【6套合集】内蒙古自治区包头市第九中学2020中考提前自主招生数学模拟试卷附解析
内蒙古包头市2020年中考数学模拟试卷(I)卷
内蒙古包头市2020年中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共10题;共20分)1. (2分)(2017·深圳模拟) 人民网北京1 月24 日电(记者杨迪)财政部23 日公布了2016 年财政收支数据。
全国一般公共预算收入159600亿元,将159600亿元用科学记数法表示为().A . 1.596×105元B . 1.596×1013元C . 15.96×1013元D . 0.1596×106元2. (2分)(2012·锦州) 下列运算正确的是()A . a2+a5=a7B . (﹣ab)3=﹣ab3C . a8÷a2=a4D . 2a2•a=2a33. (2分)(2017·潮南模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .4. (2分)若甲组数据的方差比乙组数据的方差大,那么下列说法正确的是()A . 甲组数据的平均数比乙组数据的平均数大B . 甲组数据比乙组数据稳定C . 乙组数据比甲组数据稳定D . 甲、乙组的稳定性不能确定5. (2分)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A . 150°B . 130°C . 120°D . 100°6. (2分) (2020八上·昭平期末) 下列命题是假命题的是()A . 两直线平行,内错角相等B . 三角形内角和等于180°C . 对顶角相等D . 若|a|=|b|,则a=b7. (2分)某几何体的三视图及相关数据如图所示,则判断正确的是()A .B .C .D .8. (2分)(2017·诸城模拟) 如图:二次函数y=ax2+bx+c的图像所示,下列结论中:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 ,且x1≠x2 ,则x1+x2=2,正确的个数为()A . 1个B . 2个C . 3个D . 4个9. (2分)(2017·七里河模拟) 如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=()A . 60°B . 65°C . 72°D . 75°10. (2分)(2017·邢台模拟) 二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图像上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 ,且x1<x2 ,则x1<﹣1<5<x2 .其中正确的结论有()A . 2个B . 3个C . 4个D . 5个二、认真填一填 (共6题;共6分)11. (1分)分解因式(x﹣1)(x﹣3)+1=________ .12. (1分) (2018九上·皇姑期末) 如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是________.13. (1分)对于任意实数a,用不等号连结|a|________ a(填“>”或“<”或“≥”或“≤”)14. (1分)(2017·茂县模拟) 在函数(k>0的常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1 , y2 , y3的大小为________.15. (1分)(2017·襄阳) 在半径为1的⊙O中,弦AB、AC的长分别为1和,则∠BAC的度数为________.16. (1分) (2020九上·北仑期末) 如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,则线段BF=________。
内蒙古包头市2020年数学中考模拟试卷C卷
内蒙古包头市2020年数学中考模拟试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2016·南宁) ﹣2的相反数是()A . ﹣2B . -4C . 2D . 42. (2分)(2011·湛江) 第六次人口普查显示,湛江市常住人口数约为6990000人,数据6990000用科学记数法表示为()A . 69.9×105B . 0.699×107C . 6.99×106D . 6.99×1073. (2分)(2018·曲靖) 如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A .B .C .D .4. (2分)如图,数轴上表示某不等式组的解集,则这个不等式组可以是()A .B .C .D .5. (2分)(2018·吉林模拟) 如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A . 8B . 10C . 12D . 146. (2分)如图4×4的正方形网格中,△MNP绕某点旋转一定的角度得到△M1N1P1 ,则其旋转中心可能是()A . 点AB . 点BC . 点CD . 点D7. (2分) (2019九上·香坊期末) 在中,,,则()A .B .C .D .8. (2分) (2017八下·江阴期中) 已知点D与点A(0,6),B(0,﹣4),C(x,y)是平行四边形的四个顶点,其中x,y满足x﹣y+3=0,则CD长的最小值为()A .B . 4C . 2D . 2二、填空题 (共6题;共6分)9. (1分)比较大小:﹣1.73________﹣.10. (1分)(2016·哈尔滨) 把多项式ax2+2a2x+a3分解因式的结果是________.11. (1分)(2017·自贡) 在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为________.12. (1分)一天,爸爸带小明到建筑工地玩,看见一个如图所示的人字架,爸爸说:“小明,我考考你,这个人字架的夹角∠1等于120°,你知道∠3比∠2大多少吗?”小明马上得到了正确的答案,他的答案是________°.13. (1分)(2019·贵池模拟) 如图,AB是反比例函数y=在第一象限内的图象上的两点,且A、B两点的横坐标分别是1和3,则S△AOB=________.14. (1分)(2017·资中模拟) 以x为自变量的二次函数y=x2﹣(b﹣2)x+b﹣3的图象不经过第三象限,则实数b的取值范围是________.三、解答题 (共10题;共98分)15. (5分) (2016七上·海珠期末) 先化简,再求值3(x2﹣2y)﹣2(x2﹣2y),其中x=﹣1,y=2.16. (5分)(2016·兰州) 小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.17. (5分)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?18. (10分) (2019八上·天山期中) 尺规作图:(不写作法,但要保留作图痕迹)①画出∠AOB的平分线OC.②画出与△ABC关于对称的图形.19. (10分)(2018·荆门) 如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM= ,BE=1,①求⊙O的半径;②求FN的长.20. (2分)(2019·安徽模拟) 甲、乙人5场10次投篮命中次数如图(1)填写表格.平均数众数中位数方差甲________88________乙8________________ 3.2(2)①教练根据这5个成绩,选择甲参加投篮比赛,理由是什么?②如果乙再投篮1场,命中8次,那么乙的投监成绩的方差将会怎样变化?(“变大”“变小”或”不变”)21. (15分)某体育用品商店为了解5月份的销售情况,对本月各类商品的销售情况进行调查,并将调查的结果绘制成如下两幅不完整的统计图(1)请根据图中提供的信息,将条形图补充完整;(2)该商店准备按5月份球类商品销量的数量购进球类商品,含篮球、足球、排球三种球,预计恰好用完进货款共3600元,设购进篮球x个,足球y个,三种球的进价和售价如表:类别篮球足球排球进价(单位:元/个)503020预售价(单位:元/个)704525求出y与x之间的函数关系式;(3)在(2)中的进价和售价的条件下,据实际情况,预计足球销售超过60个后,这种球就会产生滞销.①假设所购进篮球、足球、排球能全部售出,求出预估利润P(元)与x(个)的函数关系式;②求出预估利润的最大值,并写出此时购进三种球各多少个.22. (6分)如图,已知A(﹣2,0),B(0,﹣4),C(1,1),点P为线段OB上一动点(不包括点O),CD⊥CP 交x轴于点D,当P点运动时:(1)求证:∠CPO=∠CDO;(2)求证:CP=CD;(3)下列两个结论:①AD﹣BP的值不变;②AD+BP的值不变,选择正确的结论求其值.23. (20分) (2018八上·湖州期中) 如图1,△ABC中,BE平分∠ABC交AC边于点E,过点E作DE∥BC交AB于点D,(1)求证:△BDE为等腰三角形;(2)若点D为AB中点,AB=6,求线段BC的长;(3)在图2条件下,若∠BAC=60°,动点P从点B出发,以每秒1个单位的速度沿射线BE运动,请直接写出图3当△ABP为等腰三角形时t的值.24. (20分) (2019九上·海淀期中) 请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O 上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB 的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共98分)15-1、16-1、17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、。
内蒙古包头2020年中考数学模拟试卷 一(含答案)
23.如图,一个圆形喷水池的中央垂直于水面安装了一个柱形喷水装置 OA,O 恰好在水面中 心,安置在柱子顶端 A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下, 且在过 OA 的任一平面上,按如图所示建立直角坐标系,水流喷出的高度 y(m)与水平距离 x (m)之间的关系式可以用 y=﹣x2+bx+c 表示,且抛物线经过点 B(0.5,2.5),C(2, 1.75). 请根据以上信息,解答下列问题; (1)求抛物线的函数关系式,并确定喷水装置 OA 的高度; (2)喷出的水流距水面的最大高度是多少米? (3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?
(AC>BO),反比例函数
的图像经过C,则k的值为
.
第 3 页 共 13 页
20.如图,已知直线y=
,A( ,0),点P在直线上,当PA最小时,P坐标为:
.
三、解答题 21.为纪念建国 70 周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖 国》,《我和我的祖国》(分别用字母 A,B,C 依次表示这三首歌曲).比赛时,将 A,B,C 这 三个字母分别写在 3 张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班 长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌 咏比赛. (1)八(1)班抽中歌曲《我和我的祖国》的概率是 ; (2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲 的概率.
22.如图,正方形 ABCD 的边长为 1,AB 边上有一动点 P,连接 PD,线段 PD 绕点 P 顺时针旋转 90°后,得到线段 PE,且 PE 交 BC 于点 F,连接 DF,过点 E 作 EQ⊥AB 的延长线于点 Q. (1)求线段 PQ 的长; (2)点 P 在何处时,△PFD∽△BFP,并说明理由.
内蒙古包头2020年中考数学模拟试卷 三(含答案)
内蒙古包头2020年中考数学模拟试卷三一、选择题1.有理数a、b在数轴上的对应的位置如图所示,则下列各式中正确的是( )A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>02.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a﹣1.其中,正确的是()A.① B.①② C.②③④ D.①②③④3.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差4.下列立体图形中,俯视图与主视图不同的是( )5.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x的关系式可以写为( )A.y=12-4xB.y=4x-12C.y=12-xD.以上都不对6.下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等7.如图所示,在△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和点E,则△BCD 的周长是()A.6B.8C.10D.无法确定8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.9.下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13) B.(0.5,2) C.(3,0) D.(1,1)10.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根11.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.1:2D.1:112.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示:现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个二、填空题13.预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.14.若不等式(m﹣2)x>m﹣2的解集是x<1,则m的取值范围是.15.如果实数x满足x2+2x-3=0,那么代数式的值为_______.16.样本数据﹣2, 0, 3, 4,﹣1的中位数是.17.在正方形网格中,△ABC如图放置,则sinB的值为 .18.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 m.19.如图,直线y=kx(k>0)与双曲线y=3x-1交于A(a,b),B(c,d)两点,则3ad﹣5bc= .20.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S=S△PCD,则PC+PD的最△PAB小值为.三、解答题21.某乳品公司最新推出一款果味酸奶,共有红枣、木瓜两种口味,若送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率是多少? (请用“画树形图”的方法给出分析过程,并求出结果)22.如图,在边长为8的正方形ABCD中,E是AB上的点,⊙O是以BC为直径的圆.(1)如图1,若DE与⊙O相切于点F,求BE的长;(2)如图2,若AO⊥DE,垂足为F,求EF的长.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如表(为所学过的一次函数,反比例函数或二次函数中的一种).(1)请求出每亩获得利润y与x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过60亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.24.如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是弧AB上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.四、综合题25.如图,在Rt△ABC中,∠ACB=90,AC=6,BC=8.点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O;点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.26.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.参考答案1.答案为:A.2.B3.C4.答案为:C.5.A6.D7.C8.B.9.C10.A.11.C12.A13.答案为:3.8×104.14.答案为:m<2.15.答案为:5.16.答案为:0;17.答案为:0.8.18.答案为:3m.19.答案为6.20.答案为:2.解析:∵ABCD为矩形,∴AB=DC又∵S△PAB=S△PCD∴点P到AB的距离与到CD的距离相等,即点P线段AD垂直平分线MN上,连接AC,交MN与点P,此时PC+PD的值最小,且PC+PD=AC=21.解:画树形图如下:∴共有8种等可能情况,其中4种情况至少有两瓶为红枣口味;∴P(至少有两瓶为红枣口味)=错误!未找到引用源。
2020年内蒙古省包头市中考数学模拟试卷(4月份)(含答案解析)
2020年内蒙古省包头市中考数学模拟试卷(4月份)一、选择题(本大题共12小题,共36.0分)1.计算:|−13|=()A. 13B. −13C. 3D. −32.如图,l1//l2,∠1=56°,则∠2的度数为()A. 34°B. 56°C. 124°D. 146°3.将一副直角三角板按如图所示的方式放置,使两三角板的直角顶点C重合,当DE//BC时,α的度数是()A. 105°B. 115°C. 95°D. 110°4.下列计算正确的是()A. √8−√2=√2B. (−3)2=6C. 3a4−2a2=a2D. (−a3)2=a55.不等式3(2x+5)>2(4x+3)的解集为()A. x>4.5B. x<4.5C. x=4.5D. x>96.P1(x1,y1),P2(x2,y2)是正比例函数y=−x图象上的两点,则下列判断正确的是()A. y1>y2B. y1<y2C. 当x1<x2时,y1>y2D. 当x1<x2时,y1<y27.足球比赛的得分规则如下:胜一场得3分,平一场得1分,负一场得0分.某足球队一共进行了14场比赛,其中负了5场,共得19分.设该球队胜了x场,平了y场,依题意可列方程组()A. {x +y +5=143x +y =19B. {x +y +5=14x +3y =19C. {x +y −5=14x +3y =19D. {x +y −5=143x +y =198. 已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①ac <0,②b −2a <0,③b 2−4ac <0,④a −b +c <0,正确的是 ( )A. ①②B. ①④C. ②③D. ②④9. 如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为( )A. 800π+1200B. 160π+1700C. 3200π+1200D. 800π+300010. 在拼图游戏中,从图(1)的四张纸片中任取两张纸片,能拼成“小房子”[如图(2)]的概率为( )A. 14B. 12C. 13D. 23 11. 如图所示,在△ABC 和△DEF 中,BC//EF ,∠BAC =∠D ,且AB =DE =4,BC =5,AC =6,则EF 的长为( )A. 4B. 5C. 6D. 不能确定12. 下列关于一次函数y =−2x +5的图象性质的说法中,错误的是A. y随x的增大而减小B. 直线经过第一、二、四象限C. 直线从左到右是下降的D. 直线与x轴交点的坐标是(0,5)二、填空题(本大题共8小题,共24.0分)13.计算:sin245∘+√3tan30∘=________.14.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是吨.15.在平面直角坐标系中,点A(3,−1),B(3,−7)是一对关于某直线l对称的对称点,则点C(−2,−13)关于直线l的对称点的坐标为__________.16.某班一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人.则本次测验的中位数是______ .17.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G.下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF,其中正确结论的序号为__________.18.等腰三角形的腰长为13cm,底边的长为10cm,则顶角的平分线的长为________cm.19.某班为奖励在校运动会上取得好成绩的同学,花了200元钱购买甲、乙两种奖品共30件,其中甲种奖品每件8元,乙种奖品每件6元,则购买了甲种奖品______ 件.20.不等式组{1−x<31−2x4>23的解集为______.三、解答题(本大题共6小题,共60.0分)21.计算:2a−1÷2a−4a2−1+12−a22.如图,直线y=x+b与双曲线y=mx都经过点A(2,3),直线y=x+ b与x、y轴分别交于B,C两点.(1)求直线和双曲线的函数关系式;(2)求△AOB的面积.23.某校对九年级全体学生进行了一次数学学业水平模拟测试,成绩评定分为A,B,C,D四个等级(A、B、C、D分别代表优秀、良好、合格、不合格).该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下两幅不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了______名学生的成绩;(2)请将条形统计图补充完整,写出等级C的百分比______%.