几何最值及路径长(讲义及答案)
初中数学精讲隐圆模型(线段最值和轨迹问题)
几何模型11——隐圆问题在初中数学中利用隐圆解决平面几何问题大致分为三类,第一类是定点加定长构造圆形,第二类是定弦定角,第三类是从动模型之轨迹为圆也就是常说的“瓜豆原理”,在初中数学当中构造定弦定角构造圆形在压轴题当中经常出现,定弦定角构造圆形圆形中一般求一个定点到一动点线段长度的最小值问题的时候一般涉及定弦定角问题。
定弦定角解决问题的步骤:(1)让动点动一下,观察另一个动点的运动轨迹,发现另一个动点的运动轨迹为一段弧(2)找不变的张角(很多时候一般是找出张角的补角),(补角一般为60︒、45︒)(3)找张角所对的定弦,根据三点确定隐形圆,确定圆心位置(4)计算隐形圆的半径(5)圆心与所求线段上定点的距离可以求出来(6)最小值等于圆心到定点之间的距离减去半径例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,求A′C的长的最小值变式1.如图,在矩形ABCD中,AB=2,AD=,点E为AB中点,点F为AD 边上从A到D运动的一个动点,连接EF,将△AEF沿EF折叠,点A落在点G处,在运动的过程中,求点G运动的路径长(1)直径所对的圆周角是直角. 构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:例2.如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,求点F 所经过的路径长变式1.如图,在正方形ABCD 中,AB =2,动点E 从点A 出发向终点D 运动,同时动点F 从点D 出发向终点C 运动,点E ,F 的运动速度相同,当它们到达各自的终点时停止运动.运动过程中线段AF ,BE 相交于点P ,求线段DP 长的最小值变式2.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .P PA BOP变式3.如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,求点F 的运动路径长变式4.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )(2)定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB 为定值,∠P 为定角,则A点轨迹是一个圆.∠P 度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆.例3.如图,△ABC 是等边三角形,边长为6,E 、F 分别是BC 、AC 上的动点,且CE =AF ,连接AE 、BF 交于点G ,求CG 最小值60°120°O P ABO120°120°P ABP PAB P30°O 60°BAP 90°45°ABO P变式2.如图,△ABC为等边三角形,AB=3.若P为△ABC内一动点,且满足∠P AB=∠ACP,求线段PB长度的最小值变式3.边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.例4.如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P,从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,求内心I所经过的路径长变式1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是.变式2.如图,半径为4的⊙O中,弦AB的长度为4,点C是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;例5.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()16A.213+C.5D.13-B.29变式1.如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1B.2C.2D.241-4例6.如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】Q 点满足(1)∠PAQ=60°;(2)AP=AQ ,故Q 点轨迹是个圆: 考虑∠PAQ=60°,可得Q 点轨迹圆圆心M 满足∠MAO=60°;考虑AP=AQ ,可得Q 点轨迹圆圆心M 满足AM=AO ,且可得半径MQ=PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .例7.如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE=2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.【解析】E 是主动点,F 是从动点,D 是定点,E 点满足EO=2,故E 点轨迹是以O 为圆心,2为半径的圆.答案为52-2 变式1.如图,已知在扇形AOB 中,OA =3,∠AOB =120º,C 是在上的动点,以BC 为边作正方形BCDE ,当点C 从点A 移动至点B 时,求点D 运动的路径长?OPA Q60°MQAPOO AB CD E F O A B C D EF M变式2.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=2,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为____________.变式3.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.。
2020年九年级数学中考经典几何题讲义系列:几何最值问题
3 / 18
(4) 两点两线的最值问题: (两个动点+两个定点)
问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。 核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最 短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线 段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。 变异类型:演变为多边形周长、折线段等最值问题。 1. 如图,点 A 是∠MON 内的一点,在射线 ON 上作点 P,使 PA 与点 P 到射线 OM 的距离之 和最小。
A.
B.
C.
D.1
考点: 轴对称-最短路线问题;正方形的性质. 菁优网版权所有
分析: 根据题意得出作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN=
,此时四边形 BMNE
解答: 的周长最小,进而利用相似三角形的判定与性质得出答案. 解:作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN= ,延长 DF 交 BC 于 P,作
2.连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、 正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
∵LN=AS=
=40.
几何动点运动轨迹及最值
几何动点运动轨迹及最值一、动点运动轨迹——直线型(动点轨迹为一条直线,利用“垂线段最短”)Ⅰ.当一个点的坐标以某个字母的代数式表示,若可化为一次函数,则点的轨迹是直线; 1.在平面直角坐标系中,点P 的坐标为(0,2),点M 的坐标为39(1,)44m m −−−(其中m 为实数),当PM 的长最小时,m 的值为__________.2.如图,在平面直角坐标系中,A (1,4),B (3,2),C (m ,-4m +20),若OC 恰好平分四边形...OACB ....的面积,求点C 的坐标.Ⅱ.当某一动点到某条直线的距离不变时,该动点的轨迹为直线;3.如图,矩形ABCD 中,AB =6,AD =8,点E 在边AD 上,且AE :ED =1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交射线BC 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为_________.【变式1】如图,矩形ABCD 中,AB =6,AD =8,点E 在边AD 上,且AE :ED =1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交边BC 或CD 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为___________.ABDCEFPM ABDCEFPM yxBAO【变式2】如图,在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,E 是AB 上的一个动点,连接PE ,过点P 作PE 的垂线,交BC 于点F ,连接EF ,设EF 的中点为G ,当点E 从点B 运动到点A 时,点G 移动的路径的长是_________.【变式3】在矩形ABCD 中,AB =4,AD =6,P 是AD 边的中点,点E 在AB 边上,EP 的延长线交射线CD于F 点,过点P 作PQ ⊥EF ,与射线BC 相交于点Q .(1)如图1,当点Q 在点C 时,试求AE 的长; (2)如图2,点G 为FQ 的中点,连结PG . ①当AE =1时,求PG 的长;②当点E 从点A 运动到点B 时,试直接写出线段PG 扫过的面积. 变式3图14.如图,C 、D 是线段AB 上两点,且AC =BD =16AB =1,点P 是线段CD 上一个动点,在AB 同侧分别作等边△P AE 和等边△PBF ,M 为线段EF 的中点。
立体几何中的最值问题答案
立体几何中的最值问题答案立体几何中的最值问题一、线段长度最短或截面周长最小问题例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之.解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22AN AM +=22)12(1++=10(2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2.则MN =??-+120cos 222AN AM AN AM =21312)3(122++=34+∵34+<10 ∴m in MN =34+.例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。
点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<(2)当a 为何值时,MN 的长最小;(3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小。
解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。
∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,∴2==BF AC ,21,21a BQ a CP ==, 即2aBQ CP ==, ∴=+-==22)1(BQ CP PQ MN )20(21)22()2()21(222<<+-=+-a a a a (2)由(1)知: 2222==MN a 时,当,的中点时,分别移动到即BF AC N M ,, 22的长最小,最小值为MN(3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN ,∴∠AGB 即为二面角α的平面角。
又46==BG AG ,所以由余弦定理有31464621)46()46(cos 22-=?-+=α。
2020春中考数学几何动点运动轨迹及最值专题讲义
