余热发电工艺流程讲解
余热发电的工艺流程、主要设备和工作原理简单介绍讲课教案
余热发电的工艺流程、主要设备和工作原理简单介绍纯低温余热发电工艺流程、主机设备和工作原理简介直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入No.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和No.1闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入No.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
主机设备性能特点:一、余热锅炉: AQC炉和PH炉AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
余热锅炉发电的工艺流程
余热锅炉发电的工艺流程主要用于回收工业生产过程中产生的高温废气(如水泥窑、冶金炉、垃圾焚烧炉等排放的烟气)中的余热,将其转化为电能。
以下是一个通用的余热锅炉发电工艺流程概述:1. 烟气进入:- 高温烟气从工业生产设备(例如冶炼炉、煅烧炉或垃圾焚烧炉)的烟气出口引出,经过管道引入余热锅炉。
2. 烟气换热:- 在余热锅炉内部,烟气自上而下或者自下而上流动,依次流经过热器、蒸发器和省煤器等不同受热面。
- 过热器:用于将饱和蒸汽进一步加热成过热蒸汽,提高其做功能力。
- 蒸发器:利用烟气的热量将送入的软化水转化为蒸汽。
- 省煤器:预先加热锅炉给水,减少后续阶段燃料消耗。
3. 水循环系统:- 给水系统:软化后的水首先经过除氧器去除溶解氧,然后由给水泵加压送往省煤器预热。
- 汽水分离与循环:从蒸发器出来的湿蒸汽进入汽水分离器进行汽水分离,分离出的蒸汽送至过热器,而分离出的水则由热水循环泵重新送回蒸发器加热循环使用。
4. 蒸汽动力转换:- 经过过热器加热形成的高温、高压过热蒸汽,送入汽轮机做功,驱动汽轮机转子旋转。
5. 发电环节:- 汽轮机的转动通过联轴器带动发电机的转子转动,从而实现机械能向电能的转化,发出电能并接入电网。
6. 烟气排放:- 烟气在完成热量交换后,温度已经大大降低,通常会经过除尘设备进一步净化后,由引风机引导至烟囱,最终安全排入大气。
7. 辅助系统:- 同时包括冷却水系统、纯水制备系统、锅炉给水处理系统、以及烟气处理系统等,确保整个发电过程的安全稳定运行。
每个具体的余热发电项目可能会根据其来源热源的特性和需求有所不同,但核心原理都是通过热交换来提升能源利用率,实现节能减排和能源再生的目的。
余热发电工艺流程简述及简图
余热发电工艺流程简述
(1)烟气流程
出窑尾一级筒的废气约为330℃经SP炉换热后温度降至210℃左右,经窑尾高温风机送至原料磨烘干原料后,通过除尘器净化达标排放。
去自窑头篦冷机中部的废气约360℃经沉降室沉降将烟气的含尘量由50g/Nm3降至8~10g/Nm3后进入AQC炉,热交换后进入收尘器净化达标后与熟料冷却机尾部的废气会合后由引风机经烟囱排入大气。
(2)水、汽流程
原水经预处理后进入锅炉水处理车间,由反渗透及钠床装置进行处理,达标后的水作为发电系统的补充水补入发电系统的除氧器。
经化学除痒后的软化水由锅炉给水泵送至AQC炉的省煤器段,经过省煤器段加热后的约165℃的热水按一定比例分别进入AQC炉、SP 炉的蒸发段、过热段后,AQC炉产0.789MPa、330℃的过热蒸汽,SP 炉产0.789MPa、330℃的过热蒸汽,混合后进入汽轮机主进汽口,供汽轮机做工发电。
经汽轮机做功后的乏汽进入凝汽器冷凝成凝结水后,由凝结水泵送至化学除氧器除氧,再由锅炉给水泵将除氧后的冷凝水和补充水直接送至AQC炉,完成一个汽水循环。