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是______分,众数是______分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.24.如图,AB是⊙O的直径,点C是半径OA的中点,CD⊥AB交⊙O于点D,作直径DE交⊙O于点E,延长OB到点F,使BF=OB,连接EF.(1)求证:BE=BF;(2)求证:EF是⊙O的切线;(3)若⊙O的半径为2,求阴影部分BEF的面积.25.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN//y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.26.在平面直角坐标系中,点A(−2,0),B(2,0),C(0,2),点D、E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得△CMN,点M,N分别是点D,E旋转后的对应点,记旋转角α.(Ⅰ)如图1,求证AM=BN;(Ⅱ)如图2,当α=75°时,求点N的坐标;(Ⅲ)当AM//CN,求BN的长(直接写出结果即可).【答案与解析】1.答案:A解析:解:|−13|=13,故选:A.利用绝对值的性质可得结果.本题主要考查了绝对值的性质,掌握绝对值的非负性是解答此题的关键.2.答案:C解析:本题考查了平行线的性质和邻补角的定义,注意:两直线平行,同位角相等.根据平行线性质求出∠3=∠1=50°,代入∠2+∠3=180°即可求出∠2.解:∵l1//l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选:C.3.答案:A解析:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等,也考查了三角形的外角性质.根据DE//BC得出∠BCD=∠D=45°,再由三角形外角的性质可得出α=∠DCB+∠B.解:∵DE//BC,∴∠BCD=∠D=45°.根据三角形外角的性质,可得α=∠BCD+∠B=45°+60°=105°.故选A.4.答案:A解析:解:A、√8−√2=2√2−√2=√2,故此选项正确;B、(−3)2=9,故此选项错误;C、3a4−2a2,无法合并,故此选项错误;D、(−a3)2=a6,故此选项错误;故选:A.分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.此题主要考查了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题关键.5.答案:B解析:解:不等式3(2x+5)>2(4x+3)去括号,得6x+15>8x+6,移项,得:6x−8x>6−15,即−2x>−9,系数化1,得:x<4.5;故选:B.根据解不等式的步骤:先去括号,再移项,最后系数化1即可求得不等式的解集.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.6.答案:C解析:本题考查的是正比例函数图象上点的坐标特点,先根据题意判断出函数的增减性是解答此题关键. 先根据正比例函数的性质判断出函数的增减性,再根据两点横坐标的大小进行解答即可. 解:∵正比例函数y =−x 中,k =−1<0,∴y 随x 的增大而减小,∴当x 1>x 2时,y 1<y 2;当x 1<x 2时,y 1>y 2.故选C .7.答案:A解析:[分析]设该球队胜了x 场,平了y 场,根据进行14场比赛,其中负了5场,共得19分,列方程组. 本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.[详解]解:设该球队胜了x 场,平了y 场,由题意得{x +y +5=143x +y =19. 故选A .8.答案:A解析:本题主要考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①图象开口向下,与y 轴交于正半轴,能得到:a <0,c >0,∴ac <0,故①正确;②∵对称轴x<−1,∴−b<−1,a>0,2a∴b<2a,∴b−2a<0,故②正确.③图象与x轴有2个不同的交点,依据根的判别式可知b2−4ac>0,故③错误.④当x=−1时,y>0,∴a−b+c>0,故④错误;故选:A.9.答案:D解析:本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键.根据给出的几何体的三视图可知几何体是由一个圆柱和一个长方体组成,从而利用三视图中的数据,根据体积公式计算即可.解:由三视图可知,几何体是由一个圆柱和一个长方体组成,圆柱底面直径为20,高为8,长方体的长为30,宽为20,高为5,故该几何体的体积为:π×102×8+30×20×5=800π+3000,故选:D.10.答案:D解析:用到的知识点为:概率=所求情况数与总情况数之比.先用列举法求出两张纸片的所有组合情况,再根据概率公式解答.解:画树状图如图所示,由树状图可知共有12种等可能的结果,能拼成“小房子”的结果有8种,则任取两张纸片,能拼成“小房子”的概率为812=23.故选D.11.答案:B解析:本题考查了三角形全等的判定与性质:有两组角对应相等,并且夹边对应相等的两三角形全等;全等三角形的对应边相等.由BC//EF,得到∠B=∠DEF,而AB=DE,∠BAC=∠D,根据“ASA”即可判断△ABC≌△DEF,然后根据三角形全等的性质得到EF=BC=5.解:∵BC//EF,∴∠B=∠DEF,又∵△ABC和△DEF中,{∠B=∠DEF AB=DE,∠BAC=∠D∴△ABC≌△DEF,∴BC=EF,而BC=5,∴EF=5.故选B.12.答案:D解析:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).由于k=−2<0,则y随x的增大而减小,而b>0,则直线经过第一、二、四象限,直线从左到右是下降的,可对A、B、C进行判断;根据直线与y轴交点坐标是(0,5)可对D 进行判断.解:A.因为k =−2<0,则y 随x 的增大而减小,所以A 选项的说法正确;B .因为k <0,b >0,直线经过第一、二、四象限,所以B 选项的说法正确;C .因为y 随x 的增大而减小,直线从左到右是下降的,所以C 选项说法正确;D .因为x =0,y =5,直线与y 轴交点坐标是(0,5),所以D 选项的说法错误.故选D .13.答案:32解析:本题考查了特殊角的三角函数值,以及二次根式的混合运算,解题关键是熟记特殊角的三角函数值.解题时,先把特殊角的三角函数值代入,然后计算二次根式的混合运算即可.解:原式=(√22)2+√3×√33=12+1 =32.故答案为32. 14.答案:6.75×104解析:解:67500=6.75×104.故答案为:6.75×104.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于67500有5位,所以可以确定n =5−1=4.此题考查科学记数法表示较大的数的方法,准确确定a 与n 的值是关键.15.答案:(−2,5)解析:本题考查轴对称中的坐标变化,找出对称轴是解题关键.根据题意可知对称轴为x=−4,然后找出点C(−2,−13)关于直线x=−4对称的点即可.解:∵点A(3,−1),B(3,−7)关于直线x=4对称,∴点C(−2,−13)关于直线x=4对称的点的坐标为(−2,5).故答案为(−2,5).16.答案:7.5解析:解:这组数据已经排序,共有4+7+14+18+5+2=50人,所以应取中间第25、26个数,即8和7的平均数,则本次测验的中位数是(8+7)÷2=7.5(分).故填7.5.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数即为所求.如果是偶数个则找中间两位数的平均数.17.答案:①②③解析:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用.通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,由勾股定理表示出EF、CG,再通过比较可以得出结论.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,{AE=AFAB=AD,∴△ABE≌△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC−BE=CD−DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=√2x,CG=√22x,在△AEG中,∠EAG=30°,AG=AE·√32=EF·√32=√62x,∴AC=√2x+√6x2,∴AB=√3x+x2,∴BE=√3x+x2−x=√3x−x2,∴BE+DF=√3x−x≠√2x.(故④错误).故答案为①②③.18.答案:12解析:本题主要考查了等腰三角形的性质以及勾股定理的应用.在等腰三角形的腰和顶角平分线所构成的直角三角形中,根据勾股定理即可求得顶角的平分线的长.解:如图:AB =AC =13cm ,BC =10cm ,AD 平分∠BAC ,在△ABC 中,∵AB =AC ,AD 平分∠BAC ,则AD ⊥BC ,∴BD =DC =12BC =5cm , Rt △ABD 中,AB =13cm ,BD =5cm ,由勾股定理,得:AD =√AB 2−BD 2=12cm .故答案为12.19.答案:10解析:解:设购买甲种奖品x 件,乙种奖品y 件,由题意得{x +y =308x +6y =200, 解得{x =10y =20, 答:购买了甲种奖品10件.故答案为:10.设购买甲种奖品x 件,乙种奖品y 件,根据甲,乙两种奖品共30件和花了200元钱购买甲,乙两种奖品,甲种奖品每件8元,乙种奖品每件6元,列出方程组,再进行求解即可.此题主要考查了二元一次方程组的应用,关键是弄懂题意,抓住题目中的关键语句,列出方程. 20.答案:−2<x <−56解析:解:解不等式1−x <3,得:x >−2,解不等式1−2x 4>23,得:x <−56, 则不等式组的解集为−2<x <−56,故答案为:−2<x <−56.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.答案:解:原式=2a−1×(a−1)(a+1)2(a−2)−1a−2=a+1a−2−1a−2=aa−2.解析:直接利用分式的乘除运算法则化简,进而利用分式的加减运算法则计算得出答案;此题主要考查了分式的混合运算,正确化简是解题关键.22.答案:解:(1)∵线y=x+b与双曲线y=mx都经过点A(2,3),∴3=2+b,3=m2,∴b=1,m=6,∴y=x+1,y=6x,∴直线的解析式为y=x+1,双曲线的函数关系式为y=6x;(2)当y=0时,0=x+1,x=−1,∴B(−1,0),∴OB=1.作AE⊥x轴于点E,∵A(2,3),∴AE=3,∴S△AOB=1×32=32.答:△AOB的面积为32.解析:本题考查了运用待定系数法求一次函数,反比例函数的解析式的运用,三角形的面积公式的运用,解答时求出的解析式是关键.(1)将点A的坐标分别代入直线y=x+b与双曲线y=mx的解析式求出b和m的值即可;(2)当y=0时,求出x的值,求出B的坐标,就可以求出OB的值,作AE⊥x轴于点E,由A的坐标就可以求出AE的值,由三角形的面积公式就可以求出结论.23.答案:(1)50;(2)30;补全图形如下:(3)55,55;(4)500×20%=100,答:估计在这次测试中成绩达到优秀的人数为100人.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据等级B中男女人数之和除以所占的百分比即可得到调查的总学生数;(2)根据总学生数乘以A占的百分比求出等级A中男女的学生总数,进而求出等级A男生的人数,总人数减去其余各组人数求出等级C的男女之和人数,进而求出等级C的女生人数,补全条形统计图即可;(3)将等级D的五人成绩按照从小到大的顺序排列,找出最中间的数字即为中位数,找出出现次数最多的数字为众数;(4)用500乘以等级A所占的百分比,即可得到结果.解:(1)本次调查抽取的学生人数为(12+8)÷40%=50(人),故答案为:50;(2)∵A等级人数为50×20%=10(人),则A等级男生有10−6=4(人),C等级女生有50−(10+12+8+8+3+2)=7(人),补充条形图见答案,C等级的百分比为8+750×100%=30%,故答案为:30;(3)这5个数据重新排列为48、51、55、55、57,则这5个数据的中位数是55,众数为55,故答案为:55,55;(4)见答案.24.答案:解:(1)∵C为OA中点,∴OC=12AO=12DO,∵DC⊥AO,∴sin∠D=OCOD =12,∴∠D=30°,∴∠DOC=60°,∴∠BOE=∠DOC=60°,OB=OE,∴△OBE为等边三角形,∴OB=BE,∵BF=OB,∴BE=BF.(2)由(1)可知∠OEB =∠OBE =60°,∵BE =BF ,∴∠BEF =∠BFE =30°,∴∠OEF =60°+30°=90°,∴OE ⊥EF ,∵OE 为半径,∴EF 是⊙O 的切线;(3)由(1)可知∠BOE =60°,OE =OB =2,OF =4,在Rt △OEF 中EF =√42−22=2√3,∴S △OEF =2×2√32=2√3, S 扇形OBE =60·π·22360=23π,∴S 阴影=S △OEF−S 扇形OBE =2√3−23π.解析:本题主要考查了切线的判定,等边三角形的判定和性质,直角三角形的性质,勾股定理,三角形面积和扇形面积计算等知识,熟练掌握这些知识是解题关键.(1)先利用直角三角形的性质求出∠DOC 的度数为60°,进而求出△OBE 为等边三角形即可;(2)由(1)所求出的结果求出∠OEF =90°,进而可证EF 是⊙O 的切线;(3)由(2)所求出的EF 是⊙O 的切线,得出△OEF 是直角三角形,利用勾股定理求出EF =2√3,进而就可以利用S 阴影=S △OEF−S 扇形OBE 求出结果.25.答案:解:(1)将点B(3,0)、C(0,3)代入抛物线y =x 2+bx +c 中,得:{0=9+3b +c 3=c ,解得:{b =−4c =3, 故抛物线的解析式为y =x 2−4x +3;(2)设点M 的坐标为(m,m 2−4m +3),直线BC 的解析式为y =kx +3,把点B(3,0)代入y =kx +3中,得:0=3k +3,解得:k =−1,∴直线BC 的解析式为y =−x +3,∵MN//y 轴,∴点N 的坐标为(m,−m +3),∵抛物线的解析式为y =x 2−4x +3=(x −2)2−1,∴抛物线的对称轴为x =2,∴点(1,0)在抛物线的图象上,∴1<m <3.∵线段MN =−m +3−(m 2−4m +3)=−m 2+3m =−(m −32)2+94, ∴当m =32时,线段MN 取最大值,最大值为94;(3)存在.点F 的坐标为(2,−1)或(0,3)或(4,3).当以AB 为对角线,如图1,图1∵四边形AFBE 为平行四边形,EA =EB ,∴四边形AFBE 为菱形,∴点F 也在对称轴上,即F 点为抛物线的顶点,∴F 点坐标为(2,−1);当以AB 为边时,如图2,图2∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2−4x+3,当x=0时,y=3;当x=4时,y=16−16+3=3,∴F点坐标为(0,3)或(4,3),综上所述,F点坐标为(2,−1)或(0,3)或(4,3).解析:本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、两点间的距离以及等腰三角形的性质,(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)本题应分两种情况讨论:一是当以AB为对角线,二是当以AB为边.26.答案:(1)证明:∵A(−2,0),B(2,0),C(0,2)∴OA=OB=OC且∠AOC=∠BOC∴△AOC≌△BOC∴AC=BC∵D,E分别是AC,BC的中点∴DC=CE∵△MCN是△DCE旋转得到的∴∠ACM=∠BCN,CM=CD,CE=CN∴CM=CN且∠ACM=∠BCN,AC=BC∴△ACM≌△BCN∴AM=BN (2)如图2.∵∠BCO=45°,∠BCN=∠α=75°∴∠OCN=120°过点作NQ⊥y轴,Q为垂足.∴∠NCQ=60°在Rt△BCO中,BC=√OB2+OC2=2√2∴CE=CN=√2在Rt△NCQ中,∠NCQ=60°∴∠QNC=30°∴CQ=12CN=√22,NQ=√3CQ=√62∴OQ=CO+CQ=4+√22∴N(√62,4+√22)(3)如图3当AM//CN时,∴∠MCN=∠AMC=90°在Rt△ACM中,AC=2√2,CM=√2∴AM=√AC2−CM2=√8−2=√6∵AM=BN∴BN=√6解析:(1)根据点的坐标可以发现OA=OB=OC,可得AC=BC.通过旋转性质可得CM=CN,∠ACM=∠BCN.由此可以证明△ACM≌△BCN可得AM=BN(2)作NQ⊥y轴,由勾股定理可得BC=2√2,可得CE=CN=√2,因为旋转角为75°且∠OCB=45°,所以∠NCQ=60°,可以根据勾股定理求出NQ,CQ的长度,即可得N点坐标(3)因为AM//CN,所以∠MCN=∠AMC=90°,再根据勾股定理得AM的长度,由AM=BN可得BN 的长度本题考查全等三角形的证明,旋转的性质,以及利用勾股定理求直角三角形的边长.。
2020年内蒙古包头市中考数学模拟试卷(1)
2020年内蒙古包头市中考数学模拟试卷(1)一.选择题(共12小题,满分36分,每小题3分)1.(3分)在|﹣2|,﹣(+2),2﹣1,0这四个数中,最小的数是( ) A .|﹣2| B .﹣(+2) C .0 D .2﹣1 2.(3分)若单项式﹣2a m +2b 3与πab 2n 是同类项,则m ﹣2n 的值为( )A .﹣4B .﹣2C .2D .43.(3分)如图是某个几何体的三视图,该几何体是( )A .长方体B .圆锥C .圆柱D .三棱柱4.(3分)解集在数轴上表示为如图所示的不等式组是( )A .{x >−5x ≥4B .{x <−5x ≤4C .{x <−5x ≥4D .{x >−5x ≤45.(3分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA 的0刻度固定在半圆的圆心O 处,刻度尺可以绕点O 旋转.从图中所示的图尺可读出cos ∠AOB 的值是( )A .34B .710C .45D .35 6.(3分)下列说法中不正确的是( )A .抛掷一枚硬币,硬币落地时正面朝上是随机事件B .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C .任意打开九年级下册数学教科书,正好是97页是确定事件D .一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率大于白球的概率7.(3分)如图,已知钝角△ABC ,依下列步骤尺规作图,并保留作图痕迹步骤1:以C 为圆心,CA 为半径画弧①:步骤2:以B 为圆心,BA 为半径画弧②,交弧①于点D ;步骤3:连接AD ,交BC 延长线于点H .下列叙述正确的是( )A .AC 平分∠BADB .BC =CH C .S △ABC =BC •AHD .BH 平分线段AD8.(3分)若a ,b ,c 是△ABC 三条边的长,则关于x 的方程cx 2+(a +b )x +c 4=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定 9.(3分)下列命题是真命题的是( )A .同位角相等B .有两个角为60°的三角形是等边三角形C .若a >b ,则a 2>b 2D .若ab =0,则a =0,b =010.(3分)若点M (m ,n )是抛物线y =﹣2x 2+2x ﹣3上的点,则m ﹣n 的最小值是( )A .0B .158C .238D .﹣311.(3分)如图,把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C 顺时针旋转90°到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是( )A .πB .√3C .3π4+√32D .11π12+√3412.(3分)如图,已知正方形ABCD 的边长为4,E 为对角线AC 上一点,连接DE ,作EF⊥DE 交BC 于点F ,且CF =125,把△ADE 沿DE 翻折得到△A ′DE ,边A ′D 交EF 、AC 分别于点G 、H ,则△A ′FG 的面积为 .二.填空题(共8小题,满分24分,每小题3分)13.(3分)已知,|a ﹣2|+|b +3|=0,则b a = .14.(3分)已知,x 、y 为实数,且y =√x 2−1−√1−x 2+3,则x +y = .15.(3分)张老师随机抽取6名学生,测试他们的打字能力,测得他们每分钟打字个数分别为:100,80,70,80,90,60,那么这组数据的中位数是 ,方差是 .16.(3分)若a +1a=3,则a 2﹣a +2= .17.(3分)等腰△ABC 被某一条直线分成两个等腰三角形,并且其中一个等腰三角形与原三角形相似,则等腰△ABC 的顶角的度数是 .18.(3分)如图,直线y =−12x +2与x ,y 轴交于A 、B 两点,以AB 为边在第一象限作矩形ABCD ,矩形的对称中心为点M ,若双曲线y =k x (x >0)恰好过点C 、M ,则k = .19.(3分)如图,三个一样大小的小长方形沿“横﹣竖﹣横”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的面积等于.20.(3分)如图,在菱形ABCD中,已知AB=4,∠ABC=60°,∠EAF=60°,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∽△EFC;④若∠BAE=15°,则点F到BC的距离为2√3−2.