大学物理复习资料大题
(完整版)大学物理题库
第1章 质点运动学一、选择题 1. 一物体在位置1的矢径是 r 1, 速度是1v . 如图1-1-1所示.经∆t 时间后到达位置2,其矢径是 r 2, 速度是2v .则在∆t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ∆-12 (D) t r r ∆+12 2. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量(B) 加速度是描述物体位移变化率的物理量(C) 加速度是描述物体速度变化的物理量(D) 加速度是描述物体速度变化率的物理量 3. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为v , 则在∆t 时间内[ ] (A) v v ∆=∆ (B) 平均速度为∆∆r t (C) r r ∆=∆ (D) 平均速度为t r ∆∆ 4. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的t d d v 和td d v 的变化情况为 [ ] (A) t d d v 的大小和t d d v 的大小都不变 (B) t d d v 的大小改变, t d d v 的大小不变 (C) t d d v 的大小和t d d v 的大小均改变 (D) t d d v 的大小不变, td d v 的大小改变 5. 下面各种判断中, 错误的是[ ] (A) 质点作直线运动时, 加速度的方向和运动方向总是一致的(B) 质点作匀速率圆周运动时, 加速度的方向总是指向圆心(C) 质点作斜抛运动时, 加速度的方向恒定(D) 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边6 下列表述中正确的是[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直(B) 物体作直线运动时, 法向加速度必为零(C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零7 一物体作匀变速直线运动, 则[ ] (A) 位移与路程总是相等(B) 平均速率与平均速度总是相等(C) 平均速度与瞬时速度总是相等(D) 平均加速度与瞬时加速度总是相等图1-1-18. 在地面上以初速v 0、抛射角θ 斜向上抛出一物体, 不计空气阻力.问经过多长时间后速度的水平分量与竖直分量大小相等, 且竖直分速度方向向下?[ ] (A) )cos (sin 0θθ+gv (B) )cos 2(sin 0θθ-g v (C) )sin (cos 0θθ-g v (D) g0v 9. 从离地面高为h 处抛出一物体,在下列各种方式中,从抛出到落地时间内位移数值最大的一种是 [ ] (A) 自由下落 (B) 以初速v 竖直下抛 (C) 以初速v 平抛 (D) 以初速v 竖直上抛10. 作圆周运动的物体[ ] (A) 加速度的方向必指向圆心 (B) 切向加速度必定等于零(C) 法向加速度必定等于零 (D) 总加速度必定不总等于零11. 质点作变速直线运动时, 速度及加速度的关系为[ ] (A) 速度为0, 加速度一定也为0(B) 速度不为0, 加速度也一定不为0(C) 加速度很大, 速度也一定很大(D) 加速度减小, 速度的变化率也一定减小12. 下列几种情况中, 哪种情况是不可能的?[ ] (A) 物体具有向东的速度和向东的加速度(B) 物体具有向东的速度和向西的加速度(C) 物体具有向东的速度和向南的加速度(D) 物体具有变化的加速度和恒定的速度 13. 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动14 . 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin ,R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为[ ] (A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,215. 物体不能出现下述哪种情况?[ ] (A) 运动中, 瞬时速率和平均速率恒相等(B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变16. 某物体的运动规律为t k t2d d v v -=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是[ ] (A) 0221v v +=t k (B) 0221v v +-=t k(C) 02121v v +=t k (D) 02121v v +-=t k17. 如图1-1-33所示,站在电梯内的人, 看到用细绳连接的质量不同的两物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态, 由此他断定电梯作加速运动, 其加速度的[ ] (A) 大小为g , 方向向上(B) 大小为g , 方向向下(C) 大小为g /2, 方向向上(D) 大小为g /2, 方向向下二、填空题 1. 一辆汽车以10 m.s -1的速率沿水平路面直前进, 司机发现前方有一孩子开始刹车,以加速度-0.2m.s -2作匀减速运动,则刹后1 min 内车的位移大小是 .2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 .3. 如图1-2-3所示,甲、乙两卡车在一狭窄的公路上同向行驶,甲车以10 m.s -1速度匀速行驶, 乙车在后. 当乙车发现甲车时, 车速度为15 m.s -1,相距1000m .为避免相撞,乙车立即作匀减速行驶,其加速度大小至少应为 .4. 一质点沿x 轴作直线运动,其t v -曲线如图1-2-5所示.若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 .5. 一质点沿x 轴作直线运动, 在t = 0时, 质点位于x 0 =2 m处. 该质点的速度随时间变化的规律为2312t -=v ( t 以s 计). 当质点瞬时静止时,其所在位置为 ,加速度为 .6. 已知一个在xOy 平面内运动的物体的速度为j t i 82-=v .已知t = 0时它通过(3, -7)位置.则该物体任意时刻的位置矢量为 .7 距河岸(看成直线)300 m 处有一艘静止的船,船上的探照灯以转速为1m inr 1-⋅=n 转动,当光束与岸边成30°角时,光束沿岸边移动的速率=v .8 一物体作如图1-2-15所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度的大小τa = ,轨道的曲率半径=ρ .图1-2-3图1-1-33 1s m -⋅/v 1221345.25.4()t 1-第2章 动力学基本定律一、选择题1. 下列说法中正确的是[ ] (A) 运动的物体有惯性, 静止的物体没有惯性(B) 物体不受外力作用时, 必定静止(C) 物体作圆周运动时, 合外力不可能是恒量(D) 牛顿运动定律只适用于低速、微观物体2. 下列诸说法中, 正确的是[ ] (A) 物体的运动速度等于零时, 合外力一定等于零(B) 物体的速度愈大, 则所受合外力也愈大(C) 物体所受合外力的方向必定与物体运动速度方向一致(D) 以上三种说法都不对3. A 、B 两质点m A >m B , 受到相等的冲量作用, 则[ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等(C) A 比B 的动量增量大 (D) A 与B 的动量增量相等4. 如图2-1-4所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的[ ] (A) 速度逐渐减小, 加速度逐渐减小(B) 速度逐渐减小, 加速度逐渐增大(C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?[ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化6. 一物体作匀速率曲线运动, 则[ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零(C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 7. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有tm t m F d d d d v v +=.物体作怎样的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上?[ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动(C) 变质量的直线运动 (D) 变质量的曲线运动8. 如图2-1-8所,质量相同的两物块A 、B 用轻质弹簧连接后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间[ ] (A) A 、B 的加速度大小均为g(B) A 、B 的加速度均为零(C) A 的加速度为零, B 的加速度大小为2gF 图2-1-4 图2-1-8 1m 2m(D) A 的加速度大小为2g , B 的加速度为零9. 假设质量为70 kg 的飞机驾驶员由于动力俯冲得到7g 的净加速度, 问作用于驾驶员上的力最接近于下列的哪一个值?[ ] (A) 10 N (B) 70 N (C) 490 N (D) 4800 N10. 如图2-1-10所示,升降机内地板上放有物体A, 其上再放另一物体B, 二者的质量分别为A m 、B m .当升降机以加速度a 向下加速运动时(a <g ), 物体A 对升降机地板的压力为 [ ] (A) g m A (B) g m m )(B A + (C) ))((B A a g m m ++ (D) ))((B A a g m m -+ 11. 一质量为60 kg 的人静止在一个质量为600 kg 且正以-1s m 2⋅的速率向河岸驶近的木船上, 河水是静止的, 其阻力不计.现人相对于船以一水平速度v 沿船的前进方向向河岸跳去, 该人起跳后, 船速减为原来的一半, 这说明v 值为[ ] (A) -1s m 2⋅ (B) -1s m 12⋅ (C) -1s m 20⋅ (D) -1s m 11⋅ 12. 牛顿定律和动量守恒定律的适用范围为[ ] (A) 仅适用于宏观物体(B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用(D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体13. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点[ ] (A) 比原来更远 (B) 比原来更近(C) 仍和原来一样 (D) 条件不足不能判定14. 如图2-1-14所示,停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高m 1,不计绳梯的质量, 则气球将[ ] (A) 向上移动m 1 (B) 向下移动m 1(C) 向上移动m 5.0 (D) 向下移动m 5.015. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块,这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小(B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大16. 有两个同样的木块, 从同一高度自由下落, 在下落途中, 一木块被水平飞来的子弹击中, 并陷入其中.子弹的质量不能忽略, 若不计空气阻力, 则 [ ] (A) 两木块同时到达地面 (B) 被击木块先到达地面 (C) 被击木块后到达地面 (D) 不能确定哪块木块先到达地面图2-1-10 a A B图2-1-16图2-1-1417 将一物体提高10 m, 下列哪种情形下提升力所做的功最小?[ ] (A) 以-1s m 5⋅的速度匀速上升(B) 以-1s m 10⋅的速度匀速提升(C) 将物体由静止开始匀加速提升10 m, 速度达到-1s m 5⋅(D) 使物体从-1s m 10⋅的初速度匀减速上升10 m, 速度减为-1s m 5⋅18. 质点系的内力可以改变[ ] (A) 系统的总质量 (B) 系统的总动量(C) 系统的总动能 (D) 系统的总角动量19. 作用在质点组的外力的功与质点组内力做功之和量度了[ ] (A) 质点组动能的变化(B) 质点组内能的变化(C) 质点组内部机械能与其它形式能量的转化(D) 质点组动能与势能的转化20. 在一般的抛体运动中, 下列说法中正确的是[ ] (A) 最高点动能恒为零(B) 在升高的过程中, 物体动能的减少等于物体的势能增加和克服重力 所作功之和(C) 抛射物体机械能守恒, 因而同一高度具有相同的速度矢量(D) 在抛体和地球组成的系统中, 物体克服重力做的功等于势能的增加21. 有A 、B 两个相同的物体, 处于同一位置, 其中物体A 水平抛出, 物体B 沿斜面无摩擦地自由滑下, 则[ ] (A) A 先到达地面, 两物体到达地面时的速率不相等(B) A 先到达地面, 两物体到达地面时的速率相等(C) B 先到达地面, 两物体到达地面时的速率不相等(D) B 先到达地面, 两物体到达地面时的速率相等22. 将一小球系在一端固定的细线(质量不计)上, 使小球在竖直平面内作圆周运动,作用在小球上的力有重力和细线的拉力.将细线、小球和地球一起看作一个系统, 不考虑空气阻力及一切摩擦, 则[ ] (A) 重力和拉力都不做功, 系统的机械能守恒(B) 因为重力和拉力都是系统的内力, 故系统的机械能守恒(C) 因为系统不受外力作用,这样的系统机械能守恒(D) 以上说法都不对23. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变(B) 只有合外力为零的保守内力作用系统机械能守恒(C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所做之功为零, 则该力称为保守力24. 在下列叙述中,错误的是[ ] (A) 保守力做正功时相应的势能将减少(B) 势能是属于物体体系的(C) 势能是个相对量,与参考零点的选择有关(D) 势能的大小与初、末态有关, 与路径无关25. 如图2-1-25所示,劲度系数-1m N 1000⋅=k 的轻质弹簧一端固定在天花板上, 另一端悬挂一质量为m = 2 kg 的物体, 并用手托着物体使弹簧无伸长.现突然撒手, 取-2s m 10⋅=g , 则弹簧的最大伸长量为[ ] (A) 0.01 m (B) 0.02 m (C) 0.04 m (D) 0.08 m26. 在弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的[ ] (A) 6倍 (B) 8倍 (C) 9倍 (D) 12倍27. 从地面发射人造地球卫星的速度称为发射速度v 0, 卫星绕地球运转的速度称为环绕速度v , 已知rgR 2=v (R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力, 对于发射速度v 0[ ] (A) v 越小相应的v 0越大 (B) 01v v ∝(C) v 越大相应的v 0越大 (D) 0v v ∝ 28. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为[ ] (A) 2v (B) v 2 (C) v 21 (D) 2v 29. 如图2-1-29所示,用铁锤将一铁钉击入木板, 设铁钉受到的阻力与其进入木块的深度成正比, 铁锤两次击钉的速度相同, 第一次将钉击入木板内1cm, 则第二次能将钉继续击入的深度为[ ] (A) 0.4cm (B) 0.5cm (C) 1cm (D) 1.4cm30. 如图2-1-30所示,一被压缩的弹簧, 两端分别连接A 、B两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ ] (A) 1 : 1 (B) 2 : 1 (C) 1 : 2 (D) 1 : 431. 关于功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点做的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所做的功的代数和必然为零. 在上述说法中[ ] (A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的32 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是[ ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒(D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒图2-1-3033. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统[ ] (A) 动量、机械能以及对一轴的角动量守恒(B) 动量、机械能守恒,但角动量是否守恒不能断定(C) 动量守恒,但机械能和角动量守恒与否不能断定(D) 动量和角动量守恒,但机械能是否守恒不能断定34. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图2-1-34所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 [ ] (A) 221v m (B) )(2022m m m +v (C) 220202)(v m m m m + (D) 2022v m m 35. 物体在恒力F 作用下作直线运动, 在∆t 1时间内速度由0增加到v , 在∆t 2时间内速度由v 增加到v 2, 设F 在∆t 1时间内做的功是A 1, 冲量是1I , 在∆t 2时间内做的功是A 2, 冲量是2I 。