(3)排灰流程
SP炉的排灰为窑灰,可回到水泥生产工艺流程中,设计时拟与窑尾除尘器收下的粉尘一起回到工艺系统。
工艺流程图:。
余热发电生产工艺
•空冷岛系统:
• 直接空冷系统,又称为空气冷却系统,它是一种以节水为目的火电厂冷却 技术,是一种以空气取代水为冷却介质的冷却方式,是指汽轮机的排汽直接进 入空冷凝汽器用空气来冷凝,空气与蒸汽进行热交换,所需的冷却空气通常由 机械方式供应,其冷凝水由凝结泵排入汽轮机组的回热系统,采用空冷系统的 汽轮发电机组简称空冷机组。
•给水泵的扬程:
• 给水泵的扬程应足够克服汽包压力、开启安全阀的多余 压力、管路阀门和省煤器等的水力阻力以及供水的几何高 度。
(二)汽轮机及附属系统
•定义: • 汽轮机是将蒸汽的热力势能转换成机械能,借以拖动其他机械转动的原动 机。 •汽轮机及辅助装置: • 为保证汽轮机安全经济的进行能量转换,除汽轮机本体外,还需配置若干 附属设备,汽轮机及其附属设备通过管道、阀门等附件连成辅助系统,再由各 种功能的系统组成一个整体,称为汽轮机及辅助装置。 •汽轮机规范: •型号:C12-3.43\0.8型 •型式:中温中压、单缸、冲动、空冷抽汽凝汽式 •额定功率:12MW •额定转速:3000r/min •主汽温度:435℃ •主汽压力:3.43MPA •工业抽汽压力:0.8MPA
•发电机启动前检查完毕后做以下试验:
• 发电机出口断路器与灭磁开关分合闸试验; • 发电机出口断路器与灭磁开关联动试验; • 汽机主汽门与与发电机出口开关的联跳试验; • 机电联系信号试验。
•发电机并网条件:
• 发电机频率与系统频率相同; • 发电机电压与系统电压相等; • 发电机电压相位与系统电压相位相同。
•技术参数:
• 吸收塔进口烟气量:100000 Nm 3\h • 吸收塔直径:4000m m • 塔顶烟囱直径:2000m m • 吸收塔总高度:40m • 喷淋层数量: 3层
余热发电工艺流程图
余热发电工艺流程图
余热发电是一种将工业生产过程中产生的余热转化为电能的技术。
下面是一个典型的余热发电工艺流程图:
1. 余热收集:首先,工业生产过程中产生的烟气、废水或高温废气中的余热被收集起来。
这些余热通常是通过烟气管道或烟囱来收集的。
在收集过程中,还需要对烟气进行净化处理,以去除其中的颗粒物和污染物。
2. 余热回收:收集到的余热被送入余热回收系统中,通过换热器将烟气、废水或高温废气中的余热传递给工作流体。
工作流体可以是水、有机液体或其他合适的介质。
在换热器中,烟气、废水或高温废气中的余热被传递给工作流体,使其升温。
3. 蒸汽发生:升温后的工作流体进入蒸汽发生器,通过与发生器中的低温工质接触,将部分工作流体中的热量转化为蒸汽。
蒸汽是余热发电中常用的工作介质,可以用于驱动汽轮机或蒸汽发动机产生动力。
4. 发电:蒸汽进入汽轮机或蒸汽发动机,通过旋转涡轮,将热能转化为机械能。
旋转涡轮的运动被连接到发电机,通过转子产生电能。
这样,余热被转化为电能,供给工厂自用或送入电网供应外部用户。
5. 热能回收:在发电过程中,余热还可以被回收利用。
通过余热回收装置,将发电过程中产生的废热用于加热工序中的水或蒸汽,提高整个工业生产过程的能效。
6. 废气排放:余热发电过程中的废气经过净化处理后,被排放到大气中。
净化处理有助于减少废气中的污染物含量,避免对环境造成污染。
以上就是一个典型的余热发电工艺流程图。
通过将工业生产过程中产生的余热有效转化为电能,可以提高能源利用效率,减少能源消耗和环境污染。
这种技术对于可持续发展和节能减排具有重要意义。
煤气化余热发电流程
煤气化余热发电流程
1. 煤气化过程:煤炭或其他碳基燃料在煤气化炉中进行气化反应,生成包含一氧化碳、氢气和其他气体组成的煤气。
