风道系统的阻力平衡自动计算解析
风道系统的阻力平衡自动计算解析
风道系统的阻力平衡自动计算国摘要:风道系统的阻力平衡直接影响着系统风量的实际分配值及技术经济指标。
本文介绍的风道系统阻力平衡自动计算,不但可确保了设计的准确性,还可有效提高设计效率。
关键词:风道系统环路阻力平衡自动计算引言在空调、通风系统中,由于同一系统的风管是相互连接的一个整体,因而必然遵循各支路阻力平衡规律,当风管系统的结构形式、管道尺寸一经确定,在一定的风机作用下,各段的风量是按阻力平衡规律自动分配的。
在设计计算时未经阻力平衡计算,会导致系统实际风量分配与设计不符。
当然我们也可以通过调节风阀来分配风量,但这样一来就又使非最不利环路的风压多余。
所以在设计计算时考虑各环路的阻力平衡具有现实意义。
然而,不少设计人员在进行风道水力计算及阻力平衡过程中仅仅凭经验估算或查图手算,这样费时费力还达不到理想效果。
笔者所设计的计算软件以 EXCE为工作平台,用VBA^S言为开发工具,从而确保了程序的执行效率。
、阻力自动平衡计算的基本步骤风道系统阻力平衡自动计算的执行过程基本延用常规设计的计算步骤,主要如下:①将各节点间的逻辑关系、管段的相关参数依次输入并保存,然后根据技术要求初步选定各管段的假定风速;②根据假定风速自动计算管段当量水力直径及阻力损失;③用节点逆寻法自动查找系统各环路的路径及阻力损失,并确定系统最不利环路;④对非不利环路进行自动阻力平衡⑤对计算结果进行校核以上过程中只有工作量不大①、⑤需人工干预,而其他步骤全部由计算机自动完成。
从而不但确保其计算速度及准确性,而且还可根据需要进行适当的手工调整。
三、设计要点要实现风道系统的阻力平衡自动计算过程,主要体现在以下几个核心要点3、1 关键词的定义为了便于理解本文,笔者先将文中出现的部分关键词作如下释义。
节点的编号规则。
为了能根据各节点间的逻辑关系,方便地查寻风道系统的各个环路,我们给各个节点一个数字编号,并对节点编号作如下假定:按风量递减方向对节点从小到大编号,或都说对于送风系统则节点编号沿气流方向递增,对于吸风系统则反之(如图 1)。
风管阻力计算方法
风管阻力计算方法送风机静压Ps(Pa)按下式计算:PS=PD+PA式中:PD—风管阻力(Pa),PD= RL(1+K)说明:R—风管的单位磨擦阻力,Pa/m;L—到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K—局部阻力与磨擦阻力损失的比值。
推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0~2.0 2.0~4.0PD=R(L+Le)式中Le为所有局部阻力的当量长度。
PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风% 90 80 70 60 50回风% 10 20 30 40 50 ☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8加热排管 2.3 2.5 2.5 3.0 3.0 3.5冷却排管 2.3 2.3 2.5 2.5 3.0 3.0风机出口 6.0 8.5 9.0 11.0 10.0 14.0主风管 4.0 6.0 6.0 8.0 9.0 11.0支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0 ☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间 5.0 7.5 6.5 6.0 5.0 办公室、图书馆 6.0 10.0 7.5 8.0 6.1 大礼堂、戏院 4.0 6.5 5.5 5.0 4.0 银行、高级餐厅7.5 10.0 7.5 8.0 6.0 百货店、自助餐厅9.0 12.0 7.5 8.0 6.0 工厂12.5(上限) 15.0 9.0 11.0 7.5 ☆推荐的送风口流速m/s应用场所流速m/s播音室 1.5~2.5戏院 2.5~3.5住宅、公寓、饭店房间、教室2.5~3.8一般办公室 2.5~4.0电影院 5.0~6.0百货店、上层 5.0百货店、下层7.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s图书馆、广播室 1.75~2.5住宅、公寓、私人办公室、医院房间 2.5~4.0银行、戏院、教室、一般办公室、商店、餐厅4.0~5.0工厂、百货店、厨房 5.0~7.5☆回风格栅的推荐流速m/s位置近座位逗留区以上门下部门上部工业用流速m/s 2~3 3~4 4 3 ≥4布袋风管的压力损失:布袋送风不只只是传递气流,同时在进行径向送风,所以管道内风速是不断减少的,管道平均风速比传统风管小的多,铁皮风管有个经验数据1pa/m,布袋风管由于管径的不同阻力变化较大,但一般可以近似的认为0.3-0.5pa/m。
关于通风管道阻力的计算与公式和方法
关于通风管道阻力的计算与公式和方法!风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。
风机管道送风阻力计算公式
风机管道送风阻力计算公式在工业生产中,风机管道送风是一种常见的工艺,它可以为生产线提供必要的空气流动,以保证生产的正常进行。
然而,风机管道送风过程中会产生一定的阻力,影响送风效果和能耗。
因此,了解风机管道送风阻力的计算公式对于优化送风系统设计和节能降耗具有重要意义。
风机管道送风阻力的计算公式可以通过流体力学的基本原理以及管道流体阻力的公式推导得出。
一般来说,风机管道送风阻力可以分为两部分,管道本身的阻力和管道内流体的阻力。
下面将分别介绍这两部分的计算公式。
1. 管道本身的阻力计算公式。
管道本身的阻力是由管道的长度、直径、粗糙度以及流体的流速等因素决定的。
根据流体力学的基本原理,可以得出管道本身的阻力计算公式如下:f = 0.079 / Re^0.25。
其中,f为管道摩阻系数,Re为雷诺数。
雷诺数的计算公式为:Re = ρ v d / μ。
其中,ρ为流体密度,v为流体速度,d为管道直径,μ为流体的动力粘度。
通过这两个公式,可以计算出管道本身的阻力。
2. 管道内流体的阻力计算公式。
管道内流体的阻力是由流体的黏性和管道内流速等因素决定的。
根据流体力学的基本原理,可以得出管道内流体的阻力计算公式如下:ΔP = 0.5 ρ v^2 f L / d。
其中,ΔP为管道内流体的压降,ρ为流体密度,v为流体速度,f为管道摩阻系数,L为管道长度,d为管道直径。
通过这个公式,可以计算出管道内流体的阻力。
综合以上两部分的阻力计算公式,可以得出风机管道送风阻力的总体计算公式如下:ΔP = ΔP1 + ΔP2。
其中,ΔP1为管道本身的阻力,ΔP2为管道内流体的阻力。
通过这个总体计算公式,可以计算出风机管道送风的总阻力。
在实际应用中,可以根据具体的送风系统参数,利用上述计算公式进行阻力的计算。
通过合理的送风系统设计和优化,可以降低送风系统的阻力,提高送风效果,降低能耗,从而达到节能降耗的目的。
除了上述的基本阻力计算公式外,还有一些特殊情况下的阻力计算公式,比如在风机管道弯头、分支、收缩等部位的阻力计算。
管道阻力的基本计算方法
管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3)式中 Rm ——单位长度摩擦阻力,Pa /m ; υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3; λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4DR s =(5—4)式中 D ——风管直径,m 。
对矩形风管)(2b a abR s +=(5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ; Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ; d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
通风阻力计算公式汇总
通风阻力计算公式汇总通风阻力是流体在通过管道或设备时所经受的阻力。
在工程中,通风阻力的计算对于设计和优化通风系统至关重要。
下面是一些常用的通风阻力计算公式的汇总:1.管道阻力公式:管道阻力是通风系统中一个重要的组成部分。