大学物理试题库及答案详解pdf
大学物理试题库及答案详解pdf一、选择题1. 光在真空中的传播速度是()。
A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 km/hD. 299,792,458 m/h答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这个定律的数学表达式是()。
A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A二、填空题1. 电磁波的波速在真空中是恒定的,其值为______ m/s。
答案:299,792,4582. 根据热力学第一定律,能量守恒,即能量不能被创造或消灭,只能从一种形式转化为另一种形式。
其数学表达式为:ΔU = Q - W,其中ΔU表示内能的变化,Q表示______,W表示______。
答案:热量的转移;功的做功三、计算题1. 一个质量为5kg的物体从静止开始,受到一个恒定的力F=20N的作用,求物体在5秒内移动的距离。
答案:首先根据牛顿第二定律F=ma,可以计算出物体的加速度a=F/m=20N/5kg=4m/s²。
然后根据位移公式s=1/2at²,可以计算出物体在5秒内移动的距离s=1/2*4m/s²*(5s)²=50m。
2. 一个电容器的电容为2μF,当电压从0增加到5V时,求电容器储存的电荷量。
答案:根据电容的定义C=Q/V,可以计算出电容器储存的电荷量Q=CV=2*10^-6F*5V=10^-5C。
四、简答题1. 简述麦克斯韦方程组的四个方程。
答案:麦克斯韦方程组包括四个方程,分别是:- 高斯电场定律:∇·E = ρ/ε₀- 高斯磁场定律:∇·B = 0- 法拉第电磁感应定律:∇×E = -∂B/∂t- 安培环路定律(包含麦克斯韦修正项):∇×B = μ₀(J +ε₀∂E/∂t)2. 什么是量子力学的不确定性原理?答案:不确定性原理是量子力学中的一个基本原理,由海森堡提出。
大学普通物理复习题(10套)带答案
普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。
3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。
(选填:变大、变小、不变。
)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。
33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。
二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。
(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。
《大学物理》复习题及答案
《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。
3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。
速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。
如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。
25:一质点沿半径为米的圆周运动,其转动方程为??2?t。
质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。
大学物理考试试题库经典版(含答案)
第一章 质点运动学基本要求:1、掌握位矢、位移、速度、加速度、角速度和角加速度等物理量。
2、能计算速度、加速度、角加速度、切向加速度和法向加速度等。
教学重点:位矢、运动方程,切向加速度和法向加速度。
教学难点:角加速度、切向加速度和法向加速度。
主要内容:本章首先从描述物体机械运动的方法问题入手,阐述描述运动的前提——质点理想模型、时间和空间的量度,参照系坐标系。
其次重点讨论描写质点和刚体运动所需要的几个基本物理量(如位移、速度、加速度、角速度、角加速度等)及其特性(如相对性、瞬时性、矢量性)。
(一)时间和空间研究机械运动,必然涉及时间、空间及其度量.我们用时间反映物体运动的先后顺序及间隔,即运动的持续性.现行的时间单位是1967年第13届国际计量大会规定的,用铯(133Cs )原子基态的两个超精细能级间跃迁相对应的辐射周期的9 192 631 770倍为1秒.空间反映物质的广延性.空间距离为长度,长度的现行单位是1983年10月第17届国际计量大会规定的,把光在真空中1/299 792 458秒内走过的路程定义为1米.(二)参照系和坐标系宇宙间任何物质都在运动,大到地球、太阳等天体,小到分子、原子及各种基本粒子,所以说,物质的运动是普遍的、绝对的,但对运动的描述却是相对的.比如,在匀速直线航行的舰船甲板上,有人放开手中的石子,他看到石子作自由落体运动,运动轨迹是一条直线,而站在岸边的人看石子作平抛运动,运动轨迹是一条抛物线.这是因为他们站在不同的物体上.因此,要描述一个物体的运动,必须先确定另一个物体作为标准,这个被选作标准的物体叫参照系或参考系.选择哪个物体作为参照系,主要取决于问题的性质和研究的方便.在研究地球运动时,多取太阳为参照系,当研究地球表面附近物体的运动时,一般以地球为参照系.我们大部分是研究地面上物体的运动,所以,如不特别指明,就以地球为参照系. (三)质点实际的物体都有一定的大小和形状,物体上各点在空中的运动一般是不一样的.在某些情况下,根据问题的性质,如果物体的形状和大小与所研究的问题关系甚微,以至可以忽略其大小和形状,这时就可以把整个物体看作一个没有大小和形状的几何点,但是它具有整个物体的质量,这种具有质量的几何点叫质点.必须指出质点是一种理想的物理模型.同样是地球,在研究它绕太阳公转时,把它看作质点,在研究它的自转时,又把它看作刚体. (四)速度0d limd t t t∆→∆==∆r r v速度v 是矢量,其方向沿t 时刻质点在轨迹上A 处的切线,它的单位是m ·s -1.(五)加速度220d d lim d d t t t t ∆→∆===∆v v ra加速度a 是速度v 对时间的一阶导数,或者是位矢r 对时间的二阶导数.它的单位是m ·s -2. (六)圆周运动圆周运动是最简单、最基本的曲线运动,2d ,d n vv a a tRτ==习题及解答: 一、填空题1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。
大学物理期末复习题(内含答案)
第1章 质点运动学1 下面各种判断中, 错误的是A. 质点作直线运动时, 加速度的方向和运动方向总是一致的B.质点作匀速率圆周运动时, 加速度的方向总是指向圆心C . 质点作斜抛运动时, 加速度的方向恒定D . 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边[ ]答案:A难易程度:中答案解析:无题型:单选题2. 质点作圆周运动时,下列说表述中正确的是( )A. 速度方向一定指向切向,加速度方向一定指向圆心B. 速度方向一定指向切向,加速度方向也一般指向切向C. 由于法向分速度为零,所以法向加速度也一定为零D. 切向加速度仅由速率的变化引起答案:D难易程度:中答案解析:无题型:单选题3 有两个各自作匀变速运动的物体, 在相同的时间间隔内所发生的位移大小应有A. 加速度大的位移大B. 路程长的位移大C.平均速率大的位移大D. 平均速度大的位移大[ ]答案:D难易程度:中答案解析:无题型:单选题4 质点作曲线运动, r 表示位置矢量的大小, s 表示路程, a 表示加速度大小, 则下列各式中正确的是 A. a t =d d v B. v =t r d d C. v =t s d d D. a t=d d v [ ] 答案:C难易程度:中答案解析:无题型:单选题5. 关于加速度的物理意义, 下列说法正确的是A. 加速度是描述物体运动快慢的物理量B. 加速度是描述物体位移变化率的物理量C. 加速度是描述物体速度变化的物理量D. 加速度是描述物体速度变化率的物理量 [ ]答案:D难易程度:中答案解析:无题型:单选题5 作匀变速圆周运动的物体A.