路基冻害治理
多年冻土路基病害与整治
多年冻土路基病害与整治1、研究背景及内容全球多年冻土的分布面积约占陆地面积的23%,主要分布在俄罗斯、加拿大、中国和美国的阿拉斯加等地,其中我国的多年冻土分布面积高达215万km2,约占世界多年冻土分布面积的10%,占我国国土面积的22.4%,是世界上第三大冻土大国,而我国的多年冻土主要分布在青藏高原、大小兴安岭、祁连山、天山和阿尔泰山等高山、高纬度地区。
多年冻土是一种特殊土类。
其特殊性主要表现在它的性质与温度密切相关。
常规土类性质主要受颗粒的矿物和机械成分、密度和含水量控制,多半表现为静态特性。
多年冻土的性质除受上述因素控制以外,同时它的性质随温度和时间都在变化,表现为动态特性。
所以,冻土是一处对温度十分敏感且性质不稳定的土体。
随着全球气候的逐渐变暖和人类活动加强,多年冻土上限呈现出下降的趋势,多年冻土也在不断退化,对路基路面的稳定也造成了极大威胁。
关键的是冻土在冻结、融化时具有特殊的物理、力学性质变化。
土壤冻结时最重要的物理过程是水分的迁移和重分布,而冻土融化时最重要的是物理力学变化是结构、强度的急剧衰减。
从而在冻融循环中不断地改变着土层的形态结构和物理力学性质,导致工程建筑物基础的反复变化与破坏。
在大多数情况下,病害的发生发展过程与变化结果具有单向、不可逆的规律。
冻土地区筑路工作中的问题除了一般寒区道路中常见的路基冻胀、翻浆路面冻融松散低温开裂外,还有冻土地区特有的道路病害——路基热融沉降、边坡热融滑塌。
2、多年冻土路基病害2.1 热融沉降(陷)因气候转暖,或森林砍伐与火灾,或修建工程构、建筑物,特别是采暖型的建筑,破坏了原来地面的植被和热力动态,使其冻结与融化深度加大。
导致地下冰或富冰土层融化,于是在上覆土层自重及建筑物荷载作用下,地基土便出现沉降或深陷现象,从而使建筑物无法正常运行,甚至破坏。
这是多年冻土区各种建筑物遭受冻害的主要原因。
2.2 融冻滑塌在地下冰发育的斜坡上,由于路堑工程或挖方取土,或河流侵蚀坡脚,使地下冰层或富冰土层外露,而不断融化,造成上覆植被或土层失去支撑而不断下滑。
寒冷地区路基冻害整治
寒冷地区路基冻害整治摘要青藏铁路格尔木至拉萨段,全长1118公里,其中多年冻土区为632公里。
青藏铁路的修建关键问题是,冻土和路基冻害。
因此解决冻土与路基冻害对寒冷地区铁路的发展有着尤为重要的意义。
首先,我们总体分析了寒冷地区铁路路基冻害的主要分布地区、类型及形成的原因对铁路运营造成的影响。
其次介绍了冻土和冻胀是产生冻害的原因以及冻土的类型地温分区、危害。
最后提出了整治各种路基冻害的综合措施和新型材料EPS板。
关键词冻土(frozen soil) 、路基冻害(frost damage)、EPS材料序言第一章路基冻害的影响路基是轨道的基础,它承受着轨道及机车车辆的静荷载和动荷载,并将荷载向地基深处传递扩散。
它必须保持稳定、坚固,这样才能确保铁路高速、高密、高载的良好状态,不出现可能危及线路正常运营的形变。
路基冻害是寒冷地区铁路线路上分布很广,影响铁路安全及正常运营的常见病害,它与寒冷的气候有关,冰冻线能达到相当深度,又涉及到土的特性。
在我国东北、西北、西南以及刚刚建成通车的青藏铁路线上都存在这路基冻害,路基冻害因其分布广、时间长、工作量大、影响行车非常严重占首位。
哈局、沈局、呼局、兰局等管内大部分都铺设在冻土地带上,路基冻害较为严重。
重要表现形式为:在冬季路基土体冻结时,除路基纵断面在短距离地段内产生不均匀冻胀或路基发生冻结裂缝外,还存在这冰锥、冻胀丘、路基融沉及路基边坡滑坍等一些独特的表现形式。
冻害发生发展时期,一般从每年10月中旬起至次年7月中旬止完全回落完。
对铁路线路影响很大。
每年都会投入大量人力物力来处理路基冻害。
根据历年调查统计报告,沈局关内有冻害207处多,其中冻害高50mm~300mm的冻害6处、50mm 以下的冻害198处,冰锥3处。
冬季线路冻胀凸起冰锥流水成冰,冰水漫及线路影响行车。
为了预防冻害事故的发生,在冬季需派人看守观察组织刨冰,每年仅用于刨冰的工数就达5000多工日。
夏季路基融沉病害情况严重,在管内就有200多处严重下沉地段。
季节性冻土地区铁路路基冻害及整治措施研究
季节性冻土地区铁路路基冻害及整治措施研究摘要:季节性冻土地区的路基冻害问题会直接威胁铁路的安全行车。
本文重点分析研究季节性冻土地区铁路路基冻害的部位,以及如何采取相对应的方法进行整治和处理,以供参考。
关键词:季节性冻土;铁路路基冻害;整治措施1 季节性冻土地区铁路路基出现的冻害部位情况分析(1)表层冻害1.1.1 表层冻害的特点对表层冻害的特点进行分析,可以发现通常条件下隆起的高度能达到10毫米到40毫米。
对我国内蒙古某地区铁路局的具体数据进行分析,通常在11月份上旬开始出现表层冻害,最晚到12月份下旬这种冻害情况发展停止,在第2年的4月份到5月份产生回落。
出现这种表层冻害会产生一定的危害,可能会造成路肩纵向出现开裂、变形等问题,导致基床表层的土地强度无法达到要求,从而造成沉陷等问题的产生,导致坡面出现变形,造成土体强度下降。
1.1.2 表层冻害形成的原因1)由于基层填土的土质不均匀造成了基床出现强度不一的情况,因为列车行驶的过程中载荷较大,导致降水之后无法有效地排出,水分向基床主体当中渗入,这样就会导致基床当中的土体渗入水产生结冰等情况,在结冰之后体积出现膨胀。
另外水分又补给给冻结封面,这样水分会与冻前相比进一步增大,产生冻害等问题。
2)路基坡面的表层使用的主要是非匀质土,因为路基填料方面使用的各不相同,在建筑的过程中,夯填的密实度和涂层的厚薄也有一定的区别,这就造成填料的各个层次,填料的结构等相关条件又有一定的偏差,在冻期产生水分聚积、迁移等情况,造成冻胀量各不相同,最终产生坡面冻害。
3)气温会对土的冻结产生较大的影响,由于日照、地质、地形等各个方面的不同,路基在不同部位具有不同的热交换,在阴坡、阳坡各不相同,在土体冻结率方面也有较大的影响。
在土冻结的过程中,因为冻结速度以及表层土温各不相同,最终出现了冻害。
1.2 深层冻害路基深层冻害出现的时间相对较晚,一般在冻期后半段出现。
以内蒙古某地区铁路管理局地区进行分析,发现冻害主要产生在12月份中旬,在冻期末,这种动态情况才能得到控制,深层冻害的出现主要和地下水相关,如果没有地下水,也不会出现较大的影响,即使土质之间有一定的偏差,由于下部主要出现脱水等情况,也就不会产生非常严重的冻胀问题。
寒冷地区路基冻害原因分析和整治方法