2020春中考数学几何动点运动轨迹及最值专题讲义一、动点运动轨迹——直线型(动点轨迹为一条直线,利用“垂线段最短”)Ⅰ.当一个点的坐标以某个字母的代数式表示,若可化为一次函数,则点的轨迹是直线; 1.在平面直角坐标系中,点P 的坐标为(0,2),点M 的坐标为39(1,)44m m −−−(其中m 为实数),当PM 的长最小时,m 的值为__________.2.如图,在平面直角坐标系中,A (1,4),B (3,2),C (m ,-4m +20),若OC 恰好平分四边形...OACB ....的面积,求点C 的坐标.Ⅱ.当某一动点到某条直线的距离不变时,该动点的轨迹为直线;3.如图,矩形ABCD 中,AB =6,AD =8,点E 在边AD 上,且AE :ED =1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交射线BC 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为_________.【变式1】如图,矩形ABCD 中,AB =6,AD =8,点E 在边AD 上,且AE :ED =1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交边BC 或CD 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为___________.ABDCEFPM ABDCEFPM yxBAO【变式2】如图,在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,E 是AB 上的一个动点,连接PE ,过点P 作PE 的垂线,交BC 于点F ,连接EF ,设EF 的中点为G ,当点E 从点B 运动到点A 时,点G 移动的路径的长是_________.【变式3】在矩形ABCD 中,AB =4,AD =6,P 是AD 边的中点,点E 在AB 边上,EP 的延长线交射线CD于F 点,过点P 作PQ ⊥EF ,与射线BC 相交于点Q .(1)如图1,当点Q 在点C 时,试求AE 的长; (2)如图2,点G 为FQ 的中点,连结PG . ①当AE =1时,求PG 的长;②当点E 从点A 运动到点B 时,试直接写出线段PG 扫过的面积. 变式3图14.如图,C 、D 是线段AB 上两点,且AC =BD =16AB =1,点P 是线段CD 上一个动点,在AB 同侧分别作等边△P AE 和等边△PBF ,M 为线段EF 的中点。
最新立体几何中的轨迹问题(总结+讲义+练习)
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDAB1A lAB Cα A B CD D 1 C 1B 1A 1 M PABCDD 1 C 1 B 1 A 1 M N3 323P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB与到直线B1C1的距离相等,则动点P所在曲线的形状为(D).2.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为(B).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分3.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分4.在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A).A.圆或圆的一部分B.抛物线或其一部分C.双曲线或其一部分D.椭圆或其一部分简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC成等角,得到EP与平面BB1D1D 所成的角都相等,故点P的轨迹有可能是圆或圆的一部分.5a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD内的动点,且点P P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A).A.抛物线B.双曲线C.直线D.圆连结PE.则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线.6P在侧面BCC1B1及其边界上运动,总有1,则动点P的轨迹为的轨迹为_______________.答案线段MN(M、N分别为SC、CD8.若A、B P C(不同于A、B,则动点C在平面内的轨迹是________.(除去两点的圆)A—BCD的侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与组成的图形可能是:(D)A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ.14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=,即|1y|1x2-=+,化简得0y2yx22=+-故动点P的轨迹为双曲线,选B.20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分5a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD内的动点,且点P P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线 B .双曲线 C .直线 D .圆A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与组成的图形可能是( )A A AB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .A BC D MNP A 1B 1C 1D 1 yxOyOxOyx O19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.。
【中考攻略】中考数学 专题8 几何最值问题解法探讨
【2013年中考攻略】专题8:几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A 1BC 5D .52 【答案】A 。
【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。
【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1。
DE=∴OD 1。
故选A 。
例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA 上截取BE=BN ,连接EM 。
∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM。
在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM,BM=BM ,∴△BME≌△BMN(SAS )。
专题三几何综合-最值及路径长.docx
教学内容:【课前回顾&错题重现】1.如图,A, B为定点、,P为直线/上一点,若点尸恰好使AP^BP最短,请画出点P的位置.提示:①分析定点(/, B),动点(尸在直线/上动),不变特征②以/为对称轴利用轴对称进行转化③由“两点之间,线段最短”确定位置2.如图,A, E为定点,为直线/上一可以移动的线段,且长度固定,若点M恰好使曲歼临初何最短,请画出点川的位置.提示:①分析定点(/, B),动点QM, N在/上动,且MV长度固定),不变特征②先平移EV,使平移后的点N与M重合,将其转化为问题1③以/为对称轴利用轴对称进行转化④由“两点之间,线段最短”确定位置3. 如图,ZAOB=60°f点P在的平分线上,(9P=10cm,卓、E, F分别是两边CU, 上的动点,当ZXPEF的周长最小时,点戸到*的距离是・提示:①分析定点(P),动点(E在Q4上动,F在OB上动),不变特征②分别以Q4,为对称轴,将P对称过去,得到Pi,Pi③连接P*2,由“两点之间,线段最短”确定位置,进而求解尸到EF的距离.【知识点&考点讲解】1.几何最值问题的处理思路①分析定点、动点,寻找不变特征;②若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标.基本定理:两点之间,线段最短(己知两个定点)垂线段最短(己知一个定点、一条定直线)三角形三边关系(己知两边长固定或其和、差固定)过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦常用模型、结构示例:©轴对称最值模型求总+彩的最小值, 使点在线异侧求PA-PB的最大值, 使点在线同侧固定长度线段A4N在直线1上滑动,求AM+MN+BN的最小值, 需平移EN(或AM),转化为AM + MB'解决.②折叠求最值结构求的最小值,转化为求&(+4WVC的最小值(利用4WNC为定值).2.解决路径长问题的思路①分析定点、动点,寻找不变特征;②确定运动路径;A通过“起点、终点、特殊点”猜测运动路径,并结合不变特征进行验证.③设计方案,求出路径长.【乘胜追击(课堂巩固入1.如图,在平面直角坐标系中,RtZ^OAB的直角顶点/在X轴的正半轴上,顶点E的坐标为(3, J5),点C的坐标为(-,0),点P为斜边OE上一动点,则PA+PC的最小值为22.如图,在矩形ABCD中,^5=4, 50=8,三为CQ边的中点.若P, 0为BC边上的两动点,且PQ=2,则当______________________ 时,四边形4P0E的周长最小.3.如图,在中,ZACB=90°9 AB=5f BC=3・ P 是 SB 过上的动点(不与点召重合),将沿CP所在的直线翻折,得到△歹CP,连接则长度的最小值是____________________ ・4. 如图,在边长为2的菱形45CD 中,ZA=60°9 M 是且D 边的中点,N 是4B 边上一动点,将△&MV 沿MV 所在的直线翻折得到△ A fMN,连接4C,则4C 长度的最小值是 _______________ ・5. 如图,有一矩形纸片45CZ ), AB=S 9 AD=179将此矩形纸片折叠,使顶点/落在EC 边的理处,折痕所在直线同时经过边AB.AD (包括端点),设=丫,则X 的取值范围是 _____________.6. 如图,在'ABC 中,ZABC=90°f 48=6, 50=8, O 为 AC 的 中点,过O 作OE丄OF, OE, OF 分别交射线48, BC 于E, F,连接防,则盯长度的最小值为 ________________________________________ ・第4题图A D 第5题图9. 边EC,盯的中点,直线NG, FC相交于点当/XEFG绕点D旋转时,线段长的最小值是____________________如图,4&是OO的一条弦,ZACB=30°,点乙F分别是/C, BC的中点,直线EF与0O交于G, 7/两点.若OO的半径为7,则GE+FF的最大值为第9题图10.如图,直线/与半径为4的OO相切于点P是OO上的一个动点(不与点乂重合),过点P作朋丄/,垂足为连接R4 •设PA=x, PB=y,则(x-y)的最大值是_______________ •【课后作业】7.如图,E, F是正方形妞5CZ)的边凡D上的两个动点,且满足AE=DF・连接CF交砂于点G,连接肛交NG于点片,连接DH,若正方形的边长为2,则长度的最小值是___________________ ・如图,△4BC,G如图,边长为2的正方形4SCQ的两条对角线交于点O,把B4与CQ分别绕点占和点C逆时针旋转相同的角度,此时正方形438 随之变成四边形A BCD.设4C, BD交于点OS 若旋转了60。
第二十三讲 平面几何的定值与最值问题(含解答)-
第二十三讲平面几何的定值与最值问题【趣题引路】传说从前有一个虔诚的信徒,他是集市上的一个小贩.••每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,•而周围上的点都是供信徒朝拜的顶礼地点如图1.这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,•然后再到集市的路程最短呢?(1) (2)解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短.证明如图2,在圆周上除P点外再任选一点P′.连结BP•′与切线MN•交于R,AR+BR>AP+BP.∵RP′+AP′>AR.∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP.不过,用尺规作图法求点P的位置至今没有解决.•“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.【知识延伸】平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.•所谓几何定值问题就是要求出这个定值.在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变.例1如果△ABC的外接圆半径R一定,求证: abcS是定值.(S表示△ABC的面积)解析由三角形面积S=12absinC和正弦定理sincC=2R,∴c=2RsinC.∴abcS=2sincC=4sinsinR CC=4R是定值.点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值.平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,•某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,•这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式).例2 如图,已知⊙O的半径R=33,A为⊙O上一点,过A作一半径为r=3的⊙O′,问OO′何时最长?最长值是多少?OO′何时最短?最短值是多少?