下面是几种常见的管道阻力计算公式:-法氏方程公式:ΔP=(η*L/D)*(V^2/2g)其中,ΔP是管道阻力,η是比例系数(通常为0.02-0.05),L是管道长度,D是管道直径,V是流速,g是重力加速度。
-白寇厄尔公式:ΔP=η*(ρ*L/D)*(V^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
-弗里若克公式:ΔP=η1*(ρ1*L1/D1)*(V1^2/2)+η2*(ρ2*L2/D2)*(V2^2/2)+...+ηn*(ρn*Ln/Dn)*(Vn^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
以上公式可以根据具体问题中的参数进行计算,得到通风系统的管道阻力。
2.设备阻力公式:在通风系统中,除了管道阻力,设备也会产生阻力。
以下是几种常见的设备阻力计算公式:-弯头阻力:ΔP=ξ1*ρ*(V^2/2)其中,ξ是弯头阻力系数,常用值为0.25-1.0,ρ是流体密度,V是流速。
-扩散器阻力:ΔP=ξ2*(ρ*V^2/2)其中,ξ是扩散器阻力系数,常用值为0.09-0.35,ρ是流体密度,V是流速。
-突变阻力:ΔP=ξ3*(ρ*V^2/2)其中,ξ是突变阻力系数,常用值为1.5-10,ρ是流体密度,V是流速。
这些设备阻力公式可以帮助工程师根据具体设备的参数计算其阻力,从而优化通风系统设计。
3.阻力总和公式:在实际通风系统中,不仅仅有管道和设备阻力,还有其他因素如弯曲、分支、阻尼等会产生阻力。
以下是阻力总和公式的一个例子:ΔP=ΣΔP管道+ΣΔP设备+ΣΔP其他其中,ΔP是总阻力,ΣΔP管道表示管道阻力之和,ΣΔP设备表示设备阻力之和,ΣΔP其他表示其他因素的阻力之和。
通风工程管道阻力计算
通风工程管道阻力计算通风工程中的管道阻力计算是重要的一项工作,它直接关系到系统的通风效果和节能效果。
本文将详细介绍通风工程中的管道阻力计算方法及其影响因素。
一、管道阻力计算方法:通风系统中的管道阻力是指空气在管道中流动时所遇到的阻力。
通常采用以下公式计算:ΔP=K×L×ρ×(V/3600)^2(1)其中,ΔP为管道阻力(Pa),K为阻力系数(Pa/m),L为管道长度(m),ρ为空气密度(kg/m³),V为风量(m³/h)。
阻力系数K是根据流量速度(m/s)和管道直径(m)来计算的。
对于圆形截面的管道,可以使用以下公式计算:K=(0.51+0.002D)×(V/D)^2(2)其中,D为管道直径(m),V为流量速度(m/s)。
二、影响因素:1.管道材质:不同材质的管道具有不同的内表面粗糙度,粗糙度越大,摩擦阻力越大,导致管道阻力增加。
2.管道长度:管道长度越长,空气流动经过的阻力表面越多,阻力增加。
3.管道直径:管道直径越大,流通面积越大,阻力减小。
4.管道弯头和弯管:弯头和弯管的存在会增加管道的阻力,尤其是对空气流动有较大影响的90度弯头。
5.风量:风量越大,管道阻力越大。
三、实际计算:1.根据风量和设计条件选择管道直径。
2.根据管道直径计算阻力系数K。
3.根据管道直径和长度计算总阻力。
4.根据管道阻力和所需风压,判断所选管道是否满足要求。
5.根据需要,可以进行多次迭代计算,直到找到满足要求的管道尺寸。
四、优化策略:1.尽量选择材质光滑、粗糙度低的管道,以减小阻力。
2.在管道设计中尽量减少弯头和弯管的使用,或者采取流线型弯头,以减小阻力。
3.如果风量较大,可以考虑分段设计,通过增加出风口数量来减小单个风口的风量,从而减小管道阻力。
4.在实际计算中可根据实验数据进行修正,以提高计算精度。
总结:通风工程中的管道阻力计算是一个复杂的过程,需要综合考虑管道材质、直径、长度、弯头等因素,并进行科学合理的计算和优化。
风管的阻力计算
风管的阻力计算哎呀,说到风管的阻力计算,这可真是个让人头疼的活儿。
你想想,那些弯弯曲曲的管道,里面空气呼呼地吹,阻力可不是闹着玩的。
不过呢,别急,咱们慢慢来,就像吃个火锅,得慢慢涮,才能品出味道。
首先,咱们得知道,风管里的阻力,主要来自两个方面:一个是摩擦阻力,另一个是局部阻力。
摩擦阻力,就像是你在跑步时,空气对你的阻力一样,风管里的风,吹得越快,摩擦阻力就越大。
局部阻力呢,就是那些弯头、阀门、变径这些地方,空气过不去,得绕个弯,或者挤一挤,这阻力自然就上来了。
咱们先说说摩擦阻力。
这玩意儿,得用到一个公式,Darcy-Weisbach公式,听着挺高大上的,其实就是摩擦阻力的计算公式。
公式是这样的:h_f = f (L/D) (v^2/2g),其中h_f是摩擦阻力,f是摩擦系数,L是管道长度,D是管道直径,v是风速,g是重力加速度。
这个公式,你得根据实际情况,比如管道的材料、粗糙度,来确定摩擦系数f。
接下来,局部阻力。
这个就更复杂了,因为每个局部构件的阻力计算公式都不一样。
比如弯头,你得知道弯头的曲率半径,然后根据曲率半径和风速,计算出阻力。
还有阀门,你得知道阀门的开度,然后根据开度和风速,计算出阻力。
这些局部阻力,你得一个一个加起来,才能得到总的局部阻力。
好了,现在咱们有了摩擦阻力和局部阻力,把它们加起来,就得到了风管的总阻力。
但是,别忘了,这个阻力,是和风量有关的。
风量越大,阻力就越大。
所以,你得根据实际的风量,来调整你的计算结果。
最后,别忘了,这个阻力计算,是为了设计风管系统,保证风能顺利地吹到需要的地方。
所以,你得根据计算结果,选择合适的风机,确保风压足够克服这个阻力。
哎呀,说了这么多,感觉像是在讲天书。
不过,你只要记住,风管的阻力计算,就是摩擦阻力和局部阻力的总和,然后根据风量来调整。
这个活儿,虽然复杂,但是只要你耐心点,一步步来,也不是什么难事。
就像吃火锅,慢慢涮,慢慢吃,才能品出真正的美味。
风管阻力计算方法介绍(doc 7页)
风管阻力计算☆风管阻力计算方法送风机静压Ps(Pa)按下式计算P S = P D + P A式中:P D——风管阻力(Pa),P D = RL(1 + K)说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。
推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)P D = R(L + Le)式中Le为所有局部阻力的当量长度。
PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)☆低速风管系统的推荐和最大流速m/s☆低速风管系统的最大允许流速m/s风管阻力计算☆风管阻力计算方法送风机静压Ps(Pa)按下式计算P S = P D + P A式中:P D——风管阻力(Pa),P D = RL(1 + K)说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。
推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)P D = R(L + Le)式中Le为所有局部阻力的当量长度。
PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)☆低速风管系统的推荐和最大流速m/s☆低速风管系统的最大允许流速m/s☆推荐的送风口流速m/s☆以噪声标准控制的允许送风流速m/s☆回风格栅的推荐流速m/s根据YORK公司产品手册整理2004年4月3日常用单位换算公式集合大全常用单位换算公式集合大全换算公式面积换算1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2)1平方米(m2)=10.764平方英尺(ft2)1平方英寸(in2)=6.452平方厘米(cm2)1公顷(ha)=10000平方米(m2)=2.471英亩(acre)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1平方英尺(ft2)=0.093平方米(m2)1平方米(m2)=10.764平方英尺(ft2)1平方码(yd2)=0.8361平方米(m2)1平方英里(mile2)=2.590平方公里(km2)体积换算1美吉耳(gi)=0.118升(1) 1美品脱(pt)=0.473升(1)1美夸脱(qt)=0.946升(1) 1美加仑(gal)=3.785升(1)1桶(bbl)=0.159立方米(m3)=42美加仑(gal) 1英亩·英尺=1234立方米(m3)1立方英寸(in3)=16.3871立方厘米(cm3) 