间的连续变化情况。

(3)特征提取通过人脸特征点的检测与标定可以确定人脸图像中显著特征点的位置(如眼睛,眉毛,鼻子,嘴巴等器官),同时还可以得到这些器官及其面部轮廓的形状信息的描述。

1.人脸特征提取的算法:K-L 变换是图像压缩中的一种最优正交变换,通过它可以把人脸样本从高维空间表示转换到低维空间表示,且由低维空恢复的人脸样本和原人脸样本具有最小的均方误差,从而可用人脸样本在低维空间的变换系数作为对人脸特征的描述。

基于某MATLAB的人脸识别

基于某MATLAB的人脸识别

燕山大学课程设计(论文)任务书说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

目录引言 (1)1 人脸识别技术 (2)1.1人脸识别的研究容 (2)1.1.1人脸检测(Face Detection) (2)1.1.2人脸表征(Face Representation) (2)1.2几种典型的人脸识别方法 (3)1.2.1基于几何特征的人脸识别方法 (3)1.2.2基于K-L变换的特征脸方法 (4)1.2.3神经网络方法 (5)1.2.4基于小波包的识别方法 (6)1.2.5支持向量机的识别方法 (6)2 人脸特征提取与识别 (6)2.1利用PCA进行特征提取的经典算法——Eigenface算法 (7)2.2 PCA人脸识别流程 (7)2.3特征向量选取 (9)2.4距离函数的选择 (10)2.5 基于PCA的人脸识别 (11)MATLAB人脸识别程序 (12)3 MATLAB软件程序编写 (13)3.1.创建图片数据库 (13)3.2 主程序 (13)3.3最终程序结果 (14)4 心得与体会 (16)参考文献 (16)引言随着社会的发展及技术的进步,社会各方面对快速高效的自动身份验证的需求可以说无处不在,并与日俱增。

例如,某人是否是我国的居民,是否有权进入某安全系统,是否有权进行特定的交易等。

尤其是自2001年美国“9.1l”恐怖袭击发生以来,如何在车站、机场等公共场所利用高科技手段,迅速而准确地发现并确认可疑分子成了目前世界各国在反恐斗争中普遍关注的问题。