解析当O′落在OA的连线段上(即⊙A与线段OA的交点B时)OO′最短,且最短长度为33-3 ;当O′落在OA的延长线上(即⊙O与OA的延长线交点C时)OO′最长,且最长的长度为33+3 .点评⊙O′是一个动圆,满足条件的⊙O′有无数个,但由于⊙O′过A点,所以⊙O′的圆心O′在以A为圆心半径为3的⊙A上.【好题妙解】佳题新题品味例1 如图,已知P为定角O的角平分线上的定点,过O、P•两点任作一圆与角的两边分别交于A、B两点.求证:OA+OB是定值.证明连结AP、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.•另记x1=OA,x2=OB.对△POA应用余弦定理,得x12+OP2-2OP·cos∠AOP·x1=r2.故x1为方程x2-2OP·cos 12∠AOB·x+(O P2-r2)=0的根,同理x2亦为其根.因此x1,x2为此方程的两根,由韦达定理,得x1+x2=2OP(12∠AOB)是定值.点评当x 1=x 2时,x 1+x 2为此定值,事实上此时OP 一定是直径.例2 如图,在矩形ABCD 中,AB=8,BC=9,⊙O 与外切,且⊙O 与AB 、BC•相切.⊙O ′与AD 、CD 相切,设⊙O 的半径为x,⊙O 与⊙O ′的面积的和为S,求S•的最大值和最小值. 解析 设⊙O ′的半径为y,过O 与O ′分别作CD 与BC 的垂线OH,O ′F,•垂足分别为H,F,OH 、O ′F 交于点E,则有:O ′E=8-(x+y),OE=9-(x+y) 由勾股定理可得:(x+y)2=[8-(x+y)]2+[9-(x+y)]2. 整理,得(x+y-29)(x+y-5)=0,由题意知1≤x ≤4,∴x+y=5,y=-x+5,∴S=πx+πy=π(2x-10x+25),=2π[(x-52)2+254], 故当x=52时,S min =252π; 当x=4时,S=17π.点评先由已知求出⊙O ′的半径也⊙O 的半径x 之间的关系,然后再根据面积公式写出S 与x 之间的关系,这个关系就是一个函数关系,再通过函数的性质得解.中考真题欣赏例 (南京市中考题)如图,⊙O 1与⊙O 2内切于点P,又⊙O 1切⊙O 2•的直径BE 于点C,连结PC 并延长交⊙O 2于点A,设⊙O 1,⊙O 2的半径分别为r 、R,且R ≥2r.•求证:PC ·AC 是定值.解析 若放大⊙O 1,使⊙O 1切⊙O 2的直径于点O 2(如图), 显然此时有PC ·AC=PO 2·AO 2=2r ·R(定值). 再证明如图的情况:连结C O 1,PO 2,• 则PO 2•必过点O 1,•且O 1C ⊥BE,得CO 2=22121O O O C -=22R Rr -,从而BC=R+22R Rr -,EC=R-22R Rr -.所以PC ·AC=EC ·BC=2Rr,故PC ·AC 是定值. 点评解答几何定值问题时,可先在符合题目条件的前提下用运动的观点,从特殊位置入手,找出相应定值,然后可借助特殊位置为桥梁,完成一般情况的证明.竞赛样题展示例1 (第十五届江苏省初中数学竞赛题)如图,正方形ABCD的边长为1,•点P为边BC 上任意一点(可与点B或点C重合),分别过点B、C、D作射线AP的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的最大值和最小值.解析∵S△DPC= S△APC =12 AP·CC′,得S 四边形BCDA= S△ABP+ S△ADP+ S△DPC= 12AP(BB′+DD′+CC′),于是BB′+CC′+DD′=2 AP.又1≤AP≤2,故2≤BB′+CC′+DD•′≤2,∴BB′+CC′+DD′的最小值为2,最大值为2.点评本题涉及垂线可考虑用面积法来求.例2 (2000年“新世纪杯”广西竞赛题)已知△ABC内接于⊙O,D是BC•或其延长线上一点,AE是△ABC外接圆的一条弦,若∠BAE=∠CAD.求证:AD.AE为定值.证明如图 (1),当点D是BC上任意一点且∠BAE=∠CAD时,连结BE,则∠E=∠C,∠BAE=∠CAD,∴△ABE∽△ADC.∴AB AEAD AC=,即AD·AE=AB·AC为定值.如图 (2),当点D在BC的延长线上时,∠BAE=∠CAD.此时,∠ACD=∠AEB.∴△AEB∽△ACD,∴AB AE AD AC=即AD·AE=AB·AC为定值.综上所述,当点D在BC边上或其延长线上时,只要∠CAD=∠BAE,总有AD·AE为定值. 点评先探求定值,当AD⊥BC,AE为圆的直径时,满足∠BAE=∠CAD这一条件,•不难发现△ACD ∽△AEB,所以AD·AE=AB·AC,因为已知AB,AC均为定值.•再就一般情况分点D•在BC上,点D在BC的延长线上两种情况分别证明.全能训练A级1.已知MN是⊙O的切线,AB是⊙O的直径.求证:点A、B与MN的距离的和为定值.2.已知:⊙O与⊙O1外切于C,P是⊙O上任一点,PT与⊙O1相切于点T.求证:PC:PT是定值.3.⊙O 1与⊙O 2相交于P 、Q 两点,过P 作任一直线交⊙O 1于点E,交⊙O 2于点F.求证:∠EQF 为定值.4.以O 为圆心,1为半径的圆内有一定点A,过A 引互相垂直的弦PQ,RS.求PQ+RS 的最大值和最小值.5.如图,已知△ABC 的周长为2p,在AB 、AC 上分别取点M 和N,使MN•∥BC,•且MN 与△ABC 的内切圆相切.求:MN 的最值.CABMNA 级(答案)1.定长为圆的直径;2.利用特殊位置探求定值(当PC 构成直径时)是两圆的半径). 3.因∠E,∠F 为定角(大小固定)易得∠EQF 为定值.4.如图,设OA=a(定值),过O 作OB ⊥PQ,OC ⊥RS,B 、C 为垂足, 设OB=x,OC=y,0≤x ≤a,(0≤y ≤a),且x 2+y 2=a 2. 所以所以∴(PQ+RS)2=4(2-a 2+而x 2y 2=x 2(a 2-x 2)=-(x 2-22a )2+44a . 当x 2=22a 时,(x 2y 2)最大值=44a .此时;当x 2=0或x 2=a 2时,(x 2y 2)最小值=0,此时(PQ+RS )最小值=2(). 5.设BC=a,BC 边上的高为h,内切圆半径为r. ∵△AMN ∽△ABC,2MN h r BC h -=,MN=a(1-2rh),• 由S △ABC =rp,∴r=2ABC S ahp p∆=, ∴MN=a(1-a p )=p ·a p (1-a p )≤p 2(1)2aa p p⎡⎤+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=4p ,当且仅当a p =1-a p ,即a=2p 时,取等号,∴MN 的最大值为4p.B级1.如图1,已知正方形ABCD的边长为3,点E在BC上,且BE=2,点P在BD上,则PE+PC的最小值为( )A.23B. 13C. 14D.15E D CAB PSQA B PM(1) (2) (3)2.用四条线段a=14,b=13,c=9,d=7.作为四条边构成一个梯形,•则在所构成的梯形中,中位线长的最大值是__________.3.如图2,⊙O的半径为2,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB•延长线上任一点,QS⊥OP于S,则OP·OS=_______.4.已知,如图3,线段AB上有任一点M,分别以AM,BM为边长作正方形AMFE•、•MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O′交于M、N两点,则直线MN的情况是( •)A.定直线B.经过定点C.一定不过定点D.以上都有可能5.如图,已知⊙O的半径为R,以⊙O上一点A为圆心,以r为半径作⊙A,•又PQ与⊙A 相切,切点为D,且交⊙O于P、Q.求证:AP·AQ为定值.6.如图,⊙O 1与⊙O 2相交于A 、B 两点,经过点B•的一直线和两圆分别相交于点C 和D,设此两圆的半径为R 1,R 2.求证:AC:AD=R 1:R 2.B 级(答案)1.B.∵A 、C 关于BD 对称,连结AE 交BD 于P,此时PE+PC=AE 最短.2.11.5 (1)当上底为7,下底分别为14,13,9时,中位线长分别为10.5,10,8; (2)当上底为9和13时,均构不成梯形.3.连结OQ 交AB 于M,则OQ ⊥AB.连结OA,则OA ⊥AQ. ∵∠QMP=∠QSP=90°,∴S,P,•Q,M 四点共圆,故OS ·OP=OM ·OQ. 又∵OM ·OQ=OA 2=2,∴OS ·OP=2.4.B.由图可知直线MN 可看作⊙O 和⊙O ′的割线, 当M 在点A 时,直线MN 变为⊙O•′的切线, 当M 在点B 时,直线MN 变为⊙O 的切线.这两种情况是以AB•为直角边的等腰直角三角形的两直角边所在的直线,交点是第三个顶点M.M 是AB 的中点时,MN 是AB•的垂直平分线,也过第三个顶点,所以选B. 5.如图,作⊙O 的直径AB,连结AD. ∵PQ 切⊙A 于D,∴AD ⊥PQ, ∴AP ·AQ=AD ·AB.•而AD=r,AB=2R,∴AP ·AQ=2Rr 为定值.6.作AN ⊥CD,垂足为点N,连结AB,有AC.AB=AN.2R1,① AB ·AD=AN ·2R 2 .② ①÷②,得12R AC AD R ,∴AC:A D=R 1:R 2.。
初中奥数讲义_几何的定值与最值附答案
【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( ) A .从30°到60°变动 B .从60°到90°变动C .保持30°不变D .保持60°不变(湖北赛区选拔赛试题); 思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.⌒注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.(永州市竞赛题)思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.( “宇振杯”上海市初中数学竞赛题)思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.⌒注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值; (2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 . (江苏省竞赛题)2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .(湖北省黄冈市竞赛题)3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .( “希望杯”邀请赛试题)4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( ) A .1 B .22C .2D .13- (湖北省荆州市中考题)5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+(贵阳市中考题)6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定(桂林市中考题)7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N . (1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由. (2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.(加拿大数学奥林匹克试题)9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( ) A .22+ B .21+ C .23+ D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.(全国初中数学联赛试题)13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU 相交于点Q.求四边形PUQV面积的最大值.( “弘晟杯”上海市竞赛题)14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?(河南省竞赛题)15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).(北京市数学知识应用竞赛试题)参考答案。
专题17 立体几何中的最值问题【解析版】