2. 余热回收:从煤气化炉排出的高温煤气(通常温度高达1000℃以上)进入余热锅炉系统。
在余热锅炉内部,高温煤气与锅炉受热面接触并释放热量,将锅炉内的水加热蒸发成高温高压蒸汽。
3. 蒸汽产生:经过余热锅炉换热后的煤气温度降低,而锅炉内产生的蒸汽则通过一系列的过热器和蒸发器进一步提高其温度和压力。
4. 汽轮机发电:得到的高品质蒸汽送入汽轮机,蒸汽在汽轮机内做功膨胀,推动汽轮机转子高速旋转。
5. 电能转换:汽轮机转子通过联轴器连接到发电机,将机械能转化为电能,输出电力至电网或供工厂内部使用。
6. 冷却及循环:做完功后的低压蒸汽在凝汽器中冷凝为水,经由给水泵再送回余热锅炉形成一个闭合的热力循环。
7. 尾气处理:经过余热回收后的煤气根据其成分和用途,可能需要进一步净化处理后才能用于燃烧或其他用途。
水泥余热发电工艺流程
水泥余热发电工艺流程水泥生产过程中产生的余热一直是一个被人们关注的问题。
利用水泥生产过程中的余热进行发电已经成为一种常见的做法。
这种方法不仅可以有效地利用余热资源,还可以减少对环境的影响,提高水泥生产的能源利用率。
本文将详细介绍水泥余热发电的工艺流程。
1. 余热回收系统。
在水泥生产过程中,熟料冷却机、窑头和窑尾等部位都会产生大量的余热。
为了有效地利用这些余热,需要安装余热回收系统。
余热回收系统通常包括余热锅炉、余热管道和余热发电设备。
余热锅炉用来将余热转化为蒸汽,然后通过余热管道输送到发电设备中进行发电。
2. 蒸汽发电系统。
余热蒸汽通过管道输送到蒸汽发电设备中,蒸汽发电设备通常采用蒸汽轮机发电。
蒸汽进入蒸汽轮机后,推动轮机转动,从而带动发电机发电。
通过这种方式,余热可以被充分利用,同时也可以产生电能。
3. 发电系统。
发电系统是整个水泥余热发电工艺中最核心的部分。
发电系统包括蒸汽轮机、发电机、控制系统等部分。
蒸汽轮机是将余热蒸汽转化为机械能的设备,而发电机则是将机械能转化为电能的设备。
控制系统则用来监控和调节发电系统的运行状态,保证系统的安全稳定运行。
4. 排放系统。
在发电过程中会产生废气,为了保护环境,需要安装排放系统对废气进行处理。
排放系统通常包括除尘器、脱硫设备、脱硝设备等部分。
这些设备可以有效地去除废气中的颗粒物和有害气体,保护周围的环境。
5. 辅助系统。
水泥余热发电工艺中还需要一些辅助系统来保证整个工艺的正常运行。
比如冷却系统用来冷却发电设备,水处理系统用来处理冷却水和锅炉给水等。
这些辅助系统在整个工艺中起着至关重要的作用。
通过以上的工艺流程,水泥余热可以被有效地利用,转化为电能,从而提高水泥生产的能源利用率,减少对环境的影响。
水泥企业可以通过余热发电的方式获得额外的经济收益,同时也可以为环保事业做出贡献。
然而,水泥余热发电工艺也面临一些挑战。
首先是技术方面的挑战,余热发电技术需要高度的自动化和稳定性,需要水泥企业具备一定的技术实力。
余热发电工艺流程、主机设备工作原理简介(简单)
余热发电工艺流程、主机设备工作原理简介余热发电余热发电是一种通过回收生产过程中产生的工业余热,将其转化为电能的环保型能源利用技术。
它能够有效地提高工业生产过程中的能源利用率,减少大量二氧化碳和其他有害气体的排放,对于推动工业节能和环保发展有着重要的作用。
工艺流程余热发电工艺流程主要包括余热回收、余热蒸汽与受热水循环、加热循环、排气、冷凝等环节。
1.余热回收:利用余热回收装置对工业生产过程中的热量进行回收。
通常,余热回收设备采用高效传热器,将低温余热转化为高温余热。
2.余热蒸汽与受热水循环:余热回收后的高温余热通过传热器传导至工作介质,常用的介质为蒸汽和循环水。
3.加热循环:高温介质在加热器中进一步加热,增加介质的温度和压力。
4.排气:未能转化为电能的高温气体排放至大气中。