为此,各国都投入大量人力、物力研究发展各类识别技术,使得生物特征识别技术得到了极大的发展。

生物特征识别技术主要包括:人脸识别、虹膜识别、指纹识别、步态识别、语音识别、笔迹识别、掌纹识别以及多生物特征融合识别等。

人类通过视觉识别文字,感知外界信息。

在客观世界中,有75%的信息量都来自视觉,因此让计算机或机器人具有视觉,是人工智能的重要环节。

《基于MATLAB的人脸识别算法的研究》范文

《基于MATLAB的人脸识别算法的研究》范文

《基于MATLAB的人脸识别算法的研究》篇一一、引言人脸识别技术是近年来计算机视觉领域研究的热点之一,其应用范围广泛,包括安全监控、身份认证、人机交互等。

MATLAB作为一种强大的数学计算软件,为研究人员提供了丰富的工具和函数,使得人脸识别算法的研究和实现变得更加便捷。

本文将介绍基于MATLAB的人脸识别算法的研究,包括算法原理、实现方法、实验结果及分析等方面。

二、人脸识别算法原理人脸识别算法主要基于计算机视觉和模式识别技术,通过对人脸特征进行提取和匹配,实现身份识别。

常见的人脸识别算法包括特征提取、特征匹配等步骤。

其中,特征提取是关键步骤,需要从人脸图像中提取出有效的特征,如纹理、形状、颜色等。

特征匹配则是将提取出的特征与人脸库中的特征进行比对,找出最匹配的人脸。

三、基于MATLAB的人脸识别算法实现1. 预处理在人脸识别算法的实现中,首先需要对人脸图像进行预处理,包括灰度化、归一化、降噪等操作。

这些操作可以有效地提高图像的质量,为后续的特征提取和匹配提供更好的基础。

2. 特征提取特征提取是人脸识别算法的核心步骤之一。

在MATLAB中,可以使用各种算法进行特征提取,如主成分分析(PCA)、局部二值模式(LBP)、方向梯度直方图(HOG)等。

本文采用PCA 算法进行特征提取,通过降维的方式将高维的人脸图像数据转化为低维的特征向量。

3. 特征匹配特征匹配是将提取出的特征与人脸库中的特征进行比对的过程。

在MATLAB中,可以使用各种相似度度量方法进行特征匹配,如欧氏距离、余弦相似度等。

本文采用欧氏距离作为相似度度量方法,通过计算特征向量之间的欧氏距离来找出最匹配的人脸。

四、实验结果及分析为了验证基于MATLAB的人脸识别算法的有效性,我们进行了多组实验。

实验数据集包括ORL人脸库、Yale人脸库等。

在实验中,我们使用了不同的特征提取和匹配方法,对算法的性能进行了评估。

实验结果表明,基于PCA算法的特征提取方法和欧氏距离相似度度量方法在人脸识别中具有较好的性能。

基于matlab的人脸识别系统设计与仿真毕业设计

基于matlab的人脸识别系统设计与仿真毕业设计

(此文档为word格式,下载后您可任意编辑修改!)佳木斯大学毕业论文基于Matlab的人脸识别系统设计与仿真学院信息电子技术专业电子信息工程班级11级1班姓名杨雷指导教师周经国佳木斯大学2015年6月10日摘要人脸识别即指利用分析比对人脸视觉特征信息从而达到身份鉴别效果的计算机技术。

人脸识别是一项当下十分热门的计算机技术的研究领域,该项技术可以人脸明暗侦测,并且自动调整动态曝光补偿,同时对人脸追踪侦测,并自动调整影像放大;这项技术属于生物特征识别技术的一种,是利用生物体(一般指人)本身的生物特征从而达到区分生物体个体的目的。

人脸识别技术目前主要用做身份识别。

由于视频监控的飞速普及,使这项应用迫切的需要一种能实现在用户非配合状态下、远距离的进行快速身份识别的技术,以求能在远距离之下快速识别人员身份,从而实现智能预警的功能。

最佳的选择无疑是人脸识别技术。

采用快速人脸检测识别技术可以从视频监控图象中实时捕获到人脸信息,并与人脸数据库中的已存信息进行实时比对,从而达到快速身份识别的效果。

报告利用MATLAB软件来实现人脸信息检测与识别,利用YCbCr空间以及灰度图像来实现人脸的边缘分割, 将真彩图像转换为灰度图像,并根据肤色在YCbCr色度空间上的分布范围,来设定门限阀值,从而实现人脸区域与非人脸区域的分割,通过图像处理等一系列的操作来剔除干扰因素,再通过长宽比和目标面积等方法在图像中定位出人脸区域,经试验,该方法能够排除面部表情、衣着背景、发型等干扰因素,从而定位出人脸区域。

关键词:Matlab软件;灰度图像;边缘分割;人脸区域AbstractFace recognition especially use comparative analysis face visual feature information for identification of computer technology. Face recognition is a , light and shade can be automatically adjusted dynamically exposure compensation, face tracking detection, automatic adjustment of image magnification; It belongs to the biometric identification technology, it is of organisms (generally refers to a person) individual biological characteristics to distinguish between the organism itself.Face recognition is mainly used for identification. Because of the video monitoring is fast popularization, many of the video monitoring application is an urgent need to a long distance, the user not cooperate condition of rapid identification technology, in order . Face recognition technology is undoubtedly the best choice, the fast face detection technology to monitor in real-time video image search from face, and with real-time than face database, so as to realize rapid identification.Report using MATLAB software to realize face information detection and recognition, using YCbCr space and gray image to realize the face edge segmentation, the true color image is converted to a grayscale image, and according to the color of skin in YCbCr chroma space distribution, to set the threshold threshold, so as to realize the segmentation of face region with the face region, through a series of operations such as image processing to eliminate interference factors, and through such means as aspect ratio and the target area locate the face region in the image, the experiment, this method can eliminate facial expressions, clothes, . Keywords:Matlab;Gray image;edge segmentation;face region目录摘要 (1)ABSTRACT (2)3 第1章绪论 (4)1.1课题的研究背景、目的及意义 (4)1.1.1 课题的研究背景 (4)1.1.2 研究目的及意义 (5)1.2本课题的主要内容 (5)第2章图像处理的MATLAB实现 (6)2.1识别系统构成 (6)2.2人脸图像的读取与显示 (7)2.3图像类型的转换 (7)2.4图像增强 (8)2.5灰度图像平滑与锐化处理..................... 错误!未定义书签。