则其中正确结论的个数是.三.解答题(共6小题,满分60分,每小题10分)21.(10分)抽屉里有一副扑克牌中的三张牌,从中随机取出一张记下牌花,放回抽屉洗匀;再从中随机取出一张记下牌花.(1)如果三张牌花各不相同,求两次取出的是相同牌花的概率;(2)如果其中两张牌花相同,另一张牌花不同,求两次取出的是相同牌花的概率.22.(10分)如图,在△ABC中,AD是BC边上的高,E是AC边的中点,AB=2√13,BC=12,tan B=3 2.(1)求△ABC的面积;(2)求tan∠EDC的值.23.(10分)“国美商场”销售某品牌汤锅,其成本为每件80元,9月份的销售额为2万元,10月份商场对这种汤锅的售价打9折销售,结果销售量增加了50件,销售额增加了0.7万元.(销售额=销售量×售价)(1)求“国美商场”9月份销售该品牌汤锅的销售单价;(2)11月11日“购物节”商场在9月份售价的基础上打折促销(但不亏本),销售的数量y(件)与打折的折数x满足一次函数y=﹣50x+600.问商场打几折时利润最大,最大利润是多少?(3)在(2)的条件下,为保证“国美商场”利润不低于1.5万元,且能够最大限度帮助厂家减少库存,“国美”商场应该在9月份销售价的基础上打几折?24.(10分)如图,△ABC内接于⊙O,AD是⊙O的切线,点A是切点,且AD∥BC,过点C作AB的平行线交AD于点D.(1)求证:AB=AC;(2)若⊙O的半径为5,AB:BC=1:√3,求四边形ABCD的面积.25.(10分)在正方形ABCD中.(1)如图1,如果N是AD中点,F为AB中点,连接DF,CN.①求证:DF=CN;②连接AC.求DH:HE:EF的值;(2)如图2,若正方形边长为acm,如果点E、M分别是线段AC、CD上的动点,假设点E从点A出发,以√2cm/s速度沿AC向点C运动,同时点M从点C出发,以1cm/s 的速度沿CD向点D运动,运动时间为t(t>0),连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N,连接FM、FN,△MNF能否为等腰三角形?若能,请写出a与t之间的关系;若不能,请说明理由.26.(10分)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.2020年内蒙古包头市中考数学模拟试卷(1)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)在|﹣2|,﹣(+2),2﹣1,0这四个数中,最小的数是()A.|﹣2|B.﹣(+2)C.0D.2﹣1【解答】解:∵|﹣2|=2,﹣(+2)=﹣2,2﹣1=12,0,∴|﹣2|>2﹣1>0>﹣(+2),∴最小的数是:﹣(+2).故选:B.2.(3分)若单项式﹣2a m+2b3与πab2n是同类项,则m﹣2n的值为()A.﹣4B.﹣2C.2D.4【解答】解:∵单项式﹣2a m+2b3与πab2n是同类项,∴m+2=1,2n=3,解得m=﹣1,n=3 2,∴m﹣2n=﹣1﹣3=﹣4.故选:A.3.(3分)如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【解答】解:俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.4.(3分)解集在数轴上表示为如图所示的不等式组是()A .{x >−5x ≥4B .{x <−5x ≤4C .{x <−5x ≥4D .{x >−5x ≤4【解答】解:由图示可看出,这个不等式组的解集是﹣5<x ≤4.故选:D .5.(3分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA 的0刻度固定在半圆的圆心O 处,刻度尺可以绕点O 旋转.从图中所示的图尺可读出cos ∠AOB 的值是( )A .34B .710C .45D .35 【解答】解:如图,连接AD .∵OD 是直径,∴∠OAD =90°,∵OD =1,OA =0.8,∴AD =√OD 2−OA 2=√12−0.82=0.6,∵∠AOB +∠AOD =90°,∠AOD +∠ADO =90°,∴∠AOB =∠ADO ,∴cos ∠AOB =cos ∠ADO =AD OD =0.61=35, 故选:D .6.(3分)下列说法中不正确的是( )A .抛掷一枚硬币,硬币落地时正面朝上是随机事件B .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C .任意打开九年级下册数学教科书,正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率大于白球的概率【解答】解:A、抛掷一枚硬币,硬币落地时正面朝上是随机事件,正确,不合题意;B、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,正确,不合题意;C、任意打开九年级下册数学教科书,正好是97页是随机事件,故此选项错误,符合题意;D、摸到红球的概率是69=23,摸到白球的概率是39=13,则取得的是红球的概率大于白球的概率正确,不合题意.故选:C.7.(3分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹步骤1:以C为圆心,CA为半径画弧①:步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.AC平分∠BAD B.BC=CHC.S△ABC=BC•AH D.BH平分线段AD【解答】解:根据作图可知:∴连接CD,BD,AC =CD ,AB =DB ,∴BH 是AD 的垂直平分线,∴BH 平分线段AD .故选:D .8.(3分)若a ,b ,c 是△ABC 三条边的长,则关于x 的方程cx 2+(a +b )x +c 4=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定【解答】解:△=(a +b )2﹣4c ×c 4=(a +b +c )(a +b ﹣c ),∵a ,b ,c 是△ABC 三条边的长,∴a +b +c >0,a +b >c ,∴△>0,∴方程有两个不相等的实数根.故选:C .9.(3分)下列命题是真命题的是( )A .同位角相等B .有两个角为60°的三角形是等边三角形C .若a >b ,则a 2>b 2D .若ab =0,则a =0,b =0【解答】解:A 、两直线平行,同位角相等,所以A 选项为假命题;B 、有两个角为60°的三角形是等边三角形,所以B 选项为真命题;C 、若a =0,b =﹣1,则a 2<b 2,所以C 选项为假命题;D 、当a =0,b =1时,ab =0,所以D 选项为假命题.故选:B .10.(3分)若点M (m ,n )是抛物线y =﹣2x 2+2x ﹣3上的点,则m ﹣n 的最小值是() A .0 B .158 C .238 D .﹣3【解答】解:∵点M (m ,n )是抛物线y =﹣2x 2+2x ﹣3上的点,∴n =﹣2m 2+2m ﹣3,∴m ﹣n =m ﹣(﹣2m 2+2m ﹣3)=2m 2﹣m +3=2(m −14)2+238, ∴m ﹣n 的最小值是238,故选:C .11.(3分)如图,把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C 顺时针旋转90°到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是( )A .πB .√3C .3π4+√32D .11π12+√34【解答】解:在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2, ∴BC =12AB =1,∠B =90°﹣∠BAC =60°, ∴AC =√AB 2−BC 2=√3, ∴S △ABC =12×BC ×AC =√32, 设点B 扫过的路线与AB 的交点为D ,连接CD , ∵BC =DC ,∴△BCD 是等边三角形, ∴BD =CD =1, ∴点D 是AB 的中点,∴S △ACD =12S △ABC =12×√32=√34,∴△ABC 扫过的面积=S 扇形ACA 1+S 扇形BCD +S △ACD , =90360×π×(√3)2+60360×π×12+√34, =34π+16π+√34, =1112π+√34. 故选:D .12.(3分)如图,已知正方形ABCD的边长为4,E为对角线AC上一点,连接DE,作EF⊥DE交BC于点F,且CF=125,把△ADE沿DE翻折得到△A′DE,边A′D交EF、AC分别于点G、H,则△A′FG的面积为1825.【解答】解:作EM⊥CD于M,EN⊥BC于N,连接DF.∵四边形ABCD是正方形,∴∠ECN=∠ECM,∵∠EMC=∠ENC=90°,CE=CE,∴△ECN≌△ECM(AAS),∴EM=EN,CN=CM,∵∠ENC=∠EMC=∠MCN=90°,∴∠MEN=90°,∵EF⊥ED,∴∠DEF=∠MEN=90°,∴∠DEM=∠FEN,∵∠ENF =∠EMD =90°, ∴△ENF ≌△EMD (ASA ), ∴FN =DM ,DE =EF , ∴∠EDF =∠EFD =45°,∴∠ADE +∠CDF =∠EDA ′+∠A ′DF =45°, ∵∠ADE =∠A ′DE , ∴∠A ′DF =∠CDF , ∵DA =DA ′=DC ,DF =DF , ∴△A ′DF ≌CDF (SAS ),∴∠DA ′F =∠DCF =90°,CF =F A ′=125∵∠GED =∠GA ′F =90°,∠EGD =∠A ′GF , ∴∠A ′FG =∠A ′DE =∠ADE =∠DEM , ∵CF +CD =CN ﹣NF +CM +DM =2CM =125+4=325, ∴CM =165, ∴FN =DM =4−165=45, ∵∠DEM =∠A ′FG , ∴tan ∠DEM =tan ∠A ′FG , ∴A′G A′F =DM EM,∴A′G125=45165, ∴A ′G =35, ∴S △GF A ′=12×A ′G ×A ′F =12×125×35=1825. 故答案为1825.二.填空题(共8小题,满分24分,每小题3分) 13.(3分)已知,|a ﹣2|+|b +3|=0,则b a = 9 . 【解答】解:∵|a ﹣2|+|b +3|=0, ∴a ﹣2=0,b +3=0,∴a =2,b =﹣3, 则b a =(﹣3)2=9. 故答案为:9.14.(3分)已知,x 、y 为实数,且y =√x 2−1−√1−x 2+3,则x +y = 2或4 . 【解答】解:由题意知,x 2﹣1≥0且1﹣x 2≥0, 所以x =±1. 所以y =3. 所以x +y =2或4 故答案是:2或4.15.(3分)张老师随机抽取6名学生,测试他们的打字能力,测得他们每分钟打字个数分别为:100,80,70,80,90,60,那么这组数据的中位数是 80 ,方差是5003.【解答】解:这组数据按从小到大的顺序排列为:60,70,80,80,90,100, 则中位数为:12(80+80)=80;平均数是16(100+80+70+80+90+60)=80,则方差是16[(100﹣80)2+2(80﹣80)2+(70﹣80)2+(60﹣80)2+(90﹣80)2]=5003; 故答案为:80,5003.16.(3分)若a +1a =3,则a 2﹣a +2= 1 . 【解答】解:∵a +1a =1, ∴a 2+1=a ,即a 2﹣a =﹣1, 则原式=﹣1+2=1, 故答案为:1.17.(3分)等腰△ABC 被某一条直线分成两个等腰三角形,并且其中一个等腰三角形与原三角形相似,则等腰△ABC 的顶角的度数是 36°或90°或108° .【解答】解:(1)如图,△ABC 中,AB =AC ,BD =AD ,AC =CD ,△ABD ∽△BAC ,求∠BAC 的度数.∵AB=AC,BD=AD,AC=CD,∴∠B=∠C=∠BAD,∠CDA=∠CAD,∵∠CDA=2∠B,∴∠CAB=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°;(2)如图,△ABC中,AB=AC,AD=BD=CD,△ABD∽△BAC,求∠BAC的度数.∵AB=AC,AD=BD=CD,∴∠B=∠C=∠DAC=∠DAB∴∠BAC=2∠B∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∴∠BAC=90°;(3)如图,△ABC中,AB=AC,BD=AD=BC,△BCD∽△ABC,求∠BAC的度数.∵AB=AC,BD=AD=BC,∴∠B=∠C,∠A=∠ABD,∠BDC=∠C∵∠BDC=2∠A,∴∠C=2∠A=∠B,∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°;综上所述,等腰△ABC的顶角的度数是36°或90°或108°,故答案为:36°或90°或108°.18.(3分)如图,直线y=−12x+2与x,y轴交于A、B两点,以AB为边在第一象限作矩形ABCD,矩形的对称中心为点M,若双曲线y=kx(x>0)恰好过点C、M,则k=569.【解答】解:∵y=−12x+2,∴x=0时,y=2;y=0时,−12x+2=0,解得x=4,∴A(4,0),B(0,2).∵四边形ABCD是矩形,∴∠ABC=90°.设直线BC的解析式为y=2x+b,将B(0,2)代入得,b=2,∴直线BC的解析式为y=2x+2,设C(a,2a+2),∵矩形ABCD的对称中心为点M,∴M 为AC 的中点, ∴M (a+42,a +1).∵双曲线y =kx (x >0)过点C 、M , ∴a (2a +2)=a+42(a +1),解得a 1=43,a 2=﹣1(不合题意舍去), ∴k =a (2a +2)=43(2×43+2)=569. 故答案为569.19.(3分)如图,三个一样大小的小长方形沿“横﹣竖﹣横”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的面积等于 8 .【解答】解:设小长方形的长为x ,宽为y , 根据题意得:{2x +y =10x +2y =8,解得:{x =4y =2,∴xy =4×2=8. 故答案为:8.20.(3分)如图,在菱形ABCD 中,已知AB =4,∠ABC =60°,∠EAF =60°,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论: ①BE =CF ;②∠EAB =∠CEF ;③△ABE ∽△EFC ; ④若∠BAE =15°,则点F 到BC 的距离为2√3−2. 则其中正确结论的个数是 ①② .【解答】解:∵四边形ABCD 是菱形, ∴AB =BC ,∠ACB =∠ACD , ∵∠BAC =∠EAF =60°,∴∠BAE =∠CAF ,△ABC 是等边三角形, ∴∠ABC =∠ACB =60°, ∴∠ACD =∠ACB =60°, ∴∠ABE =∠ACF , 在△BAE 和△CAF 中, {∠BAE =∠CAFAB =AC ∠ABE =∠ACF, ∴△BAE ≌△CAF (SAS ), ∴AE =AF ,BE =CF .故①正确; ∵∠EAF =60°, ∴△AEF 是等边三角形, ∴∠AEF =60°,∵∠AEB +∠CEF =∠AEB +∠EAB =60°, ∴∠EAB =∠CEF ,故②正确; ∵∠ACD =∠ACB =60°, ∴∠ECF =60°, ∵∠AEB <60°,∴△ABE 和△EFC 不会相似,故③不正确;过点A 作AG ⊥BC 于点G ,过点F 作FH ⊥EC 于点H ,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=2,AG=2√3,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2√3,∴EB=EG﹣BG=2√3−2,∵△AEB≌△AFC,∴∠ABE=∠ACF=120°,EB=CF=2√3−2,∴∠FCE=60°,在Rt△CHF中,∵∠CFH=30°,CF=2√3−2,∴CH=√3−1.∴FH=√3(√3−1)=3−√3.∴点F到BC的距离为3−√3,故④不正确.故答案为:①②.三.解答题(共6小题,满分60分,每小题10分)21.(10分)抽屉里有一副扑克牌中的三张牌,从中随机取出一张记下牌花,放回抽屉洗匀;再从中随机取出一张记下牌花.(1)如果三张牌花各不相同,求两次取出的是相同牌花的概率;(2)如果其中两张牌花相同,另一张牌花不同,求两次取出的是相同牌花的概率.【解答】解:(1)∵三张牌花各不相同,∴这三张牌分别用A、B、C表示,画图如下:共有9种等情况数,其中两次取出的是相同牌花的有3种, 则两次取出的是相同牌花的概率是39=13;(2)∵两张牌花相同,另一张牌花不同, ∴这三张牌分别用A 、A 、B 表示, 画图如下:共有9种等情况数,其中两次取出的是相同牌花的有5种, 则两次取出的是相同牌花的概率是59.22.(10分)如图,在△ABC 中,AD 是BC 边上的高,E 是AC 边的中点,AB =2√13,BC =12,tan B =32. (1)求△ABC 的面积; (2)求tan ∠EDC 的值.【解答】解:(1)在△ABD 中,∠ADB =90°,AB =2√13,tan B =32, ∴{AD 2+BD 2=AB 2ADBD =32,即{AD 2+BD 2=52(1)BD =23AD(2)解得,{AD =6BD =4或{AD =−6BD =−4(舍去)在△ABC中,AD⊥BC,BC=12,∴S△ABC=12BC•AD=12×12×6=36,即S△ABC=36;(2)在Rt△ACD中,E是AC边的中点,∴AE=EC=DE,∴∠EDC=∠ACD,∴tan∠EDC=tan∠ACD,∵tan∠ACD=ADCD=612−4,即tan∠ACD=34,∴tan∠EDC=3 423.(10分)“国美商场”销售某品牌汤锅,其成本为每件80元,9月份的销售额为2万元,10月份商场对这种汤锅的售价打9折销售,结果销售量增加了50件,销售额增加了0.7万元.(销售额=销售量×售价)(1)求“国美商场”9月份销售该品牌汤锅的销售单价;(2)11月11日“购物节”商场在9月份售价的基础上打折促销(但不亏本),销售的数量y(件)与打折的折数x满足一次函数y=﹣50x+600.问商场打几折时利润最大,最大利润是多少?(3)在(2)的条件下,为保证“国美商场”利润不低于1.5万元,且能够最大限度帮助厂家减少库存,“国美”商场应该在9月份销售价的基础上打几折?【解答】解:(1)设9月份销售价格为每件x元,据题意可得:0.9x(20000x+50)=20000+7000,解得:x=200.答:9月份每件销售200元.(2)设国美商场在11月11日购物节销售该品牌的利润为L元,则:L=200×x10(﹣50x+600)﹣80(﹣50x+600)(x≥4),L=﹣1000×x2+16000x﹣48000=﹣1000(x﹣8)2+16000,当x=8时,最大利润为16000元.答:商场打8折时利润最大,最大利润是16000元;(3)200×x10(﹣50x+600)﹣80(﹣50x+600)≥15000,解得7≤x≤9.当7≤x≤9时,函数y=﹣50x+600的值随着x的增大而减小,因此当x=7时,利润不低于15000元,且又能够最大限度减少厂家库存.24.(10分)如图,△ABC内接于⊙O,AD是⊙O的切线,点A是切点,且AD∥BC,过点C作AB的平行线交AD于点D.(1)求证:AB=AC;(2)若⊙O的半径为5,AB:BC=1:√3,求四边形ABCD的面积.【解答】(1)证明:如图,连接OA.∵AD是⊙O的切线,点A是切点,∴OA⊥AD,∵AD∥BC,∴∠BEA=∠OAD=90°,又∵AE过圆心,∴AB̂=AĈ,∴AB=AC;(2)解:如图,连接OB,设OA与BC交于点E.∵AD∥BC,CD∥AB,∴四边形ABCD是平行四边形.由(1)可知,OA⊥BC,∴BE=12BC.设AB=x,则BC=√3x,BE=√32x.在Rt△ABE中,cos∠ABE=BEAB=√32,∴∠ABE=30°,∠BAE=60°,∴△AOB为等边三角形,∴AB=OA=5,∴BC=5√3,AE=5 2,∴S四边形ABCD=BC•AE=5√3×52=25√32.25.(10分)在正方形ABCD中.(1)如图1,如果N是AD中点,F为AB中点,连接DF,CN.①求证:DF=CN;②连接AC.求DH:HE:EF的值;(2)如图2,若正方形边长为acm,如果点E、M分别是线段AC、CD上的动点,假设点E从点A出发,以√2cm/s速度沿AC向点C运动,同时点M从点C出发,以1cm/s 的速度沿CD向点D运动,运动时间为t(t>0),连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N,连接FM、FN,△MNF能否为等腰三角形?若能,请写出a与t之间的关系;若不能,请说明理由.【解答】(1)①证明:∵四边形ABCD是正方形,∴AB=AD=CD,AB∥CD,∠DAB=∠CDA=90°,∵N是AD中点,F为AB中点,∴DN=12AD,AF=12AB,∴AF=DN,在△ADF与△DNC中,{AF=DN∠DAF=∠CDNAD=DC,∴△ADF≌△DNC(SAS),∴DF=CN;②解:∵AD=CD=AB=a,N,F分别是AD,AB中点,∴DN=AF=12a,∴DF=√AD2+AF2=√a2+(12a)2=√52a,∵AF∥CD,∴△AFE∽△CDE,∴EFDE =AFCD=12,∴EFDF =13,∴EF=13DF=√56a,∵DH×CN=DN×CD,∴DH=DN×CDCN=12a×a52a=√55a,∴HE=DF﹣DH﹣EF=√52a−√55a−√56a=2√515a,∴DH:HE:EF=√55a:=2√515a:√56a=6:4:5;(2)解:△MNF能为等腰三角形.理由如下:∵AB∥CD,∴△AFE∽△CDE,∴AFCD =AECE,即AFa=√2t√2a−√2t,解得:AF=ata−t.∵四边形ABCD是正方形,∴∠DAB=∠CDA=90°,∴∠AFD+∠ADF=90°,∵MN⊥DF,∴∠DNM +∠ADF =90°,∴∠AFD =∠DNM ,∴△MND ∽△DF A ,∴ND AF =DM AD ,即 NDat a−t =a−t a ,解得:ND =t .∴ND =CM =t ,AN =DM =a ﹣t .若△MNF 为等腰三角形,则可能有三种情形:①若FN =MN ,则由AN =DM 知△F AN ≌△NDM ,∴AF =ND ,即 at a−t =t ,解得:t =0,不合题意.∴此种情形不存在;②若FN =FM ,由MN ⊥DF 知,HN =HM ,∴DN =DM =MC ,∴t =12a ,此时点F 与点B 重合;③若FM =MN ,显然此时点F 在BC 边上,如图3所示:由△CEF ∽△AED ,得CF AD =CE AE , ∴CF a =√2a−√2t √2t, ∴CF =a(a−t)t, 由△DNM ∽△CDF ,得DMCF =DN DC , ∴a−t a(a−t)t =DN a ,∴DN =t =CM ,在Rt △MFC 和Rt △NMD 中,{ND =CM FM =MN, ∴Rt △MFC ≌Rt △NMD (HL ),∴FC =DM =a ﹣t ; 又由△NDM ∽△DCF ,∴DN DM =DC FC ,即 ta−t =aFC ,∴FC =a(a−t)t . ∴a(a−t)t =a ﹣t ,∴t =a ,此时点F 与点C 重合.综上所述,当t =a 或t =12a 时,△MNF 能够成为等腰三角形.26.(10分)如图,已知抛物线y =ax 2+bx +3(a ≠0)经过点A (1,0)和点B (3,0),与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长.②连接PB ,PC ,求△PBC 的面积最大时点P 的坐标.(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+bx +3(a ≠0)经过点A (1,0)和点B (3,0),与y 轴交于点C ,∴{a +b +3=09a +3b +3=0,解得{a =1b =−4, ∴抛物线解析式为y =x 2﹣4x +3;(2)如图:①设P (m ,m 2﹣4m +3),将点B (3,0)、C (0,3)代入得直线BC 解析式为y BC =﹣x +3.∵过点P 作y 轴的平行线交直线BC 于点D ,∴D (m ,﹣m +3),∴PD =(﹣m +3)﹣(m 2﹣4m +3)=﹣m 2+3m .答:用含m 的代数式表示线段PD 的长为﹣m 2+3m .②S △PBC =S △CPD +S △BPD=12OB •PD =−32m 2+92m=−32(m −32)2+278.∴当m =32时,S 有最大值.当m =32时,m 2﹣4m +3=−34.∴P (32,−34). 答:△PBC 的面积最大时点P 的坐标为(32,−34). (3)存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形. 根据题意,点E (2,1),∴EF =CF =2,∴EC =2√2,根据菱形的四条边相等,∴ME=EC=2√2,∴M(2,1﹣2√2)或(2,1+2√2)当EM=EF=2时,M(2,3)答:点M的坐标为M1(2,3),M2(2,1﹣2√2),M3(2,1+2√2).。