1英加仑(gal)=4.546升(1)10亿立方英尺(bcf)=2831.7万立方米(m3) 1万亿立方英尺(tcf)=283.17亿立方米(m3)1百万立方英尺(MMcf)=2.8317万立方米(m3) 1千立方英尺(mcf)=28.317立方米(m3)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter)1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)长度换算1千米(km)=0.621英里(mile) 1米(m)=3.281英尺(ft)=1.094码(yd)1厘米(cm)=0.394英寸(in) 1英寸(in)=2.54厘米(cm)1海里(n mile)=1.852千米(km) 1英寻(fm)=1.829(m)1码(yd)=3英尺(ft) 1杆(rad)=16.5英尺(ft)1英里(mile)=1.609千米(km) 1英尺(ft)=12英寸(in)1英里(mile)=5280英尺(ft) 1海里(n mile)=1.1516英里(mile)质量换算1长吨(long ton)=1.016吨(t) 1千克(kg)=2.205磅(lb)1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g)1短吨(sh.ton)=0.907吨(t)=2000磅(lb)1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton)密度换算1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3)API度=141.5/15.5℃时的比重-131.51磅/英加仑(lb/gal)=99.776千克/米3(kg/m3)1波美密度(B)=140/15.5℃时的比重-1301磅/英寸3(lb/in3)=27679.9千克/米3(kg/m3)1磅/美加仑(lb/gal)=119.826千克/米3(kg/m3)1磅/(石油)桶(lb/bbl)=2.853千克/米3(kg/m3)1千克/米3(kg/m3)=0.001克/厘米3(g/cm3)=0.0624磅/英尺3(lb/ft3)运动粘度换算1斯(St)=10-4米2/秒(m2/s)=1厘米2/秒(cm2/s)1英尺2/秒(ft2/s)=9.29030×10-2米2/秒(m2/s)1厘斯(cSt)=10-6米2/秒(m2/s)=1毫米2/秒(mm2/s)动力粘度换算动力粘度 1泊(P)=0.1帕·秒(Pa·s) 1厘泊(cP)=10-3帕·秒(Pa·s)1磅力秒/英尺2(lbf·s/ft2)=47.8803帕·秒(Pa·s)1千克力秒/米2(kgf·s、m2)=9.80665帕·秒(Pa·s)力换算1牛顿(N)=0.225磅力(lbf)=0.102千克力(kgf)1千克力(kgf)=9.81牛(N)1磅力(lbf)=4.45牛顿(N) 1达因(dyn)=10-5牛顿(N)温度换算K=5/9(°F+459.67) K=℃+273.15n℃=(5/9·n+32) °F n°F=[(n-32)×5/9]℃1°F=5/9℃(温度差)压力换算压力 1巴(bar)=105帕(Pa) 1达因/厘米2(dyn/cm2)=0.1帕(Pa)1托(Torr)=133.322帕(Pa) 1毫米汞柱(mmHg)=133.322帕(Pa)1毫米水柱(mmH2O)=9.80665帕(Pa) 1工程大气压=98.0665千帕(kPa)1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2) =0.0098大气压(atm)1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm)1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi)=1.0333巴(bar)传热系数换算1千卡/米2·时(kcal/m2·h)=1.16279瓦/米2(w/m2)1千卡/(米2·时·℃)〔1kcal/(m2·h·℃)〕=1.16279瓦/(米2·开尔文)〔w/(m2·K)〕1英热单位/(英尺2·时·°F)〔Btu/(ft2·h·°F)〕=5.67826瓦/(米2·开尔文)〔(w/m2·K)〕1米2·时·℃/千卡(m2·h·℃/kcal)=0.86000米2·开尔文/瓦(m2·K/W)热导率换算1千卡(米·时·℃)〔kcal/(m·h·℃)〕=1.16279瓦/(米·开尔文)〔W/(m·K)〕1英热单位/(英尺·时·°F)〔But/(ft·h·°F) =1.7303瓦/(米·开尔文)〔W/(m·K)〕比容热换算1千卡/(千克·℃)〔kcal/(kg·℃)〕=1英热单位/(磅·°F)〔Btu/(lb·°F)〕=4186.8焦耳/(千克·开尔文)〔J/(kg·K)〕热功换算1卡(cal)=4.1868焦耳(J) 1大卡=4186.75焦耳(J)1千克力米(kgf·m)=9.80665焦耳(J)1英热单位(Btu)=1055.06焦耳(J)1千瓦小时(kW·h)=3.6×106焦耳(J)1英尺磅力(ft·lbf)=1.35582焦耳(J)1米制马力小时(hp·h)=2.64779×106焦耳(J)1英马力小时(UKHp·h)=2.68452×106焦耳1焦耳=0.10204千克·米=2.778×10-7千瓦·小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位功率换算1英热单位/时(Btu/h)=0.293071瓦(W)1千克力·米/秒(kgf·m/s)=9.80665瓦(w)1卡/秒(cal/s)=4.1868瓦(W) 1米制马力(hp)=735.499瓦(W)速度换算1英里/时(mile/h)=0.44704米/秒(m/s)1英尺/秒(ft/s)=0.3048米/秒(m/s)渗透率换算1达西=1000毫达西 1平方厘米(cm2)=9.81×107达西地温梯度换算1°F/100英尺=1.8。
风道系统的阻力平衡自动计算的开题报告
风道系统的阻力平衡自动计算的开题报告一、选题背景及意义随着工业化的发展,许多工业企业需要使用大量的通风设备来保证工厂的正常运转。
而通风设备中的风道系统是非常重要的一个组成部分,它能够保证室内空气的流动和新鲜空气的补充,为工厂的生产创造良好的环境。
风道系统的设计与计算是系统工程中非常重要的一环。
为了让整个系统达到最佳运行状态,必须对风道系统进行阻力平衡的计算。
然而,传统的手工计算方法极其繁琐且容易出错,因此需要一种更加高效且准确的自动计算方法。
本文旨在通过研究风道系统的阻力平衡自动计算方法,提出一种基于计算机对风道系统进行自动计算的方法,使得风道系统的设计更加科学化、规范化,提高生产安全性和效率。
二、研究内容及方法本文主要研究风道系统的阻力平衡自动计算方法及其实现。
具体研究内容包括:1. 风道系统的基本分析:对风道系统进行基本的分析,包括系统结构、流体力学原理等方面。
2. 阻力平衡计算方法的研究:对风道系统的阻力平衡计算方法进行研究,包括几何阻力、摩擦阻力和速度能阻力等方面。
3. 阻力平衡自动计算系统的设计:在以上研究的基础上,设计一个阻力平衡自动计算系统,实现对风道系统的自动计算。
4. 系统实现及测试:对自动计算系统进行实现,并进行测试和验证,确保系统的准确性和可靠性。
本文研究主要采用计算机仿真方法,通过利用计算机进行风道系统阻力平衡的自动计算。
具体方法包括:采用有限元分析方法模拟风道系统的流动;采用计算机编程语言实现阻力平衡自动计算系统的设计;进行系统测试和实验验证等。
三、预期成果及意义本文研究的预期成果包括:1. 风道系统阻力平衡自动计算方法的推导和实现。
2. 阻力平衡自动计算系统的设计和实现。
3. 对系统性能进行测试和实验验证,验证系统的准确性和可靠性。
该研究成果将提高风道系统的设计水平和工作效率,在工业企业中具有广泛的应用价值和推广意义。
尤其是在一些特殊环境下,如医院、实验室等地的工厂,需要更加精细和规范的风道系统设计,本文的研究成果具有非常重要的实际意义。
风管水力计算
风系统水力计算书
一、计算依据
假定流速法:假定流速法是以风道内空气流速作为控制指标,计算出风道的断面尺寸和压力损失,再按各环路间的
静压复得法:本方法适用于静压不变的有分支均匀送风风道的设计与计算.利用风管分支处复得静压来克服该管段的