寒冷地区路基冻害原因分析和整治方法福前线位于三江平原腹地,西起福利屯站,东至前进镇站,全长226.3KM。
路基土质不良,大部分为砂粘土、膨胀土、质泥土,渗透土差,地下水丰富,加之全年平均气温在零下3℃,属寒冷地区。
路基土质为冬季冻结、春季开始融化、夏季全部融化的季节性冻土,每年冬季冻害发生频繁。
所谓冻害,为土体在冻结过程中因冻胀所引起的病害。
由于土中的水在冻结过程中能向冷冻锋锋面迁移,并不断冻结排出冰层,且体积增大9%,即造成土体的冻胀,在融化时又会造成土体的沉陷,由于路基土体在融化过程中存在下卧隔水层还会产生翻浆冒泥等病害。
因此,路基冻害是严寒地区分布很广的线路病害之一,路基冻害的存在,不仅给线路养护工作带来一定的难度,而且制约了列车安全、提速、重载目标的实现,抑制了铁路跨越式发展战略的实施。
1前言冻害是我段以及哈尔滨铁路局管内分布很广,表现非常明显的季节性病害。
就我公司气候特点,冻害期一般为每年的10月份至次年5月份(见图1),从冻害的发展,可以将其分为三个阶段,即发生期(10月15日~12月15日),平稳期(12月30日)。
图1冻害发展变化图发生期,即冻害产生的阶段,这一阶段冻起高度很大,冻高呈正值快速增长,随着气温的降低冻高速度不断加剧,一般以11月15日~12月15日前后为变化迅速阶段,这一阶段对行车安全构成的威胁较大,但其是一个上涨过程,检查人员容易发现,可以及时进行处理。
平稳期,这一阶段气温相对较为稳定,冻害发展变化缓慢,其冻起高度相对稳定,对行车安全的危害较小,但需经常检查线路,以防天气的突然变化。
回落期,亦称冻融期。
这个阶段随着天气的转暖,冻害的变化呈负增长趋势,一般每年4月5日~5月30日左右为冻融速度最快阶段,因这一阶段轨道几何尺寸的变化不是很大,检查人员不易发现,因此这一阶段对行车安全的影响最大。
2路基冻害的分类2.1按纵向外部形态分⑴冻峰:路基面在短距离内的冻胀高度大于相邻两地段的冻胀高度所形成的凸起部分(图2)。
铁路路基冻害的原因及措施
铁路路基冻害的原因及措施1. 引言随着冬季的到来,铁路路基冻害问题日益凸显。
由于冻害对铁路路基的严重影响,给铁路运输安全和可靠性带来了极大的挑战。
因此,深入了解铁路路基冻害的原因,并采取相应的措施来减轻或消除冻害对铁路路基及其设施的影响,是当务之急。
本文将对铁路路基冻害的原因进行分析,并提出相应的措施。
2. 铁路路基冻害的原因铁路路基冻害的原因可以归结为以下几点:2.1 温度变化冬季的温度变化是导致铁路路基冻害的主要原因之一。
当温度下降到冰点以下时,路基中的水分会结冰,导致路基的体积膨胀而破坏路基的稳定性。
而在白天温度回升时,冻结的水分会融化,使路基产生收缩变形。
这种温度变化引起的收缩和膨胀循环会导致路基的裂缝和变形,进而影响铁路的安全运行。
2.2 土层质量土质是影响铁路路基冻害的另一个重要因素。
部分地区的土层质量较差,含有过多的粘性土和水分,导致其易于受冻融周期的影响。
当土层中的水分结冰时,粘性土的胶结力会变弱,土层的稳定性下降,从而引发路基的破坏。
2.3 排水问题不良的排水系统也是铁路路基冻害的重要原因之一。
如果路基的排水系统存在问题,如排水管道堵塞或排水槽设计不合理,将导致积水在路基表面积聚。
这些积水在夜间温度下降时容易结冰,形成冰块,严重影响路基的稳定性。
3. 铁路路基冻害的措施为了应对铁路路基冻害问题,可以采取以下措施:3.1 路基改造对于土质较差、易出现冻害的路段,可以进行路基改造。
首先,应加强路基的排水系统,确保路基下方的水分能够及时排除,避免冻害产生。
其次,可以采用加筋土工格栅等材料来增加路基的强度和稳定性,抵抗冻害的影响。
3.2 温度控制为了减轻冻害带来的影响,可以采取一些措施来控制铁路路基的温度。
例如,在寒冷季节里,可以通过铺设保温层或使用地下管道输送暖气,以提升路基温度,减少冻害的发生。
此外,定期对路基进行巡检,及时发现并修补路基的裂缝和变形,也是减轻冻害影响的一种措施。
3.3 技术创新随着科技的进步,一些新的技术和材料可以应用于铁路路基的建设和维护中,以减轻冻害的问题。
季节性冻土地区铁路路基冻害及其防治措施
季节性冻土地区铁路路基冻害及其防治措施摘要:在寒冷地区,在铁路路基中经常见到的一种问题就是冻害,特别是在北方区域的铁路路基只要到天气寒冷的时候就会出现冻害的情况,要紧的将对交通安全造成影响。
通常出现的是因为土壤特性的差异而导致的不平均,在道路上出现凹凸不平的形状各异冻包、双股异向冻起、单股侧向冻起等冻害状况,最后因为土壤融冻降低, 水份在土壤中从头分拨,导致路基翻浆冒泥、坡面塌陷、道碴陷槽以及路基沉没等路基问题,削弱了线路水平以及线路上部设备使用寿命,提高了许多的修理资金。
对于不同的冻害现象,经过认真探讨,运用完善的治理方法,保证交通的安全同行。
关键词:季节性冻土;路基冻害;措施引言我国国土辽阔,季节性冻土区占总面积的55%左右,而铁路路基遭受冻土区路基冻胀的破坏,严重威胁了铁路运营的安全。
无碴轨道在寒冷地区的高速铁路路基冻胀难题是一个世界性的问题,现阶段我国铁路行业没有丰富的经验可以借鉴,也没有精确的规范。
根据议事规则维护方式与沉降控制,高铁路基工后沉降要小于15mm,横向结构物交界处如路基、桥梁等工后沉降要小于5mm。
所以说高速铁路极为严格的管控路基变形,路基最大冻胀变形量要小于5mm,这极大的增加了设计和施工难度,同时要保证防冻技术对策的有效性。
1.季节性冻土地区铁路路基冻害部位分类(一)、表层冻害1、路基基床面平整度差,容易积水路基基床面凹凸不平,非常容易导致基床面出现积水的情况,由于基床表面有积水的浸入,土层含水量过大,超出了起始冻胀含水量,水分在表层中结冰,造成体积胀大,冻结锋面又有水分补充,水含量较冻前增加很多,导致发生冻害。
由路基机床面平整性差而造成的冻害,通常在50mm以内,基本在30-50mm之间。
道碴囊和道碴陷槽的深度决定了冻害的深度。
在我国东北一些铁路局管内,通常在路基机床30-50mm的深度范围内。
2、不是匀质特性的表层路基土体因为路堤自身的土质问题来路不一样,还有就是在进行填筑的时候压实的密实程度以及土层中厚与薄也是不一样的;路堑的土体因为是天然的,可是土的掩盖堆放层次以及厚度也完全不一样。
高寒地区多年冻土路基冻害成因及防治
高寒地区多年冻土路基冻害成因及防治1.前言我国多年冻土分布很广,较集中的地区是东北大小兴安岭和青藏高原。
前者是古代冰川沉积残留物,目前处于退化阶段,具有不稳定的特点。
后者是高海拔的近代大陆性气候的产物,至今仍在发展,具有不稳定的特点。