2020年内蒙古包头市中考数学仿真试卷及答案解析
2020年内蒙古包头市中考数学仿真试卷一、单选题1.一组数据1,2,3,3,5,4,10的中位数与众数分别是 ( )A .3,3B .5,3C .3,4D .5,102.在数轴上表示-1的点与表示3的点之间的距离是( )A .4B .-4C .2D .-23.有下列说法:①有一个角为60°的等腰三角形是等边三角形; ②两条平行线之间的距离处处相等;9的三角形为直角三角形; ④长方体、直六棱柱、圆锥都是多面体.⑤一边上的中线等于这边长的一半的三角形是直角三角形. 其中正确的个数是( ).A .1个B .2个C .3个D .4个4.如图,//,AB CD BE AF ⊥于E ,50B ∠=︒,则FCD ∠等于( )A .40°B .50°C .60°D .70°5.3500000用科学计数法表示为··················( )A .B .C .D .6.下列各式正确的是( )A 5=-B .15=-C 5=±D -2=7.如图,已知△ABO 的顶点A 和AB 边的中点C 都在双曲线y =(x >o )的一个分支上,点B 在x 轴上,CD ⊥OB 于D ,若△AOC 的面积为3,则k 的值为A .2B .3C .4D .8.下列运算正确的是( )A .a 3•a 2=a 6B .(a 2)3=a 5C =3D .9.在下面的四个几何体中,它们各自的左视图与主视图不相同的是( )A .正方体B .三棱柱C .圆柱D .圆锥 10.如图,正方形ABCD 的面积为4,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .√3B .2C .3D .2√311.下列运算正确的是( )A .236•a a a =B .32a a a -=C .235()a a =D .32a a a ÷=12.如图,在ABC 中,AC =13BC =,AD 、CE 分别是ABC 的高线与中线,点F 是线段CE 的中点,连接DF .若DF CE ⊥,则AB =( )A .10B .11C .12D .13二、填空题 13.如图,从以下给出的四个条件中选取一个:(1)12∠=∠;(2)34∠=∠;(3)A DCE ∠=∠;(4)180A ABD ∠+∠=︒.恰能判断AB ∥CD 的概率是________.14.如图,ABC 中,∠A=100°,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC=______,若BM 、CM 分别平分∠CBD 、∠BCE ,则∠1+∠2=________,∠M=_________.15.方程2131x x =+-的解为_____. 16.已知m 2﹣n 2=16,m +n =6,则m ﹣n =_____.17.如图,AM 是ABC 的角平分线,D 、E 分别是边AB ,AC 上的点,DE 与AM 交于点F ,若1AD =,2AE =,3BD =,4EC =,则AF AM=______.(提示三角形面积公式:1sin 2S AB AC A =⋅⋅面积.)18.当x____时,32x+在实数范围内有意义. 19.如图,△ABC ≌△ADE ,若∠BAE =130°,∠BAD =50°,则∠BAC =____.20.将抛物线y=(x-3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为__________________三、解答题21.已知,如图,在边长为2的等边三角形ABC 中,点D 为直线BC 上的一点(不与点B ,C 重合),连接AD ,将AD 绕点A 逆时针旋转60︒到AE ,连接DE ,过点E 作//EF BC 交直线AB 于点F .(1)如图1,点D 在线段BC 上,①猜想线段AC ,DC ,CE 之间的数量关系,并说明理由.②求出EF 的长度.(2)如图2,当点D 在BC 的延长线上时,直接写出(1)中的两个结论.22.如图,ABC 中,6,14,60AB cm BC cm ABC ==∠=︒AD BC ⊥于D .求AD 及AC 的长.23.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司设计了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售; 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.如果你是老板,你会选择哪一种方案?并说明理由.24.为了发展学生的数学核心素养,培养学生的综合能力,某市开展了初三学生的数学 学业水平测试.在这次测试中,从甲、乙两校各随机抽取了 30 名学生的测试成绩进行调查分析收集数据整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80 分及以上为优秀,60~79 分为合格,60 分以下为不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:(1)请你补全表格;(2)若甲校有300 名学生,估计甲校此次测试的优秀人数为;(3)可以推断出校学生的成绩比较好,理由为.25.如图,在平面直角坐标系中,一次函数y=-x+b的图象与正比例函数y=kx的图象都经过点B(3,1)(1)求一次函数和正比例函数的表达式;(2)若直线CD与正比例函数y=kx平行,且过点C(0,-4),与直线AB相交于点D,求点D 的坐标.(3)连接CB,求三角形BCD的面积.26.在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求∠BEC的度数;(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.。
2019-2020学年包头市中考数学模拟试卷(有标准答案)(Word版)
内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项1. (3.00分)计算-而-| - 3|的结果是( )A. - 1B. - 5C. 1D. 52. (3.00分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A. x^ 1B. x>0C. x> 1D. x> 14. (3.00分)下列事件中,届丁不可能事件的是( )A. 某个数的绝对值大丁 0B. 某个数的相反数等丁它本身C. 任意一个五边形的外角和等丁 540°D. 长分别为3, 4, 6的三条线段能围成一个三角形5. (3.00分)如果2x a+1y 与x 2y b 1是同类项,那么§的值是( A. L B.二 C. 1D. 3226. (3.00分)一组数据1, 3, 4, 4, 4, 5, 5, 6的众数和方差分别是( )A. 4, 1B. 4, 2C. 5, 1D. 5, 27. (3.00分)如图,在△ ABC 中,AB=2 BC=4 Z ABC=30,以点 B 为圆心,AB 长为半径画弧,交BC 于点D,则图中阴影部分的面积是( )A. 3. (3.00分)函数y=C. B.D.中,自变量x 的取值范围是(S I> CA・2Hr B・2* C・4螺 D. 4-普8.(3.00分)如图,在^ ABC中,AB=AC A ADE的顶点D, E分别在BG AC上,且Z DAE=90 ,AD=AE 若 Z C+Z BAC=145,则 Z EDC 勺度数为(9. (3.00分)已知关丁 x 的一元二次方程x 2+2x+n 2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数 m 的和为(A. 6B. 5C. 4D. 310. (3.00分)已知下列命题:① 若 a 3>b 3,贝U a 2>b 2;② 若点A (x i, y i )和点B (X 2, y 2)在二次函数y=x 2- 2x- 1的图象上,且满足x i<X 2V 1,则 y i >y 2> - 2; ③ 在同一平■面内,a, b, c 是直线,且a//b, b±c,则a// c ; ④ 周长相等的所有等腰直角三角形全等. 其中真命题的个数是()A. 4个B. 3个C. 2个D. 1个11. (3.00分)如图,在平面直角坐标系中,直线 3 y=-#L +1与x 轴,y 轴分别交丁点A和点B,直线W y=kx ( k 丰0)与直线1I 在第一象限交丁点C.若Z BOC= BCOM k 的值为( )12. (3.00分)如图,在四边形 ABCLfr, BD 平分Z ABC Z BAD= BDC=90 , E 为BC 的中点, AE 与BD 相交于点F.若BC=4 ZCBD=30,贝U DF 的长为( 二、填空题:本大题共有8小题,每小题3分,共24分.D. 10C.血D. 2/2o13.(3.00 分)若a-3b=2, 3a- b=6,则b- a 的值为.站1)14.(3.00分)不等式组,2公十4 ― 2的非负整数解有个.15.(3.00分)从-2, -1, 1, 2四个数中,随机抽取两个数相乘,积为大于- 4小丁2的概率是.216.(3.00 分)化简;X -4乂+4「(里—1)= .x* 乂+217.(3.00分)如图,AB是CDO的直径,点C在OO上,过点C的切线与BA的延长线交丁点D, 点E在云上(不与点B, C重合),连接BE, CE若Z D=40 ,则Z BEC 度.D C18.(3.00分)如图,在?ABCg, AC是一条对角线,EF// BC,且EF与AB相交丁点E,与AC 相交丁点F, 3AE=2EB连接DF若,△ AEF=1,则,△ ADF的值为.19.(3.00分)以矩形ABCLM条对角线的交点O为坐标原点,以平■行丁两边的方向为坐标轴,建立如图所示的平面直角坐标系,BEL AG垂足为E.若双曲线y季(x > 0)经过点D,则OB?BE勺值为20.(3.00分)如图,在Rt△ ACEfr, Z ACB=90 , AC=BC D是AB上的一个动点(不与点A, B重合),连接CD将CD绕点C顺时针旋转900得到CE连接DE DE与AC相交丁点F,连接AE.下列结论:ACI^A BCD②若 / BCD=25 ,则Z AED=65 ;③DI=2CF?CA④若AB=V2, AD=2BD 贝U AF§3其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程21.(8.00分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%面试占40咐算候选人的综合成绩(满分为100 分).他们的各项成绩如下表所示:修造人笔试成绩/分面试成绩/分甲90 88乙84 92丙x 90丁88 86(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.22.(8.00 分)如图,在四边形ABCEfr, AD// BC, Z ABC=90 , AB=AD 连接BD 点E 在AB 上,且Z BDE=15 , DE=V3, DC=2瓦(1)求BE的长;(2)求四边形DEBC勺面积.(注意:本题中的计算过程和结果均保留根号)23.(10.00分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?24.(10.00分)如图,在Rt△ ACB中,Z ACB=90,以点A为圆心,AC长为半径的圆交AB丁点D, BA的延长线交O A 丁点E,连接CE CD F是CD A上一点,点F与点C位丁BE两侧,且/ FABW ABC 连接BF.(1)求证:Z BCD^ BEC(2)若BC=2 BD=1求CE的长及sin Z ABF的值.B C25 . ( 12.00分)如图,在矩形ABCD中,AB=3, BC=5, E是AD上的一个动(2)若直线x=m (RK0)与该抛物线在第三象限内交丁点E,与直线l交丁点D,连接OD当。
2020届中考模拟内蒙古包头市中考数学模拟试题含参考答案(word版)
初中升学考试试卷数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算112-⎛⎫⎪⎝⎭所得结果是( )A .-2B .12-C . 12D .2 2. 21,a b =是2 的相反数,则a b +的值为( ) A . -3 B . -1 C .-1或-3 D .1或-3 3.一组数据5,7,8,10,12,12,44的众数是 ( ) A . 10 B .12 C . 14 D . 144. 将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B . C. D .5.下列说法中正确的是 ( )A .8的立方根是2±B 8 C. 函数11y x =-的自变量x 的取值范围是1x > D .在平面直角坐标系中,点()2,3P 与点()2,3Q -关于y 轴对称6. 若等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形的底边长为( ) A . 2cm B . 4cm C. 6cm D .8cm7. 在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外部相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( ) A .14 B .13 C. 512 D .128.若关于x 的不等式12a x -<的解集为1x <,则关于x 的一元二次方程210x ax ++=根的情况是 ( ) A .有两个相等的实数根 B .有两个不相等的实数根 C.无实数根 D .无法确定 9. 如图,在ABC ∆中,0,45AB AC ABC =∠=,以AB 为直径的O e 交BC 于点D ,若42BC =图中阴影部分的面积为( )A .1π+B .2π+ C. 22π+ D .41π+ 10. 已知下列命题: ①若1ab>,则a b >; ②若0a b +=,则a b =; ③等边三角形的三个内角都相等; ④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是( ) A . 1个 B . 2个 C. 3个 D .4个11. 已知一次函数14y x =,二次函数2222y x =+,在实数范围内,对于x 的同一个值,这两个函数所对应的函数值为1y 与2y ,则下列关系正确的是( )A . 12y y >B .12y y ≥ C. 12y y < D .12y y ≤12. 如图,在Rt ABC ∆中,090,ACB CD AB ∠=⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,若3,5AC AB ==,则CE 的长为( )A .32 B . 43 C. 53 D .85第Ⅱ卷(共90分)二、填空题:本大题共有8小题,每小题2分,共16分,将答案填在答题纸上13.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3万亿美元,将3万亿美元用科学记数法表示为 .14.化简:22111a a a a -⎛⎫+-= ⎪⎝⎭g . 15.某班有50名学生,平均身高为166cm ,其中20名女生的平均身高为163cm ,则30名男生的平均身高为 cm .16.若关于x y 、的二元一次方程组325x y x ay +=⎧⎨-=⎩的解是1x b y =⎧⎨=⎩,则ba 的值为 .17.如图,点A B C 、、为O e 上的三个点,02,40BOC AOB BAC ∠=∠∠=,则ACB ∠=________度. 18.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且2FC BF =,连接,AE EF .若2,3AB AD ==,则cos AEF ∠的值是__________.19.如图,一次函数1y x =-的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC BC =,则点C 的坐标为__________.20.如图,在ABC ∆与ADE ∆中,,,AB AC AD AE BAC DAE ==∠=∠,且点D 在AB 上,点E 与点C 在AB 的两侧,连接,BE CD ,点,M N 分别是BE CD 、的中点,连接,,MN AM AN .下列结论:①ACD ABE ∆≅∆;②ABC AMN ∆∆:;③AMN ∆是等边三角形;④若点D 是AB 的中点,则2ACD ABE S S ∆∆=.其中正确的结论是__________.(填写所有正确结论的序号)三、解答题 :本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤.21.有三张正面分别标有数字-3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,取回卡片洗匀后,再从三张卡片中随机地抽取一张. (1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率; (2)求两次抽取的卡片上的数字之和为非负数的概率.22.如图,在ABC ∆中,090,30,C B AD ∠=∠=是ABC ∆的角平分线,//DE BA 交AC 于点E ,//DF CA 交AB 于点F ,已知3CD =.(1)求AD 的长;(2)求四边形AEDF 的周长;(注意:本题中的计算过程和结果均保留根号)23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元,设矩形一边长为x ,面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)设计费能达到24000元吗?为什么?(3)当x 是多少米时,设计费最多?最多是多少元?24.如图,AB 是O e 的直径,弦CD 与AB 交于点E ,过点B 的切线BP 与CD 的延长线交于点P ,连接,OC CB .(1)求证:AE EB CE ED =g g ; (2)若O e 的半径为3,92,5CE OE BE DE ==,求tan OBC ∠的值及DP 的长. 25.如图,在矩形ABCD 中,3,4AB BC ==,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A B C D '''',B C '与AD 交于点E ,AD 的延长线与A D ''交于点F .(1)如图①,当060α=时,连接DD ',求DD '和A F '的长;(2)如图②,当矩形A B C D ''''的顶点A '落在CD 的延长线上时,求EF 的长;(3)如图③,当AE EF =时,连接,AC CF ,求AC CF g 的值.26.如图,在平面直角坐标系中,已知抛物线232y x bx c =++与x 轴交于()()1,0,2,0A B -两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)直线y x n =-+与该抛物线在第四象限内交于点D ,与线段BC 交于点E ,与x 轴交于点F ,且4BE EC =.①求n 的值;②连接,AC CD ,线段AC 与线段DF 交于点G ,AGF ∆与CGD ∆是否全等?请说明理由;(3)直线()0y m m =>与该抛物线的交点为,M N (点M 在点N 的左侧),点 M 关于y 轴的对称点为点M ',点H 的坐标为()1,0.若四边形OM NH '的面积为53.求点H 到OM '的距离d 的值.。