阻力平衡法:通风系统中,若任何节点的第i段支管阻力损失△Pi等于并联管网管段的阻力损失ΣPi-1时,则按这种方法来确定风道的断面
二、计算公式
a.管段压力损失 = 沿程阻力损失 + 局部阻力损失 即:ΔP = ΔPm + ΔPj。
b.沿程阻力损失 ΔPm = Δpm×L。
c.局部阻力损失 ΔPj =0.5×ζ×ρ×V^2。
d.摩擦阻力系数采用柯列勃洛克-怀特公式计算。
三、计算结果
1、风系统1(假定流速法)
a.风系统1水力计算表
b.风系统1最不利环路
风系统1最不利环路为通过管段0-1-25-26-27的环路,最不利阻力损失为149.50Pa。
c.风系统1环路分析
设计软件: 鸿业暖通空调设计软件8.2.20111027
计算书
路间的压损差值进行调整,以达到平衡。
管段的阻力,根据这一原则确定风管的断面尺寸。
Pi-1时,则按这种方法来确定风道的断面尺寸及阻力损失。
排风风管的阻力计算公式
排风风管的阻力计算公式在工业生产和建筑环境中,排风系统是非常重要的一部分,它可以有效地排除室内空气中的污染物和异味,保持室内空气的清新和舒适。
而排风系统中的风管阻力是一个非常重要的参数,它直接影响着排风系统的工作效率和能耗。
因此,正确地计算和评估排风风管的阻力是非常重要的。
排风风管的阻力计算公式是一个基本的工程计算公式,它可以帮助工程师和设计师准确地评估排风系统的阻力,从而选择合适的风机和风管尺寸,保证排风系统的正常运行。
在本文中,我们将介绍排风风管的阻力计算公式及其应用。
排风风管的阻力主要由风管的摩擦阻力和局部阻力两部分组成。
摩擦阻力是由于风管内空气流动与风管壁面之间的摩擦力产生的阻力,它与风管的长度、风管内径、空气流速和空气密度等因素有关。
局部阻力是由于风管弯头、分支管、节流装置等局部结构对空气流动产生的阻力,它与局部结构的形状、尺寸和数量等因素有关。
因此,排风风管的总阻力可以表示为:ΔP = Σ(ξf + ξl)ρV²/2。
其中,ΔP表示风管的总阻力,ξf表示风管的摩擦阻力系数,ξl表示风管的局部阻力系数,ρ表示空气密度,V表示空气流速。
风管的摩擦阻力系数和局部阻力系数是根据风管的材质、内径、壁厚、表面粗糙度、局部结构形状等因素进行计算和评估的。
通常情况下,风管的摩擦阻力系数和局部阻力系数可以通过实验测定或参考相关的标准值进行估算。
在实际工程中,工程师和设计师可以根据排风系统的具体要求和工况条件,选择合适的风管材质、尺寸和结构,从而确定风管的摩擦阻力系数和局部阻力系数。
在进行排风风管的阻力计算时,工程师和设计师需要首先确定排风系统的设计空气流量和空气流速。
然后,根据风管的长度、内径、摩擦阻力系数和局部阻力系数等参数,利用上述的阻力计算公式进行计算,从而得到风管的总阻力。
最后,工程师和设计师可以根据风管的总阻力和风机的性能曲线,选择合适的风机和风管尺寸,保证排风系统的正常运行。
除了排风风管的阻力计算公式外,工程师和设计师还需要考虑排风系统的其他因素,如风机的选型、风管的布局、风口的设置等。
风管阻力平衡计算
风管阻力平衡计算风管阻力平衡计算在空调、通风系统中具有重要意义。
通过进行风管阻力平衡计算,可以确保系统正常运行,保证室内空气流通和舒适度。
本文将介绍风管阻力平衡计算的基本原理和计算方法。
一、风管阻力平衡计算的基本原理风管阻力平衡计算是通过计算风管系统中的各个部分的阻力,以确保风量分配合理,保持系统的正常运行。
在风管系统中,风量会因为风管的长度、直径、形状、弯头等因素而发生变化,这些因素会造成风阻。
而风阻的大小会直接影响到风量的分配,进而影响系统的通风效果。
二、风管阻力平衡计算的基本步骤1. 确定系统的设计风量:根据建筑物的使用功能和面积,结合空气质量要求,确定系统的设计风量。
2. 制定风管系统布置图:根据建筑物的结构和布局,绘制风管系统的布置图,包括主干风管、分支风管和末端风口等。
3. 确定风管长度和直径:根据建筑物的布局和风管系统的布置图,确定各个风管段的长度和直径。
风管的长度和直径决定了风阻的大小。
4. 计算风管的阻力:根据风管的长度、直径和形状等参数,使用风管阻力计算公式,计算出各个风管段的阻力。
风管的阻力与风管材质、内壁光滑度等因素有关。
5. 进行风量分配计算:根据风管的阻力和系统的设计风量,进行风量分配计算。
根据风阻的大小,合理分配风量,使得各个风口的风量达到设计要求。
6. 进行压力平衡计算:根据风量分配计算的结果,计算出各个风管段的压力损失。
通过调整系统的风机静压,使得各个风管段的压力损失达到平衡,保证系统的正常运行。
三、风管阻力平衡计算的注意事项1. 考虑风管的净尺寸:在计算风管阻力时,要考虑风管的净尺寸,即风管内部的有效空间。
风管内部的隔板、支架等构件会对风阻产生影响,需要进行合理的修正计算。
2. 考虑风口的阻力:风口是风管系统的末端出口,也会对风阻产生影响。
在计算风管阻力平衡时,要考虑风口的阻力,并进行相应的修正计算。
3. 考虑风机的特性曲线:风机在不同工况下的风量和静压特性是根据实际测试得到的。
风管阻力计算简介(doc 7页)
风管阻力计算简介(doc 7页)风管阻力计算☆风管阻力计算方法送风机静压Ps(Pa)按下式计算P S = P D + P A式中:P D——风管阻力(Pa),P D = RL(1 + K)说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。
推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0 ~ 2.0 2.0 ~ 4.0推荐最大推荐最大推荐最大室外空2.5 4.0 2.5 4.5 2.5 8.0 气入口空气过1.3 1.5 1.5 1.8 1.8 1.8 滤器加热排2.3 2.5 2.53.0 3.0 3.5管冷却排2.3 2.3 2.5 2.53.0 3.0管风机出6.0 8.5 9.0 11.0 10.0 14.0口主风管 4.0 6.0 6.0 8.0 9.0 11.0支风管3.0 5.04.0 6.55.0 9.0 (水平)支风管 2.5 4.0 3.5 6.0 4.0 8.0(垂直)☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0 公寓、饭店房间5.0 7.5 6.5 6.05.0办公室、图书馆6.0 10.0 7.5 8.06.1大礼堂、戏院4.0 6.5 5.5 5.04.0银行、高7.5 10.0 7.5 8.0 6.0级餐厅百货店、自助餐厅9.0 12.0 7.5 8.06.0工厂12.5(上限)15.0 9.0 11.07.5☆推荐的送风口流速m/s应用场所流速m/s播音室 1.5~2.5戏院 2.5~3.5 住宅、公寓、饭店房间、教室2.5~3.8一般办公室 2.5~4.0电影院 5.0~6.0 百货店、上层 5.0百货店、下层7.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s 图书馆、广播室 1.75~2.5 住宅、公寓、私人办公室、医院2.5~4.0房间银行、戏院、教室、一般办公室、4.0~5.0商店、餐厅工厂、百货店、5.0~7.5厨房☆回风格栅的推荐流速m/s位置近座位逗留区以上门下部门上部工业用流速m/s2~3 3~4 4 3 ≥4根据YORK公司产品手册整理2004年4月3日常用单位换算公式集合大全常用单位换算公式集合大全换算公式面积换算1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2)1平方米(m2)=10.764平方英尺(ft2)1平方英寸(in2)=6.452平方厘米(cm2)1公顷(ha)=10000平方米(m2)=2.471英亩(acre)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1平方英尺(ft2)=0.093平方米(m2)1平方米(m2)=10.764平方英尺(ft2)1平方码(yd2)=0.8361平方米(m2)1平方英里(mile2)=2.590平方公里(km2)体积换算1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1)1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1)1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩·英尺=1234立方米(m3)1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1)10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=283.17亿立方米(m3)1百万立方英尺(MMcf)=2.8317万立方米(m3)1千立方英尺(mcf)=28.317立方米(m3)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter)1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)长度换算1千米(km)=0.621英里(mile)1米(m)=3.281英尺(ft)=1.094码(yd)1厘米(cm)=0.394英寸(in)1英寸(in)=2.54厘米(cm)1海里(n