人脸识别的毕业论文

人脸识别的毕业论文

学号:3081818211题目类型:论文(设计、论文、报告)西安电子科技大学GUILIN UNIVERSITY OF TECHNOLOGY本科毕业设计(论文)题目:人脸检测技术研究及MATLAB实现学院:信息科学与工程学院专业(方向):电子信息工程班级:电信08-2班学生:许文强指导教师:蒋中正2012 年 5 月 20 日摘要人脸检测是当今视觉领域里非常重要和实用的研究课题,它应用于现实生活中的各个领域,如公安、金融、网络安全、物业管理以及考勤等。

基于视频的人脸检测属于动态检测,方法是先提取视频文件的帧,然后再对帧(图像)进行人脸检测,利用肤色特征的检测算法先对图像(帧)进行处理,然后建模,运用适当的算法把人脸检测出来,运用该方法完成了视频之中的的人脸检测。

本文采用MATLAB软件进行仿真,包括实现提取视频文件的帧,对输入图像检测有人脸(如果存在)的位置,大小和位姿,程序运行结果基本实现了上述功能。

关键词:人脸检测;视频检测;肤色特征Research of Face Detection and Implementation of Matlab Student: xu wenqiang Teacher:jiang zhong zhengAbstract:Face detection is very important and practical research topic in the visual field,it is applied to many areas in our lives Such as public security, finance, network security, property management and attendance, Based on the video's face detection is dynamic detection ,The idea is to extract video file frame, then as the image face to detectionUse the skin color characteristics of the detection algorithm , first to do processing testing, Then e appropriate algorithm, the face detection out.By using this method the video to finish face detection. this paper, we also use Matlab software simulationIncluding realize The input image for face detection, Video file frame extraction then That is to make sure that there is an image input face (if present) of location, size and posture of the process.To run the program results basically achieved the functionKey Words:Face Detection;Video Detection;Skin color characteristics目次摘要 (I)Abstract (II)1 绪论 (1)1.1论文的研究历史背景及目的 (1)1.2国内外研究现状 (2)1.3论文的主要内容安排 (3)2 人脸检测及其算法简介 (5)2.1人脸检测介绍 (5)2.2人脸检测的常用方法 (5)2.2.1基于特征的人脸检测方法 (5)2.2.2模块匹配法的人脸检测 (6)2.2.3基于adaboost算法的人脸检测方法 (7)3 基于视频的人脸检测研究及其实现 (8)3.1 MATLAB图像处理工具箱中的视频操作 (8)3.2提取AVI视频文件的帧 (9)3.3对图像进行肤色特征的人脸检测 (11)3.3.1色彩空间及其内容介绍 (11)3.3.2对图像进行预处理 (11)3.3.3对人脸肤色进行建模 (13)3.3.4 检测人脸区域的选定 (14)3.4图像向AVI视频文件的转换 (16)4 人脸检测在MATLAB软件下仿真实现 (18)4.1设计条件 (18)4.2设计流程 (18)4.4.1基于视频的人脸检测的总设计模块图 (18)4.4.2对图像进行人脸检测具体框图 (19)4.3人脸检测的MATLAB实现 (19)4.3.1人脸检测运行结果 (19)4.3.2人脸检测结果分析 (21)5 结论 (22)致谢 (23)参考文献 (24)附录 (25)1 绪论当前,人脸检测越来越受到大家的关注,它作为生物特征识别中一个非常重要的一个分支,已成为计算机视觉与模式识别领域中非常活跃的一个研究领域。

