电磁感应、电磁场理论习题课共31页文档
电磁感应-麦克斯韦电磁场理论
dB dt
导体
• 涡电流的机械效应(磁阻尼摆) • 涡电流的热效应
电磁灶
第24页 共48页
§13.4 自感和互感
13.4.1 自感 • 自感现象
因回路中电流变化,引起穿 过回路包围面积的全磁通变 化,从而在回路自身中产生感 生电动势的现象叫自感现象. • 自感系数
B I, 又 Ψ B Ψ I
1 12
2 21
• 互感系数
I1 I2
21 N221 M21I1
M12 M21 M 单位: 亨利(H)
M 称为互感系数简称互感.
12 N112 M12I2
第29页 共48页
• 互感电动势
根据法拉第电磁感应定律:
21
dΨ 21 dt
(M
dI1 dt
I1
dM dt
)
若M 保持不变
12
B
E内
E感 半 径 Oa Oc 0
o
E外
Oac Oa ac Oc ac
Rh
通过 Oac 的磁通量:
a
E内 b
c
Φm
B dS
S
B(SOab
S扇)
B(3
3 π R2) 12
dΦm 3 3 π R2 dB a () , c ( )
dt
12
dt
第22页 共48页
例题9. 某空间区域存在垂直向里且随时间变化的非均匀磁
场B=kxcost. 其中有一弯成角的金属框COD,OD与x轴重
合, 一导体棒沿x方向以速度v匀速运动. 设t =0时x =0, 求框
内的感应电动势. 解: 设某时刻导体棒位于l 处
y B
C
任取 dS ydx x tan dx
高中物理(人教版)选修1-1课后练习 3-1 电磁感应现象 word版含解析
第三章电磁感应一、电磁感应现象课时训练12电磁感应现象1.关于磁通量,下列说法中正确的是()A.通过某一平面的磁通量为零,该处磁感应强度不一定为零B.通过某一平面的磁通量的大小,可以用通过这个平面的磁感线的条数的多少来形象地说明C.磁感应强度越大,磁通量越大D.磁通量就是磁感应强度答案解析:磁感应强度由磁场决定,而磁通量不仅与磁场有关,还与面积及所研究面积与磁场方向的夹角有关,所以A项正确,而C、D错.2.关于感应电流,下列说法中正确的是()A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线圈的磁通量发生变化,线圈中也没有感应电流D.只要穿过闭合电路的磁通量发生变化,电路中就一定有感应电流答案解析:产生感应电流的条件有两个:一是电路必须闭合,二是有磁通量变化,所以A、B选项不正确.3.图中能产生感应电流的是()答案解析运动过程中磁通量不变化在运动的过程中穿过线圈的磁通量始终是零,所以B、C正确.4.(2013·广东学业水平测试模拟)如图所示,一闭合矩形导线框在一有界匀强磁场中运动,则在下列图示时刻线框内能产生感应电流的是()答案解析:只有闭合线圈内磁通量发生变化,才能产生感应电流、B、C中磁通量不发生变化,只有D 产生感应电流.5.某部小说中描述一种窃听电话:窃听者将并排在一起的两根电话线分开,在其中一根电话线旁边铺设一条两端分别与耳机连接的导线,这条导线与电话线是绝缘的,如图所示.下列说法错误的是()A.不能窃听到电话,因为电话线中电流太小B.不能窃听到电话,因为电话线与耳机没有接通C.可以窃听到电话,因为电话中的电流是恒定电流,在耳机电路中引起感应电流D.可以窃听到电话,因为电话中的电流是随声音发生变化的电流,在耳机电路中磁通量发生变化引起感应电流答案解析:电话中的电流大小和方向都随时间变化,因此电话线周围产生变化的磁场,通过耳机这个闭合回路的磁通量发生变化,产生感应电流.6.下列实验现象,属于电磁感应现象的是()答案解析、B、D中有电源,是电生磁,而电磁感应是磁生电,所以C对.7.在一段时间里,法拉第记下了大量实验失败的日记,然而他却一如既往,没有放弃追求,坚信既然“电能生磁”,那么“磁也一定能产生电”.正是在这种执着的追求中,1831年法拉第终于获得了成功.他制作了两个线圈,分别绕在铁环上,一个线圈与电池连接,另一个线圈的两端用一根铜线连接起来,这根铜线的下方放有一枚小磁针.法拉第在实验中发现,当电路接通或断开的刹那间,小磁针都发生微小摆动,而在电流稳定不变时,即使所通电流很大,小磁针也不发生任何摆动.这就是人类发现电磁感应现象的最初实验,它是物理学上一个重要的里程碑.问题:小磁针偏转是什么原因导致的?为什么电流稳定不变时小磁针不偏转?法拉第磁生电实验示意图答案:感应电流的磁场使小磁针偏转.电流稳定时铁环中的磁通量不发生变化,在无电源的线圈中不能产生感应电流.8.如图所示,电吉他的弦是铁磁性物质,易被永磁体磁化.当弦振动时,线圈中产生感应电流,感应电流输送到放大器、喇叭,把声音播放出来.请解释电吉他是如何产生感应电流的,弦能否改用尼龙材料?答案:当被磁化的弦振动时,会造成穿过线圈的磁通量发生变化,所以有感应电流产生;弦不能改用尼龙材料,因为尼龙材料不会被磁化,当弦振动时,不会造成穿过线圈的磁通量发生变化,不会有感应电流产生.。
哈工大-大学物理-习题课-电磁感应和电磁场理论的基本概念-2010.7.9
设单位长度电缆的自感为L,则单位长度电缆储存的磁能也可 设单位长度电缆的自感为 , 表示为
由方程
µ0I 2 1 R 1 2 2 LI = + ln R 2 4 4 π 1
µ0 1 R 2 可得出 L = + ln 从能量出发,求解自感系数 2 4 R π 1
10cm
或
dϕ 2 dB ei = = πr = π ×(10×10−2 )2 ×0.1 dt dt
= π ×10−3 = 3.14×10−3V
(3) 根据欧姆定律,圆环中的感应电流为 根据欧姆定律, ei π −3 −3
Ii = R = 2 ×10 =1.57×10 A
× × × × × × × × × × × ×
电场的电力线是同心圆, 且为顺时针绕向。 因此, 电场的电力线是同心圆 , 且为顺时针绕向 。 因此 , 圆环上 任一点的感生电场,沿环的切线方向且指向顺时针一边。 任一点的感生电场 , 沿环的切线方向且指向顺时针一边 。 其大小为
1 dB 1 E旋= r = ×10×10−2 ×0.1 2 dt 2
3、 在图示虚线圆内的所有点上,磁感 、 在图示虚线圆内的所有点上, 应强度B为 应强度 为 0.5T,方向垂直于纸面向里 , , 方向垂直于纸面向里, 且每秒钟减少0.1T。虚线圆内有一半径 且每秒钟减少 。 的同心导电圆环, 为 10 cm 的同心导电圆环,求: (1)圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向 (2)整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小
在圆柱与圆筒之间的空间距轴线r处 取一半径为 、厚为dr、 在圆柱与圆筒之间的空间距轴线 处,取一半径为r、厚为 、 单位长度的共轴薄壁圆柱壳、 单位长度的共轴薄壁圆柱壳、薄壁圆柱壳内磁能密度
电磁感应 电磁场和电磁波(附答案)讲课稿
电磁感应电磁场和电磁波(附答案)一 填空题1. 把一个面积为S ,总电阻为R 的圆形金属环平放在水平面上,磁感应强度为B 的匀强磁场竖直向下,当把环翻转︒180的过程中,流过环某一横截面的电量为 。