mile)=1.852千米(km)1英寻(fm)=1.829(m)1码(yd)=3英尺(ft)1杆(rad)=16.5英尺(ft)1英里(mile)=1.609千米(km)1英尺(ft)=12英寸(in)1英里(mile)=5280英尺(ft)1海里(n mile)=1.1516英里(mile)质量换算1长吨(long ton)=1.016吨(t)1千克(kg)=2.205磅(lb)1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g)1短吨(sh.ton)=0.907吨(t)=2000磅(lb)1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton)密度换算1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3)API度=141.5/15.5℃时的比重-131.51磅/英加仑(lb/gal)=99.776千克/米3(kg/m3)1波美密度(B)=140/15.5℃时的比重-1301磅/英寸3(lb/in3)=27679.9千克/米3(kg/m3)1磅/美加仑(lb/gal)=119.826千克/米3(kg/m3)1磅/(石油)桶(lb/bbl)=2.853千克/米3(kg/m3)1千克/米3(kg/m3)=0.001克/厘米3(g/cm3)=0.0624磅/英尺3(lb/ft3)运动粘度换算1斯(St)=10-4米2/秒(m2/s)=1厘米2/秒(cm2/s)1英尺2/秒(ft2/s)=9.29030×10-2米2/秒(m2/s)1厘斯(cSt)=10-6米2/秒(m2/s)=1毫米2/秒(mm2/s)动力粘度换算动力粘度1泊(P)=0.1帕·秒(Pa·s)1厘泊(cP)=10-3帕·秒(Pa·s)1磅力秒/英尺2(lbf·s/ft2)=47.8803帕·秒(Pa·s)1千克力秒/米2(kgf·s、m2)=9.80665帕·秒(Pa·s)力换算1牛顿(N)=0.225磅力(lbf)=0.102千克力(kgf)1千克力(kgf)=9.81牛(N)1磅力(lbf)=4.45牛顿(N)1达因(dyn)=10-5牛顿(N)温度换算K=5/9(°F+459.67)K=℃+273.15n℃=(5/9·n+32) °F n°F=[(n-32)×5/9]℃1°F=5/9℃(温度差)压力换算压力1巴(bar)=105帕(Pa)1达因/厘米2(dyn/cm2)=0.1帕(Pa)1托(Torr)=133.322帕(Pa)1毫米汞柱(mmHg)=133.322帕(Pa)1毫米水柱(mmH2O)=9.80665帕(Pa)1工程大气压=98.0665千帕(kPa)1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2)=0.0098大气压(atm)1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm)1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi)=1.0333巴(bar)传热系数换算1千卡/米2·时(kcal/m2·h)=1.16279瓦/米2(w/m2)1千卡/(米2·时·℃)〔1kcal/(m2·h·℃)〕=1.16279瓦/(米2·开尔文)〔w/(m2·K)〕1英热单位/(英尺2·时·°F)〔Btu/(ft2·h·°F)〕=5.67826瓦/(米2·开尔文)〔(w/m2·K)〕1米2·时·℃/千卡(m2·h·℃/kcal)=0.86000米2·开尔文/瓦(m2·K/W)热导率换算1千卡(米·时·℃)〔kcal/(m·h·℃)〕=1.16279瓦/(米·开尔文)〔W/(m·K)〕1英热单位/(英尺·时·°F)〔But/(ft·h·°F) =1.7303瓦/(米·开尔文)〔W/(m·K)〕比容热换算1千卡/(千克·℃)〔kcal/(kg·℃)〕=1英热单位/(磅·°F)〔Btu/(lb·°F)〕=4186.8焦耳/(千克·开尔文)〔J/(kg·K)〕热功换算1卡(cal)=4.1868焦耳(J)1大卡=4186.75焦耳(J)1千克力米(kgf·m)=9.80665焦耳(J)1英热单位(Btu)=1055.06焦耳(J)1千瓦小时(kW·h)=3.6×106焦耳(J)1英尺磅力(ft·lbf)=1.35582焦耳(J)1米制马力小时(hp·h)=2.64779×106焦耳(J)1英马力小时(UKHp·h)=2.68452×106焦耳1焦耳=0.10204千克·米=2.778×10-7千瓦·小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位功率换算1英热单位/时(Btu/h)=0.293071瓦(W)1千克力·米/秒(kgf·m/s)=9.80665瓦(w)1卡/秒(cal/s)=4.1868瓦(W)1米制马力(hp)=735.499瓦(W)速度换算1英里/时(mile/h)=0.44704米/秒(m/s)1英尺/秒(ft/s)=0.3048米/秒(m/s)渗透率换算1达西=1000毫达西1平方厘米(cm2)=9.81×107达西地温梯度换算1°F/100英尺=1.8℃/100米(℃/m)1℃/公里=2.9°F/英里(°F/mile)=0.055°F/100英尺(°F/ft)油气产量换算1桶(bbl)=0.14吨(t)(原油,全球平均)1万亿立方英尺/日(tcfd)=283.2亿立方米/日(m3/d)=10.336万亿立方米/年(m3/a)10亿立方英尺/日(bcfd)=0.2832亿立方米/日(m3/d)=103.36亿立方米/年(m3/a)1百万立方英尺/日(MMcfd)=2.832万立方米/日(m3/d)=1033.55万立方米/年(m3/a)1千立方英尺/日(Mcfd)=28.32立方米/日(m3/d)=1.0336万立米/年(m3/a)1桶/日(bpd)=50吨/年(t/a)(原油,全球平均)1吨(t)=7.3桶(bbl)(原油,全球平均)气油比换算1立方英尺/桶(cuft/bbl)=0.2067立方米/吨(m3/t)热值换算1桶原油=5.8×106英热单位(Btu)1吨煤=2.406×107英热单位(Btu)1立方米湿气=3.909×104英热单位(Btu)1千瓦小时水电=1.0235×104英热(Btu)1立方米干气=3.577×104英热单位(Btu)(以上为1990年美国平均热值)(资料来源:美国国家标准局)热当量换算1桶原油=5800立方英尺天然气(按平均热值计算)1立方米天然气=1.3300千克标准煤1千克原油=1.4286千克标准煤。
阻力计算举例
通风除尘系统的阻力计算与阻力平衡通风除尘系统的阻力平衡集中风网中粉尘控制点比较多,在进行风网阻力计算时,往往选取其中的一条管路作为主路,而将其他与之并连的管路看作支路。
1.选取主路,并编管段号。
选取主路时,一般遵循以下原则:(1)路径最长,阻力最大;(2)风量最大。
图1中:主路:尘源设备A——管段①——管段②——管段③—除尘器——管段④——风机——管段⑤支路:支路1:尘源设备B——管段⑥;支路2:尘源设备C——管段⑦图1 通风除尘系统的阻力平衡为了清楚地表示风网中每一段管道,常将管道进行编号,如图1所示。
在编管段号时,管段的分界点为风网中的设备或以合流三通的总流断面为界。
如在图1中,管段①和管段⑥经过三通而汇合,则三通的总流断面N —N 就是分界面,其余三通的分界面类同。