在铁路工程中,常常会遇到多年冻土区路基施工,例如汤林线、鹤岗线,地处小兴安岭地区,是我国多年冻土分布地区之一。
路基冻害是严寒地区,特别是多年冻土地区铁路线路上分布很广和常见的病害。
它与寒冷的气候有关,冰冻线能达到相当深度;又涉及到土的特性,所以有的土类对冰冻作用很敏感。
2.路基冻害的成因及主要影响因素冻害,是土体在冻结过程中因冻胀所引起的病害。
由于土中的水在冻结过程中能向冷冻峰面迁移、并不断冻结析出冰层,水结成冰,体积增大9%,使土颗粒相对位移而发生冻胀,路基就被抬起,即造成土体的冻胀。
土冻结时,还发生水分向冻结面转移,更使土的冻胀量增大,融化后则使土剧烈沉陷。
路基产生冻胀、下沉等冻害的影响因素是很复杂的,但主要可以归结为温度、土、水和压力四个要素。
四个要素中温度和压力的变化是外因,而土和水是内因。
这四个要素在建筑物的冻害过程中都是存在的。
其中值得提出的是水这个要素,路基土体中的水分是形成路基冻害的决定性因素。
水分迁移是冻土中主要的物理力学过程,是路基产生冻害的基本原因。
冻水结成冰,强度剧增;冰融成水,承载力几乎等于零。
水的这一特性决定了冻土有很高的承载力,而融土的承载力则大为降低。
3.路基冻害的整治在路基工程中除要做好排水系统外,常利用粗颗粒土作为填料或换填材料,来消除冻胀和融沉。
但从土的保温性能来说,土中小孔隙愈多,保温性能愈好,从这一点来考虑,粗颗粒则远不如细颗粒土好。
故在设计中要保持上限位置不变,防止冻害发生,拟利用天然土作为保温材料时,常利用细颗粒土,以减少工程量。
3.1路基冻害的调查冻害的调查工作应包括两大部分:一是从外貌方面调查研究冻害的发生发展过程,即冻害发生的部位、形状、长度、起落时间及发展过程;二是通过钻探、挖探等方法,观察土层的土质种类、厚度、水文地质、冻土结构等。
路基病态之冻害与变形防治
保温法(隔温)
• —— 在路基表层(顶面及侧沟)设置 保温隔热层,使表层下的土层不冻结或 减少冻法深度,推迟土体冻结,提高土 中温度,减少冻结深度,其目的是使冻 胀性土脱离冻结层或部分脱离冻结层, 从而消除或减少路基土体的冻胀。隔热 材料可采用草皮、树皮、炉渣、泡沫混 凝土、玻璃纤维以及其他一些合成材料。
路基冻害的防制措施
排水及隔水
——
由于水是形成路基冻害各因素中关键性的条件,因此控制土体中的水分,其目 的在于排除地表水或降低疏导地下水及隔断下层水以消除或减少路基土体的冻胀。 ①排水设备应具有抗冻、防冻的能力,不被冻融破坏,能发挥正常排水作用。其 类型有:地表排水 —— 应进一切可能使地表排水畅通,并能将大量的地表水 由桥梁及涵洞排走并防止地表水的下渗。具体措施有:侧沟、天沟、排水沟、跌 水、吊沟、排水槽、截水沟及取土坑排水等;基床排水——多数冻害的产生与基 床不平整有关。因此基床排水在防治冻害中也起着相当重要的作用。具体措施有: 基床整形(平整基床及路肩)、挖除道碴陷槽、路肩换渗水性土壤、加设横向盲 沟、砂井、纵向盲沟、横向排水管等;排除地下水——地下水的存在和变化,能 在土中引起静水压力和动水压力,并且是土中冻、融、干、湿循环而造成各种病 害的基本条件。排除地下水的基本措施有:截水明沟、渗水暗沟(截水渗沟、边 坡渗沟、支撑渗沟)、渗水隧洞、平孔排水、积水井等。②隔水措施 —— 是 指用各种材料制成的隔水层,使地下水不能透过,或隔断毛细水的补给,阻止冻 结时所产生的水分向上迁移作用,以减少或消除冻胀。具体措施有:粘土、耐寒 塑料薄膜、土工纤维防渗布、聚苯乙烯薄板、聚氯乙烯软板、树脂类注入、电硅 化层等。另外,用改性土如乳化沥青,或灌浆、矽化加固等方法。
换填法(改土)
• .—— 对于由土质不良而造成的路基冻害,且又有 换填条件时,常广泛使用换填法,其目的是换除路基 土体中的不均匀土质,或改良土的性质,以消除或减 少路基土体的冻胀。挖除冻害地段的冻胀性土,换以 物理力学性质较好的土。换土分两种情况:一种是换 填砂垫层,主要用于冻结深度内的土层是冻胀性较强 的土;另一种是换填与周围土层冻胀性相同的土,主 要用于因土质不同或不均匀的冻害地段。因此,换土 前应调查掌握冻害深度、冻胀土的有关物理力学性质 等,准确掌握冻包(坑)高度、长度及均匀冻起的高 度等,确定换土的土质、深度、宽度、长度及纵断面 形式等。采用的换填材料主要为粗砂、砾石等非冻胀 性材料或弱冻胀性材料。换填法防治路基冻害的效果 与换填的深度、换填材料的粉黏粒含量、换填材料的 排水条件、地下水位及补给条件有关。
公路冻害防治措施+施工方案
第八章防治道路冻害的主要措施(请编写大纲级别及小标题,此章为第八章)冻土是一种特殊的土体。
其成分、组构、热物理及物理力学性质均有着不同于一般土的许多特点。
冻土区的活动层中每年都发生着季节融化和冻结,并伴生有各种冻土现象,因此,在冻土地区筑路时产生了一系列特殊的工程地质问题和路基路面病害。
在冻土区筑路必须考虑的工程地质问题有融沉、冻胀和不良冻土现象等。
8.1(1)融沉(融沉为永久性冻土常见问题,对于湖南省内不常见,我省主要是冰灾的瞬时冻土或者季冻,在叙述中不要出现永久冻土等字样)融沉,也称融化下层(沉),指土中过剩冰融化所产生的水排出以及土体的融化固结引起的局部地面的向下运动,是自然(如气候转暖)或人为因素(如砍伐与焚烧树木、房屋采暖)改变了地面的温度状况,引起季节融化深度加大,使地下冰或多年冻土层发生局部融化所致。
在多年冻土上限附近的细粒土和有一定量细粒土充填的粗粒土中往往存在厚层地下冰,由于其埋藏浅,所以很容易受各种人为活动的影响而融化。
由厚层地下冰融化而产生的融沉是引起多年冻土区路基变形和破坏的主要原因。
融沉对道路的稳定性构成很大的威胁,成为冰冻地区尤其有永久冻土地区道路破坏的主要形成之一。
而且这种影响不但有自然的因素,也有人为的因素,即有意或无意的破坏了永久冻土,影响了道路的稳定。
常见的道路破坏现象有:冷季冻胀,引起的道路变形裂缝;暖季融沉,导致道路出现翻浆、冒泥、路基滑塌和路面沉陷。
在道路中,如何最大限度地减少对冻土层的影响和破坏,也是保证路基稳定的重要因素。
下面介绍几种处理冻土路基融沉的方法,供参考:1 .对于冻土层厚度较薄段落,采取挖除冻土层换填透水性材料,同时做好截排水工作;2. 对于冻土层较厚段落,主要从路基填料、基底处理两个方面考虑,拟采用如下措施;a .路基填料采用粗粒透水性好的材料,如砂砾、碎石渣等,以降低毛细水的影响,避免在路基内出现二次结冰冻胀;b.在石料比较丰富段落,路基基地清表后填筑50~80cm 厚块石,由于块石间存在空隙,从而可以防止路基内的热量传人地基中去,加上空气的流动加强了地基的蒸发作用,使基底的表面处于降温状态,同时相对空隙较大的块石基底又能抵御地基的冻胀变形,使冻胀应力能够得到释放,在冻土层发生融化时,块石的强度又能给予路基强有力的支撑,从而减少路基变形,而且它还是很好的毛细水隔断层,它的存在极大的改变了路基内冻土核的形态,减少了路基边坡发生裂缝的可能。