最新包头初三中考数学调研卷模拟卷(附答案)
2020年初中升学考试模拟卷(三)数学供卷 北重一中 焦传梅一、选择题(每题3分,共36分) 1.若2m=8,2n=4,则2m-n=( ) A .12B .4C .32D .22.如图,是一种氮气弹簧零件的实物图,可以近似看成两个圆柱对接而成,其左视图是( )A .B .C .D .3.下列计算正确的是( )A .2a+3b =5abB .(a ﹣b )2=a 2﹣b 2C .(2x 2)3=6x 6D .x 8÷x 3=x 5 4.下列命题正确的是( )A .概率是1%的事件在一次试验中一定不会发生B .要了解某公司生产的100万只灯泡的使用寿命,可以采用全面调查的方式C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的成绩更稳定D .随意翻到一本书的某页,页码是奇数是随机事件5.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( )A .200 cm 2B .600 cm 2C .100πcm 2D .200πcm 2(第5题) (第7题) (第8题)6.估计513112-+⨯的值在( ) A .3和3.5之间 B .2.5和3之间 C .2和2.5之间D .1.5和2之间7.已知:如图,AC ,BC 分别是半圆O 和半圆O'的直径,半圆O 的弦MC 交半圆O'于N .若MN =2,则AB 等于( ) A .B .C .2•cos αD .2•sin α8.小明在学了尺规作图后,通过“三弧法“作了一个△ACD ,其作法步骤是: ①作线段AB ,分别以A ,B 为圆心,AB 长为半径画弧,两弧的交点为C ; ②以B 为圆心,AB 长为半径画弧交AB 的延长线于点D ; ③连结AC ,BC ,CD .下列说法不正确的是( ) A .∠A =60° B .△ACD 是直角三角形C .BC =CD D .点B 是△ACD 的外心9.如图,矩形EFGH 内接于△ABC ,且边FG 落在BC 上,如果AD ⊥BC ,BC =3,AD =2,EF :EH =2:3,那么EH 的长为( ) A .B .C .D . 2(第9题)10.已知关于x 的一元二次方程(m-1)x 2-2mx+m=0有两个不相等的实数根,m 为整数且m <3,若t 是满足该条件时方程的一个根,则代数式6t 2-24t+7的值为( )A .-5 B.-3 C.-7 D.711.已知下列命题:①若m >n ,则m 2>n 2 ;②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧;③对角线互相平分且相等的四边形是菱形,④学校 班级 姓名 考号装 订 线如果两条弧相等,那么它们所对的圆心角相等;⑤在函数y=(x-2)-1﹣中,自变量x的取值范围是x≥﹣1且x≠2;⑥若=a则a>0,其中正确命题的个数是()A.4个 B.3个 C.2个D.1个12.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()(第12题)A.y =﹣B.y =﹣C.y =﹣D.y =﹣二、填空题(每题3分,共24分)13.计算:﹣32+2tan60°﹣+(3﹣π)0=___________14.响应党中央号召,连日来,全国广大共产党员继续踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为____________元.15.化简求值:__________.(其中x满足x2﹣x﹣1=0).16.如图,在一笔直的海岸线l上有相距3km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是_____________km.(第16题)(第17题)17.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为________ 18.某商店经销一种销售成本为每千克40元的水产品,规定试销期间销售单价不低于成本价.据试销发现,月销售量y(千克)与销售单价x(元)符合一次函数y=﹣10x+1000.在使顾客获得实惠的条件下,要使月销售利润达到8000元,销售单价应定为_________元.19.若关于x的方程的解为正数,则m的取值范围是______________20.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= _____秒时,S1=2S2.三、解答题(共60分)21.(8分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型 A B AB O人数____ 10 5 ____(1)本次随机抽取献血者人数为_______人,图中m=_______;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.22.(8分)如图,在四边形ABCD中,∠ABC=90°,∠C=45°,CD =,BD=3.(1)求sin∠CBD的值;(2)若AB=3,求AD的长.23.(10分)如图,一次函数y=kx+b(k<0)的图象与反比例函数的图象都经过点A(a,4),一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求这两个函数的表达式;(2)将直线AB向下平移5个单位长度后与第四象限内的反比例函数图象交于点D,连接AD、BD,求△ADB的面积.24.(10分)如图,⊙O是以AB为直径的△ABC的外接圆,点D 是劣弧的中点,连结AD并延长,与过C点的直线交于P,OD与BC相交于点E.(1)求证:OE =AC;(2)连接CD,若∠PCD=∠PAC,试判断直线PC与⊙O的位置关系,并说明理由.(3)在(2)的条件下,当AC=6,AB=10时,求切线PC的长.25.(12分)如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与点C 和点A重合),连接PB,过点P作PF⊥PB交射线DA于点F,连接BF.已知AD=,CD=3,设CP的长为x.(1)线段PB的最小值______,当x=1时,∠FBP=______;(2)如图,当动点P运动到AC的中点时,AP与BF的交点为G,FP的中点为H,求线段GH的长度;(3)当点P在运动的过程中:①试探究∠FBP是否会发生变化?若不改变,请求出∠FBP大小;若改变,请说明理由;②请直接写出当x为何值时,△AFP是等腰三角形?26.(12分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y 轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为____________________,抛物线的顶点坐标为_________;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P 的坐标;若不存在,请说明理由.2020年初中升学考试模拟卷答案一、选择题(每题3分,共36分)1.D2.D3.D4.D5.D6.A7.A8.C9.B 10.A 11.B 12.A二、填空题(每题3分,共24分)13. -8 14. 7.68×109 15. 1 16.20. 6三、解答题(共60分)21.(8分)解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m =×100=20;故答案为50,20;(2分)(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),血型A B AB O人数1210523故答案为12,23;(4分)(3)从献血者人群中任抽取一人,其血型是A 型的概率==,1300×=312,估计这1300人中大约有312人是A型血;(5分)(4)画树状图如图所示,共有12种等可能结果,符合条件的有2种所以P(两个O型)==.(8分)22.(8分)解:(1)如图,过点D作DE⊥BC于点E,在Rt△CED 中,∵,∴CE=DE=1,在Rt△BDE 中,;(3分)(2)过点D作DF⊥AB于点F,则∠BFD=∠BED=∠ABC=90°,∴四边形BEDF是矩形,∴DE=BF=1,∵BD=3,∴∴AF=AB﹣BF=2,∴(8分)23.(10分)解:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k =﹣,故这个函数的解析式为y =﹣x+2;(3分)把点A(a,4)代入y =﹣x+2得,4=﹣a+2,解得:a=﹣3,∴A(﹣3,4),∴m=﹣12,∴反比例函数的解析式为y =﹣;(5分)(2)解得B(6,-2)(7分)∵将直线AB向下平移5个单位后得到直线ED∴过D做y轴的平行线交AB于点E∴DE=5S△ADB =DE×|X A-X B |=×5×9=(10分)24.(10分)解(1)证明:∵AB为直径∴∠ACB=90°,∴AC⊥BC,又∵D 为中点,∴OD⊥BC,OD∥AC,又∵O为AB中点,∴OE =AC;(3分)(2)解:PC为⊙O的切线,理由:连接CO,DC,∵CO=OB,∴∠OCB=∠OBC,∵∠BCD=∠BAD,∠PCD=∠P AC,∴∠OCB+∠BCD+∠PCD=∠OBC+∠BAD+∠P AC,∴∠OCP=∠OBC+∠BAC,又∵AB为⊙O的直径,∴∠OBC+∠BAC=90°,∴∠OCP=90°,即PC为⊙O的切线;(6分)(3)解:由(1)可知,OE=3,BE=4,DE=2,在Rt△BED和Rt△ABD中,由勾股定理得:BD=2,AD=4,∵点D 是劣弧的中点,∴CD=2,∵∠P是△PCD和△P AC的公共角,由∠PCD=∠P AC,则△PCD∽△P AC,∴=,∴PC2=PD•AP,即=,∴PC =PD,∴(PD)2=PD(4+PD),解得:PD=5,∴PC =×5=15.(10分)25.(12分)解:(1);30°;(2分)(2)在Rt△ABC中,AP=PC,∴BP =BC=3,∴BA=BP=AP,∴△ABP为等边三角形,∴∠ABP=60°,在Rt△ABF和Rt△PBF中,,∴Rt△ABF≌Rt△PBF(HL),∴∠ABF=∠PBF=30°,AP⊥BF,∴PF=BP•tan∠BPF =,在Rt△FGP中,FH=HP,∴GH =PF =;(6分)(3)①∠FBP=30°,理由如下:由(1)可知,△FMP∽△PNB,∴==,∴tan∠PBF ==,∴∠FBP=30°;(10分)②x=3或3时,△AFP是等腰三角形.(12分)26. (12分)解:(1)y=﹣x2﹣2x+3;(2分)顶点坐标(﹣1,4);(3分)(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD =BC =×3=2,y D=BD sin∠CBO=2,则点D(﹣1,2);(5分)(3)如答图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1,联立方程,得解得:x =(舍去正值),故点P (,).(9分)(4)不存在,理由:如答图1,连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC =×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P;。
【附5套中考模拟试卷】内蒙古包头市2019-2020学年中考数学模拟试题含解析
内蒙古包头市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣12x+2 C.y=﹣3x﹣2 D.y=﹣x+22.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.12B.13C.23D.343.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差4.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近5.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为A.60元B.70元C.80元D.90元6.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()学生数(人) 5 8 14 19 4时间(小时) 6 7 8 9 10A.14,9 B.9,9 C.9,8 D.8,97.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这15名运动员成绩的中位数、众数分别是()A.4.65,4.70B.4.65,4.75C.4.70,4.70,D.4.70,4.758.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)9.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A.21313B.31313C.23D.131310.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A.B.C.D.11.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π12.下列基本几何体中,三视图都是相同图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC 于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD 上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)14.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.15.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为.16.如图,点A为函数y=9x(x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.17.如图,A、D是⊙O上的两个点,BC是直径,若∠D=40°,则∠OAC=____度.18.若一次函数y=﹣x+b(b为常数)的图象经过点(1,2),则b的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)20.(6分)如图,已知AB是⊙O的弦,C是»AB的中点,AB=8,AC= 25,求⊙O半径的长.21.(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a=___ ;b=____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. 22.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?23.(8分)如图1,△ABC 中,AB=AC=6,BC=4,点D 、E 分别在边AB 、AC 上,且AD=AE=1,连接DE 、CD ,点M 、N 、P 分别是线段DE 、BC 、CD 的中点,连接MP 、PN 、MN . (1)求证:△PMN 是等腰三角形; (2)将△ADE 绕点A 逆时针旋转,①如图2,当点D 、E 分别在边AC 两侧时,求证:△PMN 是等腰三角形;②当△ADE 绕点A 逆时针旋转到第一次点D 、E 、C 在一条直线上时,请直接写出此时BD 的长.24.(10分)解不等式组4623x xx x +>⎧⎪+⎨≥⎪⎩并写出它的所有整数解.25.(10分)解方程 (1)x 1﹣1x ﹣1=0 (1)(x+1)1=4(x ﹣1)1.26.(12分) “食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.27.(12分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x 轴,垂足为C,求S△ABC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=1,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:32k bb-+=⎧⎨=⎩,解得:12kb=-⎧⎨=⎩.则这条直线解析式为y=﹣x+1.故选D.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.2.D【解析】【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.3.A【解析】【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A. 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键. 4.D 【解析】 【分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案. 【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A 不符合题意; B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B 不符合题意; C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C 不符合题意; D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D 符合题意; 故选D 【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键. 5.C 【解析】设销售该商品每月所获总利润为w ,则w=(x –50)(–4x+440)=–4x 2+640x –22000=–4(x –80)2+3600, ∴当x=80时,w 取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C . 6.C 【解析】 【详解】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人, ∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数. 7.D【解析】【分析】根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.8.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.9.B【解析】【分析】首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F , ∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°, ∴∠ABF =∠EAD , 在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ), ∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1, ∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF 中,222313BE =+=, ∴313cos 13BF EBF BE ∠===. 故选B . 【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 10.A 【解析】 【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AB 的交点即为所求作的点. 【详解】如图,点E 即为所求作的点.故选:A .【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D 作一角等于∠B 或∠C ,并熟练掌握做一个角等于已知角的作法式解题的关键.11.B【解析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=12lr=12×6π×5=15π,故选B 12.C【解析】【分析】根据主视图、左视图、俯视图的定义,可得答案.【详解】球的三视图都是圆,故选C .【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.②③④【解析】【分析】①可用特殊值法证明,当P 为BD 的中点时,0MC =,可见MF MC ≠.②可连接PC ,交EF 于点O ,先根据SAS 证明ADP CDP ≅V V ,得到DAP DCP ∠=∠,根据矩形的性质可得DCP CFE ∠=∠,故DAP CFE ∠=∠,又因为90DAP AMD ∠+∠=︒,故90CFE AMD ∠+∠=︒,故AH EF ⊥.③先证明CPM HPC V :V ,得到PC PM HP PC=,再根据ADP CDP ≅V V ,得到AP PC =,代换可得. ④根据EF PC AP ==,可知当AP 取最小值时,EF 也取最小值,根据点到直线的距离也就是垂线段最短可得,当AP BD ⊥时,EF 取最小值,再通过计算可得.【详解】解:①错误.当P 为BD 的中点时,0MC =,可见MF MC ≠;②正确.