法向加速度大小不变B. 切向加速度大小不变C. 总加速度大小不变D. 以上说法都不对[ ]答案:B难易程度:中答案解析:无题型:单选题7 作圆周运动的物体A. 加速度的方向必指向圆心B.切向加速度必定等于零C. 法向加速度必定等于零D.总加速度必定不总等于零[ ]答案:D难易程度:中答案解析:无题型:单选题8 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r22+=(其中a 、b 为常量) , 则该质点作A. 匀速直线运动B. 变速直线运动C. 抛物曲线运动D.一般曲线运动[ ]答案:B难易程度:中答案解析:无题型:单选题9 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin , R t R y +=ωcos ,式中R 、ω均为常数.当y 达到最大值时该质点的速度为A .0,0==y x v v B. 0,2==y x R v v ωC . ωR y x −==v v ,0 D. ωωR R y x −==v v ,2[ ]答案:B难易程度:难答案解析:无题型:单选题10某物体的运动规律为t k t2d d v v −=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是 A. 0221v v +=t k B. 0221v v +−=t k C. 02121v v +=t k D. 02121v v +−=t k [ ] 答案:C难易程度:难答案解析:无题型:单选题11 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )答案:D难易程度:中答案解析:无题型:单选题12 物体不能出现下述哪种情况?A.运动中, 瞬时速率和平均速率恒相等B. 运动中, 加速度不变, 速度时刻变化C. 曲线运动中, 加速度越来越大, 曲率半径总不变D. 曲线运动中, 加速度不变, 速率也不变[ ]答案:D难易程度:中答案解析:无题型:单选题13.下列说法中,哪一个是正确的?A. 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程.B. 斜向上抛的物体,在最高点处的速度最小,加速度最大.C. 物体作曲线运动时,有可能在某时刻的法向加速度为零.D.物体加速度越大,则速度越大. [ ]答案:C难易程度:中答案解析:无题型:单选题第2章牛顿运动定律一、选择题1.牛顿第一定律告诉我们A 物体受力后才能运动B 物体不受力也能保持本身的运动状态C 物体的运动状态不变, 则一定不受力D 物体的运动方向必定和受力方向一致[ ]答案:B难易程度:中答案解析:无题型:单选题2. 下列说法中正确的是A. 运动的物体有惯性, 静止的物体没有惯性B. 物体不受外力作用时, 必定静止C. 物体作圆周运动时, 合外力不可能是恒量D. 牛顿运动定律只适用于低速、微观物体[ ] 答案:C难易程度:中答案解析:无题型:单选题3. 下列诸说法中, 正确的是A.物体的运动速度等于零时, 合外力一定等于零B. 物体的速度愈大, 则所受合外力也愈大C.物体所受合外力的方向必定与物体运动速度方向一致D.以上三种说法都不对[ ]答案:D难易程度:中答案解析:无题型:单选题4. 一个物体受到几个力的作用, 则A. 运动状态一定改变B. 运动速率一定改变C.必定产生加速度D. 必定对另一些物体产生力的作用[ ]答案:D难易程度:中答案解析:无题型:单选题5. 对一运动质点施加以恒力, 质点的运动会发生什么变化?A.质点沿着力的方向运动B.质点仍表现出惯性C.质点的速率变得越来越大D. 质点的速度将不会发生变化[ ]答案:B难易程度:中答案解析:无题型:单选题6. 一物体作匀速率曲线运动, 则A. 其所受合外力一定总为零B.其加速度一定总为零C.其法向加速度一定总为零D.其切向加速度一定总为零[ ]答案:D难易程度:中答案解析:无题型:单选题7. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点A. 比原来更远B. 比原来更近C. 仍和原来一样D.条件不足不能判定[ ]答案:A难易程度:中答案解析:无题型:单选题8用水平力F N把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N逐渐增大时,物体所受的静摩擦力F f的大小( )A.不为零,但保持不变B.随F N成正比地增大C . 开始随F N 增大,达到某一最大值后,就保持不变D . 无法确定答案:A难易程度:中答案解析:无题型:单选题 9. 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )A. 它的加速度方向永远指向圆心,其速率保持不变B.它受到的轨道的作用力的大小不断增加C. 它受到的合外力大小变化,方向永远指向圆心D.它受到的合外力大小不变,其速率不断增加答案:B难易程度:中答案解析:无题型:单选题第4章 振动与波动一、选择题1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是[ ]A. abx F =B. abx F −=C. b ax F +−=D. a bx F /−=答案:A难易程度:中答案解析:无题型:单选题2. 在下列所述的各种物体运动中, 可视为简谐振动的是[ ]A. 将木块投入水中, 完全浸没并潜入一定深度, 然后释放B. 将弹簧振子置于光滑斜面上, 让其振动C. 从光滑的半圆弧槽的边缘释放一个小滑块D. 拍皮球时球的运动答案:B难易程度:中答案解析:无题型:单选题3. 在简谐振动的运动方程中,振动相位)(ϕω+t 的物理意义是[ ]A.表征了简谐振子t 时刻所在的位置B. 表征了简谐振子t 时刻的振动状态C. 给出了简谐振子t 时刻加速度的方向D. 给出了简谐振子t 时刻所受回复力的方向答案:B难易程度:中答案解析:无题型:单选题4. 一质点作简谐振动, 振动方程为)cos(ϕω+=t A x . 则在2T t =(T 为振动周期) 时, 质点的速度为[ ]A.ϕωsin A −B.ϕωsin AC. ϕωcos A −D.ϕωcos A答案:B难易程度:中答案解析:无题型:单选题5. 一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为[ ] A.6T B. 8T C. 12T D. T 127 答案:C难易程度:中答案解析:无题型:单选题6. 某物体按余弦函数规律作简谐振动, 它的初相位为2π3, 则该物体振动的初始状态为[ ]A. x 0 = 0 , v 0 > 0B. x 0 = 0 , v 0<0C. x 0 = 0 , v 0 = 0D. x 0 = −A , v 0 = 0答案:A难易程度:中答案解析:无题型:单选题7. 一作简谐运动质点的振动方程为π)21π2cos(5+=t x , 它从计时开始, 在运动一个周期后[ ]A. 相位为零B. 速度为零C. 加速度为零D. 振动能量为零答案:C难易程度:中答案解析:无题型:单选题8. 当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为[ ]A.ν4B.ν2C. νD.2ν 答案:B难易程度:中答案解析:无题型:单选题9. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为[ ] A.2π B.3π2 C. 4π D. π 答案:B难易程度:中答案解析:无题型:单选题10. 谐振子作简谐振动时, 速度和加速度的方向[ ]A. 始终相同B. 始终相反C. 在某两个41周期内相同, 另外两个41周期内相反 D.在某两个21周期内相同, 另外两个21周期内相反 答案:C难易程度:中答案解析:无题型:单选题11. 关于振动和波, 下面几句叙述中正确的是[ ]A.有机械振动就一定有机械波B.机械波的频率与波源的振动频率相同C.机械波的波速与波源的振动速度相同D.机械波的波速与波源的振动速度总是不相等的答案:B难易程度:中答案解析:无题型:单选题12. 按照定义,振动状态在一个周期内传播的距离就是波长.下列计算波长的方法中错误的是[ ]A. 用波速除以波的频率B. 用振动状态传播过的距离除以这段距离内的波数C.测量相邻两个波峰的距离D.测量波线上相邻两个静止质点的距离答案:D难易程度:中答案解析:无题型:单选题13. 当x 为某一定值时, 波动方程)π(2cos λx T t A x −=所反映的物理意义是[ ] A. 表示出某时刻的波形B. 说明能量的传播C. 表示出x 处质点的振动规律D. 表示出各质点振动状态的分布答案:C难易程度:中答案解析:无题型:单选题14. 下列方程和文字所描述的运动中,哪一种运动是简谐振动? [ ]A.x A t =1cos ωB.x A t A t =+123cos cos ωωC.d d 2222x tx =−ω D.