5.冷凝:过热蒸汽在冷凝器中冷却,将过热蒸汽转化为高压饱和水,该水通过泵在再次流入传热器,开始新一轮回收。
电能输出余热发电产生的电能主要经过调节和控制后输出,可以用于工厂内部用电和向电网输送电力。
主机设备工作原理简介余热发电主机设备包括涡轮发电机、减速器、发电机控制系统等主要设备。
以下是它们的工作原理简介:涡轮发电机涡轮发电机是余热发电设备中的核心设备之一。
它是将高速旋转的轴承通过机械装置转化为电能的装置。
其工作过程如下:1.涡轮叶片接受高压、高速蒸汽的冲击,启动涡轮的旋转。
2.涡轮的旋转通过轴传动减速器。
3.通过减速器就可以将转速降低到发电机的工作转速。
4.通过发电机控制系统控制输出的电压和频率,即可输出电能。
减速器减速器是涡轮发电机降低转速的一个重要设备,其工作原理如下:1.接收涡轮发电机传来的高速轴,降低转速。
2.转速降低之后,将轴的转速与电机控制系统的要求匹配,实现电能高效输出。
发电机控制系统发电机控制系统是整个余热发电设备的监控和控制中心,其工作原理如下:1.接收来自涡轮发电机的反馈信号,对电压和电流进行监控和调节。
2.通过反馈系统调节发电机的输出功率和工作状态。
余热发电的工艺流程、主要设备和工作原理简单介绍(知识资料)
纯低温余热发电工艺流程、主机设备和工作原理简介直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入No.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和No.1闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入No.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
主机设备性能特点:一、余热锅炉: AQC炉和PH炉AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
余热发电流程
余热发电流程
余热发电是一种能够有效利用工业生产过程中产生的废热来发电的技术。
通过余热发电,不仅可以减少能源的浪费,还可以降低对环境的影响,提高能源利用率。
下面将介绍余热发电的基本流程及其原理。
首先,余热发电的流程可以简单分为收集余热、转换能量和发电三个步骤。
在工业生产过程中,往往会产生大量的废热,这些废热如果不加以利用就会被浪费掉。
因此,首先需要收集并储存这些废热。
收集的方式可以有多种,例如利用换热器将废热转化为热水或蒸汽,然后通过管道输送到余热发电装置。
其次,转换能量是余热发电的关键步骤。
收集到的废热经过换热器转化为热水或蒸汽后,会被送入余热发电装置中的发电机组。
在发电机组中,热水或蒸汽的能量将被转化为机械能,驱动发电机旋转,产生电能。
这一过程需要通过适当的设备和技术来实现能量的转换,以确保能够高效地利用废热来发电。
最后,发电是余热发电流程的最终步骤。
经过能量转换后,发电机组将产生电能,这部分电能可以用于工业生产过程中的电力需
求,也可以并网供电,为社会提供清洁能源。
通过这一流程,废热
得到了有效的利用,不仅实现了能源的再生利用,还为企业节约了
能源成本,提高了经济效益。
总的来说,余热发电的流程是一个高效利用废热资源的过程,
通过收集、转换和发电三个步骤,实现了废热能量的再生利用。
这
种技术在工业生产中具有重要的意义,不仅可以提高能源利用效率,还可以减少环境污染,为可持续发展做出贡献。
希望未来能有更多
的企业和工厂采用余热发电技术,共同为建设资源节约型社会做出
努力。
低温余热发电工艺流程
低温余热发电工艺流程
《低温余热发电工艺流程》
低温余热发电是指利用工业生产过程中产生的低温余热能进行发电的一种技术。