答:RBS 2。
2. 一半径为m 10.0=r 的闭合圆形线圈,其电阻Ω=10R ,均匀磁场B垂直于线圈平面。
欲使线圈中有一稳定的感应电流A 01.0=i ,B 的变化率应为多少 1s T -⋅。
答:1s T 18.3-⋅。
3. 如图所示,把一根条形磁铁从同样高度插到线圈中同样的位置处,第一次动作快,线圈中产生的感应电动势为1ε;第二次慢,线圈中产生的感应电动势为2ε,则两电动势的大小关系是1ε2ε答:>。
(也可填“大于”)4. 如图所示,有一磁感强度T 1.0=B 的水平匀强磁场,垂直匀强磁场放置一很长的金属框架,框架上有一导体ab 保持与框架边垂直、由静止开始下滑。
已知ab 长m 1.0,质量为kg 001.0,电阻为Ω1.0,框架电阻不计,取2s m 10⋅=g ,导体ab 下落的最大速度1s m -⋅。
答:1s m 10-⋅。
5. 金属杆ABC 处于磁感强度T 1.0=B 的匀强磁场中,磁场方向垂直纸面向里(如图所示)。
已知BC AB =m 2.0=,当金属杆在图中标明的速度方向运动时,测得C A ,两点间的电势差是V 0.3,则可知B A ,两点间的电势差ab VV。
答:V 0.2。
6. 半径为r 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流t I I ωcos 0=,则围在管外的同轴圆形回路(半径为R )上的感生电动势为 。
答:t nI r ωωμsin π002。
7. 铁路的两条铁轨相距L,火车以v的速度前进,火车所在地处地磁场强度在竖直方向上的分量为B。
两条铁轨除与车轮接通外,彼此是绝缘的。
两条铁轨的间的电势差U为。
答:BLv。
8. 图中,半圆形线圈感应电动势的方向为(填:顺时针方向或逆时针方向)。
(精品讲义)电磁感应1-4word版含答案2
4楞次定律[学习目标] 1.正确理解楞次定律的内容及其本质.2.掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式.3.能够熟练运用楞次定律和右手定则判断感应电流的方向.一、右手定则将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向.二、楞次定律感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化.[即学即用]1.判断下列说法的正误.(1)感应电流的磁场总是与引起感应电流的磁场方向相反.(×)(2)感应电流的磁场可能与引起感应电流的磁场方向相同.(√)(3)感应电流的磁场总是阻止引起感应电流的磁通量的变化.(×)2.如图1所示,光滑平行金属导轨PP′和QQ′,都处于同一水平面内,P和Q之间连接一电阻R,整个装置处于竖直向下的匀强磁场中.现垂直于导轨放置一根导体棒MN,MN向右运动时,MN中的电流方向为________,MN向左运动时,MN中的电流方向为________.(填“M→N”或“N→M”)图1答案N→M M→N一、右手定则[导学探究]如图2所示的电路中,G为电流计(已知电流由左接线柱流入,指针向左偏,由右接线柱流入,指针向右偏),当ab在磁场中切割磁感线运动时,指针的偏转情况如下表,根据指针的偏转情况,判断电流方向.图2导体棒ab的运动指针偏转方向回路中电流方向(俯视)ab段中电流方向向右向左________从b向a向左向右________从a向b答案顺时针逆时针[知识深化]右手定则的理解(1)适用范围:闭合电路的部分导体切割磁感线产生感应电流方向的判断.(2)右手定则反映了磁场方向、导体运动方向和电流方向三者之间的相互垂直关系.①大拇指所指的方向是导体相对磁场切割磁感线的运动方向,既可以是导体运动而磁场未动,也可以是导体未动而磁场运动,还可以是两者以不同速度同时运动.②四指指向电流方向,切割磁感线的那部分导体相当于电源.例1下列图中表示闭合电路中的一部分导体在磁场中做切割磁感线运动的情景,导体ab上的感应电流方向为a→b的是()答案A解析在导体ab上,A中电流方向为a→b,B中电流方向为b→a,C中电流方向为b→a,D中电流方向为b→a,故选A.二、楞次定律[导学探究]根据如图3甲、乙、丙、丁所示进行实验操作,并填好实验现象.图3甲乙丙丁条形磁铁运动的情况N极向下插入线圈S极向下插入线圈N极向上拔出线圈S极向上拔出线圈原磁场方向(“向上”或“向下”)____________________穿过线圈的磁通量变化情况(“增________________加”或“减少”)感应电流的方向(在螺线管上方俯视)逆时针顺时针顺时针逆时针感应电流的磁场方向(“向上”或________________“向下”)原磁场与感应电流磁场的方向关系________________请根据上表所填内容理解:甲、乙两种情况下,磁通量都________,感应电流的磁场方向与原磁场方向________;丙、丁两种情况下,磁通量都________,感应电流的磁场方向与原磁场方向________.答案向下向上向下向上增加增加减少减少向上向下向下向上相反相反相同相同增加相反减少相同[知识深化]楞次定律中“阻碍”的含义(1)“阻碍”的理解①谁阻碍——感应电流产生的磁场.②阻碍谁——阻碍引起感应电流的磁通量的变化.③如何阻碍——当原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同.④阻碍效果——阻碍并不是阻止,结果增加的还是增加,减少的还是减少.(2)“阻碍”的表现形式①从磁通量变化的角度看,感应电流的效果是阻碍磁通量的变化.②从相对运动的角度看,感应电流的效果是阻碍相对运动.例2关于楞次定律,下列说法正确的是()A.感应电流的磁场总是要阻碍引起感应电流的磁通量的变化B.闭合电路的一部分导体在磁场中运动时,必受磁场阻碍作用C.原磁场穿过闭合回路的磁通量增加时,感应电流的磁场与原磁场同向D.感应电流的磁场总是跟原磁场反向,阻碍原磁场的变化答案A解析感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,选项A正确;闭合电路的一部分导体在磁场中平行磁感线运动时,不受磁场阻碍作用,选项B错误;原磁场穿过闭合回路的磁通量增加时,感应电流的磁场与原磁场反向,选项C错误;当原磁通量增加时感应电流的磁场跟原磁场反向,当原磁通量减少时感应电流的磁场跟原磁场同向,选项D错误.三、楞次定律的应用楞次定律应用四步曲(1)确定原磁场方向;(2)判定产生感应电流的磁通量如何变化(增加还是减少);(3)根据楞次定律确定感应电流的磁场方向(增反减同);(4)判定感应电流的方向.该步骤也可以简单地描述为“一原二变三感四螺旋”.一原——确定原磁场的方向;二变——确定磁通量是增加还是减少;三感——判断感应电流的磁场方向;四螺旋——用右手螺旋定则判断感应电流的方向.例3(多选)如图4所示,闭合金属圆环沿垂直于磁场方向放置在有界匀强磁场中,将它从匀强磁场中匀速拉出,以下各种说法中正确的是()图4A.向左拉出和向右拉出时,环中的感应电流方向相反B.