第四章立体几何专题17 立体几何中的最值问题【压轴综述】在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.在涉及最值的问题中主要有三类,一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.从解答思路看,有几何法(利用几何特征)和代数法(应用函数思想、应用基本不等式等)两种,都需要我们正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换.要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,有关计算公式熟练掌握.一、涉及几何体切接问题最值计算求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;二.涉及角的计算最值问题1. 二面角的平面角及其求法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2.求异面直线所成角的步骤:一平移,将两条异面直线平移成相交直线.二定角,根据异面直线所成角的定义找出所成角.三求角,在三角形中用余弦定理或正弦定理或三角函数求角.四结论.3.线面角的计算:(1)利用几何法:原则上先利用图形“找线面角”或者遵循“一做----二证----三计算”. (2)利用向量法求线面角的方法(i分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(ii)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.下面通过例题说明应对这类问题的方法与技巧.【压轴典例】例1.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面 所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .4B C .4D 【答案】A 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,,所以其面积为26(424S =⨯⋅=,故选A. 例2.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .【答案】B 【解析】 如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===2ABCSAB == AB 6∴=,点M 为三角形ABC 的中心2BM 3BE ∴==Rt OMB ∴中,有OM 2==DM OD OM 426∴=+=+=()max 163D ABC V -∴=⨯=故选B.例3.(2017·全国高考真题(理))a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③ 【解析】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故|AC |=1,|AB|=斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则D (1,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′(cos θ,sin θ,0), 其中θ为B ′C 与CD 的夹角,θ∈[0,2π),∴AB ′在运动过程中的向量,'AB =(cos θ,sin θ,﹣1),|'AB|=设'AB 与a 所成夹角为α∈[0,2π], 则cos α()()10102'cos sin a AB θθ--⋅==⋅,,,,|sin θ, ∴α∈[4π,2π],∴③正确,④错误. 设'AB 与b 所成夹角为β∈[0,2π],cos β()()'1100''AB b cos sin AB bbAB θθ⋅-⋅===⋅⋅,,,,θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===, ∵cos 2θ+sin 2θ=1,∴cos β2=|cos θ|12=,∵β∈[0,2π],∴β3π=,此时'AB 与b 的夹角为60°, ∴②正确,①错误. 故答案为:②③.例4.(2017·全国高考真题(理))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【答案】【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则13OG x =x =.∴5FG SG x ==-,SO h ====,∴三棱锥的体积21133ABC V S h x =⋅==.设()455n x x x =-,x >0,则()3420n x x x '=,令()0n x '=,即4340x =,得x =()n x 在x =处取得最大值.∴max 48V ==例5.(2016·浙江高考真题(理))如图,在ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而 的面积.当平面PBD⊥平面BDC 时:四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为例6.(2019·安徽芜湖一中高三开学考试)在Rt AOB ∆中,6OAB π∠=,斜边4AB =.Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)求直线CD 与平面AOB 所成角的正弦的最大值.【答案】(1)详见解析;(2【解析】(1)AOB ∆为直角三角形,且斜边为AB ,2AOB π∴∠=.将Rt AOB ∆以直线AO 为轴旋转得到Rt AOC ∆,则2AOC π∠=,即OC AO ⊥.二面角B AO C --是直二面角,即平面AOC ⊥平面AOB .又平面AOC I 平面AOB AO =,OC ⊂平面AOC ,OC ∴⊥平面AOB .OC ⊂Q 平面COD ,因此,平面COD ⊥平面AOB ;(2)在Rt AOB ∆中,6OAB π∠=,斜边4AB =,122OB AB ∴==且3OBA π∠=. 由(1)知,OC ⊥平面AOB ,所以,直线CD 与平面AOB 所成的角为ODC ∠.在Rt OCD ∆中,2COD π∠=,2OC OB ==,CDsin OC ODC CD ∴∠==当⊥OD AB 时,OD 取最小值,此时sin ODC ∠取最大值,且sin3OD OB π==因此,sin 7OC ODC CD ∠==≤=,即直线CD 与平面AOB 所成角的正弦的最大值为7. 例7.(2019·深圳市高级中学高三月考(文))如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.【答案】(1)见解析;(2);(3)【解析】(1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.又PO垂直于圆O所在的平面,所以PO⊥AC.因为DO∩PO=O,所以AC⊥平面PDO.(2)解:因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.又AB=2,所以△ABC面积的最大值为.又因为三棱锥P-ABC的高PO=1,故三棱锥P-ABC体积的最大值为.(3)解:在△POB中,PO=OB=1,∠POB=90°,所以.同理,所以PB=PC=BC.在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.又因为OP=OB,,所以垂直平分PB,即E为PB的中点.从而,即CE+OE的最小值为.例8.(2016·江苏高考真题)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少? (2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?【答案】(1)312(2)【解析】(1)由PO 1=2知OO 1=4PO 1=8. 因为A 1B 1=AB=6,所以正四棱锥P-A 1B 1C 1D 1的体积正四棱柱ABCD-A 1B 1C 1D 1的体积所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m ),PO 1=h (m ),则0<h<6,OO 1=4h.连结O 1B 1.因为在中,所以,即于是仓库的容积,从而.令,得或(舍).当时,,V 是单调增函数;当时,,V 是单调减函数.故时,V 取得极大值,也是最大值.因此,当m 时,仓库的容积最大.【压轴训练】1.(2019·四川石室中学高三开学考试(文))在ABC △中,已知AB =BC =045ABC ∠=,D 是边AC 上一点,将ABD △沿BD 折起,得到三棱锥A BCD -.若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上,设BM x =,则x 的取值范围为( )A.(B.C.D.(【答案】B 【解析】由将ABD △沿BD 折起,得到三棱锥A BCD -,且A 在底面BCD 的射影M 在线段BC 上, 如图2所示,AM ⊥平面BCD ,则AM BD ⊥, 在折叠前图1中,作AM BD ⊥,垂足为N ,在图1中过A 作1AM BC ⊥于点1M ,当运动点D 与点C 无限接近时,折痕BD 接近BC ,此时M 与点1M 无限接近,在图2中,由于AB 是直角ABM ∆的斜边,BM 为直角边,所以BM AB <, 由此可得1BM BM AB <<,因为ABC ∆中,045ABC AB BC ∠===,由余弦定理可得AC =所以1BM ==BM <<由于BM x =,所以实数x 的取值范围是,故选B .2.(2019·四川高三月考(文))已知球O 表面上的四点A ,B ,C ,P 满足AC BC ==2AB =.若四面体PABC 体积的最大值为23,则球O 的表面积为( ) A .254πB .254π C .2516π D .8π【答案】A 【解析】当平面ABP 与平面ABC 垂直时,四面体ABCP 的体积最大.由AC BC ==2AB =,得90ACB ︒∠=.设点Р到平面ABC 的距离为h,则112323h ⨯=,解得2h =. 设四面体ABCP 外接球的半径为R ,则()22221R R =-+,解得5R=4.所以球O 的表面积为2525444ππ⎛⎫⨯= ⎪⎝⎭. 故选:A .3.(2019·湖南雅礼中学高三月考(理))圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( ) A.),2π B.π⎡⎤⎣⎦C.}D.,2π⎫⎪⎪⎣⎭【答案】A 【解析】设轴截面的中心角为α,过圆锥顶点的截面的顶角为β,且βα≤ 过圆锥顶点的截面的面积为:122sin β2sin β2⨯⨯⨯=, 又过圆锥顶点的截面中,面积的最大值为2, 故此时β2π=,故απ2π≤<圆锥底面半径r )2sin22α=∈ ∴侧面展开图的中心角为θ弧度2sin222πsin22απα⨯⨯==∈),2π 故选:A.4.(2019·安徽高考模拟(理))如图,已知四面体ABCD 为正四面体,1AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .14B C D .1【答案】A 【解析】将正四面体补成正方体,如下图所示:EF α⊥ ∴截面为平行四边形MNKL ,可得1NK KL +=又//KL BC ,//KN AD ,且AD BC ⊥ KN KL ∴⊥ 可得2124MNKLNK KL S NK KL +⎛⎫=⋅≤=⎪⎝⎭四边形(当且仅当NK KL =时取等号) 本题正确选项:A5.(2019·湖北高三月考(理))若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( )A .3B .C .D .【答案】A 【解析】设正方形的边长为a ,则四棱锥的高为227h a =,则其外接圆的半径r =.设球的半径为R ,则()222h R r R -+=,解得44222272727210844108a a R a a a =+=++94≥=,当且仅当42274108a a =,即3a =时等号成立,此时,四棱锥的高为2272739h a ===.故选A. 6.(2019·四川雅安中学高三开学考试(文))已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且AB BC ==2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( )A.50081πB.1009πC.259πD.4π【答案】B 【解析】AB BC ==2AC = 222AB BC AC ∴+= AB BC ∴⊥112ABC S AB BC ∆∴=⋅= 如下图所示:若三棱锥D ABC -体积最大值为1,则点D 到平面ABC 的最大距离:3d = 即:3DO '=设球的半径为R ,则在Rt OAO '∆中:()22213R R =+-,解得:53R =∴球的表面积:210049S R ππ==本题正确选项:B7.(2017·山西高三(理))两球1O 和2O 在棱长为1的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为( )A .(32pB .(42pC .(32p +D .(42p【答案】A 【解析】设球1O 与球2O 的半径分别为r 1,r 2,∴r 1+r 2r 1+r 2)= r 1+r 2=32-,r 1+r 2⩾球1O 与球2O 的面积之和为: S =4π(21r+21r)=4π(r 1+r 2)2−8π12r r ⩾()212π1+−2π()231+=(6−)π,当且仅当r 1=r 2时取等号其面积最小值为(6−π. 