两个同方向、频率相近的谐振动的合成答案:A难易程度:中答案解析:无题型:单选题15. 下列函数f ( x , t )可以用来表示弹性介质的一维波动, 其中a 和b 是正常数.则下列函数中, 表示沿x 轴负方向传播的行波是[ ]A. )sin(),(bt ax A t x f +=B. )sin(),(bt ax A t x f −=C. )cos()cos(),(bt ax A t x f =D.)sin()sin(),(bt ax A t x f =答案:A难易程度:中答案解析:无题型:单选题16. 已知一波源位于x = 5 m 处, 其振动方程为: )cos(ϕω+=t A y (m).当这波源产生的平面简谐波以波速u 沿x 轴正向传播时, 其波动方程为[ ] A.)(cos ux t A y −=ω B. ])(cos[ϕω+−=ux t A y C.])5(cos[ϕω++−=ux t A y D.])5(cos[ϕω+−−=u x t A y 答案:D难易程度:中答案解析:无题型:单选题17. 已知一平面余弦波的波动方程为)01.05.2π(cos 2x t y −=, 式中 x 、y 均以cm 计.则在同一波线上, 离x = 5 cm 最近、且与 x = 5 cm 处质元振动相位相反的点的坐标为[ ]A.7.5 cmB. 55 cmC.105 cmD. 205 cm答案:C难易程度:中 答案解析:无 题型:单选题18. 若一平面简谐波的波动方程为)cos(cx bt A y −=, 式中A 、b 、c 为正值恒量.则[ ] A. 波速为cB.周期为b 1 C. 波长为c π2D.角频率为bπ2答案:C难易程度:中 答案解析:无 题型:单选题19. 一平面简谐横波沿着Ox 轴传播.若在Ox 轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ] A. 方向总是相同 B. 方向有时相同有时相反C.方向总是相反D. 大小总是不相等答案:B难易程度:中 答案解析:无 题型:单选题20. 一简谐波沿Ox 轴正方向传播,t =0时刻波形曲线如图所示,其周期为2 s .则P 点处质点的振动速度v 与时间t 的关系曲线为 [ ]AωsD ωsω−ω−s图 波形图难易程度:中 答案解析:无 题型:单选题静电场2. 将某电荷Q 分成q 和(Q −q )两部分, 并使两部分离开一定距离, 则它们之间的库仑力为最大的条件是 [ ] (A) 2Q q = (B) 4Qq = (C) 8Qq =(D) 16Qq =答案:A难易程度:易 答案解析:无 题型:单选题5. 关于静电场, 下列说法中正确的是[ ] (A) 电场和检验电荷同时存在, 同时消失(B) 由qF E =知, 电场强度与检验电荷电荷量成反比(C) 电场的存在与否与检验电荷无关(D) 电场是检验电荷与源电荷共同产生的 答案:C难易程度:易 答案解析:无 题型:单选题8. 关于电场强度, 以下说法中正确的是[ ] (A) 电场中某点场强的方向, 就是将点电荷放在该点所受电场力的方向 (B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同(C) 场强方向可由qFE =定出, 其中q 可正, 可负(D) 以上说法全不正确难易程度:易 答案解析:无 题型:单选题11. 在静电场中, 电场线为平行直线的区域内 [ ] (A) 电场相同, 电势不同(B) 电场不同, 电势相同(C) 电场不同, 电势不同(D) 电场相同, 电势相同 答案:A难易程度:易 答案解析:无 题型:单选题15、如图所示,一均匀带电球面, 面内电场强度处处为零, 则球面上的带电量为S d σ的电荷元在球面内产生的场强[ ] (A) 处处为零(B) 不一定为零(C) 一定不为零 (D) 是一常数答案:C难易程度:易 答案解析:无 题型:单选题18. 半径为R 的均匀带电球面, 若其面电荷密度为σ, 则在球面外距离球面R 处的电场强度大小为 [ ] (A)εσ(B)2εσ(C)04εσ(D)8εσ 答案:C难易程度:中 答案解析:无 题型:单选题24. 高斯定理0d ε∑⎰⎰=⋅isqS E, 说明静电场的性质是[ ] (A) 电场线是闭合曲线(B) 库仑力是保守力 (C) 静电场是有源场 (D) 静电场是保守场答案:C难易程度:易 答案解析:无 题型:单选题26. 电场中一高斯面S , 内有电荷q 1、q 2,S 面外有电荷q 3、q 4.关于高斯定理d ε∑⎰⎰=⋅isqS E , 正确的说法是[ ] (A) 积分号内E只是q 1、q 2共同激发的(B) 积分号内E是q 1、q 2、q 3、q 4共同激发的(C) 积分号内E只是q 3、q 4共同激发的(D) 以上说法都不对答案:B难易程度:中 答案解析:无 题型:单选题33. 将点电荷Q 从无限远处移到相距为2l 的点电荷+和-q 的中点处, 则电势能的增加量为[ ] (A) 0(B)l q0π4ε(C) l Qq 0π4ε(D) lQq0π2ε答案:A难易程度:中 答案解析:无题型:单选题35. 下面关于某点电势正负的陈述中, 正确的是 [ ] (A) 电势的正负决定于试探电荷的正负(B) 电势的正负决定于移动试探电荷时外力对试探电荷做功的正负(C) 空间某点电势的正负是不确定的, 可正可负, 决定于电势零点的选取 (D) 电势的正负决定于带电体的正负答案:C难易程度:易 答案解析:无 题型:单选题37. 由定义式⎰∞⋅=RR l E Ud 可知[ ] (A) 对于有限带电体, 电势零点只能选在无穷远处(B) 若选无限远处为电势零点, 则电场中各点的电势均为正值 (C) 已知空间R 点的E , 就可用此式算出R 点的电势(D) 已知R →∞积分路径上的场强分布, 便可由此计算出R 点的电势答案:D难易程度:中 答案解析:无 题型:单选题 D41. 两个点电荷相距一定距离, 若这两个点电荷连线的中垂线上电势为零, 则这两个点电荷的带电情况为[ ] (A) 电荷量相等, 符号相同 (B) 电荷量相等, 符号不同(C) 电荷量不同, 符号相同 (D) 电荷量不等, 符号不同答案:B难易程度:易 答案解析:无 题型:单选题44. 如图5-1-45所示,等边三角形的三个顶点上分别放置着均为正的点电荷q 、2 q 、和3 q , 三角形的边长为a , 若将正电荷Q 从无穷远处移至三角形的中心点处, 所需做的功为[ ] (A) aQq0π44.3ε(B) aQq0π7.1ε (C) aQq0π6.2ε (D) aQq0π4.3ε 答案:C难易程度:难 答案解析:无 题型:单选题48. 关于电场强度和电势的关系, 下列说法中正确的是 [ ] (A) 电势不变的空间, 电场强度一定为零 (B) 电势不变的空间, 电场强度不为零 (C) 电势为零处, 电场强度一定为零 (D) 电场强度为零处, 电势一定为零 答案:A难易程度:易 答案解析:无 题型:单选题52. 带电-q 的粒子在带电+q 的点电荷的静电力作用下在水平面内绕点电荷作半径为R 的匀速圆周运动. 如果带电粒子质量及点电荷的电量均增大一倍, 并使粒子的运动速率也增大一倍, 则粒子的运动半径将变为 [ ] (A) 4R(B)2R(C) 2R (D) 4R答案:A难易程度:中 答案解析:无 题型:单选题56. 边长为a 的正方体中心放置一电荷Q , 则通过任一个侧面S 的电通量⎰⎰⋅sS E d 为[ ] (A) 04εQ(B)6εQ(C)08 Q(D) 6Q答案:B难易程度:易 答案解析:无 题型:单选题第7章 恒定磁场一、选择题1. 磁场可以用下述哪一种说法来定义? (A) 只给电荷以作用力的物理量 (B) 只给运动电荷以作用力的物理量(C) 贮存有能量的空间(D) 能对运动电荷做功的物理量 答案:B难易程度:易 答案解析:无 题型:单选题2. 下列叙述中不能正确反映磁感应线性质的是 (A) 磁感应线是闭合曲线(B) 磁感应线上任一点的切线方向为运动电荷的受力方向 (C) 磁感应线与载流回路象环一样互相套连 (D) 磁感应线与电流的流向互相服从右手定则答案:B难易程度:中 答案解析:无 题型:单选题3. 一电荷放置在行驶的列车上, 相对于地面来说, 电荷产生电场和磁场的情况将是A) 只产生电场 (B) 只产生磁场 (C) 既产生电场, 又产生磁场(D) 既不产生电场, 又不产生磁场答案:C难易程度:中 答案解析:无 题型:单选题4. 通以稳恒电流的长直导线, 在其周围产生电场和磁场的情况将是 (A) 只产生电场 (B) 只产生磁场(C) 既产生电场, 又产生磁场(D) 既不产生电场, 又不产生磁场答案:C难易程度:中 答案解析:无 题型:单选题5. 磁场的高斯定理⎰⎰=⋅sS B 0d, 说明(A) 穿入闭合曲面的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数 (C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内答案:A难易程度:中 答案解析:无 题型:单选题 6. 