低温余热发电工艺流程主要包括余热收集、传热、蒸汽发电和余热利用四个步骤。
首先,余热收集是最关键的一步。
在工业生产中,许多过程会产生大量的低温余热,如烟气、燃烧废气、水蒸气和热冷却水等,这些余热通常被直接排放到大气中而未被有效利用。
为了收集这些低温余热能,通常采用换热器等设备进行收集,并将余热转化为可用的能源。
其次,传热是将收集到的低温余热能传递给工作介质(一般是水),使其发生温度升高。
常见的传热设备包括换热器、热交换器等,通过这些设备,余热能被传递给工作介质,起到热量集中和转换的作用。
第三,蒸汽发电是利用传递来的热能使水蒸发成蒸汽,驱动汽轮机产生动力,并最终带动发电机发电。
通过这一步骤,余热被充分利用,并转化为电能。
最后,余热利用是将发电厂产生的废热再次利用,提高发电效率。
常见的利用方式包括供暖、供热、生活和工业用水加热等,有效地提高了能源的利用效率。
总的来说,低温余热发电工艺流程是一种环保节能的新型发电
方式,通过收集和利用工业生产中的低温余热能,可以减少对地球资源的消耗,达到减排减治理好环境的目的。
随着技术的不断进步和完善,低温余热发电在未来将会有更广泛的应用和前景。
余热发电系统工艺流程
余热发电系统工艺流程余热发电是利用工业生产过程中产生的废热来发电的一种能源回收利用方式。
下面是一个典型的余热发电系统工艺流程:1.热源收集:在工业生产过程中,产生大量的废热。
热源收集是余热发电系统的第一步,主要是通过管道或其他方式将废热导入余热发电系统。
2.废热回收:在余热发电系统中,废热需要通过换热器进行回收。
换热器是一个设备,用于将废热传递给工作介质,使其温度升高。
3.工作介质循环:在余热发电系统中,工作介质一般是水蒸汽。
废热回收后,工作介质会加热,并转化为高温高压的水蒸汽。
然后,水蒸汽会通过涡轮发电机组,将其热能转化为电能。
4.电能输出:通过涡轮发电机组,机械能被转化为电能。
电能可以直接输出到电网中,为用户提供电力。
5.回水循环:在发电过程中,水蒸汽会凝结成水,然后通过凝汽器冷却,再次回到换热器中,与废热进行换热。
这样就形成了一个循环,有效地利用了废热。
6.废热排放:在余热发电系统中,一些废热无法回收利用,例如烟气中的热量。
这部分废热需要通过废热排放系统排出。
7.控制与监测:余热发电系统需要进行控制和监测,以确保其正常运行。
控制系统可以实现对废热流量、工作介质循环等参数的控制,监测系统可以实时监测系统的运行状态。
8.维护与保养:余热发电系统需要定期进行维护与保养,以确保其长期稳定运行。
维护包括设备的清洁、检修和更换,保养包括设备的润滑和防腐。
以上就是一个典型的余热发电系统的工艺流程。
通过对废热的回收利用,余热发电系统可以有效地降低能源消耗,减少环境污染,实现能源的可持续利用。
余热发电的工艺流程主要设备和工作原理简单介绍
余热发电的工艺流程主要设备和工作原理简单介绍余热发电是利用工业生产过程中产生的废热来发电的一种方式。
这些废热主要来自于燃烧发电机组、高温工业炉窑、冶金、化工、电子等行业。
通过余热发电,可以最大限度地发挥能源的效益,提高能源利用率,减少环境污染。
2.余热转换:回收的废热需要通过热交换器或热回收系统将其转化成可供使用的高温热能或高压蒸汽。
这一步骤主要是将废热转化为对发电机来说更为适用的能源。
3.发电机运行:高温热能或高压蒸汽通过锅炉或涡轮机等设备驱动发电机进行发电。
发电机将转化为机械能的能源转化为电能,并输出为电网所需的电力。
4.余热回收再利用:通过废热回收系统将发电机组产生的余热进行回收。
这样可以提高能源利用效率,减少能源的浪费,并降低环境污染。
主要设备及其工作原理简介如下:1.烟气余热回收系统:烟气余热回收系统主要由烟囱、换热器和蓄热器等组成。