向左或向右拉出时,环中感应电流方向都是沿顺时针方向的C.向左或向右拉出时,环中感应电流方向都是沿逆时针方向的D.将圆环左右拉动,当环全部处在磁场中运动时,圆环中无感应电流答案BD解析将金属圆环不管从哪边拉出磁场,穿过闭合圆环的磁通量都要减少,根据楞次定律可知,感应电流的磁场要阻碍原磁通量的减少,感应电流的磁场方向与原磁场方向相同,应用右手螺旋定则可以判断出感应电流的方向是顺时针方向的,选项B正确,A、C错误;当圆环全部处在磁场中运动时,穿过圆环的磁通量没有改变,该种情况无感应电流,D正确.例4矩形导线框abcd与长直导线MN放在同一水平面上,ab边与MN平行,导线MN中通入如图5所示的电流,当MN中的电流增大时,下列说法正确的是()图5A.导线框abcd中没有感应电流B.导线框abcd中有顺时针方向的感应电流C.导线框所受的安培力的合力方向水平向左D.导线框所受的安培力的合力方向水平向右答案D解析直导线中通有向上且增大的电流,根据安培定则知,通过线框的磁场方向垂直纸面向里,且增大,根据楞次定律知感应电流的方向为逆时针方向,故A、B错误;根据左手定则知,ab边所受安培力方向水平向右,cd边所受安培力方向水平向左,离导线越近,磁感应强度越大,所以ab边所受的安培力大于cd 边所受的安培力,则线框所受安培力的合力方向水平向右,故C错误,D正确.1.(楞次定律的理解)根据楞次定律知,感应电流的磁场一定是()A.阻止引起感应电流的磁通量B.与引起感应电流的磁场方向相反C.阻碍引起感应电流的磁通量的变化D.与引起感应电流的磁场方向相同答案C解析感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,故选C.2.(楞次定律的应用)某磁场磁感线如图6所示,有一铜线圈自图中A处落至B处,在下落过程中,自上向下看,线圈中的感应电流方向是()图6A.始终顺时针B.始终逆时针C.先顺时针再逆时针D.先逆时针再顺时针答案C解析自A处落至题图虚线所示位置的过程中,穿过线圈的磁通量增加,由楞次定律知线圈中感应电流方向为顺时针,从题图虚线所示位置落至B处的过程中,穿过线圈的磁通量减少,由楞次定律知,线圈中感应电流方向为逆时针,C项正确.3.(楞次定律的应用)磁铁在线圈中心上方开始运动时,线圈中产生如图7所示方向的感应电流,则磁铁()图7A.向上运动B.向下运动C.向左运动D.向右运动答案B4.(右手定则的应用)(多选)闭合电路的一部分导体在磁场中做切割磁感线运动,如图所示,能正确表示磁感应强度B的方向、导体运动速度方向与产生的感应电流方向间关系的是()答案BC解析图A中导体不切割磁感线,导体中无电流;由右手定则可以判断B、C正确;D图中感应电流方向应垂直纸面向外.。
2020--2021物理粤教版选修1—1第2章 电磁感应与电磁场练习含答案
2020--2021物理粤教版选修1—1第2章电磁感应与电磁场练习含答案粤教版物理选修1—1第二章电磁感应与电磁场1、(双选)关于感应电流,下列说法中正确的是( )A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线圈的磁通量发生变化,线圈中也没有感应电流D.只要闭合电路的一部分导体做切割磁感线运动,电路中就一定有感应电流2、下列说法中正确的是()A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势越大C.线圈放在磁场越强的位置,产生的感应电动势越大D.线圈中磁通量变化越快,线圈中产生的感应电动势越大3、电磁场理论的建立,开拓了广泛的现代技术应用空间,促进了现代社会的发展.建立电磁场理论的科学家是()A.牛顿B.爱迪生C.爱因斯坦D.麦克斯韦4、(双选)如图所示,线圈M和线圈P绕在同一铁芯上,则()A.当合上开关S的瞬间,线圈P中没有感应电流B.当合上开关S的瞬间,线圈P中有感应电流C.当断开开关S的瞬间,线圈P中没有感应电流D.当断开开关S的瞬间,线圈P中有感应电流5、法拉第电磁感应定律可以这样表述:闭合电路中的感应电动势的大小() A.跟穿过这一闭合电路的磁通量成正比B.跟穿过这一闭合电路的磁通量的变化量成正比C.跟穿过这一闭合电路的磁通量的变化率成正比D.跟穿过这一闭合电路的磁感应强度成正比6、(双选)下列关于电磁场理论的说法,正确的有()A.电场会产生磁场B.磁场会产生电场C.周期性变化的电场产生周期性变化的磁场D.周期性变化的磁场产生周期性变化的电场7、(双选)如图所示,将一条形磁铁插入某一闭合线圈,第一次用0.05 s,第二次用0.1 s,设插入方式相同,下面的叙述正确的是()A.两次线圈中磁通量变化相同B.两次线圈中磁通量变化不同C.两次线圈中磁通量变化率相同D.两次线圈中磁通量变化率不相同8、关于电磁场和电磁波,下列说法中正确的是()A.电场和磁场总是相互联系的,它们统称为电磁波B.电磁场由发生的区域向远处的传播就是电磁波C.电磁波传播的速度总是3×108 m/sD.电磁波是一种物质,因而只可以在物质中传播9、(双选)当穿过线圈的磁通量发生变化时,则()A.线圈中一定有感应电流B.线圈中一定有感应电动势C.感应电动势的大小与线圈的电阻有关D.如有感应电流,则其大小与线圈的电阻有关10、(双选)下列说法中正确的是()A.电磁场是电场和磁场的统称B.在变化的电场周围一定存在磁场C.在变化的磁场周围一定存在变化的电场D.电磁场是周期性变化的电场和磁场交替产生而形成的不可分离的统一体11、如图所示,环形金属软弹簧套在条形磁铁的中心位置,若沿其半径向外拉弹簧,使其面积增大,则穿过弹簧的磁通量将如何变化?12、一个共有10匝的闭合矩形线圈,总电阻为10 Ω,置于水平面上.若穿过线框的磁通量在0.02 s内,由垂直纸面向里,从6.4×10-2 Wb均匀减小到零,再反向均匀增加到9.6×10-2 Wb.求在此时间内,线圈内导线中的感应电流的大小.13、磁场的磁感应强度B随时间t变化的四种情况如选项图所示,其中能产生电场的有________图所示的磁场,能产生持续电磁波的有________图所示的磁场.2020--2021物理粤教版选修1—1第2章电磁感应与电磁场练习含答案粤教版物理选修1—1第二章电磁感应与电磁场1、(双选)关于感应电流,下列说法中正确的是( )A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C.线框不闭合时,即使穿过线圈的磁通量发生变化,线圈中也没有感应电流D.只要闭合电路的一部分导体做切割磁感线运动,电路中就一定有感应电流CD[产生感应电流的条件是穿过闭合电路的磁通量发生变化,所以A错误,C、D正确;B中线圈不一定闭合,故B错误.]2、下列说法中正确的是()A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势越大C.线圈放在磁场越强的位置,产生的感应电动势越大D.线圈中磁通量变化越快,线圈中产生的感应电动势越大D[根据法拉第电磁感应定律知,线圈中感应电动势大小与磁通量变化快慢有关,与磁通量大小、磁通量变化的大小都无关,故D正确.]3、电磁场理论的建立,开拓了广泛的现代技术应用空间,促进了现代社会的发展.