下述情况中能用安培环路定律求磁感应强度的是 (A) 一段载流直导线 (B) 无限长直线电流(C) 一个环形电流(D) 任意形状的电流 答案:B难易程度:中 答案解析:无 题型:单选题7. 取一闭合积分回路L , 使三根载流导线穿过L 所围成的面,如图所示. 现改变三根导线之间的相互间隔, 但不越出积分回路, 则(A) 回路L 内的∑I 不变, L 上各点的B 不变(B) 回路L 内的∑I 不变, L 上各点的B 改变(C) 回路L 内的∑I 改变, L 上各点的B 不变(D) 回路L 内的∑I 改变, L 上各点的B 改变答案:B难易程度:中 答案解析:无 题型:单选题 8. 一无限长直圆柱体, 半径为R , 沿轴向均匀流有电流,如图所示.设圆柱体内(r <R )的磁感应强度大小为B 1, 圆柱体外( r >R )感应强度大小为B 2, 则有(A) B 1、B 2均与 r 成正比 (B) B 1、B 2均与 r 成反比(C) B 1与 r 成反比, B 2与 r 成正比2B •(D) B 1与r成正比, B 2与r成反比答案:D难易程度:中答案解析:无题型:单选题9. 运动电荷受洛伦兹力后, 其动能、动量的变化情况是(A) 动能守恒(B) 动量守恒(C) 动能、动量都守恒(D) 动能、动量都不守恒答案:A难易程度:中答案解析:无题型:单选题10. 如图所示,一个长直螺线管通有交流电, 把一个带负电的粒子沿螺线管的轴线射入管中, 粒子将在管中作(A) 圆周运动(B) 沿管轴来回运动(C) 螺旋线运动(D) 匀速直线运动答案:D难易程度:中答案解析:无题型:单选题11. 在均匀磁场中放置三个面积相等且通过相同电流的线圈: 一个是矩形, 一个是正方形, 另一个是三角形, 如图所示.下列叙述中正确的是(A) 正方形线圈受到的合磁力为零, 矩形线圈受到的合磁力最大(B) 三角形线圈受到的最大磁力矩为最小(C) 三线圈所受的合磁力和最大磁力矩均为零(D) 三线圈所受的最大磁力矩均相等答案:D难易程度:中答案解析:无B题型:单选题12. 两个电子同时由两电子枪射出, 它们的初速度与均匀磁场垂直, 速率分别为2v 和v , 经磁场偏转后(A) 第一个电子先回到出发点 (B) 第二个电子先回到出发点(C) 两个电子同时回到出发点 (D) 两个电子都不能回到出发点答案:C难易程度:中 答案解析:无 题型:单选题13. 电荷为(+q )的粒子以速度为v =0.01c 沿x 轴方向运动, 磁感应强度B的方向沿y轴.要使粒子不偏转需加一个什么样的电场? (A) E =B , 沿-y 方向 (B) E =B , 沿z 方向 (C) E =v B , 沿-z 方向 (D) E =v B , 沿z 方向答案:C难易程度:中 答案解析:无 题型:单选题14. 如图所示,在磁感应强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) a F >b F >c F (B) a F <b F <c F (C) b F >c F >a F(D) a F >c F >b F 答案:C难易程度:中 答案解析:无 题型:单选题15. 若用条形磁铁竖直插入木质圆环, 则在环中是否产生感应电流和感应电动势的判断是(A) 产生感应电动势, 也产生感应电流 (B) 产生感应电动势, 不产生感应电流 (C) 不产生感应电动势, 也不产生感应电流(D) 不产生感应电动势, 产生感应电流 答案:B难易程度:中 答案解析:无 题型:单选题第八章 光学测验题1. 如右图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r 。
大学物理复习题(力学部分)
第一章一、填空题1、一质点做圆周运动,轨道半径为R=2m,速率为v = 5t2+ m/s,则任意时刻其切向加速度aτ=________,法向加速度a n=________.2、一质点做直线运动,速率为v =3t4+2m/s,则任意时刻其加速度a =________,位置矢量x =________.3、一个质点的运动方程为r = t3i+8t3j,则其速度矢量为v=_______________;加速度矢量a为________________.4、某质点的运动方程为r=A cosωt i+B sinωt j, 其中A,B,ω为常量.则质点的加速度矢量为a=_______________________________,轨迹方程为________________________________。
5、质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k,k为正的常数,该下落物体的极限速度是_________。
二、选择题1、下面对质点的描述正确的是 [ ]①质点是忽略其大小和形状,具有空间位置和整个物体质量的点;②质点可近视认为成微观粒子;③大物体可看作是由大量质点组成;④地球不能当作一个质点来处理,只能认为是有大量质点的组合;⑤在自然界中,可以找到实际的质点。
A.①②③;B.②④⑤;C.①③;D.①②③④。
2、某质点的运动方程为x = 3t-10t3+6 ,则该质点作[ ]A.匀加速直线运动,加速度沿x轴正方向;B.匀加速直线运动,加速度沿x轴负方向;C.变加速直线运动,加速度沿x轴正方向;D.变加速直线运动,加速度沿x轴负方向。
3、下面对运动的描述正确的是 [ ]A.物体走过的路程越长,它的位移也越大;B质点在时刻t和t+∆t的速度分别为 "v1和v2,则在时间∆t内的平均速度为(v1+v2)/2 ;C.若物体的加速度为恒量(即其大小和方向都不变),则它一定作匀变速直线运动;D.在质点的曲线运动中,加速度的方向和速度的方向总是不一致的。
大学物理复习题
大学物理复习题(电磁学部分)一、选择题1.三个一样大小的绝缘金属小球A 、B 、C ,A 、B 两小球带有等量同号电荷,它们之间的距离远大于小球本身的直径,相互作用力为F ,若将不带电的小球C 引入,先和A 小球接触,然后和B 小球接触后移去,这时A 小球与B 小球间的相互作用力将变为: A .F/2 B. F/4 C. F/8 D. 3F/8 2、电场中高斯面上各点的电场强度是由:A 、分布在高斯面内的电荷决定的;B 、分布在高斯面外的电荷决定的;C 、空间所有的电荷决定的;D 、高斯面内电荷代数和决定的。
3、以下说法正确的是:A 、场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零。
B 、场强大小相等的地方,电势也相等,等势面上各点场强大小相等。
C 、带正电的物体,电势一定是正的,不带电的物体,电势一定等于零。
D 、沿着均场强的方向,电势一定降低。
4.关于导体有以下几种说法: A .接地的导体都不带电。
B .接地的导体可带正电,也可带负电。
C .一导体的电势零,则该导体不带电。
D .任何导体,只要它所带的电量不变,则其电势也是不变的。
5.在半径为R 的均匀带电球面上,任取面积元S ∆,则此面积元上的电荷所受的电场力应是: A 0 ; B2S σε⋅∆(σ是电荷面密度); C22Sσε⋅∆ ; D 以上说法都不对。
6.平行板电容器在接入电源后,把两板间距拉大,则电容器的:A 电容增大;B 电场强度增大;C 所带电量增大;D 电容、电量及两板内场强都减小。
7.一个电阻,一个电感线圈和一个电容器与交流电源组成串联电路,通过电容器的电流应与下列哪一个的电压同位相A 电阻;B 电感线圈;C 电容器;D 全电路。
8.以下关于磁场的能量密度正确的是: A 、22B Bw μ=B 、012B w E B ε=⨯C 、012B w B μ=D 、22B w B μ=9.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将A .顺时针转动同时离开ab ;B .顺时针转动同时靠近ab ;C .逆时针转动同时离开ab ;D .逆时针转动同时靠近ab 。
《大学物理》复习题
《大学物理》复习题一、单项选择题1.一质点的运动方程为3232y t t =-。
当2t =秒时,质点的运动为()A.减速运动;B.加速运动;C.匀速运动;D.静止。
2.如题图所示, 一半径为R 的木桶,以角速度ω绕其轴线转动.有人紧贴在木桶内壁上。
人与桶壁间的静摩擦系数为μ,要想人紧贴在木桶上不掉下来,则角速度ω应不小于()A .g μ; B; C .g R μ; D3.一轻绳跨过一个定滑轮,两端各系一质量分别为1m 和2m 的重物,且12m m >。
滑轮质量及一切摩擦均不计,此时重物的加速度的大小为a 。
今用一竖直向下的恒力1F m g =代替质量为1m 的重物,质量为2m 的物体的加速度大小为a '。
则有()A.a a '=;B.a a '>;C.a a '<;D.不能确定。