故选A.8.(2019·广东高考模拟(理))平面四边形ABCD 中,AD AB ==CD CB ==且AD A B ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C D 【答案】D 【解析】 取BD 的中点O,则,,,A B A D BC CD A O BD CO BD '''==∴⊥⊥即BD ⊥平面A OC ',从而平面BCD ⊥平面A OC ',因此A '在平面BCD 的射影在直线OC 上,即A CO '∠为直线A C '与平面BCD 所成角,因为AD AB ==CD CB ==AD AB ⊥,所以111,2sin sin sin 22A O A O OC A CO OA C OA C OC '''''==∴∠=∠=∠≤,即A CO '∠最大值为π6,因此直线A C '与平面BCD 所成最大角的正切值为πtan63=,选D.9.(2019·云南省玉溪第一中学高二月考(理))已知底面边长为,侧棱长为S ABCD -内接于球1O .若球2O 在球1O 内且与平面ABCD 相切,则球2O 的直径的最大值为__________. 【答案】8 【解析】如图所示,正四棱锥S ABCD -内接于球1O ,1SO 与平面ABCD 交于点O ,正方形ABCD 中,4AB AO ==,在直角三角形SAO 中,2SO ===,设球1O 的半径为R ,则在直角三角形1OAO 中,222(2)4R R -+=, 解得5R =, 所以球1O 的直径为10,当求2O 与平面ABCD 相切且与球1O 相切时,球2O 的直径最大, 又因为球2SO =,所以球2O 的直径的最大值为1028-=.10.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__. 【答案】323【解析】如图所示,设,AB m AC n ==,则12ABCS mn ∆=,ABC ∆3,三棱锥P ABC -的体积公式为221113)3)3234m n mn +⨯≤⨯,设224m n t +=,则1()3f t t =,1()33f t '⎫=+⎪⎭,令()0f t '=,解得8t =,()f t 在()0,8单增,[]8,9单减,max 32()(8)3f t f ∴==, 所以三棱锥P ABC -体积最大值为32311.(2019·云南师大附中高三月考)在直三棱柱111ABC A B C -中,90BAC ∠=︒且14BB =,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为2,则球O 的表面积的最小值是_____________. 【答案】28π 【解析】 如图,在Rt ABC △中,设AB c =,=AC b ,则BC =, 取BC ,11B C 的中点分别为2O ,1O ,则2O ,1O 分别为Rt ABC △和111Rt A B C △的外接圆的圆心,连接2O 1O ,又直三棱柱111ABC A B C -的外接球的球心为O ,则O 为2O 1O 的中点,连接OB ,则OB 为三棱柱外接球的半径.设半径为R ,因为直三棱柱111ABC A B C -,所以1214BB O O ==,所以三棱锥O ABC -的高为2,即22OO =,又三棱锥O ABC -体积为2,所以1122632O ABC V bc bc -=⨯⨯=⇒=.在2Rt OO B △中,22222221()4424b c R BC OO +⎛⎫=+=+=+ ⎪⎝⎭⎝⎭, 所以2=4πS R =球表22224π4π()16π2π16π12π16π28π4b c b c bc ⎛⎫++=+++=+=⎪⎝⎭≥,当且仅当b c =时取“=”,所以球O 的表面积的最小值是28π,故答案为28π.12.(2019·湖南高三月考(文))已知三棱锥A BCD -满足3AB BD DC CA ====,则该三棱锥体积的最大值为________.【答案】【解析】取AD 中点E ,连接BE ,CE ,因为3AB BD DC CA ====, 所以BE AD ⊥,CE AD ⊥,且BE CE =,由题意可得,当平面⊥BAD 平面CAD 时,棱锥的高最大,等于BE ,此时体积也最大; 所以此时该三棱锥体积为113sin sin 362-∆=⋅⋅=⋅⋅⋅∠⋅=⋅∠A BCD ACD V S BE CA CD ACD BE CE ACD ,设ACD θ∠=,则sin 3cos 22πθθ-⎛⎫=⋅=⎪⎝⎭CE CD , 所以239cos sin 9sin cos 9sin sin 222222θθθθθθ-⎛⎫=⋅=⋅=- ⎪⎝⎭A BCD V , 令sin2θ=x ,因为0θπ<<,所以0sin12θ<<,设3()=-f x x x ,01x <<,则2()13'=-f x x ,由2()130'=->f x x 得03x <<;由2()130'=-<f x x 得13x <<;所以函数3()=-f x x x 在⎛ ⎝⎭上单调递增,在⎫⎪⎪⎝⎭上单调递减;所以max ()33279⎛==-= ⎝⎭f x f ,因此三棱锥体积的最大值为99-=⋅=A BCD V故答案为13.(2019·河南高三月考(文))已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足BA BC ==2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.【答案】323π 【解析】 如图所示:设球心为O ,ABC △所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为BA BC ==2ABC π∠=,所以ABC △是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABC V PO S -=⋅⋅;因为132ABCS==,设球的半径为R ,所以11PO PO OO R R =+==+(1333R ⋅⋅=,解得:2R =,所以球的体积为:343233R ππ=.14.(2019·四川双流中学高三月考(文))已知球的直径4DC =,A ,B 是该球面上的两点,6ADC BDC π∠=∠=,则三棱锥A BCD -的体积最大值是______.【答案】2 【解析】因为球的直径4DC =,且6ADC BDC π∠=∠=,所以2AC BC ==,AD BD ==13A BCD BCD V S h -∆=⨯⨯(其中h 为点A 到底面BCD 的距离),故当h 最大时,A BCD V -的体积最大,即当面ADC ⊥面BDC 时,h 最大且满足42h =⨯h =112232A BCD V -=⨯⨯⨯=.15.(2019·河北高三月考)在四棱锥P ABCD -中,PD AC ⊥,AB ⊥平面PAD ,底面ABCD 为正方形,且3CD PD +=,若四棱锥P ABCD -的每个顶点都在球O 的球面上,则球O 的表面积的最小值为_____. 【答案】6π 【解析】∵AB ⊥平面PAD ,∴AB PD ⊥,又PD AC ⊥,∴PD ⊥平面ABCD ,则四棱锥P ABCD -可补形成一个长方体,球O 的球心为PB 的中点,设()03CD x x =<<,则3PD x =-.从而球O 的表面积为()2243126x πππ⎡⎤=-+≥⎣⎦⎝⎭. 故答案为6π 16.(2016·浙江高考真题(文))如图,已知平面四边形ABCD ,AB=BC=3,CD=1,直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.【解析】试题分析:如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则0,2A ⎛⎫ ⎪ ⎪⎝⎭, 2B ⎛⎫ ⎪ ⎪⎝⎭, 0,2C ⎛⎫- ⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H翻折过程中, 'D H 始终与AC 垂直, 则2CD CH CA ===则3OH = DH ==因此'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α),则'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==,所以cos 1α=-时, cos θ.17.(2019·重庆一中高三开学考试(理))已知正方形ABCD 的边长为ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B-ACD .若O 为AC 的中点,点M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,则当三棱锥N-AMC 的体积取得最大值时,点N 到平面ACD 的距离为______.【答案】1【解析】由题意知,BO AC ⊥,而平面ABC ⊥平面ACD ,所以BO ⊥平面ACD ,易知BO =2,设BN x =,三棱锥N AMC -的高为NO ,则2NO x =-,由三棱锥体积公式得211=(2)(1)3233N AMC V y x x -=⨯⨯⨯-=--+,∴x =1时,y max =3.此时,211NO =-=. 故本题正确答案为1.18.(2019·浙江高三开学考试)如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________.【解析】由已知得四面体1A BMP 体积1122,33A MBP MBP V S -∆=⨯⨯=所以1,MBP S ∆=设P 到BM 的距离为h ,则11,2MBP S h ∆==解得h =所以P 在底面ABCD 内(不包括边界)与BM 的线段l 上, 要使1C P 的最小,则此时P 是过C 作BM 的垂线的垂足.点C 到BM 的距离为,5所以5CP =此时()1min 5C P ==19.(2019·安徽合肥一中高考模拟(文))如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.【解析】 取BC 中点N ,连结11,,B D B N DN ,作CO DN ⊥,连1C O ,因为面1//B DN 面面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN , 当点P 与点O 重合时,1C P 取得最小值,因为1112252DN CO DC NC CO ⋅=⋅⇒==,所以1min 1()5C P C O ====. 20.(2019·湖南高三期末(文))点P 在正方体1111ABCD A B C D -的侧面11BCC B 及其边界上运动,并保持1AP BD ⊥,若正方体边长为2,则PB 的取值范围是__________.【答案】2⎤⎦【解析】连结1AB ,AC ,1CB ,易知平面11ACB BD ⊥,故P 点的轨道为线段1CB ,当P 在1CB 当P 与C 或1B 重合时:最大值为2则PB 的取值范围是2⎤⎦.故答案为:2⎤⎦。
专题5.4立体几何中的轨迹问题、最值问题通关
1.如图所示,正方体ABCD A B C D '-'''的棱长为1, E , F 分别是棱AA ', CC '的中点,过直线E , F 的平面分别与棱BB ', DD '交于M , N ,设BM x =, ()0,1x ∈,给出以下四个命题:①四边形MENF 为平行四边形;②若四边形MENF 面积()S f x =, ()0,1x ∈,则()f x 有最小值; ③若四棱锥A MENF -的体积()V p x =, ()0,1x ∈,则()p x 是常函数;[来源: ]④若多面体ABCD MENF -的体积()V h x =, 1,12x ⎛⎫∈ ⎪⎝⎭,则()h x 为单调函数.其中假命题...为( ). A . ① B. ② C. ③ D. ④ 【答案】D连接AF , AM , AN ,则四棱锥分割为两个小棱锥,它们是以AEF 为底,以M , N 为顶点的两个小棱锥, 因为AEF 的面积是个常数, M , N 到平面AEF 的距离和是个常数, 所以四棱锥C MENF '-的体积()V P x =是常函数,故③正确;对于④,多面体ABCD MENF -的体积()1122ABCD A B C D V h x V -''''===为常数函数,故④错误.综上所述,假命题为④. 故选D2.已知正方体ABCD-的棱长为2,E 为棱的中点,点M 在正方形内运动,且直线AM //平面,则动点M 的轨迹长度为A .B .C . 2D . π 【答案】B3.在空间直角坐标系Oxyz 中,到x 轴和y 轴距离相等的点的轨迹为( ) A . 一个平面 B . 两个平面 C . 一条直线 D . 两条直线 【答案】B【解析】到x 轴和y 轴距离相等的点的轨迹为如图所示的两个平面,故选B .4.在空间直角坐标系O xyz -中,正四面体P ABC -的顶点A 、B 分别在x 轴, y 轴上移动.若该正四面体的棱长是2,则OP 的取值范围是( ).A . 31,31⎡⎤-+⎣⎦B . []1,3C . 31,2⎡⎤-⎣⎦D . 1,31⎡⎤+⎣⎦【答案】A【解析】如图所示,故选A .5.