建立电磁场理论的科学家是()A.牛顿B.爱迪生C.爱因斯坦D.麦克斯韦D4、(双选)如图所示,线圈M和线圈P绕在同一铁芯上,则()A.当合上开关S的瞬间,线圈P中没有感应电流B.当合上开关S的瞬间,线圈P中有感应电流C.当断开开关S的瞬间,线圈P中没有感应电流D.当断开开关S的瞬间,线圈P中有感应电流BD[闭合开关S的瞬间,线圈M中有电流通过,电流产生磁场,穿过线圈P 的磁通量增大,线圈P中产生感应电流.断开开关S的瞬间,线圈M中电流消失,电流产生的磁场消失,穿过线圈P的磁通量减小,线圈P中产生感应电流.] 5、法拉第电磁感应定律可以这样表述:闭合电路中的感应电动势的大小() A.跟穿过这一闭合电路的磁通量成正比B.跟穿过这一闭合电路的磁通量的变化量成正比C.跟穿过这一闭合电路的磁通量的变化率成正比D.跟穿过这一闭合电路的磁感应强度成正比C[根据法拉第电磁感应定律可知,C正确.]6、(双选)下列关于电磁场理论的说法,正确的有()A.电场会产生磁场B.磁场会产生电场C.周期性变化的电场产生周期性变化的磁场D.周期性变化的磁场产生周期性变化的电场CD[本题是有关电磁场理论的概念题,要解决本题,关键在于理解电磁场理论的内容,尤其是“变化”两字.电磁场理论的内容:变化的电场(磁场)产生磁场(电场),所以只有C、D选项正确.]7、(双选)如图所示,将一条形磁铁插入某一闭合线圈,第一次用0.05 s,第二次用0.1 s,设插入方式相同,下面的叙述正确的是()A.两次线圈中磁通量变化相同B.两次线圈中磁通量变化不同C.两次线圈中磁通量变化率相同D.两次线圈中磁通量变化率不相同AD[两次插入过程中,线圈中磁通量的变化是相同的,但由于插入的时间不同,故磁通量的变化率不同,选项A、D正确.]8、关于电磁场和电磁波,下列说法中正确的是()A.电场和磁场总是相互联系的,它们统称为电磁波B.电磁场由发生的区域向远处的传播就是电磁波C.电磁波传播的速度总是3×108 m/sD.电磁波是一种物质,因而只可以在物质中传播B[电场和磁场相互激发并向远处传播,形成电磁波,故A错误,B正确;电磁波是一种物质,因而也可在真空中传播,且在真空中传播的速度最大,为3×108 m/s,故C、D错误.]9、(双选)当穿过线圈的磁通量发生变化时,则()A.线圈中一定有感应电流B.线圈中一定有感应电动势C.感应电动势的大小与线圈的电阻有关D.如有感应电流,则其大小与线圈的电阻有关BD[穿过线圈的磁通量发生变化时,一定产生感应电动势;若是闭合回路,才有感应电流,且感应电动势大小与电阻无关,感应电流大小与电阻有关.] 10、(双选)下列说法中正确的是()A.电磁场是电场和磁场的统称B.在变化的电场周围一定存在磁场C.在变化的磁场周围一定存在变化的电场D.电磁场是周期性变化的电场和磁场交替产生而形成的不可分离的统一体BD[根据麦克斯韦的电磁场理论,变化的电场周围一定存在磁场,变化的磁场周围一定存在电场;非均匀变化的电场周围一定存在变化的磁场,非均匀变化的磁场周围一定存在变化的电场;电磁场是周期性变化的电场和磁场交替产生而形成的不可分离的统一体.所以A、C错误,B、D项正确.]11、如图所示,环形金属软弹簧套在条形磁铁的中心位置,若沿其半径向外拉弹簧,使其面积增大,则穿过弹簧的磁通量将如何变化?[解析]注意弹簧面所在处存在两个方向的磁场,即磁铁的内磁场和外磁场,它们各自产生正负不同的磁通量,总的磁通量等于两者绝对值之差,当拉大弹簧面积时,内磁场的磁通量不变,而外磁场的磁通量却增大(穿过磁铁与弹簧间磁感线条数增多),故Φ=|Φ内|-|Φ外|应减小.[答案]磁通量减小12、一个共有10匝的闭合矩形线圈,总电阻为10 Ω,置于水平面上.若穿过线框的磁通量在0.02 s内,由垂直纸面向里,从6.4×10-2 Wb均匀减小到零,再反向均匀增加到9.6×10-2 Wb.求在此时间内,线圈内导线中的感应电流的大小.[解析]设垂直纸面向外为正方向,在0.02 s内,磁通量的变化ΔΦ=Φ2-(-Φ1)=Φ2+Φ1=9.6×10-2 Wb+6.4×10-2 Wb=0.16 Wb 根据法拉第电磁感应定律:E=n ΔΦΔt=10×0.160.02V=80 V根据闭合电路欧姆定律I=ER=8010A=8.0 A.[答案]8.0 A13、磁场的磁感应强度B随时间t变化的四种情况如选项图所示,其中能产生电场的有________图所示的磁场,能产生持续电磁波的有________图所示的磁场.[解析]根据麦克斯韦的电磁场理论,可以作出如下判断:甲图的磁场是恒定的,不能产生新的电场,更不能产生电磁波;乙图中的磁场是周期性变化的,可以产生周期性变化的电场,因而可以产生持续的电磁波;丙图中的磁场是均匀变化的,能产生恒定的电场,而恒定的电场不能再产生磁场,不能产生向外扩展的电磁场,因此不能产生持续的电磁波;丁图中的磁场是周期性变化的,能产生周期性变化的电场,能产生电磁波.[答案]乙丙丁乙丁。
电磁感应习题及答案
电磁感应习题及答案电磁感应习题及答案电磁感应是物理学中的一个重要概念,它描述了磁场和电场之间的相互作用。
在我们的日常生活中,电磁感应的应用无处不在,比如发电机、变压器等。
为了更好地理解电磁感应的原理和应用,我们可以通过一些习题来加深对该概念的理解。
1. 问题:当一个导体在磁场中运动时,会发生什么现象?答案:当一个导体在磁场中运动时,会产生感应电动势。
这是基于法拉第电磁感应定律,即当导体相对于磁场运动时,磁通量的变化会产生感应电动势。
这个现象被广泛应用于发电机的工作原理中。
2. 问题:一个线圈中的磁通量如何随时间变化?答案:线圈中的磁通量随时间变化可以通过法拉第电磁感应定律来描述。
根据该定律,当线圈中的磁场发生变化时,即磁通量随时间变化时,会在线圈中产生感应电动势。
这个现象也被应用于变压器的原理中。
3. 问题:什么是自感应?答案:自感应是指当一个电流通过一个线圈时,由于线圈本身的磁场发生变化而在线圈中产生的感应电动势。
根据自感应的原理,当电流发生变化时,线圈中会产生感应电动势,这个现象也被应用于电感器的工作原理中。
4. 问题:什么是互感应?答案:互感应是指当两个或多个线圈之间有磁场的相互作用时,在另一个线圈中产生的感应电动势。
根据互感应的原理,当一个线圈中的电流发生变化时,会在另一个线圈中产生感应电动势。
互感应的应用非常广泛,比如变压器就是基于互感应原理工作的。
5. 问题:什么是涡流?答案:涡流是指当一个导体在磁场中发生相对运动时,在导体中形成的环流。
涡流的产生是由于磁场对导体中的自由电子施加的洛伦兹力,使得电子在导体中形成环流。
涡流可以产生热量,因此在一些电器设备中需要采取措施来减小涡流的损耗。
通过以上几个习题及其答案,我们可以更加深入地了解电磁感应的原理和应用。
电磁感应是物理学中的一个重要概念,它不仅在我们的日常生活中有着广泛的应用,也在科学研究和工程技术领域起着重要的作用。
希望通过这些习题的讨论,能够帮助读者更好地理解电磁感应的概念和应用。
17_电磁场理论_电磁感应习题课
选择题_05图示单元十七 电磁场理论 1一 选择题01. 在感应电场中电磁感应定律可写成kL d E dL dtψ⋅=-⎰ ,式中k E 为感应电场的电场强度。