4.某物体的运动规律为2dv dt kv t =,式中k 为大于零的常数,当0t =时,初速度为0v 。
则速度v 与时间t 的函数关系为()。
A.202v v kt =+;B.20v v kt =-;C.20112v v kt =+;D.20112v v kt =-。
5.一点电荷放在球形高斯面的球心处,会引起高斯面电通量变化的情况是( )。
A .球形高斯面被与它相切的正方体表面代替;B .在球面外另放一点电荷;C .点电荷离开球心,但仍在球面内;D .在球面内另放一点电荷.6.如题图所示,在匀强电场中,将一正电荷从A 移到B 。
下列说法中正确的是()。
第2题图A.电场力作正功,正电荷的电势能减少;B.电场力作正功,正电荷的电势能增加;C.电场力作负功,正电荷的电势能减少;D.电场力作负功,正电荷的电势能增加。
7.如题图所示,载流导线在同一平面内,电流为I ,在O 点的磁感强度为() A.08I R μ; B.04IRμ; C.06IRμ;D.02IRμ.8.如题图所示,在一长直导线L 中通有电流I ,ABCD 为一与L 共面的矩形线圈,且AB 边与导线L 平行。
大学物理学复习题(专升本)
《大学物理学》复习题(专升本)一、填空题1.一物体在某瞬间以速度v从某点开始运动,在t∆时间内,经一长度为s的路径后,又回到出发点,此时速度为-v,则在这段时间内,物体的平均加速度是_________。
υ水平射入沙土中。
设子弹所受阻力与速度反向,大小与速度成正2.质量为m的子弹以速度比,比例系数为k,忽略子弹的重力。
则子弹射入沙土后,速度随时间变化的函数式为__________。
3. 质量为M的木块静止在光滑的水平桌面上,质量为m、速度为v0的子弹水平的射入木块,并陷在木块内与木块一起运动。
则子弹相对木块静止后,子弹与木块共同运动的速度v=________,在这个过程中,子弹施与木块的冲量I =_________。
4. 在系统从一个平衡态过渡到另一个平衡态的过程中,如果任一个中间状态都可看作是平衡状态,这个过程就叫_________________过程。
5.温度为T的热平衡态下,自由度为i的物质分子的每个自由度都具有的平均动能为6.位移电流和传导电流的共同点是_________________________________________。
7.在无限长载流导线附近有一个闭合球面S,当S面向导线靠近时,穿过S面的磁通量Φm 将;面上各点的磁感应强度的大小将(填:增大、不变或变小)。
8. 真空中,有一个长直螺线管,长为l,截面积为S,线圈匝数线密度为n,则其自感系数L 为________。
9.波长nmλ的单色光垂直照射到牛顿环装置上,第二级明纹与第五级明纹所对应的空600=气膜厚度之差为______nm。
10.有一单缝,宽a=0.2mm,缝后放一焦距为50cm的会聚透镜,用平行绿光λ=546nm垂直照射单缝,则位于透镜焦面处的屏幕上的中央明纹宽度为______mm。
11. 在x,y面内有一运动质点其运动方程为10cos510sin5=+,则t时刻其速度t tr i j______________。
大学物理复习资料-大题
8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4rr Q E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ 外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内)11(π420R r Q r r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-10 在一半径R =1.0cm 的无限长半圆柱形金属薄片中,自上而下地有电流I =5.0 A 通过,电流分布均匀.如题9-10图所示.试求圆柱轴线任一点P 处的磁感应强度.题9-10图解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如题9-10图所示,取宽为l d 的一无限长直电流l RII d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R IR I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ= RI B B y 202d sin )2cos(d d πθθμ-=θ+π=∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y∴ i B51037.6-⨯= T9-16 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别 为b ,c )构成,如题9-16图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小 解:⎰∑μ=⋅LI l B 0d(1)a r < 2202RIr r B μπ=202RIrB πμ=(2) b r a << I r B 02μπ=rIB πμ20=(3)c r b << I bc b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ (4)c r > 02=r B π0=B题9-16图题9-17图9-20 如题9-20图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力; (2)矩形线圈所受合力和合力矩.解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.9-25 电子在B =70×10-4T 的匀强磁场中作圆周运动,圆周半径r =3.0cm .已知B垂直于纸面向外,某时刻电子在A 点,速度v向上,如题9-25图.(1)试画出这电子运动的轨道;(2)求这电子速度v的大小; (3)求这电子的动能k E .题9-25图解:(1)轨迹如图(2)∵ rv m evB 2=∴ 7107.3⨯==meBrv 1s m -⋅(3) 162K 102.621-⨯==mv E J 题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=ADIvbvBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高?解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则 b a b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-lnd )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln0πμ 题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →10-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k 个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r 10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯= 31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-= ∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长.解:单缝衍射的明纹公式为)12(sin +=k a ϕ2λ 当6000=λo A 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ 得 4286600075=⨯=x λo A 13-15 波长为5000o A 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m (1)由光栅衍射明纹公式 λϕk b a =+sin )(,因1=k ,又f x ==ϕϕtan sin所以有λ=+fx b a 1)( 即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ 2100.6-⨯=m 6= cm(2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ 故22103010602121--⨯=⨯⨯==f x m 30= cm 这就是中央明条纹的位移值.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径.解:由爱里斑的半角宽度 47105.302.010500022.122.1--⨯=⨯⨯==D λθ ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 D λθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少?解:由马吕斯定律ο20160cos 2I I =80I = 32930cos 30cos 20ο2ο20I I I == ∴25.2491==I I 14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少?解:(1) max 120131cos 2I I I ==α 又 20max I I =∴ ,601I I = 故 'ο11124454,33cos ,31cos ===ααα. (2) 0220231cos 2I I I ==α ∴ 'ο221635,32cos ==αα 14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少?解:(1),140.1tan 0=i ∴'ο02854=i (2) 'ο0ο323590=-=i y。