基于matlab的人脸识别

基于matlab的人脸识别

本科生毕业论文(设计)题目基于MATLAB的人脸识别姓名学号院系专业自动化指导教师职称2015年5月15日曲阜师范大学教务处制目录摘要 (1)关键词 (1)Abstract (1)K e y w o r d s (1)1 绪论 (2)1.1 基本介绍与概念 (2)1.2 研发历史与发展现状 (3)1.3 研究背景与意义 (3)2 人脸检测 (4)2.1 检测的具体步骤 (4)2.1 YCbCr空间 (4)2.2 灰度图像转换 (4)2.3 噪声消除 (5)2.4 图像填孔 (5)2.5 图像重构 (5)2.6 边缘检测 (6)2.7 利用规则确定人脸 (6)3 人脸识别 (7)3.1 人脸识别的步骤 (7)3.2 K-L变换原理 (7)3.3 K-L变换 (7)3.4 图像特征脸基底的确立 (8)3.5 图像的识别 (9)4 MATLAB仿真功能的实现 (10)4.1 系统仿真综述 (10)4.2选择预存人脸数据库 (10)4.3 创建预存人脸向量库T (13)4.4 求特征脸空间 (14)4.5人脸识别 (15)4.6 人脸识别结果显示 (16)5 结果分析 (17)6 结论 (18)致谢 (19)参考文献 (19)附录: (20)基于MATLAB的人脸识别自动化专业学生指导老师摘要:人脸识别起始于上个世纪60年代,具有广泛的应用前景,它的工作原理是借由个体的生物特征来确认生物个体,文章利用MATLAB软件实现人脸信息的检测与识别,在输入的图像中寻找人脸区域,把图像分割成两个部分——人脸区域和非人脸区域,之后与设定的人脸库进行特征值比较,辨识出人脸代表的身份。

文章利用YCbCr空间以及二值图像实现人脸边缘分割,用霍特林变换(Kaehunen-Love Transform,K-L)以及主成分分析(Principal Component Analysis,PCA)算法对人脸进行识别对比,并详细介绍了K-L的推导过程,并在MATLAB上对PCA人脸识别算法进行仿真。

完整版)基于matlab程序实现人脸识别

完整版)基于matlab程序实现人脸识别

完整版)基于matlab程序实现人脸识别Based on MATLAB program。

face n is implemented。

1.Face n Process1.1.1 Basic PrincipleXXX carried out based on the YCbCr color space skin color model。

It has been found that the skin color clustering n in the Cb-Cr subplane n of the YCbCr color space will be XXX different from the central n。

Using this method。

image XXX-faces。

1.1.2 FlowchartXXX:1.Read the original image2.Convert the image to the YCbCr color spacee the skin color model to binarize the image and perform morphological processing4.Select the white area in the binary image。

measure the area attributes。

and filter to obtain all rectangular blocks5.Filter specific areas (height-to-width。

een 0.6 and 2.eye features)6.Store the rectangular area of the face7.Filter special areas based on other n and mark the final face area2.Face n Program1) Face and Non-XXXn result = skin(Y,Cb,Cr)SKIN Summary of this n goes hereDetailed n goes herea=25.39;b=14.03;ecx=1.60;ecy=2.41;sita=2.53;cx=109.38;cy=152.02;xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)];If the brightness is greater than 230.the major and minor axes are expanded by 1.1 timesif(Y>230)a=1.1*a;b=1.1*b;endXXXCb=double(Cb);Cr=double(Cr);t=[(Cb-cx);(Cr-cy)];temp=xishu*t;value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2;If the value is greater than 1.it is not skin color and returns。

《基于MATLAB的人脸识别算法的研究》范文

《基于MATLAB的人脸识别算法的研究》范文

《基于MATLAB的人脸识别算法的研究》篇一一、引言人脸识别技术是计算机视觉领域的重要分支,随着科技的发展和大数据的普及,其在安全监控、身份认证、智能交互等领域得到了广泛的应用。

本文旨在基于MATLAB平台,研究并分析几种常见的人脸识别算法,并对其性能进行对比与评价。

二、人脸识别算法概述人脸识别算法主要包括基于特征的人脸识别算法和基于深度学习的人脸识别算法两大类。

其中,基于特征的人脸识别算法如主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等,通过提取人脸特征进行识别;而基于深度学习的人脸识别算法如卷积神经网络(CNN)等,通过深度学习技术自动提取人脸特征并进行识别。

三、基于MATLAB的人脸识别算法实现1. 数据准备:使用MATLAB的Image Acquisition Toolbox获取人脸图像数据,并进行预处理,包括灰度化、归一化等操作。