如图,连接PC ,交EF 于点O ,Q 45AD CD ADP CDP DP DP =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≅V V∴DAP DCP ∠=∠,Q PF CD ⊥,PE BC ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴OF OC =,∴DCP CFE ∠=∠,∴DAP CFE ∠=∠,Q 90DAP AMD ∠+∠=︒,∴90CFE AMD ∠+∠=︒,∴90FGM ∠=︒,∴AH EF ⊥.③正确.Q //AD BH ,∴H DAP ∠=∠,Q ADP CDP ≅V V ,∴DAP DCP ∠=∠,∴H DCP ∠=∠,又Q CPH MPC ∠=∠,∴CPM HPC V :V , ∴PC PM HP PC=, Q AP PC =, ∴AP PM HP AP=, ∴2AP PM PH =g .④正确.Q ()ADP CDP SAS ≅V V 且四边形PECF 为矩形,∴EF PC AP ==,∴当AP BD ⊥时,EF 取最小值,此时sin 4522AP AB =︒=⨯=g故EF .故答案为:②③④.【点睛】本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.14.1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1) ×(−1)=1,故答案为1.15.y=(x ﹣3)2+2【解析】【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】解:y=x 2﹣2x+3=(x ﹣1)2+2,其顶点坐标为(1,2).向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x ﹣3)2+2, 故答案为:y=(x ﹣3)2+2.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 16.6.【解析】【分析】作辅助线,根据反比例函数关系式得:S △AOD =92, S △BOE =12,再证明△BOE ∽△AOD ,由性质得OB 与OA 的比,由同高两三角形面积的比等于对应底边的比可以得出结论.如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,∴BE∥AD,∴△BOE∽△AOD,∴22BOEAODS OBS OA=VV,∵OA=AC,∴OD=DC,∴S△AOD=S△ADC=12S△AOC,∵点A为函数y=9x(x>0)的图象上一点,∴S△AOD=92,同理得:S△BOE=12,∴112992BOEAODSS==VV,∴13 OBOA=,∴23 ABOA=,∴23ABCAOCSS=VV,∴2963ABCS⨯==V,故答案为6.17.50【解析】【分析】根据BC是直径得出∠B=∠D=40°,∠BAC=90°,再根据半径相等所对应的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC∵BC 是直径,∠D =40°,∴∠B =∠D =40°,∠BAC =90°.∵OA =OB ,∴∠BAO =∠B =40°,∴∠OAC =∠BAC ﹣∠BAO =90°﹣40°=50°.故答案为:50【点睛】本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键18.3【解析】【分析】把点(1,2)代入解析式解答即可.【详解】解:把点(1,2)代入解析式y=-x+b ,可得:2=-1+b ,解得:b=3,故答案为3【点睛】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)23π 【解析】【分析】(1)连接OD ,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD ,∠COD=∠ODB ,又因为OB=OD ,所以∠OBD=∠ODB ,即∠AOC=∠COD ,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD ,Rt △ODC 与Rt △OAC 是含30°的直角三角形,从而得到∠DOB=60°,即△BOD 为等边三角形,再用扇形的面积减去△BOD 的面积即可.【详解】(1)证明:连接OD ,∵CD 与圆O 相切,∴OD ⊥CD ,∴∠CDO=90°,∵BD ∥OC ,∴∠AOC=∠OBD ,∠COD=∠ODB ,∵OB=OD ,∴∠OBD=∠ODB ,∴∠AOC=∠COD ,在△AOC 和△DOC 中,OA OD AOC COD OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△EOC (SAS ),∴∠CAO=∠CDO=90°,则AC 与圆O 相切;(2)∵AB=OC=4,OB=OD ,∴Rt △ODC 与Rt △OAC 是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD 为等边三角形,图中阴影部分的面积=扇形DOB 的面积﹣△DOB 的面积, =26021223336023ππ⨯-⨯=n . 【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.20.5【解析】试题分析:连接OC 交AB 于D ,连接OA ,由垂径定理得OD 垂直平分AB ,设⊙O 的半径为r , 在△ACD 中,利用勾股定理求得CD=2,在△OAD 中,由OA 2=OD 2+AD 2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半径为5.21.(1)0.3,45;(2)108 ;(3)1 6【解析】【分析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可. 【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:1 6 .考点:1、频数分布表,2、扇形统计图,3、概率22.18 60分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;(3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x ,则:4:6=2:x ,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.23.(1)见解析;(2)①见解析;②.【解析】 【分析】(1)利用三角形的中位线得出PM=CE ,PN=BD ,进而判断出BD=CE ,即可得出结论PM=PN ; (2)①先证明△ABD ≌△ACE ,得BD=CE ,同理根据三角形中位线定理可得结论;②如图4,连接AM ,计算AN 和DE 、EM 的长,如图3,证明△ABD ≌△CAE ,得BD=CE ,根据勾股定理计算CM 的长,可得结论【详解】(1)如图1,∵点N ,P 是BC ,CD 的中点,∴PN ∥BD ,PN=BD ,∵点P ,M 是CD ,DE 的中点,∴PM ∥CE ,PM=CE ,∵AB=AC ,AD=AE ,∴BD=CE ,∴PM=PN ,∴△PMN 是等腰三角形;(2)①如图2,∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∵点M 、N 、P 分别是线段DE 、BC 、CD 的中点,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如图4,连接AM,∵M是DE的中点,N是BC的中点,AB=AC,∴A、M、N共线,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE ∽△AEC , ∴, ∴, ∴AM=,DE=, ∴EM=,如图3,Rt △ACM 中,CM===, ∴BD=CE=CM+EM=. 【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE ,PN=BD ,解(2)①的关键是判断出△ABD ≌△ACE ,解(2)②的关键是判断出△ADE ∽△AEC24.不等式组的整数解有﹣1、0、1.【解析】【分析】先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】4623x x x x +>⎧⎪⎨+≥⎪⎩①②, 解不等式①可得,x >-2;解不等式②可得,x≤1;∴不等式组的解集为:﹣2<x≤1,∴不等式组的整数解有﹣1、0、1.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.25.(1)x 13,x 1=13(1)x 1=3,x 1=13. 【解析】【分析】(1)配方法解;(1)因式分解法解.【详解】(1)x1﹣1x﹣1=2,x1﹣1x+1=1+1,(x﹣1)1=3,x﹣1=,x=1x1=1x1=1(1)(x+1)1=4(x﹣1)1.(x+1)1﹣4(x﹣1)1=2.(x+1)1﹣[1(x﹣1)]1=2.(x+1)1﹣(1x﹣1)1=2.(x+1﹣1x+1)(x+1+1x﹣1)=2.(﹣x+3)(3x﹣1)=2.x1=3,x1=13.【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.26.(1)60,90°;(2)补图见解析;(3)300;(4)2 3 .【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.详解:(1)60;90°.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551603+=,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为1 9003003⨯=.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是82123 P==.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.27.(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】【分析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S△ABC=×2×1=1.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
2020年中考数学模拟试卷(内蒙古自治区)(九)(参考答案及评分标准)
2020年中考数学全真模拟试卷(内蒙古)(九)参考答案及评分标准一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分) 1.A 2.D 3.B 4. A 5.B 6.B7.C 8.D 9.C 10.B 11. C 12.A二、填空题(本题5个小题,每小题3分,共15分)13.610371.6⨯ 14.2)5(-x y 15.2 16.712-16π 17.50 三、解答题(本题4个小题,每小题6分,共24分)18. ()︒+-+-⎪⎭⎫ ⎝⎛30tan 32017332102-π3134++-=--------4分5=--------6分19.9)3132(2-÷-++x xx xx x x x x x x )3)(3()3)(3()3()3(2-+⋅-++--=--------3分x x x x x x )3)(3()3)(3(9-+⋅-+-=x x 9-= --------5分当6=x 时,原式21696-=-=--------6分20.解:(1)4个小球中恰好摸到红球的概率等于21. 则214=x,解得x =2个,即口袋里有2个红球;--------2分(2)列表如下:红 红 白 白红 ﹣﹣﹣ (红,红) (白,红) (白,红)红 (红,红) ﹣﹣﹣ (白,红) (白,红)白 (红,白) (红,白) ﹣﹣﹣ (白,白)白 (红,白) (红,白) (白,白) ﹣﹣﹣所有等可能的情况有12种,其中两次摸到的球中一个是红球和一个是白球有8种可能,则P (一个白球一个红球)32128==.--------6分 21. 解:过点O 作OE ⊥AB 于点E ,---1分∵OA =OB ,∠AOB =62°,∴∠OAB =∠OBA =59°,在Rt △AEO 中,OE =OA •sin ∠OAB --------3分=140×sin59°≈140×0.86=120.4,--------5分∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.--------6分四、解答题(本题7分)22. (1)100.--------2分(2)补全直方图 略 “15吨~20吨”部分的频数为22,圆心角的度数为︒2.79.--------4分 (3)4080060000100362210=⨯++,该地区6万用户中约有40800用户的用水全部享受基本价格. --------7分五、解答题(本题7分)23. 解:(1)证明:∵AF ∥BC , ∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,AFE DCE AE DEAEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEF ≌△DEC (AAS ),∴AF =CD , ∵AF =BD , ∴BD =CD ; --------3分(2)当△ABC 满足AB =AC 时,四边形AFBD 是矩形.理由如下:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴□AFBD 是矩形. --------7分六、解答题(本题8分)24.解:(1)直线DE 与⊙O 相切,理由如下:连接OD ,∵OD =OA ,∴∠A =∠ODA ,∵EF 是BD 的垂直平分线,∴EB =ED , ∴∠B =∠EDB ,∵∠C =90°,∴∠A +∠B =90°,∴∠ODA +∠EDB =90°,∴∠ODE =180°﹣90°=90°,∴直线DE 与⊙O 相切;--------4分(2)连接OE ,设DE =x ,则EB =ED =x ,CE =8﹣x ,∵∠C =∠ODE =90°,∴OC 2+CE 2=OE 2=OD 2+DE 2,∴42+(8﹣x )2=22+x 2, 解得:419 x , 则DE =419.--------8分七、解答题(本题10分)25.解:(1)设乙工程队每天能完成绿化的面积是x m 2,根据题意得:300x ﹣3002x=3, 解得:x =50,经检验,x =50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m 2),答:甲、乙两工程队每天能完成的面积分别是100m 2、50m 2;--------4分(2)由题意得:100x +50y =1200,整理得:y =120010050x -=24﹣2x )120<<x (;--------7分 (3)设应甲队的工作a 天,则乙队工作b 天,( a +b ≤14)根据题意得,100a +50b =1200,∴b =24﹣2aa +b ≤14,∴a +24﹣2a ≤14,∴a ≥10W =0.4a +0.15b =0.4a +0.15(24﹣2a )=0.1a +3.6,∴当a =10时,W 最少=0.1×10+3.6=4.6万元.--------10分八、解答题(本题13分)26. (1)由于抛物线经过点A (-2,4)和点B (1,0),则有:44420m m n m m n -+=⎧⎨++=⎩,解得434m n ⎧=-⎪⎨⎪=⎩.--------4分 (2)由(1)得:248433y x x =--+=2416(1)33y x =-++, 由A (-2,4)、B (1,0),根据勾股定理可得AB,若四边形A A′B′B 为菱形,则AB =BB ′=5,即B ′(6,0).故抛物线需向右平移5个单位,即:2416(15)33y x =-+-+=2416(4)33y x =--+.--------8分(3)由(2)得:平移后抛物线的对称轴为:x =4,∵A (-2,4),B ′(6,0),∴直线AB ′:132y x =-+. 当x =4时,y =1,故C (4,1). ∴B′CACBC由(2)知:AB =BB ′=5,即∠BAC =∠BB ′C.若以点B′、C 、D 为顶点的三角形与△ABC 相似,则:①∠B′CD=∠ABC ,则△B′CD ∽△ABC ,可得:''B C B DAB AC =,即5=B′D =3,此时D (3,0);②∠B′DC =∠ABC ,则△B′DC ∽△ABC ,可得:''B C B D AC AB ='5B D =,∴B′D =53,此时D (53,0). 综上所述,存在符合条件的D 点,且坐标为:D (3,0)或(53,0).----13分。
内蒙古包头市名校2020届数学中考模拟试卷
内蒙古包头市名校2020届数学中考模拟试卷一、选择题1.已知抛物线y =﹣x 2+bx+2﹣b 在自变量x 的值满足﹣1≤x≤2的情况下,若对应的函数值y 的最大值为6,则b 的值为( )A .﹣1或2B .2或6C .﹣1或4D .﹣2.5或82.如图,在等边ABC △中,已知6AB =,N 为AB 上一点,且2AN =,BAC ∠的平分线交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM MN +的最小值是( )A .8B .10C .D .3.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A.40B.30C.28D.204.如图,正方形ABCD .AB =4,点E 为BC 边上点,连接AE 延长至点F 连接BF ,若tan ∠FAB =tan ∠EBF =13,则AF 的长度是( )A .2B .5C D 5.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:A .15、15B .20、17.5C .20、20D .20、156.菱形ABCD 中,605B AB ∠=︒=,,则以AC 为边长的正方形ACEF 的周长为( )A .15B .16C .17D .207.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤8.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于()A.B.C.D.9.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是lkm/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个10.下列计算正确的是( )A.3x﹣x=3 B.a3÷a4=1 aC.(x﹣1)2=x2﹣2x-1 D.(﹣2a2)3=﹣6a611.某校规定学生的学期数学成绩满分为100分,其中平时学习成绩占30%,期末卷面成绩占70%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A .83分B .86分C .87分D .92.4分12.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .二、填空题13.如图,AOB ∆为等边三角形,点B 的坐标为()2,0-,过点()2,0C 作直线l 交AO 于D ,交AB 于E ,点E 在反比例函数k y x=的图像上,当ADE ∆和DCO ∆的面积相等时,k 的值是__________.14.分解因式:mn 2-2mn+m=_________.15.如图,直线AB 、CD 交于点O ,EO ⊥AB ,垂足为O ,∠EOC=35°,则∠AOD=______度.16.已知:3a=2b ,那么2323a b a b+-=____. 17.已知a 2+2a=-2,则22(21)(4)a a a +++的值为________.18.把多项式mn 2﹣6mn+9m 分解因式的结果是_____.三、解答题19.计算或化简:(1)2cos45°﹣(﹣0(2)先化简,再求值:(31x -﹣x ﹣1)÷2221x x x --+,其中x ; 20.某中学为了帮助贫困学生读书,由校团委向全校2400名学生发起了“脱贫攻坚我在行”爱心捐款活动,为了解捐款情况,校团委随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为 ,图①中m 的值是 ;(2)请补全条形统计图;(3)求本次调查获取的样本数据的众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.21.已知△ABC是等腰直角三角形,∠ACB=90°,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=6,PA=①线段PB=,PC=;②直接写出PA2,PB2,PC2三者之间的数量关系;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足14PAAB,直接写出PCBC的值:.22.如图,在7×7的方格纸中,点A,B,C都在格点上,请按要求找出D点,使得D点在格点上.(1)在图甲中画一个∠ADC,使得∠ABC=∠ADC.(2)在图乙中画一个三角形ADC,使得△ADC的面积等于△ABC面积的2倍.23.(13)2+14×(﹣4);(2)化简:(a+1)2﹣2(a+12)24.我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?25.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【参考答案】***一、选择题13.14.m(n-1)215.16.135 -.17.618.m(n﹣3)2三、解答题19.(1)-2(2)﹣x2﹣x+2【解析】【分析】(1)依次计算三角函数、零指数幂、二次根式,然后计算加减法;(2)先算括号里的,然后算除法.