浅析铁路路基冻害成因和治理
浅析铁路路基冻害成因和治理概要:在冻胀原因上,冻胀是土质、水分、负温因素共同作用下导致的,不同地域因土质所含矿物成分不同,所导致的季节性冻害强弱也不同。
在线路施工完成后,采用适当措施进行科学合理的降水及排水处理,以有效预防和减少冻害问题的发生。
京包线位于河套平原,地势低洼。
线路于建国初期就已修建,早期路基填土不符合规范要求。
而影响路基和道床冻害的主要因素为土、水、温度和力。
道碴和粒径大于0.1mm的颗粒土是不冻胀的,但当土中粒径小于0.05mm的粒径含量超过15%时,路基道床就可能出现冻害;路基道床内含水量大于起始冻胀含水量时,即开始冻胀,特别是地下水位对路基道床的冻胀影响很大,地下水位愈高愈严重。
环境温度的冷却速度和梯度变化对路基道床冻胀也有影响。
一、不同部位产生冻害原因1.表层冻害。
(1)路基基床面不平整,易积水。
因水分渗入基床表层,土层含水量增大超过了起始冻胀含水量是,表层中水结冰,体积膨胀的同时,水分又向冻结锋面补给,水分比冻前增加较大,并形成冻害。
由于路基基床面不平整而产生的冻害很少有超过50mm的,一般在30mm-50mm间。
冻害形成的深度因道碴陷槽或道碴的深度不同而不等。
在呼和浩特铁路局管内,一般都产生在路基基床面下30mm-50mm。
(2)路基土体的表层为非匀质。
由于路堤土质来源不同,且在填筑时土层厚薄和压实密度实度也不同;路堑土体虽然是自然形成的,但土的覆盖堆积厚度及层次也是不完全相同的。
在冻期经水分迁移、聚集时,由于这些土质、结构、层次等条件的不同,其聚流量也不尽相同,产生的冻胀量也不等,从而形成冻害。
由于土质不同,而产生单侧冻起。
(3)气温影响形成冻害。
气温随着地形、土质、日照及植被的不同其热变换不同,同时对土中的冻结速率的影响也不同。
在土冻结时,由于表层土温及冻结速率的不同因而其水分迁移的聚流量和冻胀量便不同,产生冻害。
2.深层冻害深层冻害表现的大小与地下水位的高低有关。
铁路路基冻害分析及整治
铁路路基冻害分析及整治铁路路基冻害分析及整治【摘要】铁路路基冻害与寒冷气候有关是多年冻土地区铁路线路上分布很广和常见病害。
在低温季节冰冻线能达到相当深度。
在上述地区的铁路路基由于基床土质、水和温度的不利组合。
基床土冻结引起线路在纵向上短距离或左右股道产生凹凸不平的不均匀冻胀而构成冻害。
路基冻害有着分布广、时间长、工作量大、影响行车安全及平稳性的程度严重等特点。
在哈局管内各种路基病害中占首位特别是哈局内线路基础有四、五十年的历史由于当时的技术人员对冻土的研究缺少经验施工时对冻土没有充分认识多采用普通的施工方法致使多年来一直普遍存在着不同程度的路基病害。
病害也呈现出多样化。
经常会出现冻胀、冻裂、路基下沉、路基边坡或路堑边坡坍塌等现象。
给线路的养护维修增加非常大的工作量。
路基冻害的存在不仅加大养护维修工作量。
影响了正常的维修工作。
加大了维修成本。
并由于其造成的线路状态的不稳定。
从而使线路质量下降。
直接影响行车安全。
对此我针对路基冻害的特点将冻害的成因冻胀过程及路基冻害的整治结合具体实例加以论述。
【关键词】路基病害整治方法线路两侧油井遍布楼房林立自然植被不同程度遭到破坏加之1998年__特大洪水影响地下水位升高线路标高相对降低。
路基长期处于浸泡状态。
(1)冻害概况自20__年12月30日起滨洲线部分区间无缝线路发生特大冻害据20__年4月统计滨洲线无缝线路上发生冻害1336处延长19.134公里其中:冻高51-毫米的大冻害发生80处延长1.300公里;冻害毫米及以上特大冻害共发生9处延长0.131公里这些冻害分布在滨洲线94公里无缝线路上占滨洲线总数34.4%最大冻高达270MM,最大日冻高平均为6MM线路发生冻害处所之多冻高之大冻害分布之广冻害变化之快都是前所末有的。
给线路养护维修带来极大难度对行车安全构成严重威胁。
滨洲线无缝线路冻害具体情况详见表一《冻害汇总表》冻高51MM及以上特大大冻害具体位置详见表二、表三《冻害登记表》 2、冻害产生的原因分析(1)路基填土为粘砂土砂粘土及盐碱土这些土的颗粒很小有较强的水化能力能吸附大量的结__;同时它们又具有一定的透水性使水分的转移能够实现这样在负温条件下土的大孔隙中先发生水的结晶这种冻晶体逐渐增大吸引自由水后便开始吸引结__随着冻晶体的增长冻结区内土粒的结__膜很快减薄从而增大了对水的吸引力造成了由非冻结区边界的水分迁移使水晶体进一步扩大水分相对集中形成冰夹层使土体冻胀加速。
公路路基冻害处理的技巧与应对
公路路基冻害处理的技巧与应对公路建设是国家基础设施建设的重要组成部分,公路的建设离不开路基的承载和支撑。
而冬季的严寒气候,却给公路路基带来了不小的挑战。
冻害是指路基、路面基层、路面面层、路基周边土体等处于冻融交替环境下所引起的地基变形和开裂破坏现象,亦即是因冰胀作用、流水侵蚀和物理化学反应等过程所引起的道路工程灾害。
为了保证公路的正常运行,必须要对公路路基冻害进行及时、有效处理。
下面就针对公路路基冻害处理的技巧与应对进行阐述。
一、认识冻害冻害是地面土层在冻融循环作用下发生的形变、破坏现象,主要包括以下几种类型:(1)冰胀:地下水在冻结时容积膨胀,土体随之受到压力,导致土体裂缝或者破坏。
(2)矿物物理破坏:有些矿物中的矿物结晶体积随着温度的下降而增大,从而造成土体破裂。
(3)侵蚀作用:在地下水不停侵蚀的过程中,由于渗流运动和毛管作用的影响,土粒很容易被冻起来,而形成孔隙度不同的层间更迭过程。
侵蚀土壤的冻害主要是由于土壤宏观结构的变化而引起的。
(4)不均匀沉降:当地基路基上面的土层被高速突然冻结,会使路基中的冻土层区域沉降,造成路基的不平整。
二、路基冻害的影响路基冻害对路面有着很大的影响,不仅会降低路面的承载能力,同时也会影响行车安全,具体表现如下:(1)路面破坏:路基的冻害使得路面边缘或者路基中的草皮和桥墩等处出现了坑洞或者断裂。
(2)路面塌陷:因为路面下方土壤结冰,形成了空洞,从而引起路面下沉。
(3)路面变形:随着冰胀的作用,路面会出现局部隆起,或者出现裂纹,影响路面行车平稳度。