其工作原理是通过烟气与热介质之间的热量交换,将烟气中的废热转化为热能,再将热能通过热能回收装置转化为电能。
2.蒸汽涡轮发电机组:蒸汽涡轮发电机组是一种常见的余热发电设备。
其工作原理是通过高温高压的蒸汽驱动涡轮机旋转,涡轮机的转动分别驱动发电机和压缩机工作,将热能转化为电能。
3.蓄热器:蓄热器是余热发电中的重要设备之一、其工作原理是通过保存和释放热能的方式,使废热能够更好地用于发电系统。
蓄热器可以将低温的废热转化为高温的热能,提高发电过程中的能源利用效率。
4.综合利用系统:综合利用系统通过多种工艺,将余热转化为电能的同时,还可以利用余热供暖、蒸馏水等。
这样可以最大限度地提高能源利用效率,实现能源的再生利用。
综上所述,余热发电是一种有效的能源利用方式,通过回收废热,将其转化为高温热能或高压蒸汽,再通过发电机组将其转化为电能。
这种方式可以提高能源的利用效率,减少环境污染,是可持续发展的重要手段之一、不同行业的余热发电流程和设备可能略有差异,但总体原理是相似的。
余热发电工艺流程
余热发电工艺流程
《余热发电工艺流程》
余热发电是利用工业生产中产生的废热,通过余热发电设备将废热转化为电能的一种环保高效的发电方式。
余热发电工艺流程包括余热采集、余热转换和发电三个主要环节。
首先是余热采集。
工业生产中产生的余热通常来自于燃烧、冷却和其他工艺过程,需要通过余热采集设备将废热进行集中采集,并转移到余热转换设备。
接下来是余热转换。
余热转换设备一般采用热交换器和蒸汽轮机等设备,通过将余热转化为蒸汽或热水,利用蒸汽轮机驱动发电机产生电能。
在余热转换的过程中,需要进行温度、压力和流量等参数的控制,保证能够有效利用余热转化成电能。
最后是发电。
通过发电机将蒸汽或热水转变为电能,进而通过电网输送到工业生产线或附近的用户,实现余热的高效利用。
同时,在实际的生产中还需要对发电的稳定性和耐久性进行考量,确保余热发电系统的可靠运行。
总体来说,余热发电工艺流程通过充分利用工业生产中的废热,将其转化为电能,不仅能够有效减少环境污染,还能够降低能源消耗,节约生产成本,是一种具有很大应用前景的绿色能源解决方案。
余热发电流程
余热发电流程
余热发电是一种能源利用方式,通过利用工业生产过程中产生的余热,转化为电能,实现能源的再利用,减少能源浪费。
余热发电流程主要包括余热收集、热能转换和发电三个基本步骤。
首先,余热收集是余热发电的第一步。
在工业生产过程中,许多设备会产生大量的余热,如果这些余热不能得到有效的利用,将会造成能源的浪费。
因此,余热收集是非常重要的一环。
通常情况下,余热收集会通过安装余热回收装置来实现,这些装置可以将工业设备产生的余热进行收集和储存,为后续的热能转换提供能源支持。
其次,热能转换是余热发电的关键环节。
收集到的余热需要经过热能转换装置进行能量转化,一般来说,常见的热能转换装置包括热交换器、蒸汽发生器等。
通过这些装置,余热的热能可以被有效地转化为其他形式的能量,比如蒸汽能、热水能等。
这些能量转化后可以被进一步利用,满足工业生产中的能源需求,或者用于发电。
最后,发电是余热发电流程的最终目的。
经过热能转换后的能源可以被送入发电设备中,通过发电设备将其转化为电能。
常见的发电设备包括蒸汽轮机、燃气轮机等,它们可以将能源转化为机械能,再经过发电机转化为电能。
这样,通过余热发电流程,工业生产中产生的余热得到了有效的利用,实现了能源的再生利用,减少了环境污染。
总的来说,余热发电流程是一个能源利用的重要方式,通过余热收集、热能转换和发电三个基本步骤,可以实现工业生产中余热的有效利用,为可持续发展提供了重要的支持。
随着科技的不断进步,余热发电技术也在不断完善,相信在未来会有更多的工业生产过程中采用余热发电流程,为节能减排作出更大的贡献。
余热发电工艺流程