【详解】(1﹣﹣1﹣﹣1﹣2;(2)(31x-﹣x﹣1)÷2221xx x--+=231()11xx x----÷22(1)xx--=2 (2)(2)(1)12 x x xx x-+--⋅--=﹣(x+2)(x﹣1)=﹣x2﹣x+2当x)2+2=﹣+2【点睛】本题考查了分式的化简,熟练掌握分式混合运算法则是解题的关键.20.(1)50,32;(2)详见解析;(3)众数:10元;中位数:15元;(4)768.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m的值;(2)总人数乘以15元对应百分比可得其人数,据此可补全图形;(3)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(4)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人,∵1650×100%=32%,∴m=32,故答案为:50、32;(2)15元的人数为50×24%=12,补全图形如下:(3)本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(4)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.21.(1)①,PA2+PB2=PQ2,理由详见解析;(2)成立,理由详见解析;(3)4【解析】【分析】(1)①根据等腰直角三角形的性质出去AB,根据题意求出PB,作CH⊥AB于H,根据直角三角形的性质求出CH,根据勾股定理求出PC;②证明△ACP≌△BCQ,根据全等三角形的性质得到PA=BQ,∠CBQ=∠CAP=45°,得∠PBQ=90°,根据勾股定理计算;(2)连接BQ,仿照(1)②的方法证明;(3)分点P在线段AB上、点P在线段AB上两种情况,根据等腰直角三角形的性质、勾股定理计算即可.【详解】解:(1)①∵△ABC是等腰直角三角形,AC=6,∴AB=,∴PB =AB ﹣PA =﹣=,作CH ⊥AB 于H ,∵CA =CB ,CH ⊥AB ,∴AH =HB =12AB =,CH =12AB =∴PH =AH ﹣AP,∴PC故答案为:;2②PA 2+PB 2=PQ 2,理由如下:如图①,连接QB ,∵∠ACB =∠PCQ =90°,∴∠ACP =∠BCQ ,在△ACP 和△BCQ 中,CA CB ACP BCQ CP CQ =⎧⎪∠=⎨⎪=⎩,∴△ACP ≌△BCQ ,∴PA =BQ ,∠CBQ =∠CAP =45°,∴∠PBQ =90°,∴BQ 2+PB 2=PQ 2,∴PA 2+PB 2=PQ 2,故答案为:PA 2+PB 2=PQ 2;(2)如图②,连接BQ ,∵∠ACB =∠PCQ =90°,∴∠ACP =∠BCQ ,在△ACP 和△BCQ 中, CA CB ACP BCQ CP CQ =⎧⎪∠=⎨⎪=⎩,∴△ACP ≌△BCQ ,∴PA =BQ ,∠CBQ =∠CAP =45°,∴∠PBQ =90°,∴BQ 2+PB 2=PQ 2,∴PA 2+PB 2=PQ 2;(3)当点P 在线段AB 上时,由(1)①得,PC AC ==; 当点P 在线段BA 的延长线上时,设BC =2x ,则AB =,∵△ABC 是等腰直角三角形,CH ⊥AB ,∴AH =CH =12ABx ,∵14PA AB =, ∴AB =4PA , ∴PA =14AB=2x ∴PH =PA+AH=x , 由勾股定理得,PCx ,∴22PCBC x ==.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的应用,掌握相关的性质定理、灵活运用分情况讨论思想是解题的关键.22.(1)详见解析;(2)详见解析【解析】【分析】(1)利用网格即可得出符合∠ABC =∠ADC 的答案;(2)利用三角形面积求法得出答案.【详解】(1)如图甲所示:∠ABC =∠ADC ;(2)如图乙所示:△ADC 的面积等于△ABC 面积的2倍.【点睛】此题主要考查了应用设计与作图,正确借助网格分析是解题关键.23.(1)10;(2)a 2【解析】【分析】(1)先化简各个根式,然后合并同类项;(2)先去括号,然后合并同类项.【详解】(1)原式=9﹣1=10;(2)原式=a2+2a+1﹣2a﹣1=a2.【点睛】本题考查了二次根式化简和整式的混合运算,熟练掌握二次根式的混合运算是解题的关键.24.(1) W=﹣2x2+120x﹣1000;(2)应将销售单价定为25元.【解析】【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与 x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【详解】(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与 x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定为25元【点睛】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(1)见解析;(2)四边形EGFH是菱形,理由见解析【解析】【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE ,在△BFH 和△DEG 中,FBH EDG BHF DGEBF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BFH ≌△DEG (AAS );(2)解:四边形EGFH 是菱形;理由如下:连接DF ,设EF 交BD 于O .如图所示:由(1)得:BFH ≌△DEG ,∴FH=EG ,又∵EG ∥FH ,∴四边形EGFH 是平行四边形,∵DE=BF ,∠EOD=∠BOF ,∠EDO=∠FBO ,∴△EDO ≌△FBO ,∴OB=OD ,∵BF=DF ,OB=OD ,∴EF ⊥BD ,∴EF ⊥GH ,∴四边形EGFH 是菱形.【点睛】此题考查全等三角形的判定与性质,矩形的性质,解题关键在于利用平行四边形的性质求证。
2020年内蒙古包头市中考数学模拟试卷 (含答案解析)
2020年内蒙古包头市中考数学模拟试卷一、选择题(本大题共12小题,共36.0分)1.化简√27+√3−√12的结果为()A. 0B. 2C. −2√3D. 2√32.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A. 0.1109×108B. 11.09×106C. 1.109×108D. 1.109×1073.在数轴上与原点的距离小于8的点对应的数x满足()A. −8<x<8B. x<−8或x>8C. x<8D. x>84.下列计算正确的是()A. (a2b)2=a2b2B. a6÷a2=a3C. (3xy2)2=6x2y4D. (−m)7÷(−m)2=−m55.如图,已知AB//CD,∠C=65°,∠E=30°,则∠A的度数为()A. 30°B. 32.5°C. 35°D. 37.5°6.如图,是由8个相同的小立方块搭成的几何体的左视图,它的三个视图是2×2的正方形.若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为()A. 1B. 2C. 3D. 47.一组数据2,2,4,5,5,8,x,9的平均数为5,则这组数据的众数是()A. 2B. 4C. 6D. 58.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A. 5B. 6C. 7D. 89.在半径为2的圆中,弦AB的长为2,则AB⏜的长等于()A. π3B. π2C. 2π3D. 3π210.下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A. x=1B. x=−1C. x=2D. x=−211.如图,点A、C为反比例函数y=kx(x<0)图象上的点,过点A、C 分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为32时,k的值为()A. 4B. 6C. −4D. −612.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是()A. 5B. 10C. 12D. 13二、填空题(本大题共8小题,共24.0分)13.在函数y=4x2x−3中,自变量x的取值范围是______.14.分式方程:11−x −1=2x−1的解是______.15.计算:(3√2+2√3)(3√2−2√3)=___________________.16.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于______ 度.17.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是______.18.如图,在▱ABCD中,AC、BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=__________ cm.19.关于二次函数C1:y=x2+2x−3的下列四个结论中,正确的结论是______(只填序号).(1)将C1的图象向上平移m个单位后,若与x轴没有交点,则m>4.(2)将C1的图象向左平移1个单位得C2,则函数C2的解析式为y=x2+4x;(3)若C2的图象与C1的图象关于x轴对称,函数C2的解析式为y=−x2+2x−3;(4)若C1的图象顶点为D,且C1与直线y=−2x+1交于A、B两点,则△ABD的面积为14√2.20.如图,在矩形ABCD中,点E在边CD上,点F在对角线BD上,DF:DE=2:√5,EF⊥BD,那么tan∠ADB=______.三、解答题(本大题共6小题,共60.0分)21.某年级共有400名学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为______分;(3)请你估计该年级采用公共交通方式上学共有______人,其中单程不少于60分钟的有______人.22.一船在A处测得北偏东45°方向有一灯塔B,船向正东方向以每小时20海里的速度航行1.5小时到达C处时,又观测到灯塔B在北偏东15°方向上,求此时航船与灯塔相距多少海里⋅23.某商店准备销售甲、乙两种商品共80件,已知甲种商品进货价为每件70元,乙种商品进货价为每件35元,在定价销售时,2件甲种商品与3件乙种商品的售价相同,3件甲种商品比2件乙商品的售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?(3)若这批商品全部售完,在(2)的条件下,该商店至少盈利多少元?24.已知:如图,在△ABC中,AC=BC,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E.(1)求证:DE⊥BC;(2)若⊙O的半径为5,cosB=3,求AB的长.525.如图1,在△ABC中,∠ACB=90°,过点A作AD⊥AB,且AD=AB,过点D作DE//BC,交CA的延长线于点E,连接BD.(1)已知BC=2,EC=6,求DE的长度;(2)如图2,点F是BD的中点,连接EF和CF,求证:△EFC为等腰直角三角形;(3)将直线BD绕点F旋转,使它与射线BC、射线EF分别相交于点G、H,如图3,试猜想EH、EC、CG之间有何数量关系,直接写出结论26.如图,已知抛物线y=x2−(2m+1)x+m2+m−2与x轴交于A、B两点,点A在点B的左边,与y轴交于点C,P(s,t)为抛物线上A、B之间一点(不包括A、B),连接AP、BP分别交y轴于点E、D(1)若m=−1,求A、B两点的坐标;(2)若s=1,求ED的长度;(3)若∠BAP=∠ODP,求t的值.-------- 答案与解析 --------1.答案:D解析:解:√27+√3−√12=3√3+√3−2√3=2√3,故选:D.根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.本题考查了二次根式的加减,先化简,再加减运算.2.答案:D解析:解:11090000=1.109×107,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.答案:A解析:【分析】本题考查的是数轴的性质,要注意数轴上的点到原点的距离是数轴上的点加绝对值后的数,与点的正负性无关.数轴上任意一点的绝对值都表示点到原点的距离,原点左边的数为负数,右边的数为正数.由此可解本题.【解答】解:依题意得|x|<8,所以−8<x<8.故选A.4.答案:D解析:【分析】本题主要考查了整式的运算,关键是熟练掌握同底数幂的除法法则和积的乘方公式.利用同底数幂的除法和积的乘方计算得出结果进行判断即可.【解答】解:A.计算结果是a4b2,故计算错误;B.计算结果是a4,故计算错误;C.计算结果是9x2y4,故计算错误;D.计算结果是−m5,故计算正确.故选D.5.答案:C解析:解:设AB、CE交于点O.∵AB//CD,∠C=65°,∴∠EOB=∠C=65°,∵∠E=30°,∴∠A=∠EOB−∠E=35°,故选:C.根据平行线的性质求出∠EOB,根据三角形的外角性质求出即可.本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠EOB的度数和得出∠A=∠EOB−∠E.6.答案:B解析:【分析】本题考查了简单组合体的三视图,利用了主视图、俯视图、左视图相同.根据主视图、俯视图、左视图相同,可得答案.【解答】解:由主视图、俯视图、左视图相同,得可拿掉第二层非相邻的两个小立方块,故选B.7.答案:D解析:【分析】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.根据平均数的定义可以先求出x的值,再根据众数的定义求出这组数的众数即可.【解答】解:利用平均数的计算公式,得(2+2+4+5+5+8+x+9)=8×5,解得x=5,则这组数据的众数即出现最多的数为5.故选D.8.答案:D解析:【分析】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【解答】解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD=√AC2−AD2=√102−62=8.故选D.9.答案:C解析:【分析】本题考查了弧长公式,等边三角形的性质和判定的应用,注意:已知圆的半径是R,弧AB对的圆心角的度数是n°,则弧AB的长=nπR180.连接OA、OB,求出圆心角∠AOB的度数,代入弧长公式求出即可.【解答】解:连接OA、OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴AB⏜的长为:60π×2180=2π3,故选:C.10.答案:D解析:【分析】本题考查了命题与定理,要证明一个命题是假命题的反例,只需要这个例子满足命题的题设,但不满足命题的结论即可,据此逐一判断各选项即可得解.【解答】解:A、x=1不满足x2>1,不是题设的条件,不是特例,故不是反例;B、x=−1不满足x2>1,不是题设的条件,不是特例,故不是反例;C、x=2满足x2>1,也满足x>1,故不是反例;D、x=−2满足x2>1,不满足x>1的要求,故是原命题的反例.故选D.11.答案:C解析:【分析】设点C的坐标为(m,km ),则点E(12m,k2m),A(12m,2km),根据三角形的面积公式可得出S△AEC=−38k=32,由此即可求出k值.本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C的坐标,利用点C的横坐标表示出A、E点的坐标.本题属于基础题,难度不大,解决该题型题目时,利用反比例函数图象上点的坐标特征表示出点的坐标是关键.【解答】解:设点C的坐标为(m,km ),则点E(12m,k2m),A(12m,2km),∵S△AEC=12BD⋅AE=12(12m−m)⋅(2km−k2m)=−38k=32,∴k=−4.故选C.12.答案:D解析:解:在Rt△ACE中,由勾股定理,得AE=√AC2+EC2=√122+52=13.由线段的垂直平分线的性质,得BE=AE=13,故选D.根据勾股定理,可得AE的长,再根据线段垂直平分线的性质,可得答案.本题考查了线段垂直平分线的性质,先由勾股定理求出AE的长,再由线段垂直平分线的性质得出答案.13.答案:x≠32解析:【分析】根据分式的意义,分母不等于0,可以求出x的范围.本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.【解答】解:函数y=4x2x−3中,2x−3≠0,解得x≠32,故答案为:x≠32.14.答案:x=−2解析:解:去分母得:−1−x+1=2,解得:x=−2,经检验x=−2是分式方程的解,故答案为:x=−2分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.答案:6解析:【分析】本题考查了平方差公式和二次根式的混合运算,根据平方差公式将原式变形后即可解答本题.【解答】解:(3√2+2√3)(3√2−2√3)=(3√2)2−(2√3)2=18−12=6,故答案为6 .16.答案:65解析:【分析】根据正方形的性质得出∠BAE=∠DAE=45°,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE=45°,再利用全等三角形的判定和性质解答.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE=45°,在△ABE与△ADE中,{AB=AD∠BAE=∠DAE AE=AE,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°−45°−70°=65°,故答案为:65.17.答案:12解析:解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为816=12,故答案为:12.画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之和为偶数的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.答案:√73解析:【分析】本题主要考查的是平行四边形的性质,勾股定理的有关知识,由平行四边形的性质得出BC=AD=8cm,OA=OC=12AC,由勾股定理求出AC,得出OC,再由勾股定理求出OB即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8cm,OA=OC=12AC,∵AC⊥BC,∴∠ACB=90°,∴AC=√AB2−BC2=√102−82=6cm,∴OC=3cm,∴OB=√BC2+OC2=√82+32=√73cm.故答案为√73.19.答案:(1)、(2)、(4)解析:【分析】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和二次函数的几何变换.先把y=x2+2x−3化成顶点式得到二次函数C1的顶点坐标为(−1,−4),再利用抛物线的平移规律对(1)、(2)进行判断;写出点(−1,−4)关于x轴对称的点的坐标为(−1,4),再利用顶点式写出函数C2的解析式,则可对(3)进行判断;解方程x2+2x−3=−2x+1得点A、B的横坐标分别为−2+2√2,−2−2√2,设直线y=−2x+1与抛物线的对称轴的交点为E,则E(−1,3),根据三角形面积公式,利用S△ABD=S△AED+S△BED进行计算,则可对(4)进行判断.【解答】解:(1)y=x2+2x−3=(x+1)2−4,二次函数C1的顶点坐标为(−1,−4),将C1的图象向上平移m个单位后,若与x轴没有交点,则m>4;所以(1)正确;(2)将C1的图象向左平移1个单位得C2,则C2的顶点坐标为(−2,−4),所以抛物线C2的解析式为y=(x+2)2−4,即y=x2+4x,所以(2)正确;(3)点(−1,−4)关于x轴对称的点的坐标为(−1,4),所以函数C2的解析式为y=−(x+1)2+4,即y=−x2−2x+3,所以(3)错误;(4)解方程x2+2x−3=−2x+1得x1=−2+2√2,x2=−2−2√2,则点A、B的横坐标分别为−2+ 2√2,−2−2√2,设直线y=−2x+1与抛物线的对称轴的交点为E,则E(−1,3),所以S△ABD=S△AED+S△BED=12⋅DE⋅4√2=12⋅7⋅4√2=14√2,所以(4)正确.故答案为(1)、(2)、(4).20.答案:2解析:解:∵EF⊥BD,∴∠DFE=90°,设DF=2x,DE=√5x,由勾股定理得:EF=x,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADB+∠CDB=90°,∠CDB+∠DEF=90°,∴∠ADB=∠DEF,∴tan∠ADB=tan∠DEF=DFEF =2xx=2,故答案为:2.根据矩形的性质求出∠ADC=90°,根据垂直得出∠DFE=90°,设DF=2x,DE=√5x,由勾股定理得出EF=x,求出∠ADB=∠DEF,解直角三角形求出即可.本题考查了解直角三角形、矩形的性质和勾股定理,能求出∠ADB=∠DEF是解此题的关键.21.答案:(1)∵选择公共交通的人数为100×50%=50(人),∴40≤x<50的人数为50−(5+17+14+4+2)=8(人),补全直方图如下:(2)31;(3)200; 8;解析:解:(1)见答案.(2)采用公共交通方式单程所花费时间共50个数据,其中位数是第25、26个数据的平均数,所以采用公共交通方式单程所花费时间的中位数是31+312=31(分),故答案为:31;(3)估计该年级采用公共交通方式上学共有400×50%=200(人),其中单程不少于60分钟的有200×250=8(人),故答案为:200;8.【分析】(1)用被抽查总人数乘以乘公共交通对应的百分比可得其人数,再减去其它分组的人数求出40≤x <50的人数,从而补全图形;(2)根据中位数的概念计算可得;(3)利用样本估计总体思想计算可得采用公共交通方式上学总人数.