2. 特征提取:采用PCA、LDA等算法提取人脸特征。

在MATLAB中,可以利用其内置的函数或编写自定义函数进行特征提取。

3. 分类器设计:根据提取的特征,设计分类器进行人脸识别。

在MATLAB中,可以使用其内置的分类器函数或自行设计分类器。

4. 算法实现:将上述步骤组合起来,实现基于MATLAB的人脸识别算法。

四、常见人脸识别算法的比较与分析1. PCA算法:PCA是一种常用的特征提取方法,能够有效地降低数据的维度,提高识别的速度和准确性。

但PCA算法对光照、表情等因素的敏感性较高,需要结合其他技术进行优化。

2. LDA算法:LDA算法通过最大化类间距离和最小化类内距离来提取特征,具有较好的分类性能。

但LDA算法对样本数量的要求较高,样本数量不足时可能导致性能下降。

3. CNN算法:CNN是一种基于深度学习的人脸识别算法,能够自动提取人脸特征并进行识别。

CNN算法具有较高的准确性和鲁棒性,但需要大量的训练数据和计算资源。

五、实验与结果分析为了验证上述人脸识别算法的性能,我们进行了多组实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

佳木斯大学毕业论文基于Matlab的人脸识别系统设计与仿真学院信息电子技术专业电子信息工程班级11级1班姓名杨雷指导教师周经国佳木斯大学2015年6月10日摘要人脸识别即指利用分析比对人脸视觉特征信息从而达到身份鉴别效果的计算机技术。

人脸识别是一项当下十分热门的计算机技术的研究领域,该项技术可以人脸明暗侦测,并且自动调整动态曝光补偿,同时对人脸追踪侦测,并自动调整影像放大;这项技术属于生物特征识别技术的一种,是利用生物体(一般指人)本身的生物特征从而达到区分生物体个体的目的。

人脸识别技术目前主要用做身份识别。

由于视频监控的飞速普及,使这项应用迫切的需要一种能实现在用户非配合状态下、远距离的进行快速身份识别的技术,以求能在远距离之下快速识别人员身份,从而实现智能预警的功能。

最佳的选择无疑是人脸识别技术。

采用快速人脸检测识别技术可以从视频监控图象中实时捕获到人脸信息,并与人脸数据库中的已存信息进行实时比对,从而达到快速身份识别的效果。

报告利用MATLAB软件来实现人脸信息检测与识别,利用YCbCr空间以及灰度图像来实现人脸的边缘分割, 将真彩图像转换为灰度图像,并根据肤色在YCbCr色度空间上的分布范围,来设定门限阀值,从而实现人脸区域与非人脸区域的分割,通过图像处理等一系列的操作来剔除干扰因素,再通过长宽比和目标面积等方法在图像中定位出人脸区域,经试验,该方法能够排除面部表情、衣着背景、发型等干扰因素,从而定位出人脸区域。

关键词:Matlab软件;灰度图像;边缘分割;人脸区域AbstractFace recognition especially use comparative analysis face visual feature information for identification of computer technology. Face recognition is a hot research field computer technology, face detection, light and shade can be automatically adjusted dynamically exposure compensation, human face tracking detection, automatic adjustment of image magnification; It belongs to the biometric identification technology, it is of organisms (generally refers to a person) individual biological characteristics to distinguish between the organism itself.Face recognition is mainly used for identification. Because of the video monitoring is fast popularization, many of the video monitoring application is an urgent need to a long distance, the user not cooperate condition of rapid identification technology, in order . Face recognition technology is undoubtedly the best choice, the fast face detection technology to monitor in real-time video image search from face, and with real-time than face database, so as to realize rapid identification.Report using MATLAB software to realize face information detection and recognition, using YCbCr space and gray image to realize the face edge segmentation, the true color image is converted to a grayscale image, and according to the color of skin in YCbCr chroma space distribution, to set the threshold threshold, so as to realize the segmentation of face region with the face region,through a series of operations such as image processing to eliminate interference factors, and through such means as aspect ratio andthe target area locate the face region in the image, the experiment,this method can eliminate facial expressions, clothes, hair background interference factors, so as to locate the face region. Keywords:Matlab;Gray image;edge segmentation;face region目录摘要 (1)ABSTRACT (2)3第1章绪论 (4)1.1课题的研究背景、目的及意义 (4)1.1.1 课题的研究背景 (4)1.1.2 研究目的及意义 (5)1.2本课题的主要内容 (6)第2章图像处理的MATLAB实现 (7)2.1识别系统构成 (7)2.2人脸图像的读取与显示 (8)2.3图像类型的转换 (8)2.4图像增强 (9)2.5灰度图像平滑与锐化处理 (11)2.6边缘检测 (13)第3章人脸识别计算机系统 (14)3.1系统基本构架 (14)3.2人脸检测定位算法 (15)3.3匹配与识别 (20)结论 (28)致谢 (29)参考文献 (30)附录1 人脸识别的MATLAB源程序 (31)附录2 外文参考文献及翻译 (35)第1章绪论1.1 课题的研究背景、目的及意义1.1.1 课题的研究背景数字图像处理技术是20世纪60年代发展起来的一门新兴技术。