余热发电工艺流程余热发电是一种利用工业生产过程中产生的余热来发电的环保节能技术。
通过将工业生产中产生的高温余热转化为电能,不仅可以提高能源利用率,还可以减少对环境的影响。
下面将介绍余热发电的工艺流程。
1. 余热收集余热发电的第一步是收集工业生产过程中产生的余热。
通常情况下,工业生产过程中会产生大量的高温余热,比如炉窑、锅炉、热风炉等设备产生的余热。
这些余热需要通过余热回收设备进行收集和集中处理。
2. 余热预处理收集到的余热需要经过预处理才能用于发电。
预处理的主要目的是降低余热的温度和压力,以便后续的发电设备能够正常运行。
通常情况下,余热预处理包括余热冷却、除尘、除硫等工序。
3. 蒸汽发电经过预处理的余热通常会被用来产生蒸汽,然后通过蒸汽发电机组将蒸汽能量转化为电能。
蒸汽发电是余热发电的核心环节,也是最常用的发电方式。
在蒸汽发电过程中,余热会被用来加热水,产生高温高压的蒸汽,然后蒸汽会驱动发电机组转动,产生电能。
4. 热水发电除了蒸汽发电外,余热还可以用来产生热水,然后通过热水发电机组将热水能量转化为电能。
热水发电通常适用于一些温度较低的余热,比如废水余热、空调余热等。
5. 发电系统无论是蒸汽发电还是热水发电,都需要配备相应的发电系统,包括发电机组、发电控制系统、变压器等设备。
这些设备需要根据余热发电的特点进行设计和选型,以确保发电系统能够稳定、高效地运行。
6. 排放处理余热发电过程中会产生一些废气和废水,这些废气和废水需要经过处理后才能排放。
通常情况下,余热发电厂会配备废气处理设备和废水处理设备,以确保排放达标。
7. 余热利用除了用于发电外,余热还可以用于供暖、生活热水等方面。
余热发电工艺流程中需要考虑如何充分利用余热,提高能源利用效率。
综上所述,余热发电工艺流程包括余热收集、余热预处理、蒸汽发电或热水发电、发电系统、排放处理和余热利用等环节。
通过合理设计和运行,余热发电可以成为工业生产过程中的一种清洁能源,为可持续发展做出贡献。
余热发电系统工艺流程
余热发电系统工艺流程1.废热收集:首先需要收集工业企业产生的废热。
这些废热可以来自于锅炉、燃气轮机、烟气等。
一般采用余热锅炉来接收这些废热,并将其转化为高压蒸汽。
2.蒸汽输送:接收到的废热通过余热锅炉中的换热器转化为高压蒸汽。
这些蒸汽可以直接用于工业企业的生产过程中,也可以用于发电。
3.蒸汽扩能:如果蒸汽用于发电,那么需要将蒸汽的压力进一步扩大,以满足发电机组的要求。
这一过程可以通过采用蒸汽透平机组实现,将蒸汽的压力和温度提高,从而提高蒸汽的能量。
4.发电:经过蒸汽扩能后,蒸汽将进入发电机组。
发电机组通过内部的转子和定子之间的磁场相互作用,将蒸汽能量转化为电能。
发电机组一般采用涡轮发电机组或蒸汽轮发电机组,能够高效转化蒸汽能量。
5.废气处理:在蒸汽通过发电机组后,会产生废气。
这些废气可能含有对环境有害的物质,比如二氧化硫、氮氧化物等。
因此需要对废气进行处理,将其中的有害物质进行去除,以减少对环境的污染。
6.发电集成:余热发电系统还可以与其他能源发电系统进行集成。
比如可以将余热发电系统与太阳能光伏发电系统相结合,将太阳能电池板产生的电能与余热发电系统产生的电能进行组合,提高系统的发电效率。
7.电能利用:发电后产生的电能可以用于工业企业自身的消耗,也可以通过电网进行输送和销售。
如果工业企业自身消耗的电能小于发电量,那么可以将多余的电能卖给电网,实现电能的回收和利用。
总而言之,余热发电系统工艺流程包括收集废热、蒸汽输送、蒸汽扩能、发电、废气处理、发电集成和电能利用等环节。
通过充分利用工业企业产生的废热,可以实现能源的高效利用和环境的减排,具有很高的经济和环境效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余热发电工艺流程讲解