用采用公共交通方式上学总人数乘以单程不少于60分钟学生人数对应的百分比可得其人数.本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.22.答案:解:过C 作CD ⊥AB ,垂足为D ,过C 作CE ⊥AC ,交AB 于E .Rt △ACD 中,∠DAC =45°,AC =20×1.5=30(海里),∴CD =ACsin45°=30×√22=15√2(海里),Rt △BCD 中,∠BCD =∠BCE +∠ECD =45°+15°=60°,海里).答:此时航船与灯塔相距30√2海里.解析:本题考查了解直角三角形的应用,解答本题的关键是把解斜三角形问题转化为解直角三角形问题.过C 作CD ⊥AB ,垂足为D ,在直角△ACD 中,根据三角函数求得CD 的长,再在直角△BCD 中运用三角函数即可得解.23.答案:解:(1)设每件甲商品与每件乙商品的售价分别是x 、y 元.依题意得:{2x =3y 3x −2y =150,解得:{x =90y =60 ∴甲商品与乙商品的售价分别为90元和60元.(2)设进货甲商品a 件,则乙商品(80−a)件.依题意得:70a +35(80−a)≤4200,解得a ≤40∴甲最多进货40件.(3)设进货乙商品b 件,利润为M 元.由(2)得a ≤40,则b ≥40,M =(90−70)(80−b)+(60−35)b =5b +1600,∴5>0,M 随b 的增大而增大,当b =40时,M 取得最小值,即5×40+1600=1800 (元).答:该商店盈利1800元.解析:本题主要考查二元一次方程组、一元一次不等式、一次函数,解答本题的关键是掌握相关知识,逐一分析解答即可.(1)设每件甲商品与每件乙商品的售价分别是x 、y 元.依题意得:{2x =3y 3x −2y =150,求出每件甲商品与每件乙商品的售价; (2)设进货甲商品a 件,则乙商品(80−a)件.依题意得:70a +35(80−a)≤4200,求出至多进货甲商品的件数.(3)设进货乙商品b 件,利润为M 元.由(2)得a ≤40,则b ≥40,M =(90−70)(80−b)+(60−35)b =5b +1600,求出该商店至少盈利的钱数.24.答案:解:(1)连接CD ,∵AC 是⊙O 的直径,∴CD ⊥AB .∵AC =BC ,∴AD =BD ,∵AO =CO ,∴OD//BC ,∵DE 是⊙O 的切线,∴OD ⊥DE ,∴DE ⊥BC .(2)∵AC =BC ,∴∠A =∠B ,∵cosB =35,∴cosA =35,∵⊙O 的半径为5,∴AC =10,∴AD =6,∴AB =2AD =12.解析:此题考查了切线的性质,等腰三角形的判定与性质,圆周角定理,熟练掌握性质及定理是解本题的关键.(1)连接CD,由AC是⊙O的直径,得到CD⊥AB,根据等腰三角形的性质得到AD=BD,根据切线的性质即可得到结论;(2)根据等腰三角形的性质得到∠A=∠B,解直角三角形得到AC=10,于是得到结论.25.答案:解:(1)解:∵∠ACB=90°,DE//BC,∴∠ABC+∠BAC=90°,∠E=180°−∠C=90°,∵AD⊥AB,∴∠DAE+∠BAC=90°,∴∠DAE=∠ABC,又∵∠E=∠C=90°,AD=AB,∴△ADE≌△BAC,∴EA=BC=2,DE=AC=EC−EA=4;(2)证明:连接AF,∵△ADE≌△BAC,∴AB=DA,∠ABC=∠DAE,BC=EA,∵AD⊥AB,∴∠DAB=90°,∵点F是BD的中点,∴AF=BF,∠DAF=∠DBA=45°,AF⊥DB,∴∠ABC+∠DBA=∠DAE+∠DAF,即∠FBC=∠FAE,∴△FAE≌△FBC,∴EF=CF,∠EFA=∠CFB,∴∠EFA+∠AFC=∠CFB+∠AFC=90°,∴EF⊥CF,∴△EFC为等腰直角三角形(3)EH=EC+CG.证明:设BC=EA=a,AC=DE=b,CG=c,∵DE//BC,∴∠H=∠G,∠HDF=∠GBF,∵DF=BF,∴△HDF≌△GBF,∴DH=BG=a+c,∴EH=HD+DE=a+b+c,∵EC=EA+AC=a+b,∴EH=EC+CG.解析:本题主要考查的是全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,解决此题的关键是要熟练掌握这些知识.(1)由∠ACB=90°,DE//BC结合AD⊥AB,证得∠DAE=∠ABC,根据AAS证得△ADE≌△BAC,从而得出结论;(2)连接AF,证得△FAE≌△FBC,从而得到EF=CF,∠EFA=∠CFB,再进一步证得结论即可;(3)设BC=EA=a,AC=DE=b,CG=c,证得△HDF≌△GBF,从而得出结论.26.答案:解:(1)当m=−1时,抛物线的解析式为y=x2+x−2,令y=0,可得x2+x−2=0,解得x=−2或1∴A(−2,0)、B(1,0).(2)∵y=[x−(m+2)][x−(m−1)]∴A(m−1,0)、B(m+2,0)∵s=1∴P(1,m2−m−2)∴直线AP的解析式为y=−(m+1)x+m2−1,直线BP的解析式为y=−(m−2)x+m2−4,∴E(0,m2−1),D(0,m2−4),∴DE=m2−1−(m2−4)=3.(3)过点P作PQ⊥x轴于Q∵∠BAP=∠ODP∴∠DPE=∠AOE=90°,∴∠APB=∠AQP=∠PQB=90°,∵∠PAB+∠APQ=90°,∠PAB+∠PBQ=90°,∴∠APQ=∠PBQ,∴△PAQ∽△BPQ,∴PQBQ =AQPQ,∴PQ2=AQ⋅BQ,∴t2=(s−x A)(x B−s)∴s(x A+x B)−s2−x A x B=t2∴s⋅(2m+1)−s2−(m−1)(m+2)=t2∵t=s2−(2m+1)s+(m−1)(m+2)∴t2=−t,解得t=−1或0(舍弃),∴t=−1时,∠BAP=∠ODP.解析:(1)把m=−1代入抛物线的解析式,令y=0解方程即可解决问题;(2)利用待定系数法求出直线PA、PB的解析式,求出点E、D的坐标即可解决问题;(3)由△PAQ∽△BPQ,可得PQBQ =AQPQ,推出PQ2=AQ⋅BQ,即t2=(s−x A)(x B−s),推出s⋅(2m+1)−s2−(m−1)(m+2)=t2,又t=s2−(2m+1)s+(m−1)(m+2),推出t2=−t,解得t=−1或0(舍弃),由此即可解决问题;本题考查二次函数综合题、一次函数的应用、待定系数法、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2024年内蒙古包头九中中考数学三模试卷+答案解析
2024年内蒙古包头九中中考数学三模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列计算中,结果等于的是()A. B. C. D.2.实数a在数轴上的对应点的位置如图所示,若实数b满足,则b的值可以是()A.2B.C.D.3.如图,AB,CD被直线EF所截,且,EG平分,过点G作,若,则的度数为()A.B.C.D.4.如图是甲、乙两人手中的扑克牌,两人随机出一张牌,记甲、乙牌中的数分别为m,n,使得的概率为()A. B. C. D.5.如图,正方形网格中,点A,O,B、E均在格点上过点A,E且与AB交于点C,点D是上一点,则()A.B.2C.D.6.将四块相同的小长方形纸片和两块相同的大长方形纸片如图1、图2所示摆放,若小长方形的长和宽分别为y,,则()A.B.C.D.7.若关于x的分式方程的解为正数,则m的取值范围是()A.且B.且C.且D.且8.如图,在平面直角坐标系中,直线与x轴,y轴分别交于点A、B,点C坐标为,连接AC,以AC为边,为直角,在AC右侧作等腰直角三角形ACD,则点D的坐标为()A.B.C.D.9.抛物线经过点、、,且,则该抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,对角线AC,BD相交于点O,点A关于BD的对称点为,连接交BD于点E,连接为半径,与CD相切,则的值是()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.分解因式:______.12.已知,是一元二次方程的两个实数根,则的值是______.13.如图,AB、BC是的两条弦,AB垂直平分半径OD,,,则弦AB的长为______14.如图,四边形ABCD是平行四边形,以点B为圆心,BC的长为半径作弧交AD于点E,分别以点C、E为圆心,大于的长为半径作弧,两弧交于点P,作射线BP交AD的延长线于点F,,,则BF的长为______.15.如图,点A在反比例函数图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且,点D为OB的三等分点,若的面积为5,则k的值为______.16.如图,正方形ABCD的边长为4,点O是正方形的中心,点E、F分别在边AB、AD上运动,且满足,连接EF,过点O作交AB点G,则下列结论:①连接FG,则的周长不变;②若,则;③连接OF,则;④其中正确的结论是______填写所有正确结论的序号三、解答题:本题共7小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学自主招生数学试卷一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.02.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣14.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣210.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.512.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.参考答案与试题解析一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是整数,是有理数,故选项不符合题意;B、是分数,是有理数,故选项不符合题意;C、是无理数,故选项符合题意;D、0是整数,是有理数,故选项不符合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:356万=3.56×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式不能合并,不符合题意;C、原式=a3,不符合题意;D、原式=x2﹣1,符合题意,故选:D.【点评】此题考查了平方差公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形【分析】根据既是矩形又是菱形的四边形是正方形进行判断.【解答】解:A、两条对角线互相垂直的矩形是正方形,故选项不符合题意;B、两条对角线相等的菱形是正方形,故选项不符合题意;C、两条对角线垂直且相等的平行四边形是正方形,故选项不符合题意;D、应是两条对角线垂直且相等的平行四边形是正方形,故选项符合题意.故选:D.【点评】本题考查了正方形的判定,通过这道题可以掌握正方形和矩形,菱形的关系.6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组整理得:,∴不等式组的解集为x<1,故选:A.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣2【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵y=5x2先向右平移3个单位,再向上平移2个单位后的顶点坐标为(3,2),∴所得的抛物线的解析式为y=5(x﹣3)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更简便.10.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°【分析】连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.【解答】解:连接OA,OB,∵CA、CB切⊙O于点A、B,∴∠CAO=∠CBO=90°,∵∠C=56°,∴∠AOB=360°﹣∠CAO﹣∠CBO﹣∠C=360°﹣90°﹣90°﹣56°=124°.由圆周角定理知,∠D=∠AOB=62°,故选:D.【点评】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.熟练掌握:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等等知识是解题的关键.11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.5【分析】作AE⊥BC,AF⊥BD,由i=3:4,可设AF=3x,DF=4x,结合AD=10,利用勾股定理可求得x的值,解直角三角形即可得到结论.【解答】解:如图,过点A作AE⊥BC于点E,过点A作AF⊥BD,交BD延长线于点F,由i=3:4,可设AF=3x,DF=4x,∵AD=10,∴9x2+16x2=100,解得:x=2(负值舍去),则AF=BE=6,DF=8,∴AE=DF+BD=8+12=20,∵∠CAE=45°,∴CE=AE=20,则BC=CE+BE=20+6=26,故选:B.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解题的关键是能根据题意构造直角三角形并结合图形利用三角函数解直角三角形.12.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.【分析】首先判断出△ABE≌△BCF,即可判断出∠BAE=∠CBF,再根据∠BAE+∠BEA =90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值为多少.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故选:A.【点评】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP的长度最小.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公式进行因式分解,分解因式要彻底,直到不能再分解为止.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是(,).【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案是:(,).【点评】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是24.【分析】设盒子中白色棋子有x个,根据概率公式列出关于x的方程,解之可得.【解答】解:设盒子中白色棋子有x个,根据题意,得:=,解得:x=24,经检验:x=24是原分式方程的解,所以白色棋子有24个,故答案为:24.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【分析】利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为﹣5<x<3.【分析】先根据抛物线的对称性得到A点坐标(3,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c >0的解集.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于45.【分析】先证明△ADF∽△CEF,可知=,然后根据相似三角形的性质可知=()2,再根据,从而可求出三角形ACD的面积.【解答】解:在▱ABCD中,AD∥CE,AD=BC∴△ADF∽△CEF,∴,∵CE=2EB,∴CE=BC=AD,∴=,∴=()2=,∴S△CEF=12,∵,∴S△CFD=18,∴S△ACD=S△AFD+S△CDF=27+18=45,故答案为:45【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a≤2的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:===,当a=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了80名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)【分析】(1)由给的图象解题,根据自行车所占比例为30%,而频数分布直方图知一共有24人骑自行车上学,从而求出总人数;(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全频数分布直方图;(3)自行车、步行、公交车、私家车、其他交通工具所占比例之和为100%,再由直方图具体人数来相减求解.(4)画树状图列出所有等可能结果,从中找到到第二个路口时第二次遇到红灯的结果数,根据概率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).故答案为:80;(2)被抽到的学生中,步行的人数为80×20%=16人,直方图:(3)被抽到的学生中,乘公交车的人数为80﹣(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为×2400=780人.(4)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第二次遇到红灯的结果数为1,所以到第二个路口时第二次遇到红灯的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.【分析】(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,即可求菱形DGCE的面积.【解答】证明:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=GC=4,DG∥EC在Rt△DGH中,∠DGB=60°∴DH=DG cos30°=2∴菱形DGCE的面积=GC×DH=8【点评】本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.【分析】(1)根据题意,易得,解可得x的值,进而可得答案;(2)根据题意,可得关系式y=15m+20(m﹣1),化简可得y=35m﹣20,根据一次函数的性质分析可得答案.【解答】解:(1)根据题意,每天甲、乙两人共加工35个零件,设甲每天加工x个,则乙每天加工35﹣x;根据题意,易得,解得x=15,经检验,x=15是原方程的解,且符合题意.35﹣15=20,答:甲每天加工15个,乙每天加工20个;(2)y=15m+20(m﹣1),即y=35m﹣20,∵在y=35m﹣20中,y是m的一次函数,k=35>0,y随m的增大而增大,又由已知得:3≤m≤5,∴当m=5时,y最大值=155,当m=3时,y最小值=85.【点评】此题主要考查了分式方程的应用,能根据题意,列出关系式,进而结合一次函数的性质得到结论或求解方程是解题关键.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.【分析】(1)连接OE,证明∠GEO=90°,即GE⊥OE,于是EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,得到GE2=GC•GD,又GF=GE,所以GF2=GC •GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,,在Rt△HOC中,由勾股定理得,由△AHC∽△MEO,所以.【解答】解:(1)证明:如图,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠F AH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,∴,∴GE2=GC•GD,又∵GF=GE,∴GF2=GC•GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,∵,∴,在Rt△HOC中,∵OC=r,,,∴,∴,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴.【点评】本题考查了圆,熟练运用圆的切线定理、相似三角形的性质以及勾股定理是解题的关键.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)△ADC与△ABC关于AC所在的直线对称,则CD=BC=2,∠ACD=∠ACB =30°,过点D作DE⊥BC于点E,∠DCE=60°,则,即可求解;(2)求出A,D坐标,两个点在同一反比例函数上,则,即可求解;(3)分P为直角顶点、D为直角顶点,两种情况分别求解即可.【解答】解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF~△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH~△DPG,,,解得:k=0(舍),综上:存在.【点评】本题考查的是反比例函数综合运用,涉及到一次函数、三角形相似等知识点,此类题目的关键是,通过设线段长度,确定图象上点的坐标,进而求解.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是①②④(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.【分析】(1)由“雅垂矩形”的两邻边比为1:4可以得出正比例函数的系数k的值,从而得出答案;(2)由题意知A(m,m2﹣2m),C(3m,9m2﹣6m).由0<m<0.5知CD=3m﹣m=2m,BC=m2﹣2m﹣(9m2﹣6m)=4m2﹣8m,从而得L=2(CD+BC)=﹣16m2﹣12m=﹣16(m﹣0.375)2+2.25,据此可得答案;。