此式表明: 【 】(A) 闭合曲线L 上,k E处处相等; (B) 感应电场是保守力场;(C) 感应电场的电力线不是闭合曲线;(D) 在感应电场中不能像对静电场那样引入电势的概念02. 下列各种场中不是涡旋场为: 【 】(A) 静电场; (B) 稳恒磁场; (C) 感应电场; (D) 位移电流激发的磁场。
03. 下列各种场中的保守力场为: 【 】(A) 静电场; (B) 稳恒磁场; (C) 涡旋电场; (D) 变化磁场。
04. 对位移电流,有下述四种说法,请指出哪一种说法正确。
【 】(A) 位移电流是由变化电场产生的; (B) 位移电流是由线性变化磁场产生的; (C) 位移电流的热效应服从焦耳一楞次定律; (D) 位移电流的磁效应不服从安培环路定理。
05. 在圆柱形空间内有一磁感强度为B的均匀磁场,如图所示。
B的大小以速率/dB dt 变化.在磁场中有,A B 两点,其间可放直导线AB 和弯曲的导线AB ,则 【 】(A) 电动势只在直线型AB 导线中产生;(B) 电动势只在弧线型AB 导线中产生; (C) 电动势在直线型AB 和弧线型AB 中都产生,且两者大小相等; (D) 直线型AB 导线中的电动势小于弧线型AB 导线中的电动势。
06. 下列哪种情况的位移电流为零? 【 】(A) 电场不随时间而变化; (B) 电场随时间而变化; (C) 交流电路; (D) 在接通直流电路的瞬时。
二 填空题07. 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:填空题_09图示1) SD dS q ⋅=∑⎰ ; 2)m L dE dl dtΦ⋅=-⎰ ; 3) 0SB dS ⋅=⎰ ; 4) D L d H dl I dtΦ⋅=∑+⎰ 。
试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的。
第八章电磁感应 电磁场习题解答-感生电场习题之欧阳术创编
第八章电磁感应 电磁场习题解答8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为58.010sin100(Wb)t π-Φ=⨯,求在21.010s t -=⨯ 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成d d d d N t t εΦψ=-=- ,其中N ψ=Φ称为磁链. 解 线圈中总的感应电动势当21.010s t -=⨯ 时, 2.51V ε=.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以dIdt 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律d d t εΦ=- 来求解.由于回路处在非均匀磁场中,磁通量就需用Φ=S d ⋅⎰B S 来计算(其中B为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则d d S d x =,所以,总磁通量可通过线积分求得(若取面元d d dy S x =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式d d M l E M t=-求解. 解1 穿过面元dS 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 线圈与两长直导线间的互感为 当电流以d d It 变化时,线圈中的互感电动势为8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析 本题及后面几题中的电动势均为动生电动势,除仍可由d d tε=-Φ求解外(必须设法构造一个闭合回路),还可直接用公式()d l ε=⨯⋅⎰v B l 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势d ()d ε=⨯⋅v B l .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则即由于静止的 形导轨上的电动势为零,则ε =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量Φ==BS 常数.由法拉第电磁感应定律d d tε=-Φ可知,ε =0 又因 ε =εOP +εPO即 εOP =-εPO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律d d tε=-Φ 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()d l ε=⨯⋅⎰v B l 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得由矢量()⨯B v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势显然,εQO =0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()d l E =⨯⋅⎰B l v 求解,建立图(a )所示的坐标系,所取导体元d d l x =,该处的磁感强度02=I B xμπ.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式d S =⋅⎰B S Φ求得穿过该回路的磁通量,再代入公式d d tε=-Φ,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为 穿过回路的磁通量为回路的电动势为由于静止的形导轨上电动势为零,所以式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率dB dt为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如10.010T s dB dt-=⋅,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率dB dt 等)密切相关,即k S S d d t∂=-⋅∂⎰⎰B E l S .