(4)路基不稳定性增强:由于冻害作用,土体的受力特性发生变化,从而引起路基不稳定,导致整个道路结构失调。
三、公路路基冻害处理的技巧与应对已经发生路基冻害的路段,应该及时采取应对措施加以处理,以保障公路正常通行。
具体应对措施如下:(1)泼撒盐水:冻土的冻结温度和盐水的冰点降低剂作用使得盐水能溶解和渗透到土质中,从而防止地面结冰。
浅述公路路面路基冻害问题的解决方法
浅述公路路面路基冻害问题的解决方法引言在不良地质地区,比如季节性冻土地带,因为路基土中水分的结晶、融化作用,使路基土极易出现冻结变形和融化变形,从而导致路基土模量衰减,强度降低,对上层路面的明显作用为:水泥混凝土路面容易出现纵向开裂、横向挠曲、路面不均匀沉降、车辙、融沉鼓包等公路病害。
对水泥混凝土道路来说,路基路面的冻坏类型主要有两种:冻胀,融沉。
本文将详细分析融沉,冻胀的成因和影响因素。
1水泥混凝土路面路基冻坏原因1.1路基融沉成因在季节性冻土地区,尤其是存在冻胀性土壤的地段,因为冬季气温低,路基土中的水分因毛细作用向上汇集,凝聚成冰;春季气温回升,路基土中的结晶冰在气温和行车荷载产热的双重作用下融化成水,导致体积缩小,路基土空隙率增大,引起土体的体积压缩导致土体沉降。
当这部分路基土承受行车荷载时,融冰区的路基土发生排水固结作用,同样引起路基沉降。
国内外相关科研院所大量试验数据表明:在路基土中的结晶冰融化时,产生的绝对沉降量比单纯加载后的固结沉降量要大。
所以,在融化和行车荷载的双重作用下,路基的沉降量将更大,对路面路基的破坏也更为严重。
对水泥混凝土道路,下路基表层的融化速度要比路基下部的快,当下路基表层开始融化时,路基下部的土壤还处于冻结状态,从而,夹在两层中间的未发生融化的冻土层便起到了隔水作用,形成留冻土核。
此时,上部融化的水不能下渗或向两侧排出,存留在路基土的中间,加上路基土本身的自重以及形成荷载作用,形成较大的空隙水压力,引起路基路面整体强度降低,在行车荷载作用下,路面变形,严重影响行车舒适。
对水泥混凝土路面,因为冻土核的存在,会使水泥板块脱空,开裂从而导致路面完全破坏。
除了水,温度的耦合作用以外,行车荷载的振动作用同样对路基融沉有不利影响。
根据相关研究,当路基处于饱和或者过饱和状态时,在车辆荷载的周期性作用下,路基土的整体强度会持续降低,发生融沉现象,这称之为动力型道路融沉。
1.2路基冻胀成因在季节性冻土地区低温作用下,水泥道路的路基路面中所饱含的水分因为毛细作用从下部向上凝聚,在路基的顶部发生结晶作用,结晶完成后在低温的作用下开始产生冻结现象,此时,因为在低温区存在自由水,自由水也向冻结区域定向移动,导致结晶体加速生长。
浅谈路基冻害成因及预防整治措施
浅谈路基冻害成因及预防整治措施摘要:路基冻害是北方地区铁路分布较广,较为普遍的病害。
路基病害是由地下水或地表水,在冬季冻结后所产生的地表冻层,造成沿铁路线路纵向水平发生高低变化的病害,它直接危害行车安全。
冬季路基冻害严重影响了线路质量,增加了养护维修难度,本文就路基冻害的形成原因进行分析,结合整治冻害的实际工作,运用相关理论和现场维修经验, 探讨路基冻害的整治方法,希望能对今后的路基冻害整治工作有所参考。
关键词:路基;冻害;整治;成因;预防1 路基冻害的成因在我国北方严寒地区,由于当地气候与地理环境原因致使铁路路基冻害现象时有发生,极大地影响铁路运行安全。
冻害发生后,两股钢轨的高低会发生变化,两股钢轨同时冻起引起高低不良。
直线线路两股钢轨冻起错位时,形成三角坑水平病害。
(见图 1)。
曲线外股钢轨冻起改变了曲线外股钢轨正常的水平超高度,里股钢轨冻起造成曲线水平反超高病害。
其中直线条件下的水平、三角坑病害和曲线条件下的水平、反加高病害是造成机车车辆脱轨的重要原因。
引发路基冻害的主要成因大体可分为三方面,即土质的原因、土质中水的原因、外界温度原因。
现对原因分析如下:1.1土质的原因主要是指土质的尘土颗粒普遍较小,其土壤黏度较大,温度较低时会发生较大幅度的冻胀现象,土壤的颗粒越小其冻胀性越强,致使其土壤密度急剧下降,其土壤冻胀程度也随之增加,在冻胀至一定程度时,冻胀程度达到峰值。
当土壤中水含量较高时,加之温度较低,水逐渐结成冰晶体,土壤中的水凝结冻固,并在冻结的过程中产生冰冻层,众所周知水结成冰体积会变大,体积增大约9%,致使土壤颗粒逐步发生偏移现象,土壤内部发生冻胀。
1.2 土质中水的原因在温度处于零摄氏度时,土壤内部的水分处于冰水混合形态,温度持续下降,土壤中的水分随之冻结,冰晶增加水分减少,土壤内部冻胀程度发生剧增。
温度逐渐降低至某一临界点时,土壤内部冻胀程度逐渐放缓,最终逐渐停止,处于这一阶段的土壤冻胀程度最为严重。
高寒环境下铁路路基冻害成因及处治对策
设备管理与维修2021№3(下)率尤为重要。
防水板铺设施工与钢筋绑扎施工采用防水板钢筋铺设台车,可满足6m 宽幅防水板铺设,也可满足12m 钢筋一次性绑扎。
防水板钢筋铺设台车自带吊装系统和液压系统,可以自动铺展防水板。
防水板钢筋铺设台车整机作业遥控控制,自带纵向行走和横向平移功能。
相对于使用传统的钢筋铺设台车,使用新型防水板钢筋铺设台车,人工铺设防水板从3m 幅宽防水卷材改进为6m 幅宽防水板,且可以自动铺展,减少了防水板焊缝次数,提高防水板施工质量,减少作业人员,节省工作时间。
高速铁路隧道拱部衬砌采用数字化衬砌台车。
数字化衬砌台车安装有分层溜槽装置,可以做到自动分层分窗带压灌注。
数字化衬砌台车电脑系统可以做到可视化灌注液面,灌注方量统计。
数字化衬砌台车安装的高频气动振动器,振动范围广、深度大,与气囊堵头相配合,有效避免端头模板漏浆,使混凝土振捣密实。
数字化衬砌台车拱顶具备信号反馈和压力检测双重监测,确保拱顶灌满要求。
使用数字化衬砌台车可以更有效地控制衬砌施工质量,减少衬砌脱空现象。
根据电脑数据分析混凝土浇筑方量与浇筑时间,可以发现后续施工过程中的问题,及时进行调整。
4总结在高速铁路隧道施工过程运用机械化施工配套,能够很大程度提高施工效率以及施工质量,有效降低施工人员的施工难度以及施工强度,保障施工人员的生命安全。
因此,应注重研究机械化施工配套在高速铁路隧道施工过程的应用,充分发挥机械化施工配套作用价值,在保证高速铁路隧道整体质量的同时,促使高速铁路隧道工程能够更好更健康的发展。