如图所示,在正方形1111ABCD A B C D -中, ,E F 分别为1111,B C C D 的中点,点P 是底面1111A B C D 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是( )A .2. 1 C .2 D . 22【答案】D6.已知正方体的1111ABCD A B C D -棱长为2,点,M N 分别是棱11,BC C D 的中点,点P 在平面1111A B C D 内,点Q 在线段1A N 上,若5PM =,则PQ 长度的最小值为A .21B .2C . 3515-D . 355【答案】C7.如图,面ACD α⊥,B 为AC 的中点, 2,60,AC CBD P α=∠=为内的动点,且P 到直线BD 的距离为3则APC ∠的最大值为( )A . 30° B. 60° C . 90° D. 120° 【答案】B【解析】∵P 到直线BD 的距离为3[来源:∴空间中到直线BD 的距离为3的点构成一个圆柱面,它和面α相交得一椭圆,即点P 在α内的轨迹为一个椭圆, B 为椭圆中心, 3b =, 32sin60a ==︒,则1c =∴A B ,为椭圆的焦点∵椭圆上的点关于两焦点的张角在短轴的端点取得最大值 ∴APC ∠的最大值为60︒ 故选B.8.如图所示,在正方体1111ABCD A B C D -中,点M 是平面1111A B C D 内一点,且1BM ACD 平面,则1tan DMD ∠的最大值为( ).A .22B .C . 2D . 2 【答案】D【解析】∴11A C 平面1ACD , 同理1BMD O , BM 平面1ACD ,∴当M 在直线11A C 上时,都满足1BM ACD ,∴1111tan 222DD DMD MD ∠===是最大值. 故D 选项是正确的. 9.如图所示,正方体的棱长为,,分别是棱,的中点,过直线,的平面分别与棱、交于,,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小; ③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中假命题的序号为().A.①④ B.② C.③ D.③④【答案】C②连接,∵平面,四边形的对角线是固定的,要使面积最小,只需的长度最小即可,此时为棱中点,,长度最小,对应四边形的面积最小,②正确;④连接,,,四棱锥分割成两个小三棱锥, 以为底,分别以、为顶点, ∵面积是个常数,、到平面的距离是个常数, ∴四棱锥的体积为常函数,④正确.10.如下图在直三棱柱111ABC A B C -中, π2BAC ∠=, 11AB AC AA ===,已知G 与E 分别为11A B 和1CC 的中点, D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 长度的取值范围为( ).A . 5⎫⎪⎢⎣⎭B . 325⎣⎦C . 25⎢⎣D . 2,3⎡⎣ 【答案】A【解析】∴当25y =时,线段DF 5当0y =时,线段DF 长度的最大值是1,(因为不包括端点,故0y =不能取,即DF 长度不能等于1),故线段DF 的长度的取值范围是: 5⎫⎪⎢⎣⎭,本题选择A 选项.11.设点M 是棱长为2的正方体1111ABCD A B C D -的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( ) A .255 B . 22 C . 1 D . 63【答案】A12.如图,直三棱柱111ABC A B C -中, 12AA =, 1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:① 直线AC 与直线1C E 是异面直线;② 1A E 一定不垂直1AC ; ③ 三棱锥1E AAO -的体积为定值; ④1AE EC +的最小值为22.其中正确的个数是A . 1B . 2C . 3D . 4 【答案】C 【解析】如图,∵直线AC 经过平面BCC 1B 1内的点C ,而直线C 1E 在平面BCC 1B 1内不过C ,∴直线AC 与直线C 1E 是异面直线,故①正确;∴正确命题的个数是3个。
中考数学压轴题之几何最值及路径长(作业及答案)
1几何最值及路径长(作业)例1:如图,在矩形ABCD 中,AB=12,AD=3,E,F 分别为AB,CD 上的两个动点,则AF+FE+EC 的最小值为.【思路分析】所求目标是AF+FE+EC 的最小值,属于最值问题.分析定点、动点,寻找不变特征.A,C 为定点,E,F 为动点,且点E 在定线段AB 上动,点F 在定线段CD 上动.由定点、动点的特征判断为轴对称最值模型.作定点A 关于定直线CD 的对称点A′,作定点C 关于定直线AB 的对称点C′.根据对称可知,A′F=AF,C′E=CE,所求问题转化为求A′F+FE+C′E 的最小值,根据定理“两点之间,线段最短”,连接A′C′,线段A′C′的长度即为最小值.判断所求最值为线段A′C′的长,设计方案求解.根据勾股定理,A′C′=15,即最小值为15.例2:如图,已知AB=10,点C,D 在线段AB 上,且AC=BD=2.P 是线段CD 上的一动点,分别以AP,PB 为边在线段AB 的同侧作等边三角形AEP 和等边三角形PFB,连接EF,设EF 的中点为G.当点P 从点C 运动到点D 时,点G 移动的路径长为.23【思路分析】分析不变特征.在点P 运动的过程中,两个等边三角形始终不变、点G 为EF 的中点不变、线段AB 的长度不变.猜测运动路径.分别选择点P 在起点C、终点D 时的对应图,结合已知图中点G 的位置,猜测路径为线段,如图1,图2.图1 图2验证运动路径.猜测运动路径是线段,且平行于AB,只需证明点G 到线段AB 的距离为定值即可,故分别过点E,F,G 作AB 的垂线,如图3,可证GH 为梯形EMNF 的中位线,GH =1(EM +FN );2因为△APE 和△BPF 均为等边三角形,故EM +FN =3(PM +PN ) =动路径为线段.3AB ,因此GH 为定值,可确定点G 的运2图3 图4设计方案计算路径长.补全,得图形4,可知QECF 为平行四边形,则G1 为QC 中点,同理可知G2 为QD 中点,故G1G2=1CD =1(10 - 2 - 2) =3 .2 2123422.如图,当四边形PABN 的周长最小时,a 的值为.3.如图,在菱形ABCD 中,∠A=60°,AB=3,⊙A,⊙B 的半径分别为2 和1,P,E,F 分别是边CD,⊙A 和⊙B 上的动点,则PE+PF 的最小值是.4.如图,在Rt△AOB 中,OA=OB= 3 ,⊙O 的半径为1,点P是AB 边上的动点,过点P 作⊙O 的一条切线PQ(点Q 为切点),则PQ 长度的最小值为.5.如图,折叠矩形纸片ABCD,使点B 落在边AD 上,折痕EF的两端分别在AB,BC 上(含端点),且AB=6cm,BC=10cm,则折痕EF 的最大值是.第3 题图第4 题图第2 题图第1 题图D.2 6)C.2 3B.3 2A.31. 如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE的和最小,则这个最小值为(6.动手操作:在矩形纸片ABCD 中,AB=5,AD=13.如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ,当点A′ 在BC 边上移动时,折痕的端点P,Q 也随之移动.若限定点P,Q 分别在AB,AD 边上移动,则点A′在BC 边上可移动的最大距离为.7.如图,在△ABC 中,∠ACB=90°,AC=6,BC=2,点A,C 分别在x 轴、y 轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,则在运动过程中,点B 到原点的最大距离为.第7 题图第8 题图8.如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止.连接EM,过M 作EM 的垂线交射线BC 于点F,连接EF.若P 是MF 的中点,则在点E 运动的过程中,点P 运动的路径长为.9.如图,正方形ABCD 的边长为2,将长为2 的线段EF 的两端放在正方形的相邻两边上同时滑动.如果点E 从点A 出发,按A→B→C→D→A 的方向滑动到点A 为止,同时点F 从点B 出发,按B→C→D→A→B 的方向滑动到点B 为止,则在这个过程中,线段EF 的中点M 经过的路径所围成的图形面积为.10.如图,以G(0,1)为圆心,2 为半径的圆与x 轴交于A,B 两点,与y 轴交于C,D 两点,点E 为⊙G 上一动点,CF⊥AE 于点F.当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为.11.如图,在Rt△ABC 中,∠C=90°,AC=6,BC=8,动点P 从点A 开始沿边AC 向点C 以每秒1 个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2 个单位长度的速度运动,过点P 作PD∥BC,交AB 于点D,连接PQ.点P,Q 分别从点A,C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t≥0).求在整个运动过程中线段PQ 的中点M 所经过的路径长.【参考答案】1. C2. 7 43. 34. 25. 10 1036. 47. 3+ 138. 29. 4 - π 10. 311. 22 3π5。
几何最值及路径长(讲义和习题)含答案
几何最值及路径长(讲义)➢ 课前预习1. 如图,A ,B 为定点,P 为直线l 上一动点,若点P 恰好使AP +BP 最短,请画出点P 的位置.提示:①分析定点(A ,B ),动点(P 在直线l 上动),不变特征 ②以l 为对称轴利用轴对称进行转化 ③由“两点之间,线段最短”确定位置2. 如图,A ,B 为定点,MN 为直线l 上一可以移动的线段,且MN 长度固定,若点M 恰好使AM +MN +BN最短,请画出点M 的位置. 提示:①分析定点(A ,B ),动点(M ,N 在l 上动,且MN②先平移BN ,使平移后的点N 与M 重合,将其转化为问题1 ③以l 为对称轴,利用轴对称进行转化 ④由“两点之间,线段最短”确定位置3. 如图,∠AOB =60°,点P 在∠AOB 的平分线上,OP =10 cm ,点E ,F 分别是∠AOB 两边OA ,OB 上的动点,当△PEF 的周长最小时,点P 到EF 的距离是_________. 提示:①分析定点(P ),动点(E 在OA 上动,F 在OB 上动),不变特征②分别以OA ,OB 为对称轴,将P 对称过去,得到P 1,P 2③连接P 1P 2,由“两点之间,线段最短”确定位置,进而求解P 到EF 的距离.➢ 知识点睛1. 几何最值问题的处理思路PFO ABEll①分析定点、动点,寻找不变特征;②若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标.基本定理:两点之间,线段最短(已知两个定点)垂线段最短(已知一个定点、一条定直线)三角形三边关系(已知两边长固定或其和、差固定)过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦常用模型、结构示例:①轴对称最值模型ll求PA+PB的最小值,求|PA-PB|的最大值,使点在线异侧使点在线同侧l固定长度线段MN在直线l上滑动,求AM+MN+BN的最小值,需平移BN(或AM),转化为AM+M B′解决.②折叠求最值结构AMA'NB C求BA′的最小值,转化为求BA′+A′N+NC的最小值(利用A′N+NC为定值).2.解决路径长问题的思路①分析定点、动点,寻找不变特征;②确定运动路径;通过“起点、终点、特殊点”猜测运动路径,并结合不变特征进行验证.③设计方案,求出路径长.➢精讲精练1.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的坐标为(3,,点C的坐标为(12,0),点P为斜边OB上一动点,则PA+PC的最小值为___________.2.如图,在矩形ABCD中,AB=4,BC=8,E为CD边的中点.若P,Q为BC边上的两动点,且PQ=2,则当BP=_______时,四边形APQE的周长最小.QP ED C B A3. 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是_______.A'D CBNMA4. 如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A′,当CA′的长度最小时,CQ 的长为_______.QE PABDCBPD AC5. 如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A′处,折痕所在直线同时经过边AB ,AD (包括端点),设BA′=x ,则x 的取值范围是______.BADC6. 如图,E ,F 是正方形ABCD 的边AD 上的两个动点,且满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H ,连接DH .若正方形的边长为2,则DH 长度的最小值是_______.F DEAH GB C7. 