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆(若电场线是其他类型的曲线则与其对称性特点不符),同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0dB dt <时,电场线绕向与B 方向满足右螺旋关系;当0dB dt> 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , 2k k d dB d E 2r =d r dt dt εππ=⋅=⨯-⋅=-⎰⎰E l B S r >R , 22k k d dB d E r d R dt dt εππ=⋅=⋅=-⋅=-⎰⎰E l B S 由于0dB dt>,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此将r 、R 、dB dt的数值代入,可得514.010V m k E --=-⨯⋅ ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率dB dt为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由k d ε=⋅⎰E l 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0k d ⋅E l =,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有证2 由题8 -17可知,在r <R 区域,感生电场强度的大小2k r dB E dt= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向. 分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则12122M M I Φ== .虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径. 解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度002B I B N R μ=穿过小线圈A 的磁链近似为则两线圈的互感为(2)43.1410V A dI M dtε-=-=⨯ 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能212m W LI =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即m m V W w dV =⎰,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于22m B w μ=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用212m V LI w dV =⎰ 求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感2N S L l = ,电流稳定后,线圈中电流EI R =,则线圈中所储存的磁能为在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,34.17J m m m W w SL-==⋅ (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律(1)R t L I e R ε-=-,当电流稳定后,其最大值m I R ε=按题意122111222m LI LI ⎡⎤=⎢⎥⎣⎦,则2I R ε=,将其代入(1)R t L I e R ε-=-中,得8 -31 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即d c I I = .解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2d d d d S I j R =⋅=π⎰j S ,由此得位移电流密度的大小。
程守洙《普通物理学》(第5版)(上册)课后习题-电磁感应 电磁场理论(圣才出品)
第9章电磁感应电磁场理论9-1如图9-1所示,通过回路的磁感应线与线圈平面垂直,且指向图面,设磁通量依如下关系变化:φ=6t2+7t+1式中φ的单位为mWb,t的单位为s.求t=2时,回路中的感生电动势的量值和方向.图9-1解:由题意可知,回路中的感生电动势为:当时,电动势为:,方向为逆时针方向(即与设定的回路绕行t s2方向相反).9-2在两平行导线的平面内,有一矩形线圈,如图9-2所示.如导线中电流,随时间变化,试计算线圈中的感生电动势.图9-2解:根据题意建立坐标系,取坐标轴Ox,如图9-3所示.图9-3两电流在x处的磁感应强度大小为:,方向垂直纸面向里.取顺时针为回路的绕行方向,通过面元dS=l1dx的磁通量为:通过矩形线圈的磁通量为:矩形线圈中的感生电动势为:.9-3如图9-4所示,具有相同轴线的两个导线回路,小的回路在大的回路上面距离y 处,y远大于回路的半径R,因此当大回路中有电流,按图示方向流过时,小回路所围面积πr2之内的磁场几乎是均匀的.现假定y以匀速v=dy/dt而变化.(1)试确定穿过小回路的磁通量φ和y之间的关系;(2)当y=NR时(N为整数),小回路内产生的感生电动势;(3)若v>0,确定小回路内感应电流的方向.图9-4解:(1)根据导电线圈轴线上的磁感应强度分布,可得大回路在小回路处产生的磁感应强度:.由题意知,因此在距离大线圈平面y处的磁场可近似为均匀磁场,其次感应强度,则穿过小回路中的磁通量和y之间的关系为:.(2)小回路内产生的感生电动势为:.(3)由榜次定律可判定,当从上向下看时小回路的感应电流为逆时针方向.9-4PM和MN两段导线,其长均为10cm,在M处相接成30°角,若使导线在均匀磁场中以速度v=15m/s运动,方向如图9-5所示,磁场方向垂直纸面向内,磁感应强度为B=25×10-2T,问P、N两端之间的电势差为多少?哪一端电势高?图9-5解:由题意可知,P、N两端之间产生的动生电动势为:即运动导线上P端的电势高,N端电势低.9-5一均匀磁场与矩形导体回路面法线单位矢量e n间的夹角为θ=π/3(如图9-6),已知磁感应强度B随时间线性增加,即B=kt(k>0),回路的MN边长为l,以速度V向右运动,设t=0时,MN边在x=0处.求任意时刻回路中感应电动势的大小和方向.图9-6解:如图9-6所示,回路的面法线e n表明,回路的绕行方向为逆时针,则回路中感应电动势为:.又由题意知:则回路中感应电动势:方向由M指向N,即沿顺时针方向.9-6如图9-7所示,一长直导线通有电流,I=0.5A,在与其相距d=5.0cm处放有一矩形线圈,共1000匝.线圈以速度v=3.0m/s沿垂直于长导线的方向向右运动时,线圈中的动生电动势是多少?(设线圈长l=4.0cm,宽b=2.0cm.)图9-7解:由题意可知,线圈中的动生电动势为:.9-7如图9-8所示,导线MN在导线架上以速度V向右滑动.已知导线MN的长为50cm,V=4.0m/s,R=0.20Ω,磁感应强度B=0.50T,方向垂直于回路平面.试求:(1)MN运动时所产生的动生电动势;(2)电阻R上所消耗的功率;(3)磁场作用在MN上的力.图9-8解:(1)导线上产生的电动势为:.(2)电阻R上所消耗的功率为:.(3)由安培定理,可得回路中电流:导线MN上的安培力:,方向向左.9-8如图9-9所示,PQ和MN为两根金属棒,各长1m,电阻都是R=4Ω,放置在均匀磁场中,已知B=2T,方向垂直纸面向里.当两根金属棒在导轨上分别以v1=4m/s 和v2=2m/s的速度向左运动时,忽略导轨的电阻,试求:(1)两棒中动生电动势的大小和方向,并在图上标出;(2)金属棒两端的电势差;(3)两金属棒中点O1和O2之间的电势差.。