2.支路阻力与主路阻力的平衡在图1所示的风网中,风网运行时,空气同时从设备A 、设备B 、设备C 进入风网,分别经过两个三通汇合后进入风管③中,并经风管③将含尘气流送到除尘器中进行净化,粉尘被分离后由除尘器底部的闭风器排出,而净化之后的气流则通过管道④、管段⑤排放到大气中。
支路进行阻力平衡,就是要求支路1的总阻力与主路设备A ——管段①的总阻力相等;支路2的总阻力与主路设备A ——管段①——管段②的总阻力相等。
粉尘控制工程上,支路阻力与主路阻力按下式(5-16)计算后,计算结果不大于10%,即阻力平衡:%10%100≤⨯-与支路并联的主路阻力与支路并联的主路阻力支路阻力(5-16)否则,若计算结果大于10%,即阻力不平衡。
3.进行阻力平衡的方法: (1)对支路重新进行阻力计算。
(2)在支路上安装阀门的阻力平衡法。
当支路阻力小于主路阻力时,可在支路上安装阀门,即使阀门消耗一定数量的阻力来使支路阻力与主路阻力平衡。
(3)调节支路管径进行阻力平衡(即0.225次方法)。
225.0⎪⎪⎭⎫⎝⎛=后前前后H H D D (5-20)式中 D前——阻力不平衡时支路管道的直径; D后——调到阻力平衡时支路管道的直径;H前——阻力不平衡时的支路阻力; H后——阻力平衡时支路的阻力。
风道系统的阻力平衡自动计算
风道系统的阻力平衡自动计算- 暖通论文摘要:风道系统的阻力平衡直接影响着系统风量的实际分配值及技术经济指标。
本文介绍的风道系统阻力平衡自动计算,不但可确保了设计的准确性,还可有效提高设计效率。
关键词:风道系统环路阻力平衡自动计算一、引言在空调、通风系统中,由于同一系统的风管是相互连接的一个整体,因而必然遵循各支路阻力平衡规律,当风管系统的结构形式、管道尺寸一经确定,在一定的风机作用下,各段的风量是按阻力平衡规律自动分配的。
在设计计算时未经阻力平衡计算,会导致系统实际风量分配与设计不符。
当然我们也可以通过调节风阀来分配风量,但这样一来就又使非最不利环路的风压多余。
所以在设计计算时考虑各环路的阻力平衡具有现实意义。
然而,不少设计人员在进行风道水力计算及阻力平衡过程中仅仅凭经验估算或查图手算,这样费时费力还达不到理想效果。
笔者所设计的计算软件以EXCEL为工作平台,用VBA语言为开发工具,从而确保了程序的执行效率。
二、阻力自动平衡计算的基本步骤风道系统阻力平衡自动计算的执行过程基本延用常规设计的计算步骤,主要如下:①将各节点间的逻辑关系、管段的相关参数依次输入并保存,然后根据技术要求初步选定各管段的假定风速;②根据假定风速自动计算管段当量水力直径及阻力损失;③用节点逆寻法自动查找系统各环路的路径及阻力损失,并确定系统最不利环路;④对非不利环路进行自动阻力平衡。
⑤对计算结果进行校核。
以上过程中只有工作量不大①、⑤需人工干预,而其他步骤全部由计算机自动完成。
从而不但确保其计算速度及准确性,而且还可根据需要进行适当的手工调整。
三、设计要点要实现风道系统的阻力平衡自动计算过程,主要体现在以下几个核心要点上。
3、1关键词的定义为了便于理解本文,笔者先将文中出现的部分关键词作如下释义。
节点的编号规则。
为了能根据各节点间的逻辑关系,方便地查寻风道系统的各个环路,我们给各个节点一个数字编号,并对节点编号作如下假定:按风量递减方向对节点从小到大编号,或都说对于送风系统则节点编号沿气流方向递增。
风系统以及水系统的阻力计算
风系统以及水系统的阻力计算风系统以及水系统的阻力计算风系统水力计算风管设计原则参见《空调与制冷设计手册》P269,设计中要兼顾制作管道的材料耗量,管道保温用料,管道所占的空间体积,风机耗功率以及满足噪声允许值的风管风速等。
其风速参考值如下表:表7-1低速风管内的风速(m/s)室内允许噪声级Db(A)主管风速m/s支管风速m/s新风入口m/s25~353~4≤2335~504~72~33.550~656~93~54~4.565~858~125~85根据新风量和参考风速,由《供暖通风设计手册》表18-12 查的。
7.1.1 一层商场风管计算结果表7-2一层商场风管计算管段流量(m3 /h)管宽(㎜)管高(㎜)长度(m)ν(m/s)R(Pa/m)△Py(Pa)ξ动压(Pa)△Pj(Pa)管段阻力(Pa)1-2114250020023.890.6161.23219.109.1010.332-3114250020023.890.6161.23219.109.1010.332-4218450032053.620.371.84817.857.859.704-6114250020023.890.6161.23219.109.1010.334-5114250020023.890.6161.23219.109.1010.334-7425650032037.241.2919.294131.4131.4140.71 7-9224050032013.620.371.84817.857.859.708-9114250020023.890.6161.23219.109.1010.339-10114250020023.890.6161.23219.109.1010.33 7-1163815003208.10.852.69821.582170.6870.6892.2618-19114250020023.890.6161.23219.109.1010.3316-19228450032053.620.371.84817.857.859.7015-16114250020023.890.6161.23219.109.1010.3316-17114250020023.890.6161.23219.109.1010.3319-20114250020023.890.6161.23219.109.1010.3311-16425650032037.241.2919.294131.4131.4140.71 12-13124550020023.890.6161.23219.109.1010.3313-14124550020023.890.6161.23219.109.1010.3311-21134826305007.511.031.81613.620172.9472.9486.5 621-23224050032013.620.371.84817.857.859.7023-24114250020023.890.6161.23219.109.1010.3322-23114250020023.890.6161.23219.109.1010.3321-32196438006306.310.341.2227.698164.1164.1171.81 21-26425650032037.241.2919.294131.4131.4140.71 25-26114250020023.890.6161.23219.109.1010.3326-27114250020023.890.6161.23219.109.1010.3329-30114250020023.890.6161.23219.109.1010.3328-29114250020023.890.6161.23219.109.1010.3332-31114250020013.890.6160.61619.109.109.7132-33228450032033.620.371.10917.857.858.9633-34114250020053.890.6163.07919.109.1012.1832-3530572100063049.650.9663.862155.8555.8559.717.1.2 二楼商场风管计算结果表7-3 二楼商场风管计算管段流量(m3 /h)管宽(㎜)管高(㎜)长度(m)ν(m/s)R(Pa/m)△Py(Pa)ξ动压(Pa)△Pj(Pa)管段阻力(Pa)1-210525002002.52.790.3220.80414.404.405.212-310525002002.52.790.3220.80414.404.405.212-5208350032053.390.3281.64016.886.888.524-51055002002.52.790.3220.80414.404.405.215-610525002002.52.790.3220.80414.404.405.215-740785003202.56.771.1442.861127.5027.5030.36 