授课人:孙飞
纯低温水泥窑余热发电技术是直接利用窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何
污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程(见附图): 余热电站的热力循环是基本的蒸汽动力循环,即汽、水之间的往复循环过程。
蒸汽进入汽轮机做功后,经凝汽器冷却成凝结水,凝结水经凝结水泵(150A/B)泵入闪蒸器出水集箱,与闪蒸器出水汇合,然后通过锅炉给水泵(230A/B)升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的高温水(167℃)分三路分别送到AQC炉汽包,PH炉汽包和闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入闪蒸器内的高温水通过闪蒸原理产生一定压力下的饱和蒸汽送入汽轮机第七级起辅助做功作用,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵(511)打入热水井(凝汽器140)。
水泥厂余热资源的特点是:流量大,品位较低。
以宁国水泥厂4000t/d生产线为例,PH(预热器)和AQC(冷却机)出口废气流量和温度分别为258550Nm3/h、350℃和306600Nm3/h、238℃,余热发电便是充分利用这两部分余热资源进行热能回收。
1)热力系统
整个热力系统设计力求经济、高效、安全,系统工艺流程是由两台高效余热锅炉AQC、PH•锅炉闪蒸器和一套汽轮发电机
组组成,辅之以冷却水系统、纯水制取系统、锅炉给水系统及锅炉粉尘输送系统。
余热锅炉内进行热交换产生压力为25kg/cm2、温度为335℃~350℃、额定蒸发量为101t/h的过热蒸汽通入汽轮机,进行能量转换,拖动发电机向电网输送电力。
(1)采用凝汽式混汽式汽轮机。
凝汽式是指做过功的蒸汽充分冷凝成凝结水,重新进入系统循环,减少系统补充水量。
混汽式是指汽轮机除主蒸汽外,另有一路低压饱和蒸汽导入汽轮机做功,从而提高汽轮机相对内效率,提高发电机输出功率。
(2)设置具有专利技术、高热效率的余热PH锅炉,采用特殊设计的机械振打装置进行受热面除灰,保证锅炉很高的传热效率。
(3)应用热水闪蒸技术(高压热水进入低压空间瞬间汽化现象),设置一台低压闪蒸器,一方面将闪蒸出的饱和蒸汽导入汽轮机做功,进一步提高汽轮机做功功率,另一方面形成锅炉给水系统循环,可以有效地控制AQC炉省煤器段出口水温,保证锅炉给水工况稳定。
(4)由于PH出口废气还要用于原料烘干,所以PH锅炉无省煤器,只设蒸发器和过热器,控制出炉烟温在250℃,仍可满足水泥生产线工艺需求。
(5)采用热水闪蒸自除氧结合化学除氧的办法进行除氧,不另设除氧器,减少了工艺设备,简化了工艺流程。
(6)热力泵均采用一用一备双系列。
在运行泵出现故障时,备用泵自动投入使用,保证了发电系统安全、稳定运行。
2 锅炉系统
余热锅炉: AQC炉和PH炉
AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由一组省煤器、六组蒸发器、一组过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
沉降室作用:利用重力除尘的原理将烟气中的大颗粒熟料粉尘收集,避免粉尘对锅炉受热面的冲刷、磨损。
PH 锅炉的设计特点如下: 锅炉型式为卧式,锅炉由四组蒸发器、一组过热器、汽包及热力管道构成,废气流动方向为水平流动,换热管采用蛇形光管,以防止积灰。
因生料具有粘附性,故锅炉设置振打装置进行除灰,工质循环为采用循环泵进行强制循环方式。