必修4电磁感应复习(知识点+经典例题+练习)
必修4电磁感应复习(知识点+经典例题+练习)知识点1. 磁感线和磁场强度:- 磁感线是描述磁场的一种方法,它从磁北极指向磁南极,形成一个闭合的曲线。
- 磁场强度是表示磁场强弱的物理量,单位是特斯拉(T)。
2. 紧密螺绕线圈的磁场:- 螺绕线圈中通有电流时,会产生一个磁场,其磁场按右手螺旋定则的方向确定。
- 磁场的强弱与线圈匝数、电流强度以及磁场位置有关。
3. 法拉第电磁感应定律:- 当一个闭合线路中的磁通量发生变化时,沿线路产生感应电动势。
- 感应电动势的大小与磁通量变化率成正比。
4. 楞次定律:- 磁通量的变化产生感应电动势,感应电动势会产生感应电流。
- 感应电流的方向使得产生的磁场抵消原始磁通量的变化。
经典例题1. 一个圆形线圈共有100匝,半径为2m,通过线圈的磁感应强度为0.5T,线圈内的磁场强度为:- 解:根据公式B = μ₀H,其中μ₀为真空中的磁导率,H为磁场强度,代入数值计算得到磁场强度为0.25T。
2. 一个螺绕线圈的匝数为2000匝,通有电流2A,线圈半径为0.1m,求线圈中的磁场强度:- 解:根据公式B = μ₀nI,其中μ₀为真空中的磁导率,n为线圈匝数密度,I为电流强度,代入数值计算得到磁场强度为4π×10⁻⁴T。
练1. 线圈A和线圈B之间相距较远,线圈A的磁通量在变化。
根据法拉第电磁感应定律和楞次定律,分析线圈B中会产生的电流方向和大小。
2. 一个圆形线圈的半径为0.5m,匝数为1000匝。
当通过线圈的磁感应强度为2T时,求线圈中的磁场强度。
以上是必修4电磁感应的复习文档,包含知识点介绍、经典例题和练习题。
希望对你的学习有所帮助!。
程守洙《普通物理学》(第6版)(上册)(课后习题详解 电磁感应、电磁场理论)【圣才出品】
9.2 课后习题详解一、复习思考题§9-1 电磁感应定律9-1-1 在下列各情况下,线圈中是否会产生感应电动势?何故?若产生感应电动势,其方向如何确定?(1)线圈在载流长直导线激发的磁场中平动,如图9-1-1(a )、(b );(2)线圈在均匀磁场中旋转,如图(c )、(d )、(e );(3)在均匀磁场中线圈从圆形变成椭圆形,如图(f );(4)在磁铁产生的磁场中线圈向右移动,如图(g );(5)如图(h)所示,两个相邻近的螺线管1与2,当1中电流改变时,试分别讨论在增加与减少的情况下,2中的感应电动势.图9-1-1确定可能产生感应电动势的情况答:根据法拉第电磁感应定律,通过回路所包围面积的磁通量发生变化时回路中将产生感应电动势,感应电动势的方向可用楞次定律来确定,据此:(1)无限长载流导线的磁场距直导线为x 处的磁感应强度为:①在(a)的情况下,虽然线圈各点的磁场各不相同,但是线圈内的总磁通量与线圈的位置无关,无论线圈如何运动都不发生变化,因此线圈中不会产生感应电动势.当然,从局部来看,线圈中垂直于直长导线的两条边框会因切割磁感应线出现电磁感应,但是产生的感应电动势的方向都是自下而上,对整个线圈回路来说感应电动势由于方向相反而抵消,整体为零;②在(b)的情况下,线圈向远离直长导线的方向运动,线圈内磁场随x距离的增加而变小,磁通量也变少,发生了变化,因此线圈中会产生感应电动势;通过楞次定律判断,感应电动势的方向为顺时针方向.(2)①(c)的情况,如图示所标定的两个位置通过线圈内的磁通量是不同的.实线位置,线圈平面与磁场方向垂直,通过线圈的磁通量最大,而虚线位置,线圈平面平行磁场方向,通过线圈的磁通量为零;因此当线圈旋转时线圈内的磁通量发生变化,产生感应电动势,其方向会随着线圈旋转所达到的位置发生变化相应改变,如图示所标定的由实线位置旋转到虚线位置时,通过线圈的磁通量变少,感应电动势的方向为顺时针方向;此后由虚线位置继续旋转时,感应电动势的方向为逆时针方向;②(d)的情况,与(c)完全相同;③(e)的情况,线圈运动时其平面始终垂直磁场方向,线圈内的磁通量始终保持不变,所以线圈中不会产生感应电动势;(3)如图(f)所示,当线圈从圆形变成椭圆形的过程中,线圈面积逐渐减小,所包围的磁通量也就变少,于是线圈中产生了顺时针方向的感应电动势;(4)如图(g)所示,当线圈向右移动时,由于磁场越来越弱,通过线圈的磁通量也越来越少,线圈中会产生感应电动势,感应电动势的方向从左向右看为逆时针方向;(5)在图(h)中,当螺线管1中电阻的滑动头向左滑动时,螺线管1中的电流逐渐增大,所激发的磁场逐渐增强,通过螺线管2的磁通量增加,所以在螺线管2中将会产生逆时针方向的感应电动势;相反,当螺线管1中电阻的滑动头向右滑动时,类比可知,在螺线管2中有顺时针方向的感应电动势产生.9-1-2 将一磁铁插入一个由导线组成的闭合电路线圈中,一次迅速插入,另一次缓慢地插入.问:(1)两次插入时在线圈中的感应电动势是否相同?感生电荷量是否相同?(2)两次手推磁铁的力所作的功是否相同?(3)若将磁铁插入一不闭合的金属环中,在环中将发生什么变化?答:(1)①感应电动势:由法拉第电磁感应定律可知,感应电动势的大小有线圈中磁通量的变化率决定,迅速插入磁通量的变化率比缓慢地插入要大,因而迅速插入产生的感应电动势要大一些;②感生电量:在相同时间内通过导线截面的电荷量与导线回路所包围的磁通量的变化值成正比,而与磁通量变化的快慢无关,设线圈的电阻为R,磁铁插入前后线圈中磁通量分别为和,则感生电荷量均是,因此产生的感生电荷量相同.(2)手推磁铁的力所作功的大小与感应电动势在这段时间内所作的功相等,即由于迅速插入时磁通量的变化率比缓慢插入时的大,因此迅速插入时手推磁铁的力所作的功要比缓慢插入时大.(3)当磁铁插入金属环时,金属环所在空间的磁场发生了变化(由弱到强),因而会产生感生电动势,在金属环上有感生电场的存在,但由于金属环没有闭合,所以没有感应电流产生.9-1-3 让一块很小的磁铁在一根很长的竖直铜管内下落,若不计空气阻力,试定性说明磁铁进入铜管上部、中部和下部的运动情况,并说明理由.答:(1)磁铁处于铜管上部时:铜管中将产生感应电流,此时磁铁速度较小,产生的感应电流较小,磁铁受到的阻力较小,因此磁铁仍然加速下落.(2)磁铁处于铜管中部时:感应电流随着磁铁下落速度的增大而增大,感应电流的磁场对下落磁铁的阻力也逐渐增大.竖直铜管足够长时,磁铁所受的重力和阻力的合力可在管内某处等于零.然后,磁铁以恒定速率速率下落.(3)磁铁处于铜管下部时:磁铁即将离开铜管,由于磁铁在管内的磁感应强度逐渐减小,磁铁的重力将大于感应电流的磁场对磁铁的阻力,因而磁铁将加速离开铜管.§9-2 动生电动势9-2-1 如图9-1-2所示,与载流长直导线共面的矩形线圈abcd作如下的运动:(1)沿x方向平动;(2)沿y方向平动;(3)沿xy平面上某一L方向平动;(4)绕垂直于xy平面的轴转动;(5)绕x轴转动;(6)绕y轴转动;问在哪些情况下矩形线圈abcd中产生的感应电动势不为零?