如图,△ABC ,△EFG 均是边长为2的等边三角形,点D 是边BC ,EF 的中点,直线AG ,FC相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是__________.GM F ED CBAG第7题图 第8题图8. 如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点.若⊙O 的半径为7,则GE +FH 的最大值为_____.9. 如图,在平面直角坐标系中,已知点A (1,0),B (1-a ,0),C (1+a ,0)(a >0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC =90°,则a 的最大值是_________.10. 如图,边长为2的正方形ABCD 的两条对角线交于点O ,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A ′BCD ′.设A ′C ,BD ′交于点O′,若旋转了60°,则点O 运动到点O′所经过的路径长为_________.OO'D'A'DC BA11. 如图,在等腰Rt △ABC 中,AC =BC=点P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是____________.C AB12. 已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接DE ,以DE 为边在DE 右侧作等边三角形DEF .设△DEF 的中心为O ,则点E 由点B 向点A 运动的过程中,点O 运动的路径长为_______.13.如图,点A 是第一象限内横坐标为AC ⊥x 轴于点M ,交直线y =-x 于点N .若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.当点P 从点O 运动到点N 时,点B 运动的路径长是_____________.【参考答案】➢课前预习1.图略.2.图略.3. 5 cm➢精讲精练1.2. 43.14.75.2≤x≤86.17.18.21 29. 610.3π11.π12.13.几何最值及路径长(习题)➢例题示范例1:如图,在矩形ABCD 中,AB =12,AD =3,E ,F 分别为AB ,CD 上的两个动点,则AF +FE +EC 的最小值为________.EFDCB A【思路分析】所求目标是AF +FE +EC 的最小值,属于最值问题. ① 分析定点、动点,寻找不变特征.A ,C 为定点,E ,F 为动点,且点E 在定线段AB 上动,点F 在定线段CD 上动. ② 由定点、动点的特征判断为轴对称最值模型.作定点A 关于定直线CD 的对称点A ′,作定点C 关于定直线AB 的对称点C ′.根据对称可知,A ′F =AF ,C ′E =CE ,所求问题转化为求A ′F +FE +C ′E 的最小值,根据“两点之间,线段最短”,连接A ′C ′,线段A ′C ′的长度即为最小值.③ 判断所求最值为线段A ′C ′的长,设计方案求解.根据勾股定理,A ′C ′=15,即最小值为15.3333123A例2:如图,已知AB =10,点C ,D 在线段AB 上,且AC =BD =2.P 是线段CD 上的一动点,分别以AP ,PB 为边在线段AB 的同侧作等边三角形AEP 和等边三角形PFB ,连接EF ,设EF 的中点为G .当点P 从点C 运动到点D 时,点G 移动的路径长为___________.【思路分析】 ①分析不变特征.在点P 运动的过程中,两个三角形始终为等边三角形不变,点G 为EF 的中点不变,线段AB 的长度不变. ②猜测运动路径.分别选择点P 在起点C 、终点D 时的图形,结合已知图中点G 的位置,猜测路径为线段,如图1、图2.图1 图2 ③验证运动路径.猜测运动路径是线段,且平行于AB ,只需证明点G 到线段AB 的距离为定值即可,故分别过点E ,F ,G 作AB 的垂线.图3,可证GH 为梯形EMNF 的中位线,1()2GH EMFN =+;因为△APE 和△BPF 均为等边三角形,故EM FN PM+=)PN AB +=,可确定GH 为定值,点G 的运动路径为平行于AB 的线段.图3④设计方案计算路径长.补全,得图形4,可知QECF 为平行四边形,则G 1为QC 中点,同理可知G 2为QD 中点,故1211(1022)322G G CD ==--=.➢ 巩固练习1. 如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC上有一点P ,使PD +PE 最小,则这个最小值为( )第1题图 第2题图2. 如图,已知正方形ABCD 的边长为3,点E 在AB 边上且BE =1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是_____. 3. 如图,在菱形ABCD 中,∠A =60°,AB =3,⊙A ,⊙B 的半径分别为2和1,P ,E ,F 分别是边CD ,⊙A 和⊙B 上的动点,则PE+PF 的最小值是_________.PBOAQ第3题图第4题图4. 如图,在Rt △AOB 中,OA =OB =O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O的一条切线PQ (点Q 为切点),则PQ 长度的最小值为_________.5. 将一张宽为4 cm 的长方形纸片(足够长)折叠成如图所示的图形,重叠部分是一个三角形,则这个三角形面积的最小值是_______.AB C6. 动手操作:在矩形纸片ABCD 中,AB =5,AD =13.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P ,Q 也随之移动.若限定点P ,Q 分别在AB ,AD 边上移动,则点A ′在BC 边上可移动的最大距离为_______________.B CA'A D Q P B CA D7.如图,在△ABC中,∠ACB=90°,AC=6,BC=2,点A,C分别在x轴、y轴上.当点A在x轴上运动时,点C随之在y轴上运动,则在运动过程中,点B到原点的最大距离为_________.8.如图,已知直线334y x=-与x轴、y轴分别交于A,B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB.则△PAB面积的最大值是__________.9.如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止.连接EM,过M作EM的垂线交射线BC于点F,连接EF.若P是MF的中点,则在点E运动的过程中,点P运动的路径长为_________.E10.如图,在△ABC中,∠ACB=90°,AB=5,BC=3.P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是_____.B'PCB A11. 如图,木棒AB 的长为2a ,斜靠在与地面OM 垂直的墙壁ON 上,且与地面的倾斜角(∠ABO )为60°.当木棒A 端沿NO 向下滑动到A',B 端也随之沿直线OM 向右滑动到B',若AA a '=,则木棒的中点P 随之运动的路径长为________.NA12. 如图,正方形ABCD 的边长为2,将长为2的线段EF 的两端放在正方形的相邻两边上同时滑动.如果点E 从点A 出发,按A →B →C →D →A 的方向滑动到点A 为止,同时点F 从点B 出发,按B →C →D →A →B 的方向滑动到点B 为止,则在这个过程中,线段EF 的中点M 经过的路径所围成的图形面积为_________.13. 如图,以G (0,1)为圆心,2为半径的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为_________.➢ 思考小结处理几何最值问题关键是要找到不变特征,然后借助不变特征来对所求目标进行转化. 几何最值问题中的常见不变特征:①所求目标为几条线段长的和最小,且这些线段端点中含有定点;常考虑通过对称后利用线段最短求解.②所求目标为线段最长或最短,条件为两线段长之和不变或两线段长之差的绝对值不变;常考虑利用三角形三边关系求解.③直角三角形中斜边长度固定,常考虑直角三角形斜边中线等于斜边的一半.④图形变化,但始终是矩形、菱形、平行四边形;考虑相关对角线性质如何与定点、定线、定线段长配合.比如,平行四边形中,对角线交点为定点,则可以尝试把对角线长度转化为对角线一半的长度来进行研究.你还能尝试总结出其他特征吗?【参考答案】1. C2. 923. 34.5. 8 cm 26. 47.38.21 29. 210.111.12aπ12.4-π13.3π。
几何最值问题解法一教师版
几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1. (2012山东济南3分)如图,∠ MON=9° ,矩形ABCD勺顶点A B分别在边OM ON上,当B在边ON上运动时,A随之在边OMk运动,矩形ABCD勺形状保持不变,其中AB=2, BC=1,运动过程中,点D到点O的最大距离为【】A. 2 1B. 5C.竺5D. 55 2【答案】AO【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。
【分析】如图,取AB的中点E,连接OE DE OD∙/ ODC OE+DE•••当OD E三点共线时,点D到点O的距离最大,1此时,∙∙∙ AB=2 BC=1, •OE=AEdAB=1O2 DE= AD2 AE212 12 2 , •OD的最大值为: 2 1 O故选A O例2. (2012湖北鄂州3分)在锐角三角形ABC中,BC=4j2 , ∠ ABC=45 , BD平分∠ ABC M πN分别是BD BC上的动点,贝U CM+M的最小值是▲ C【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA上截取BE=BN连接EM∙∙∙∠ ABC的平分线交AC于点D,∙∙∙∠ EBM∠NBM在厶AME与^ AMN 中,I BE=BN,∠ EBM∠ NBIVl BM=BM•••△ BME2^ BMN( SASO ∙ ME=MNlA CM+MN=CM-≥CE又∙∙∙CM+M有最小值,∙当CE是点C到直线AB的距离时,CE取最小值。
2018年专题10 (几何)最值问题(含详细答案)【范本模板】
专题10 几何最值问题【十二个基本问题】1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()A.错误!B.11cm C.13cm D.17cm第1题第2题第3题第4题2.已知圆锥的底面半径为r=20cm,高h=20,15cm,现在有一只蚂蚁从底边上一点A 出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________.3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2B.2.2C.2。
4D.2。
54.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10B.8C.5错误!D.65.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角错误!处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=错误!=5时,求蚂蚁爬过的最短路径的长.(3)在(2)的条件下,求点错误!到最短路径的距离.6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P1、错误!分别在OA、OB上,求作点错误!、错误!使错误!的周长最小,连接OP,若OP=10cm,求错误!的周长.7.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.第7题第8题第9题8.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=错误!点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.9.如图,⊙O的半径为1,弦AB=1,点P为优弧错误!上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()A.错误!B.错误!C.错误!D.错误!10.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF ∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.11.如图,抛物线l交x轴于点A(-3,0)、B(1,0),交y轴于点C(0,-3).将抛物线l 沿y轴翻折得抛物线错误!.(1)求错误!的解析式;(2)在错误!的对称轴上找出点P,使点P到点A的对称点错误!及C两点的距离差最大,并说出理由;(3)平行于x轴的一条直线交抛物线错误!