7-920835002002.53.390.3280.82016.886.887.708-910525002002.52.790.3220.80414.404.405.219-1010525002002.52.790.3220.80414.404.405.217-176578500320810.162.39019.120161.8861.8881.00 11-1210525002002.52.790.3220.80414.404.405.2112-1310525002002.52.790.3220.80414.404.405.2115-16114250020023.890.6161.23219.109.1010.3312-15114250020023.890.6161.23219.109.1010.3314-15114250020023.890.6161.23219.109.1010.3315-16425650032037.241.2919.294131.4131.4140.71 15-17124550020023.890.6161.23219.109.1010.3317-19124550020023.890.6161.23219.109.1010.3318-19134826305007.511.031.81613.620172.9472.9486.5 619-20224050032013.620.371.84817.857.859.7017-27114250020023.890.6161.23219.109.1010.3321-2210835002002.52.790.3220.80414.404.405.2122-23196438006306.310.341.2227.698164.1164.1171.81 22-25425650032037.241.2919.294131.4131.4140.71 25-27114250020023.890.6161.23219.109.1010.3327-29114250020023.890.6161.23219.109.1010.3327-37114250020023.890.6161.23219.109.1010.3321-32114250020023.890.6161.23219.109.1010.3332-31114250020013.890.6160.61619.109.109.7132-33228450032033.620.371.10917.857.858.9633-34114250020053.890.6163.07919.109.1012.1832-3530572100063049.650.9663.862155.8555.8559.717.1.3 三层办公室风管计算结果表7-4 三层办公室风管计算管道流量(m3 /h )风速(m/s)管径(mm)动压(pa)单位摩擦阻力(pa/h)1-23861.71250×2501.84650.1792-36643.13250×2505.23860.4993-414354.95320×25017.0241.1284-522006.00320×32020.3331.4175-625225.00400×32019.0001.1566-735895.21400×40021.0021.0337-835234.2500×40017.6980.4506`-76251.66320×3201.2110.0951`-23451.62250×2001.68550.1987.1.4 四层宾馆风管计算结果表7-5 四层宾馆风管计算管道流量(m3 /h )风速(m/s)管径(mm)动压(pa)单位摩擦阻力(pa/h)1-21561.50160×1201.6820.4512-32213.05160×1206.2651.4143-43052.29200×1604.9230.2174-54943.54200×2008.3001.0025-66956.04200×20014.9241.4266-79125.88200×20024.6642.8827-812446.4250×20024.6583.0018-913445.8250×25020.6651.5649-1015637.0250×25026.1512.45610-1116885.9320×25022.3941.56411-1218775.4320×32015.9911.46112-1320484.6400×32018.2451.1451`-21122.04120×1202.4100.5197.2 三层阻力计算沿程损失=单位摩擦阻力(pa/h)×管段长(m);局部损失=局部阻力系数×空气密度×速度的平方/2;根据三通断面与总断面之比、风量之比,查得局部阻力系数。
风管阻力计算
通风管道阻力计算对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。
对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。
可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。
否则别的就更不用考虑了。
管道内风量主要是由风管内阻力影响的。
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。
一:摩擦阻力(沿程阻力)计算摩擦阻力(沿程阻力)计算一:(公式推导法)根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D以上各式中:ΔPm———摩擦阻力(沿程阻力),Pa。
λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式:其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】莫台曲线图表1-1 一般通风管道中K、Re、λ的经验取值ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s)ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】L ———风管长度,m 【横断面形状不变的管道长度】D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直径:;圆形风管D为风管直径】摩擦阻力(沿程阻力)计算二:(比摩阻法)由以上计算看出计算V和D较容易而计算λ难度很大,所以我们选择查表更合适快捷。
双风机联排风阻力平衡方案
双风机联排风阻力平衡方案通风系统由通风机与管网系统共同组成,通常所说的通风机的性能点,即为通风机的性能曲线与管网特性曲线的交点,称之为运行工况点。
对于管网系统,管网特性曲线符合——ΔP=KQ2的关系(管网系统一定时,K 为常数)。
当系统要求的风量特别大或管网阻力特别大,一台通风机满足不了要求时,就可采用并联或串联通风机的方法,来满足通风系统的要求。
本文我们具体研究双风机联排运行通风的阻力平衡。
一、并联运行当系统需要的风量特别大,一台风机满足不了要求时,可选用两台以上的风机安装于同一管网系统中并联运行,共同输气。
并联风机所要克服的是同一系统的管网阻力,而管网中通过的风量则是并联各台风机输出风量的叠加。
并联风机的合成特性曲线正是按照这一原则绘制的(如图1)。
由图1 可知,两台通风机并联运行时管网中输出的总风量,小于两台风机在该管网中单独运行时输出的风量的代数和。
我们来分析图1.1 两台特性曲线相同的通风机并联运行的情况。
管网特性曲线R与单台通风机特性曲线交于A1,与两台并联通风机的合成特性曲线交于A。
这时如果在这个管网系统中只启用一台通风机,则管网中输出的风量为qvA1;如果同时启用两台通风机,则管网中输出的风量为qvA;然而qvA<2qvA1。
但是,同时启用两台通风机后,我们分别测量两台通风机,将会发现它们各自工作在A1'点上,只有这时风机产生的压力才能克服管网阻力,即相当于它们各自工作在特性曲线为R'的管网中。
此时单台风机输出的风量由qvA1减至qvA1',而管网中输出的总风量为qvA=2qvA1'。
这似乎是两台通风机并联运行时,其中一台通风机给另一台通风机制造了阻力。
这一点并不难理解,这是由于两台通风机并联运行时,其中一台通风机输出的风量已经占据了管网一定的容积,故该管网对另一台通风机而言相当于其流通面积相对的减小了,故阻力也就相对的增大了,它们就这样互为因果。
分析图1.2 两台特性曲线不同的通风机并联运行的情况,也可得出上述同样的结论。