参考文献[1]赵原野.机械化施工配套在高速铁路隧道施工中的应用[J ].工程建设与设计,2019(7):216-218.[2]张子川.机械化施工配套在高速铁路隧道施工中的应用[J ].科学技术创新,2019(10):122-123[3]宋洪超.高速铁路隧道机械化施工配套技术分析[J ].中国住宅设施,2018(2):111-112.[4]郭海坡.机械化施工配套在高速铁路隧道施工中的应用[J ].山西建筑,2013,39(26):144-146.〔编辑凌瑞〕0引言近年我国东北高寒地区高速铁路开通运营线路逐年快速增加,相继建设了长白铁路、哈佳铁路、京沈铁路等多条高速铁路,进一步促进了整个铁路网络的完善、安全和畅通。
北方严寒地区路基冻害整治
路基冻害是寒冷地区,铁路线路上分布很广和常见的病害。
它与寒冷的气候有关,冻结线能达到相当深度;又涉及到土的特性,因为有的土类对冰冻作用很敏感。
我们管内大部分线路都铺设在多年冻害地带之上,路基冻害较为严重。
主要表现形式为:在冬季路基土体冻结时,除路基(纵、横断面)在短距离地段内产生不均匀冻胀或路基发生冻结裂缝外,还存在着冰椎、冻胀丘、路基融沉及路基边坡滑坍等一些独特的表现形式。
冻害发生发展时期,一般从每年10月中旬起至次年5月中旬止全部回落完。
对铁路线路影响很大。
为确保行车安全,每年都必须投入大量人力物力用以处理路基冻害。
根据历年调查统计报告,管内现有冻害207处,其中冻害高度50mm~300mm的冻害6处、50mm以下的冻害198处,冰椎3处。
冬季线路冻胀凸起,冰椎则流水成冰,冰水漫及线路,影响行车,为了预防冻害事故的发生,在冬季需派人看守观察和组织刨冰,每年仅用于刨冰的工数就达5000多工日。
夏季路基融沉病害情况严重,在管内就有200多处严重下沉地段。
有的地段融沉很快,每年得抬道一次,全年累计下沉达200~300mm,情况严重的,如呼包线。
每年用于路基融沉抬道的砂石料数量达3万多立方米,使用的劳力有2万多工日。
第二节路基冻害成因一、道床冻害道床冻害冻起高度一般在25mm以内。
近年来,由于运量的增加和列车速度的提高,道床污染板结日趋严重,导致了道床冻害的数量逐年增多。
1、产生成因主要是道床污染引起的排水不良造成冻害。
1.1道碴本身的质量问题引起的道床污染。
由于我们管内道碴多以石灰岩为主,含少量的风化石。
按照《铁路碎石道碴》要求,石灰岩各项技术指标均达不到Ⅰ级道碴标准。
石灰岩属碳酸盐类,抗冲击、抗压碎等性能差,易碎粉尘遇水溶解形成胶汁,影响排水,导致冻害。
1.2列车运输引起的道床污染。
一是列车动载频繁冲击振动,使道碴相互磨擦,产生碎石粉末。
二是由于列车上的散装货物,如砂子、煤炭等货物散落而污染道床。
24-基床冻害整治
任务9.4 路基冻害整治
• (二)路基冻害整治 • 1、基本原则: • (1)深入调查分析冻害成因和规律是整治的基础。 • (2)必须以消除局部病害地段的冻害高度为目的。
这是非常重要的原则。 • (3)必须首先考虑排水,而后再考虑其它措施与
之配合。 • (4)要因地制宜、就地取材。
任务9.4 路基冻害整治
任务9.4 路基冻害整治
• (2)铺设炉渣保温层。 • 方法二:炉渣抬道。 • 炉渣通过多次抬道分层垫入枕底,将路基坑
面抬至需要的高度,使冻害段有保温层。适 于沼泽地区和常年积水的低路堤地段,以及 地表水较丰富、地下水位较高的浅路堑地段。
任务9.4 路基冻害整治
• (3)采用EPS材料整治基床冻害。 • 做法:双股铺设。EPS板规格
非均体等引起。 • 深层冻害:地下水位较高引起。
任务9.4 路基冻害整治
• (三)冻害整治原则 • 1、 目的 • 消除路基上冻害地段两相邻区段冻胀值的差值
(即冻峰、冻洼、冻阶)或使这差值在一定距离内 缓慢变化(即减少),使线路具有合乎要求的纵坡。 • 不能只是为了消除冻害处所的所有冻害值(冻害 高度与均匀冻胀高度)而不考虑该值与相邻区段 冻胀值的差别。
– 路基冻害分Βιβλιοθήκη (重点) – 路基冻害整治原则 – 路基冻害整治措施(难点)
任务9.4 路基冻害整治
• (一)概述 • 1、冻土:冬季冻结、春季溶化的土。 • 2、土的冻胀:土中的水在零度以下时冻结,形
成固体冰而使体积增大,便形成冻胀土。 • 3、路基冻害:在零度以下路基产生不均匀冻胀,
破坏线路纵、横断面正常状态的一种现象。水 是是产生冻害的原因。 • 4、冻害形式:
– 纵断面:冻峰、冻谷、冻阶; – 横断面:单侧、双侧、交错 。
路基冻害整治.李晶
水作用的治理原则
• 治理水因素以截排地表水、地下水、降低路基土体的含水 量为原则,使路基土体长期保持通风、干燥。
• 排水措施具体包括:基床排水——通过基床整形(平整基床及路肩)、 挖除道碴陷槽、路肩换渗水性土壤、加设横向盲沟、纵向盲沟、横 向排水管等排水;地表排水——通过修建侧沟、天沟、排水沟、排 水槽、截水沟等,尽一切可能使地表排水畅通,并将大量地表水由 桥梁及涵洞排走;排除地下水——通过截水明沟、渗水暗沟(截水 渗沟、边坡渗沟、支撑渗沟)、渗水隧洞等排水;隔水——利用塑 料薄膜、聚苯乙烯薄板、聚氯乙烯软板材料制成的隔水层或树脂类 注入等方式隔断毛细水的上升厦隔断冬季土冻结时所产生的水分向 上迁移。
温度因素治理措施
• 1)控制热传导 • 在工程中主要通过增加热阻的方式来达到控制热传导的目
的,这类方法主要由设置泥炭层、反扣塔头草、抬高路堤、 设置隔热板(EPS、PU板)。其中设置泥炭层、反扣塔头 草的方式由于耐久性差,已基本不采用,目前比较常用的 是抬高路堤和设置隔热层的方法。
温度因素治理措施
土因素治理措施
• 注盐应注意以下几点:
• (1)注盐时间应选择在雨季前以二季度为宜使注入道床内的盐能 被雨水溶解渗到路基内如过了雨季可将盐溶化后进行灌注。
• (2)注盐范围双股冻起时盐铺在整个轨枕盒及枕端外100mm以内 单股冻起时为冻起股枕端外100mm至未冻起股钢轨内侧150mm处 轨枕盒内。
温度因素治理措施
冻结点测试
2.0
1.0
土 0.0 体温-1.0100
度
(-2.0 )-3.0-4Leabharlann 0含水量20%600
1100
℃
-5.0
-6.0
时间(s)
路基冻害治理
摘要我国铁路发展迅速,正在向重载和高速发展,随着列车的提速,越来越多的既有线出现了病害情况,如路基病害。
路基的病害有多种,如翻浆冒泥、路基下沉、路基冻害等。
我国国土面积较大,冻土面积也大,在寒区修建的铁路因环境恶劣,出现了许多冻害,路基冻害主要有冻胀(主要为不均匀冻胀)、融沉和冻融翻浆。
水、温度、土质是路基产生冻害的三因素,治理路基冻害,可采取隔水、换土和隔温等措施。