于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.12.(2016﹒朝阳)小颖在学习“两点之间线段最短"查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=P A,同时∠APB+∠APD=120°+60°=180°,∠ADP +∠ADE=180°,即B、P、D、E四点共线,故P A+PB+PC=PD+PB+DE=BE.在△ABC 中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>P A+PB+PC,即点P到三个顶点距离之和最小.13.问题提出(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示).问题探究(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.问题解决:(3)①如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P 的坐标.②如图4,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4错误!,若对角线BD⊥CD 于点D,请直接写出对角线AC的最大值.14.如图所示,已知抛物线y=a(x+3)(x-1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=错误!与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B 出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒错误!个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?答案1.平面展开---最短路径问题解:如图所示:∵长方体的底面边长分别为2cm和4cm,高为5cm.∴P A=4+2+4+2=12(cm),QA=5cm,∴PQ=错误!=13cm.故选:C.2.解:设扇形的圆心角为n,圆锥的顶为E,∵r=20cm,h=错误!∴由勾股定理可得母线l=错误!=80cm,而圆锥侧面展开后的扇形的弧长为2×20π=错误!∴n=90°即△EAA′是等腰直角三角形,∴由勾股定理得:AA’=错误!=错误!.答:蚂蚁爬行的最短距离为错误!.故答案为:错误!.3.解:连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴错误!=错误!即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2。
几何最值问题参考标准答案
几何最值问题一.选择题(共6小题)1.(2015•孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC 的中点,点P为BD上一点,则PE+PC的最小值为()==3,.2.(2014•鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()=40MN==50.MN=MQ+QP+PN=BQ+QP+AP=50.=503.(2014秋•贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()4.(2014•无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为()AB=AD=BC==ADE==OA=AD=.5.(2015•鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是().EF=MN=,EF=MN=,延长=,=,PC=,PDC=.6.(2015•江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为()DP=BGAD=BD=AB=3CE=CD=2PD=BG最大值为.二.填空题(共3小题)7.(2014•江阴市校级模拟)如图,线段AB的长为4,C为AB上一动点,分别以AC、BC 为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是2.xxx(8.(2012•河南校级模拟)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上两个动点,且PQ=2,当BP=4时,四边形APQE的周长最小.9.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.AB=1OH=AO==﹣上运动当故答案为:三.解答题(共1小题)10.(2015•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是6.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简),CD=4+2==2;+2(或不化简为+2(或不化简为。
几何最值与路径长(讲义及答案)
OC
Dx
第 1 题图
第 2 题图
2. (2020 荆门)在平面直角坐标系中,长为 2 的线段 CD(点 D 在点 C 右侧)在 x 轴
上移动,A(0,2),B(0,4),连接 AC,BD,则 AC+BD 的最小值为( )
A. 2 5
B. 2 10
C. 6 2
D. 3 5
3. (2019 锦州)如图,在矩形 ABCD 中,AB=3,BC=2,M 是 AD 边的中点,N 是 AB
是( )
y
A.3 C. 7
2
B. 41 2
D.4
P QC
A
OBx
12. 如图,边长为 6 的等边三角形 ABC 中,E 是对称轴 AD 上的一个动点,连接 EC,将 线段 EC 绕点 C 逆时针转 60°得到 FC,连接 DF.则在点 E 运动过程中,DF 的最小 值是________.
A
E
B D
C
9. 如图,E,F 是正方形 ABCD 的边 AD 上的两个动点,且满足 AE=DF.连接 CF 交 BD 于点 G,连接 BE 交 AG 于点 H,连接 DH.若正方形的边长为 2,则 DH 长度的最小 值是_________.
A EF D H G
A
E F
B
C
BD
C
第 9 题图
第 10 题图
10. (2020 鄂尔多斯)如图,在等边△ABC 中,AB=6,点 D,E 分别在边 BC,AC 上,
边上的动点,将△AMN 沿 MN 所在直线折叠,得到△A′MN,连接 A′C,则 A′C 的最
小值是________.
D
C
A1
A Q
M
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何最值及路径长(讲义)
➢课前预习
1.如图,A,B 为定点,P 为直线l 上一动点,若点P 恰好使
AP+BP 最短,请画出点P 的位
置.提示:
①分析定点(A,B),动点(P 在直线l 上动),不变特征
②以l 为对称轴利用轴对称进行转化
③由“两点之间,线段最短”确定位置
2.如图,A,B 为定点,MN 为直线l 上一可以移动的线段,且
MN 长度固定,若点M 恰好使AM+MN+BN 最短,请画出点
M 的位置.
提示:
①分析定点(A,B),动点(M,N 在l 上动,且MN 长度固
定),不变特征
②先平移BN,使平移后的点N 与M 重合,将其转化为问题 1
③以l 为对称轴,利用轴对称进行转化
④由“两点之间,线段最短”确定位置
3.如图,∠AOB=60°,点P 在∠AOB 的平分线上,OP=10 cm,
点E,F 分别是∠AOB 两边OA,OB 上的动点,当△PEF 的
周长最小时,点P 到EF 的距离是.
提示:
①分析定点(P),动点(E 在OA 上动,F 在OB 上动),不
变特征
②分别以OA,OB 为对称轴,将P 对称过去,得到P1,P2
③连接P1P2,由“两点之间,线段最短”确定位置,进而求
解P 到EF 的距离.
1
➢知识点睛
1.几何最值问题的处理思路
①分析定点、动点,寻找不变特征;
②若属于常见模型、结构,调用模型、结构解决问题;
若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.
转化原则:
尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标.
基本定理:
两点之间,线段最短(已知两个定点)
垂线段最短(已知一个定点、一条定直线)
三角形三边关系(已知两边长固定或其和、差固定)
过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦
常用模型、结构示例:
①轴对称最值模型
求PA+PB 的最小值,求|PA-PB|的最大值,
使点在线异侧使点在线同侧
固定长度线段MN 在直线l 上滑动,求AM+MN+BN 的最小值,需平移BN(或AM),转化为AM+MB′解决.
②折叠求最值结构
求BA′的最小值,转化为求BA′+A′N+NC 的最小值(利用
A′N+NC 为定值).
2.解决路径长问题的思路
①分析定点、动点,寻找不变特征;
②确定运动路径;
通过“起点、终点、特殊点”猜测运动路径,并结合不变特
征进行验证.
③设计方案,求出路径长.
➢精讲精练
1.如图,在平面直角坐标系中,Rt△OAB 的直角顶点A 在x
轴的正半轴上,顶点B 的坐标为(3,),点C 的坐标为(
1
,
2
0),点P 为斜边OB 上一动点,则PA+PC 的最小值为
.
2.如图,在矩形ABCD 中,AB=4,BC=8,E 为CD 边的中点.若
P,Q 为BC 边上的两动点,且PQ=2,则当BP= 时,四边形APQE 的周长最小.
3
3.如图,在边长为2 的菱形ABCD 中,∠A=60°,M 是AD 边的
中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.
4.如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,
BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,
A 的对应点为A′,当CA′的长度最小时,CQ 的长为.
5.如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片
折叠,使顶点A 落在BC 边的A′处,折痕所在直线同时经过边A B,A D(包括端点),设BA′=x,则x 的取值范围是.
6.如图,E,F 是正方形ABCD 的边AD 上的两个动点,且满足
AE=DF.连接CF 交BD 于点G,连接BE 交AG 于点H,连接DH.若正方形的边长为2,则DH 长度的最小值是.
7.如图,△ABC,△EFG 均是边长为2 的等边三角形,点D 是
边BC,EF 的中点,直线AG,FC 相交于点M.当△EFG 绕
点D 旋转时,线段BM 长的最小值是.
第7 题图第8 题图
8.如图,A B是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=
30°,点E,F 分别是AC,BC 的中点,直线EF 与⊙O 交于G,H两点.若⊙O 的半径为7,则GE+FH 的最大值为.
9.如图,在平面直角坐标系中,已知点A(1,0),B(1-a,0),
C(1+a,0)(a>0),点P 在以D(4,4)为圆心,1 为半径的圆上运动,且始终满足∠BPC=90°,则a 的最大值是.
10.如图,边长为2 的正方形ABCD 的两条对角线交于点O,把
BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时
正方形ABCD 随之变成四边形A′BCD′.设A′C,BD′交于点
O′,若旋转了60°,则点O 运动到点O′所经过的路径长为
.
2 3
11. 如图,在等腰 Rt △ABC 中,AC =BC = 2 ,点 P 在以斜边 AB
为直径的半圆上,M 为 PC 的中点,当点 P 沿半圆从点 A 运动至点 B 时,点 M 运动的路径长是
.
12. 已知等边三角形 ABC 的边长为 4,点 D 是边 BC 的中点,点E
在线段 BA 上由点 B 向点 A 运动,连接 DE ,以 DE 为边在DE 右侧作等边三角形 DEF .设△DEF 的中心为 O ,则点 E 由点 B 向点 A 运动的过程中,点 O 运动的路径长为
.
13. 如图,点 A 是第一象限内横坐标为2 的一个定点,AC ⊥x
轴于点 M ,交直线 y =-x 于点 N .若点 P 是线段 ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点 P 在线段 ON 上运动时, A 点不变,B 点随之运动.当点 P 从点 O 运动到点 N 时,点B 运动的路径长是
.
5
【参考答案】 ➢ 课前预习
1. 图略.
2. 图略.
3. 5 cm
➢ 精讲精练
1. 31 2
2. 4
3. 7 -1
4. 7
5. 2≤x ≤8
6. -1
7.
3 -1 8.
21 2 9. 6
10. π
3 11. π
12.
13. 2
4 3 3
2。