图9-1-2 与载流直导线共面的运动线圈答:(1)穿过矩形线圈的磁通减少,感应电动势不为零;(2)穿过矩形线圈的磁通不变,感应电动势为零;(3)穿过矩形线圈的磁通减少,感应电动势不为零;(4)穿过矩形线圈的磁通发生变化,感应电动势不为零;(5)穿过矩形线圈的磁通发生变化,感应电动势不为零;(6)穿过矩形线圈的磁通发生变化,感应电动势不为零.9-2-2 如图9-1-3所示,一个金属线框以速度v从左边匀速通过一均匀磁场区,试定性地画出线框内感应电动势与线框位置的关系曲线.(a)一个金属线框以匀速通过一均匀磁场区(b)感应电动势与线框位置的关系曲线图9-1-3 进入和离开磁场区的金属线框内感应电动势的变化答:只有当金属线框正在进入和正在离开磁场区、且线框有一部分在磁场区外时才有可能产生感应电动势.进入磁场区时穿过金属线框的磁通量增加,离开磁场区时则减少,因此只在这两个时间段内产生的感应电动势方向相反.设金属线框的宽度为d,磁场区的宽度为L,则线框内感应电动势与线框位置的关系曲线如图9-3(b)所示.9-2-3 如图9-1-4所示.当导体棒在均匀磁场中运动时,棒中出现稳定的电场E=vB,这是否和导体中E=0的静电平衡的条件相矛盾?为什么?是否需要外力来维持棒在磁场中作匀速运动?图9-1-4 在均匀磁场中运动的导体棒答:(1)不矛盾.这是两个不同的情况:①当导体棒在均匀磁场中运动时,棒中出现稳定的电场E=vB是“非静电性场”,它反映的是单位正电荷受到的非静电力,即洛伦兹力.非静电性场的场强沿整个闭合电路的环流不等于零,等于电源的电动势.此时,导体内的电荷在包括非静电力场E=vB和库仑力场的作用下的平衡,不是单一的静电平衡.②导体在静电平衡时导体中等于零的电场是静止电荷激发的电场,静电场的场强反映。
高考物理一轮课件:专题12-电磁感应(含答案)
C组 教师专用题组
8.(2005北京理综,21,6分)现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关 如图连接,在开关闭合、线圈A放在线圈B中的情况下,某同学发现当他将滑动变阻器的滑动端 P向左加速滑动时,电流计指针向右偏转。由此可以判断 ( )
A.线圈A向上移动或滑动变阻器滑动端P向右加速滑动,都能引起电流计指针向左偏转 B.线圈A中铁芯向上拔出或断开开关,都能引起电流计指针向右偏转 C.滑动变阻器的滑动端P匀速向左或匀速向右滑动,都能使电流计指针静止在中央 D.因为线圈A、线圈B的绕线方向未知,故无法判断电流计指针偏转的方向
3.(2018课标Ⅲ,20,6分)(多选)如图(a),在同一平面内固定有一长直导线PQ和一导线框R,R在PQ
的右侧。导线PQ中通有正弦交流电i,i的变化如图(b)所示,规定从Q到P为电流正方向。导线
框R中的感应电动势
()
A.在t=
T 4
时为零
B.在t= T 时改变方向针方向
A.PQRS中沿顺时针方向,T中沿逆时针方向 B.PQRS中沿顺时针方向,T中沿顺时针方向 C.PQRS中沿逆时针方向,T中沿逆时针方向 D.PQRS中沿逆时针方向,T中沿顺时针方向
答案 D 金属杆PQ向右运动,穿过PQRS的磁通量增加,由楞次定律可知,感应电流在PQRS内 的磁场方向垂直纸面向外,由安培定则可判断PQRS中产生逆时针方向的电流。穿过T的磁通 量是外加匀强磁场和PQRS产生的感应电流的磁场的磁通量代数和,穿过T的合磁通量垂直纸 面向里减小,据楞次定律和安培定则可知,T中产生顺时针方向的感应电流,故D正确。
答案 C 杆MN向右匀速滑动,由右手定则判知,通过R的电流方向为a→c;又因为E=BLv,所以 E1∶E2=1∶2,故选项C正确。 考查点 右手定则、感应电动势。 思路点拨 左手定则和右手定则的选用:“左力右电”,左手定则是判断通电导体在磁场中所 受安培力的方向的,而右手定则是判断导体切割磁感线时产生感应电流的方向的,不要弄混。
大学物理课件电磁感应习题
S
B t
dV
dS
)
B dS 0
LH
S
dl
S(
j
D t
)
dS
二、典型例题
例1 一单匝圆形线圈位于 xoy平面内,其中心位于原
z B
点O,半径为a,电阻为R.平行
i
于z轴有一匀强电场,假设R i
O
y
极大,求:当磁场按照B=B0e-
a
t的关系降为零时,通过该
x
线圈的电流和电量.
解: 电路中维持电流的条件 是必须有电动势,求感应电
故线圈中既有感生电动
I
势,又有动生电动势.
在ABCD内取dS=l1dx的面元, 穿过该面元的磁通量为
d m B dS
m d m B dS
l2
A
B
v
a l1
D
C
x
dx
20xI l1dx
0 Il1 2
al2 dx 0 Il1 ln a l2
a x 2
a
故
i
d m dt
0 l1 2
m
当B降为零时,通过线圈截面的总电量为
q
idt
a 2 B0
m0
0
R
R
可见,q仅与磁通量的变化值m有关,而 与变化过程无关,即与B(t)无关.
例2 在截面半径为R的圆
柱形空间充满磁感应强度
为B的均匀磁场,B的方向 沿圆柱形轴线,B的大小随 时间按dB/dt=k的规律均 匀增加,有一长L=2R的金 属棒abc位于图示位置,求
ln
d a a
由自感系数的定义可得
L m
I 0l ln d a a
单位长度的自感系数为
高中物理第二章电磁感应与电磁场2-4麦克斯韦电磁场理论练习粤教版选修1-1【2019-2020学年度】
11.从地球向月球发射电磁波,电磁波在地球与月球间往返一次所用时间是多久?
参考答案
一、选择题
1.D 2.BD 3.C 4.C 5.A 6.B 7. AC
二、填空题
8.电磁波
9.不产生;产生;稳定;周期性(振荡)变化;磁
10.光速(c=3.00×108m/s)
三、计算题
11.2.56s
9.不变化的磁场周围(填“产生”或“不产生”)电场,变化的磁 场周围(填“产生”或“不产生”)电场;均匀变化的磁场周围产 生的电场;周期性(振荡)变化的磁场周围产生同频率的的电场,周期性的变化的电场周围也产生同频率周期性变化的场.
10.在真空中,任何频率的电磁波传播的速度都等于_____________________.
A.只要空间某个区域有振荡的电场或磁场, Nhomakorabea能产生电磁波
B.电磁波在任何介质中的传播速度均为3.00×108m/s
C. 电磁波中每一处的电场强度和磁感强度总是互相垂直,且与波的传播方向垂直
D.电磁波不能产生干涉,衍射现象
二、填空题
8.1864年,麦克斯韦提出电磁场的基本方程组(后称麦克斯韦方程组),并推断电磁波的存在,预测光是一种_________,为光的电磁理论奠定了基础。
B.电磁波在任何物质中传播速度相同,机械波波速大小决定于介质
C.电磁波、机械波都不会产生衍射
D.电磁波和机械波都不会产生干涉
6. 以下有关在真空中传播的电磁波的说法正确的是 [ ]
A.频率越大,传播的速度越大
B.频率不同,传播的速度相同
C.频率越大,其波长越大
D.频率不同,传播速度也不同
7. 下列关于电磁波的叙述中,正确的是[]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
45、自己的饭量自己知道。——苏联
电磁感应、电磁场理论习题 课
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