本文通过阐述路基冻害产生的机理来采取不同的治理措施治理,具体措施有排水设施(如排水沟)、保温隔温设施(保温护道、片石通风路基结构、热棒路基结构)和换土措施,在青藏铁路上就采用了热棒路基。
又多年冻土地区不良地质较多,如冰锥、冰丘,可通过冻结沟或积冰坑防止冻害发生。
冻土地区的环境保护也是至关重要的,它能够减少路基冻害的发生和延长路基的使用寿命。
本设计针对冻土区路基病害的提供了一些治理措施,能有效的保证路基的稳定,不受破坏,可供同类工程借鉴。
关键词:路基冻害冻胀温度治理措施目录第1章绪论 (1)1.1 我国铁路发展现状及存在问题 (1)1.2 季节性冻土的分布及路基主要冻害 (2)1.3 国内外研究现状 (3)1.3.1 国外路基冻害研究现状 (3)1.3.2 我国路基冻害研究现状 (4)第2章路基冻害种类 (5)2.1 按外部表现特征分类 (5)2.2 按负温总量分类 (5)2.3 按产生部位分类 (5)2.3.1 道床冻害形成原因 (6)2.3.2 表层病害形成的主要原因 (6)2.3.3 深层冻害的形成 (7)第3章路基冻害的表现形式及其产生机理 (8)3.1 融沉病害 (8)3.2 冻胀病害 (8)3.3 冰害 (10)3.4 冻融翻浆 (10)3.5 铁路路基次生灾害 (11)第4章路基冻害防治措施 (13)4.1 水作用的机理及治理原则 (13)4.1.1 水作用机理 (13)4.1.2 治理原则 (14)4.2 排水系统 (14)4.2.1地表排水系统 (14)4.2.2 地下排水系统 (18)4.2.3 其它排水系统及方法 (22)4.3 温度对路基冻害的影响及治理措施 (26)4.3.1 温度与路基冻害的关系 (26)4.3.2 温度在路基中的传播方式及治理路径 (27)4.3.3 温度治理措施 (27)4.4 其他路基病害及治理措施 (34)4.4.1 冰锥、冰丘地段的路基整治 (34)4.4.2 路堑边坡失稳及治理 (36)第5章多年冻土地区的环境保护 (37)5.1 既有线运营中的环境保护 (37)5.2 多年冻土区环境监测和管理 (37)第6章结论与展望 (39)6.1 结论 (39)6.2 展望 (40)参考文献 (41)致谢 (42)附录A 外文资料翻译........................................................................ 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要我国铁路发展迅速,正在向重载和高速发展,随着列车的提速,越来越多的既有线出现了病害情况,如路基病害。
路基的病害有多种,如翻浆冒泥、路基下沉、路基冻害等。
我国国土面积较大,冻土面积也大,在寒区修建的铁路因环境恶劣,出现了许多冻害,路基冻害主要有冻胀(主要为不均匀冻胀)、融沉和冻融翻浆。
水、温度、土质是路基产生冻害的三因素,治理路基冻害,可采取隔水、换土和隔温等措施。
本文通过阐述路基冻害产生的机理来采取不同的治理措施治理,具体措施有排水设施(如排水沟)、保温隔温设施(保温护道、片石通风路基结构、热棒路基结构)和换土措施,在青藏铁路上就采用了热棒路基。
又多年冻土地区不良地质较多,如冰锥、冰丘,可通过冻结沟或积冰坑防止冻害发生。
冻土地区的环境保护也是至关重要的,它能够减少路基冻害的发生和延长路基的使用寿命。
本设计针对冻土区路基病害的提供了一些治理措施,能有效的保证路基的稳定,不受破坏,可供同类工程借鉴。
关键词:路基冻害冻胀温度治理措施目录第1章绪论 (1)1.1 我国铁路发展现状及存在问题 (1)1.2 季节性冻土的分布及路基主要冻害 (2)1.3 国内外研究现状 (3)1.3.1 国外路基冻害研究现状 (3)1.3.2 我国路基冻害研究现状 (4)第2章路基冻害种类 (5)2.1 按外部表现特征分类 (5)2.2 按负温总量分类 (5)2.3 按产生部位分类 (5)2.3.1 道床冻害形成原因 (6)2.3.2 表层病害形成的主要原因 (6)2.3.3 深层冻害的形成 (7)第3章路基冻害的表现形式及其产生机理 (8)3.1 融沉病害 (8)3.2 冻胀病害 (8)3.3 冰害 (10)3.4 冻融翻浆 (10)3.5 铁路路基次生灾害 (11)第4章路基冻害防治措施 (13)4.1 水作用的机理及治理原则 (13)4.1.1 水作用机理 (13)4.1.2 治理原则 (14)4.2 排水系统 (14)4.2.1地表排水系统 (14)4.2.2 地下排水系统 (18)4.2.3 其它排水系统及方法 (22)4.3 温度对路基冻害的影响及治理措施 (26)4.3.1 温度与路基冻害的关系 (26)4.3.2 温度在路基中的传播方式及治理路径 (27)4.3.3 温度治理措施 (27)4.4 其他路基病害及治理措施 (34)4.4.1 冰锥、冰丘地段的路基整治 (34)4.4.2 路堑边坡失稳及治理 (36)第5章多年冻土地区的环境保护 (37)5.1 既有线运营中的环境保护 (37)5.2 多年冻土区环境监测和管理 (37)第6章结论与展望 (39)6.1 结论 (39)6.2 展望 (40)参考文献 (41)致谢 (42)附录A 外文资料翻译 .......................................................................... 错误!未定义书签。
A.1 英文 ......................................................................................... 错误!未定义书签。
A.2 译文 ......................................................................................... 错误!未定义书签。
第1章绪论1.1 我国铁路发展现状及存在问题世界铁路已有180多年的历史,1803年英国人特里维西克试制了第一台行驶于轨道上的蒸汽机车,1825年英国在大林顿到斯科托顿之间修建了世界上第一条铁路,长21km。
我国第一条铁路是1865年英国商人社兰德在北京宣武门外修建的窄轨铁路约0.5km试行小火车。
我国铁路建设在新中国成立后有很大的发展。
在路网建设、线路状况、技术装备和运输效率上,都有极大的成就。
在崇山峻岭的西南地区,修建了成渝、宝成、黔桂、川黔、贵昆、湘黔、湘渝、阳安、来睦(来宾-睦南关)、黎湛、内宜、达成、南昆等干线,构成了大西南的铁路网骨架。