送风系统阻力计算11
m
m
m
/
ζ 0=Kθ KCζ Δ 0
/
/
P.109 P.110
转弯角度修正系数 截面高宽比修正系数 当量直径 摩擦阻力系数 混合风道流量 混合吸风道流速 混合吸风道风温度 混合吸风道空气比重 动压头 局部阻力 ⑵ 弯头后异形件 局部阻力系数 入口动压头 局部阻力 ⑶ 入口调节风门 截面积 流量 空气比重 流速 动压头 局部阻力系数 局部阻力 吸风道长度 ⑷ 摩擦阻力 ⑸ 弯头后吸风道总阻力
主管规格 主管截面积 支管规格 支管截面积 主管入口流速 主管入口动压 侧支管流量 支管流速 支管动压
F2 a1 b1 F2/F1 ω0 ω1 ω2 ω 2/ω 1 ζ3 Δ Hj
ddl λ Lky Δ Hm Δ Hky
ω γ ky Hky1 ddl Lky1 Δ Hm1
F0
F2 ω0 H0 Q2 ω2 H
5.5 对应进口截面速度 5.6 动压头 5.7 局部阻力系数 5.8 局部阻力 5.9 总阻力
按变截面弯头算
进口:1800×1800, 出口:5367×2815(外径)
Fj
m2
a1
m
b1
m
Fc
m2
a2
m
b2
m
Fb
m2
梯形
ab
m
bb
m
Vj
m3/h
m3/h
m3/h
ωj
m/s
ω j=Vj/2/3600Fj
(10) 出口当量直径
ddl
(11) 摩擦阻力系数
λ
(12) 摩擦阻力
Δ Hm1'
(13) 扩散管总阻力
Δ H1
4.2 出口风门
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风道系统的阻力平衡自动计算
摘要:风道系统的阻力平衡直接影响着系统风量的实际分配值及技术经济指标。
本文介绍的风道系统阻力平衡自动计算,不但可确保了设计的准确性,还可有效提高设计效率。
关键词:风道系统环路阻力平衡自动计算
一、引言
在空调、通风系统中,由于同一系统的风管是相互连接的一个整体,因而必然遵循各支路阻力平衡规律,当风管系统的结构形式、管道尺寸一经确定,在一定的风机作用下,各段的风量是按阻力平衡规律自动分配的。
在设计计算时未经阻力平衡计算,会导致系统实际风量分配与设计不符。
当然我们也可以通过调节风阀来分配风量,但这样一来就又使非最不利环路的风压多余。
所以在设计计算时考虑各环路的阻力平衡具有现实意义。
然而,不少设计人员在进行风道水力计算及阻力平衡过程中仅仅凭经验估算或查图手算,这样费时费力还达不到理想效果。
笔者所设计的计算软件以EXCEL为工作平台,用VBA语言为开发工具,从而确保了程序的执行效率。
二、阻力自动平衡计算的基本步骤
风道系统阻力平衡自动计算的执行过程基本延用常规设计的计算步骤,主要如下:
①将各节点间的逻辑关系、管段的相关参数依次输入并保存,然后根据技术要求初步选定各管段的假定风速;
②根据假定风速自动计算管段当量水力直径及阻力损失;
③用节点逆寻法自动查找系统各环路的路径及阻力损失,并确定系统最不利环路;
④对非不利环路进行自动阻力平衡。
⑤对计算结果进行校核。
以上过程中只有工作量不大①、⑤需人工干预,而其他步骤全部由计算机自动完成。
从而不但确保其计算速度及准确性,而且还可根据需要进行适当的手工调整。
三、设计要点
要实现风道系统的阻力平衡自动计算过程,主要体现在以下几个核心要点上。
3、1关键词的定义
为了便于理解本文,笔者先将文中出现的部分关键词作如下释义。
节点的编号规则。
为了能根据各节点间的逻辑关系,方便地查寻风道系统的各个环路,我们给各个节点一个数字编号,并对节点编号作如下假定:按风量递减方向对节点从小到大编号,或都说对于送风系统则节点编号沿气流方向递增,对于吸风系统则反之(如图1)。
关于节点的定义。
将风量L、风速V均相同的连续管段作为计算的最小单位,并称管段两侧的端点为节点,如图1中的有0~19节点。
将无紧前节点的节点称为系统起始节点如图1中的0节点。
将无紧后节点的节点称为系统的未端节点,如图1中的7、11、15、19节点。
同时将相邻两节点中风量较大的节点称为另一节点的紧前节点,如图1中节点5为节点6的紧前节点。
图1风管节点示意图
环路与支路的定义。
将从风管系统起始节点到风管末端节点的连续组成部分称为风管环路(简称环路),如图1中的0-1-2-4-5-6-7即为该风管系统的一个环路。
将环路中除系统起始节点与末端节点外的任一节点到该环路末端的连续组成部分称为风管支路(简称支路),如图1中的4-5-6-7即为环路0-1-2-4-5-6-7的一个支路。
3、2系统各环路的自动排序
系统各环路的自动排序是实现阻力平衡自动计算的前提,也是本程序的关键步骤之一。
其过程实际上就是按照各环路的阻力损失大小进行自动排序的过程。
通过排序可以较好的解决如下两个问题:①可以根据排序结果直接选取系统的最不利环路;②确实减少各环路阻力平衡时的重复计算。
系统各环路的自动排序的具体执行步骤如下:
①自动选取末端节点;
系统参数输入时,将除系统起始点外其他节点按编号从大到小列于风道系统阻力平衡计算相关参数表的“节点列”中,并将对应的紧前节点列于“紧前节点列”中,如图2所示。
在自动选取末端节点时,计算机逐一查找节点列中的节点在紧前节点列中的重复出现次数,若出现次数为0则为末端节点,为1则为普通节点,否则为分叉点。
②依次搜索每一个末端节点对应的环路路径并同步计算其阻力损失值。
根据图2中各节点的逻辑关系进行自动查寻。
即先由末端节点找出其对应的紧前节点,然后再查寻该紧前节点所对应的紧前节点及管段阻力损失,重复此过程直至对应的紧前节点为系统起始节点则该环路查寻完毕,将环路所有管段的阻力损失累加即为环路阻力损失值。
实际上该过程是一个循环与递归的过程,笔者称此方法为逆寻法。
③按阻力损失值从大到小对所有环路进行排列。
此时排在最前面的那条环路即为该风管系统的最不利环路。
图2风道系统阻力平衡计算相关参数表
3、3各环路的阻力平衡
阻力平衡是整个风管设计过程中最烦琐,也是最关键的一步。
在本文中笔者采用按环路阻力值从大到小的顺序依次对各环路进行平衡,并对业已进过平衡的管段不再进行调整,可较好的解决平衡过程中的重复计算问题。
为了便于计算,我们假设风管支路中需调整的各管段其调整前后阻力值比例保持不变,而调整前后管径与阻力值之间的关系为:
D’=D(P/P’)0.225(1)
式中,D、D’:阻力平衡前后风管支路的管径;P、P’:阻力平衡前后最不利环路上对应风管支路的阻力值。
阻力平衡自动计算时,将环路中已经调整的管段路径及阻力损失值除去,并对未经调整的支路按式(1)对各管段计算出经阻力平衡后的管径D’,由D’计算出对应的速度V’及管段阻力ΔP’。
3、4计算结果的校核
由于以上计算过程是在风管为任意直径圆管的假设条件下的计算结果,而实际设计时可能是圆管也可能是矩形管,而其管径也必须为标准管径。
所以在校核时首先必须将风管的管径转换成相近水力直径的标准管径,并将对应的风速V、管段阻力ΔP进行相应的计算。
同时,在阻力平衡时假设管段风速可以
为任意值,而实际中风速有一定的限制,当风速超出其范围时必须将该管段的风速按技术要求进行调整,并对管径及管段阻力进行相应的计算,同时打印显示要求加装调阻阀门的支路及调阻阀门上的阻力值。
还有要检查阻力平衡后的是否满足系统中总管段的(当量)直径总比分支管段(当量)直径大的变化规律。
经校核后的各环路要重新计算其阻力值,看其最不利环路是否发生变化,其他环路与最不利环路的阻力差值是否超过许可范围。
若出现上述情况需对结果进行重新调整。
四、结论
1、利用本文提出的方法并结合计算机进行空调通风风道系统阻力的自动平衡,具有快速准确、简便等优点;
2、如何加强人机互动,是需要进一步深化的问题;
3、在自动平衡过程中能进一步结合技术经济比较,使风道设计最优化,需要进一步研究解决。
4、本文以定风量系统为模式展开,对风管系统采用变风量系统时的风管设计与阀门控制亦有一定的借鉴意义。
参考文献:
[1]陆耀庆,主编.实用供热空调设计手册.北京:中国建筑工业出版社,1993
[2]冯永芳.实用通风空调风道计算法.北京:中国建筑工业出版社,1995
[3]陈在康,等.暖通计算机方法.北京:中国建筑工业出版社,1985
[4]肖光兴.用Excel进行空调通风管道阻力计算.制冷空调与电力机
械.2002(4)
[5]Bill Jelen,Tracy syrstad著.王军,等译.巧学巧用EXCEL2003VBA 与宏(中文版).北京:电子工业出版社,2005
[6]范德成,刘春梅,等.网络计划法中作业间逻辑关系的自动确定问题.运筹与管理.2001(6)。