近30多年来,在计算机科技和大规模集成电路技术的迅猛发展、离散数学理论创立和完善,以及工业、军事、医学等方面的应用需求在不断增长,人脸识别技术已经在人机交互、安全验证系统、系统公安(罪犯识别等)、医学、档案管理、信用卡验证、视频会议等方面的巨大应用前景而越来越成为当前模式识别和人工智能领域的一个研究热点。

目前,人脸识别技术应用最广泛的地方就是各大公司、商场、政府保密机构的门禁考勤系统。

20世纪90年代后期以来,一些商业性的人脸识别技术系统逐渐进入市场。

自美国遭遇恐怖分子袭击事件后,这一技术引起了社会各方的广泛关注。

由于隐蔽性十分好,该项技术逐渐成为国际反恐及安全防范的重要手段之一。

人脸识别技术在中国也有迅猛发展的历史。

国家“十一五”科技发展规划就将人脸识别技术的研究与发展列入其中,并明确指出“要在生物特征识别技术领域缩小与世界先进水平的差距,开展生物特征识别应用技术研究,开发具有高安全性、低误报率的出入口控制新产品。

”在这种形势下,国内一些科研院所在人脸识别技术上有了重大发展和突破。

如清华大学、中科院计算机所、中科院自动化所等自主研发的人脸识别技术已经达到了国际先进的水平。

经过多年的研发探索,在世界各大研究机构的研发人员的共同努力下,人脸识别技术这一领域取得了丰硕的成果,这些研究成果的取得和科技的进步,更进一步推动了人类对人脸识别技术这一高端技术的深入研究。

人脸识别技术,顾名思义,指利用采集、分析、比较人脸视觉特征信息来进行身份鉴别的计算机技术。

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。

它是人们一直所追求的让机器智能化技术,就是让机器具备和人类一样的思考能力,识别能力以及处理事务的能力。

而人脸识别技术的研究就是在这样的背景下发展起来的。

1.1.2 研究目的及意义目前,人脸识别技术已经广泛用于军队、政府、社会福利保障、银行、安全防务及电子商务等领域。

而我们研究这项技术的目的就是让其更好地服务于人类社会,在这个生活快节奏的前提下,与人方便。

例如京沪高铁三站将建立人脸识别系统,即使整容也能被识别。

铁路部门发布计划时表示,将在京沪高铁段的天津西站、济南西站、上海虹桥站这三个站点,建立人脸识别系统工程,以此来协助公安部门甄别、抓捕在逃罪犯。

利用这个系统,即使作案后的犯罪分子进行整容,也会被识别。

研究人脸识别技术,在现实意义上具有重大意义:一是能进一步加强对人类视觉系统本身的认知;二是能够满足人类社会中对人工智能应用的广泛需要。

同时人脸识别技术又有自然性、无侵犯性、成本低、智能化等几个显著优势。

人脸识别技术的研究也有重大的学术价值。

由于人类有非常复杂的细节变化,例如眼镜、胡须、发型等附属物的干扰,这就给该项技术带来了巨大挑战。

成功构造出人脸识别系统将为解决其他与之类似的复杂问题提供重要的启示。

1.2 本课题的主要内容本次课题主要讲述了人脸识别中应用Matlab对图像进行预处理,通过人脸检测、人脸跟踪、人脸比对来实现基于Matlab的人脸识别系统的仿真。

利用Matlab实现一个集多种预处理方法于一体的通用的人脸识别仿真系统,将该系统作为图像预处理模块嵌入在人脸识别系统中,并利用灰度图像的直方图比对来实现人脸图像的识别判断。

文中在研究人脸识别技术的仿真过程中,主要涉及了YCbCr空间、灰度图像转换、噪声消除、图像填孔、图像重构、人脸区域确定、边缘检测等技术。

通过多次实验并比对各个算法和技术的优缺点,有效地实现了基于Matlab的人脸识别系统的设计与仿真,并达到了预期目标和效果。

第2章图像处理的Matlab实现2.1 识别系统构成人脸识别技术系统主要可分为四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。

相关文档
最新文档