在解放前根本没有铁路的西北地区,建成了天兰、兰新、兰青、青藏(西宁—格尔木—拉萨)、南疆、包兰、干武、宝中、北疆等干线。
在华北地区,建成了丰沙、京承、京原、京通、京秦、太焦、邯长、新荷、侯西等干线,以及纵贯南北的京九干线,首都北京已形成九条干线引入的大型枢纽。
在东南沿海,建成了焦枝、枝柳、汉丹、武大、大沙、合九等干线;在东北地区,修建了沟海、通让等联络线、汤林、牙林、长林、嫩林、林碧等林线,以及霍林河、伊敏河等煤矿支线。
截止到2004年底,我国铁路营运里程突破7万余km,居是世界第三;其中复线2.5万多km,复线率约为40%,电气化铁路里程1.8万km,电气化率约30%,内燃化铁路里程4万多km,占营业里程的63.6%[1]。
此外,各省区建成的地方铁路还有6218.4km。
我国《中长期铁路规划网》的发展目标是,到2020年,全国铁路营业里程达到10万公里,主要繁忙干线实现客货分线,复线率和电化率均达到50%,运输能力满足国民经济和社会发展需要,主要技术装备达到或接近国际先进水平。
到2010年,随着我国铁路“十一五”建设计划的即将完成,铁路网营业里程达到8.5万公里左右,其中客运专线5000公里,复线3.5万公里,电气化铁路3.5万公里。
由于我国铁路建设较早,设计时速较低,对铁路的技术要求不高。
在这几万里长的线路上,由于列车荷载的反复作用、自然条件、线路条件等原因,线路上产生了各种各样的病害,这些病害影响了线路的质量状态,甚至危及铁路的行车安全。
既有线常见病害有[2]:钢轨的病害:轨头核伤、钢轨磨耗、轨腰螺栓孔裂纹、钢轨接头伤损等;轨枕病害(轨枕失效):明显折断、纵向断裂、横裂(或斜裂)接近环状裂纹、挡肩破损、严重掉块、承轨槽压溃、钢筋(或钢丝)外露;道床病害:脏污、折断;路基病害:路基翻浆冒泥、路基下沉(基床下沉、地基下沉、边坡外臌)、基床外挤、路基冻害、边坡溜塌、风化剥削、滑坡、不良地质和水文条件造成的路基破坏。
路基是线路的基础,路基病害严重影响了线路的正常使用。
又我国冻土面积较大,在冻土区修建了许都铁路,随着青藏铁路的建设竣工,冻土区铁路病害更值得我们关注。
既有线路基冻害现状调差[3]:通辽枢纽为既有通辽一霍林河铁路的起点。
既有线以路基为主,路基占线路全长的97%。
沿线为填方,平均高度4m~8m。
既有线路基经过多年运营,大部分路段较为稳定,据沈阳局通辽工务段2006年秋检资料、路基病害资料、2006年~2007年冻害资料,结合调查访问,现状路基病害主要类型有:一般冻害150 m/6处、边坡溜坍5035 m/6处。
引起路基病害的最主要原因为冻胀和融沉问题,经常造成路基边坡开裂、发生溜坍等,直接影响了既有线的正常运营,且每年需花费较大的工程费用进行病害治理。
因此对冻土区既有线铁路路基进行全面考察处理,寻求合理有效的处置措施,以提高铁路的运营能力,就显得尤为重要。
1.2 季节性冻土的分布及路基主要冻害在我国,季节性冻土的分布很广,普遍分布于长江流域以北十余个省市,约513.7万平方公里,占国土面积的55%左右。
其大体分布情况(如图1.1所示)多年冻土区多年冻土占20%季节冻土占55%图1-1 我国各类冻土分布图在冻土地区修建各种工程构筑物,困难重重。
许多公路、铁路、桥涵、房屋、管道、渠道和人工冻结井壁等各类工程建筑物会遭到严重冻胀破坏,且量大面广,有的开裂、有的倾斜、有的甚至倒塌。
铁路路基冻害主要有冻胀(主要为不均匀冻胀)、融沉、冰害、翻浆等。
1.3 国内外研究现状人们很早就认识到路基冻害对道路的破坏作用。
为了减小冰冻破坏,延长道路的使用寿命,改善道路的使用性能,不少道路工作者一直在进行着对冰冻作用的本质研究。
自上世纪开始,人们逐渐对影响路基冰冻破坏作用的因素有了认识。
认为路基冻害是由于在冰冻过程中积累了大量的水分造成的;冰冻过程中水分向冻结区的迁移是在各种梯度作用下完成的。
目前,俄罗斯的西伯利亚、美国的阿拉斯加、中国的大兴安岭和青藏高原等地广泛分布有冻土环境。
各地的冻土本身的性质没什么不同,但由于各地冻土年均气温、地表植被等生物条件的不同,因此,世界各地的冻土研究发展过程是不同的。
冻土问题是目前世界性的难题,世界上几个冻土大国,如俄罗斯、美国、加拿大、中国等都在为解决冻土难题而进行着不懈的努力。
1.3.1 国外路基冻害研究现状1885年俄国工程师斯图金伯格提出了冻土水分迁移假说[4],将冻胀形成与土的毛细管作用相联系。
根据这个假说,水转变为冰时体积增大,结果在入冻带里形成微裂隙造成入冻土里水分迁移,土中水沿毛细管由下层向上迁移。
他的这种思想在勃格达诺夫著作中得到发展(1912)。
1916-1930年由美国学者泰伯研究出结晶力作用下迁移理论,使水分迁移理论向前跨出了一大步。
他揭示了由于在冰的表面存在着吸附水膜,它具有很大的拉力强度,所以水分向增长起来的冰晶迁移。
泰伯认为,虽然水是沿着毛细管迁移,但它还是在结晶力下移动的。
美国学者贝斯考认识到吸附水在结冰迁移过程中的意义。
通过观察冰的形成得出结论,在自然条件下,土的分散性和毛细管作用具有重大作用。
贝斯考进行了专门的试验,提出了冰析出和冻胀的土颗粒“临界尺寸”概念[4]。
因为在水分迁移过程中土的分散性是通过毛细管作用表现出来。
贝斯考选用毛细管水上升高度作为冻胀性的指标。
将地下水、土颗粒性质、毛细管性质综合起来评价土的冻胀情况。
随着理论研究的深入,人们对土的冻胀机理有了更进一步的认识。
更多的研究者对此进行了研究,提出了众多的水分迁移理论,对未冻土和已冻土中的水分结构和性质有了更清楚的了解和认识。
从而对工程冻害的治理提供了有力的理论依据。
据俄罗斯1994年调查,20世纪70年代建成的第2条西伯利亚铁路,线路病害率达27%。
运营近百年历史的第1条西伯利亚铁路,1996年调查的线路病害率达45%。
截止1978年,加拿大哈尔逊湾铁路800 km中有700余处沉降地段,年沉降量约100~150mm,有38座木制桥出现不同程度的冻拔变形,但应用波纹管圆涵使用良好,这些工程病害主要在不连续多年冻土区。
国外寒区施工中也尝试了各种不同的工程措施,如块石路堤和抛石护坡、通风管、热桩和保温材料等。
1.3.2 我国路基冻害研究现状我国早在20世纪60年代就开始对冻土进行了许多科学、综合性的考察研究。
五十年代初期,道路建筑事业迅速发展,由于技术标准低,没有采用有效的防冻抗冻措施,致使道路的冻胀翻浆破坏大量出现,严重阻碍交通运输事业的发展,这时,人们才注意到研究路基土冰冻性质的重要性。