大学物理考试题库及答案
大学物理考试题库及答案一、选择题(每题2分,共20分)1. 在国际单位制中,下列哪个单位不是基本单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 瓦特(W)答案:D2. 一个物体在平直道路上做匀速运动,下列哪个因素不会影响物体的运动状态?A. 道路摩擦力B. 道路坡度C. 物体质量D. 物体速度答案:C3. 下列哪个现象表明地球是圆的?A. 星星在夜空中闪烁B. 船只在海平面上逐渐消失C. 地平线D. 月亮的形状变化答案:B4. 关于牛顿第三定律,下列说法正确的是:A. 作用力与反作用力大小相等,方向相反B. 作用力与反作用力大小不等,方向相反C. 作用力与反作用力大小相等,方向相同D. 作用力与反作用力大小不等,方向相同答案:A5. 下列哪个物理量是标量?A. 速度B. 力C. 加速度D. 路程答案:D6. 一个物体从静止开始沿着光滑斜面下滑,下列哪个因素会影响物体的加速度?A. 物体质量B. 斜面角度C. 重力加速度D. 物体与斜面之间的摩擦力答案:B7. 下列哪个现象与电磁感应无关?A. 发电机B. 变压器C. 电动机D. 麦克斯韦方程组答案:D8. 光在真空中的传播速度约为:A. 1×10^5 km/sB. 3×10^5 km/sC. 1×10^8 m/sD. 3×10^8 m/s答案:D9. 下列哪个物理现象可以用光的波动理论解释?A. 光的直线传播B. 光的反射C. 光的折射D. 光的衍射答案:D10. 下列哪个物理学家提出了万有引力定律?A. 伽利略B. 牛顿C. 开普勒D. 卡文迪许答案:B二、填空题(每题2分,共20分)1. 国际单位制中的基本单位有:米(m)、千克(kg)、秒(s)、安培(A)、开尔文(K)、摩尔(mol)和坎德拉(cd)。
2. 牛顿第二定律的数学表达式为:F = ma。
3. 在真空中,光的速度为:3×10^8 m/s。
大学物理下册总复习(可拷)全篇
0
可见光波长范围 3900 ~ 7600 A
干涉
nr为介质中与路程 r 相应的光程。
位相差与光程差: 2
两相干光源同位相,干涉条件
a· b· n
r 介质
k ,
k 0,1,2…加强(明)
(2k 1)
2
杨氏干涉
k 0,1,2…减弱(暗)
分波阵面法
等倾干涉、等厚干涉 分振幅法
杨氏干涉
缺级
单缝衍射 a sin =n
极小条件 n=0,±1, ±2,···
即:
k nab a
光栅主极大 (a+b)sin =k k 就是所缺的级次
k=0,±1, ±2, ···
偏振
I I0 cos2
自然光透过偏振片
1 I 2 I0
起偏角
tgi0
n2 n1
i0
2
载流直导线的磁场:
B
0 I 4a
(cos1
cos2 )
无限长载流直导线:
B 0I 2a
直导线延长线上: 载流圆环 载流圆弧
B0
B 0I
2R B 0I
2R 2
B
R
I
无限长直螺线管内部的磁场
B 0nI
磁通量 磁场中的高斯定理
m
B
dS
B
cos
dS
B dS 0
安培环路定理
磁介质中安培 环路定理
M L1L2
自感磁能 磁场能量
磁场能量密度
W 1 LI 2 2
W 1 BHV 2
w W 1 B2 1 H 2 1 BH
V 2 2
2
任意磁场总能量
W
V
wdV
大学物理复习题及答案
大学物理复习题及答案大学物理复习题及答案大学物理是一门让许多学生头疼的课程,需要掌握大量的理论知识和解题技巧。
为了帮助大家更好地复习和准备考试,本文将提供一些常见的大学物理复习题及其详细解答,希望对大家有所帮助。
1. 问题:什么是牛顿第一定律?请用自己的话解释。
答案:牛顿第一定律,也被称为惯性定律,是牛顿力学的基础之一。
它表明一个物体在没有外力作用时会保持静止或匀速直线运动的状态。
简单来说,物体如果没有受到力的作用,就会保持原来的状态,如果静止就继续保持静止,如果运动就继续保持匀速直线运动。
2. 问题:什么是摩擦力?它有什么特点?答案:摩擦力是物体之间接触时产生的一种力。
它的特点是与物体之间的接触面积和表面粗糙程度有关,同时也与物体之间的压力大小相关。
摩擦力可以分为静摩擦力和动摩擦力。
静摩擦力是物体相对静止时产生的摩擦力,它的大小与物体之间的相对运动趋势有关。
动摩擦力是物体相对运动时产生的摩擦力,它的大小与物体之间的相对速度有关。
3. 问题:什么是牛顿第二定律?请用公式表示。
答案:牛顿第二定律是描述力、质量和加速度之间关系的定律。
它的数学表达式为F = ma,其中F代表作用在物体上的力,m代表物体的质量,a代表物体的加速度。
根据牛顿第二定律,当物体受到外力作用时,它的加速度与所受力成正比,与物体的质量成反比。
4. 问题:什么是功?它与能量有什么关系?答案:功是描述力对物体做功的物理量。
它的数学表达式为W = Fd cosθ,其中W代表功,F代表力,d代表力的作用距离,θ代表力的方向与物体运动方向之间的夹角。
功与能量有着密切的关系,根据能量守恒定律,功可以改变物体的能量,使其从一种形式转化为另一种形式。
例如,当我们用力将物体移动一段距离时,我们对物体做了功,使其具有了动能。
5. 问题:什么是弹力?它有什么特点?答案:弹力是一种物体在被拉伸或压缩时产生的力。
它的特点是与物体的形变程度成正比,同时具有恢复力的性质。
大学物理复习题及解答
大学物理(一)复习题及解答一、选择题1.某质点的运动方程为)(6532SI t t x +-=,则该质点作( )。
A 、匀加速直线运动,加速度沿x 轴正方向;B 、匀加速直线运动,加速度沿x 轴负方向;C 、变加速直线运动,加速度沿x 轴正方向;D 、变加速直线运动,加速度沿x 轴负方向。
2.下列表述中正确的是( )。
A 、质点沿x 轴运动,若加速度0<a ,则质点必作减速运动;B 、在曲线运动中,质点的加速度必定不为零;C 、若质点的加速度为恒矢量,则其运动轨道必为直线;D 、当质点作抛体运动时,其法向加速度n a 、切向加速度t a 是不断变化的;因此, 22t n a a a +=也是不断变化的。
3.下列表述中正确的是:A 、质点作圆周运动时,加速度方向总是指向圆心;B 、质点作抛体运动时,由于加速度恒定,所以加速度的切向分量和法向分量也是恒定的;C 、质点作曲线运动时,加速度方向总是指向曲线凹的一侧;D 、质点作曲线运动时,速度的法向分量总是零,加速度的法向分量也应是零。
4.某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数;当t =0时,初速为0v ,则速度v 与时间t 的函数关系是( )。
A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v -=。
5.质点在xoy 平面内作曲线运动,则质点速率的正确表达式为( )。
A 、dt dr v =;B 、dt r d v =;C 、dtds v =;D 、22)()(dt dy dt dx v += ;E 、dt r d v =。
6.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,(1)a dt dv =;(2)v dt dr =;(3)v dtds =;(4)t a dt v d = |; A 、只有(1)、(4)是对的; B 、只有(2)、(4)是对的;C 、只有(2)是对的;D 、只有(3)是对的。
大学物理复习题及答案
期末复习一、力学(一)填空题:1、质点沿x 轴运动,运动方程23262x t t =+-,则其最初4s 内位移是 -32m i ,最初4s 内路程是 48m 。
2、质点的加速度(0),0a mx m t =->=时,00,x v v ==,则质点停下来的位置是x3、半径为30cm 的飞轮,从静止开始以0.5rad/s 2匀角加速度转动。
当飞轮边缘上一点转过o240时,切向加速度大小 0.15 m/s 2,法向加速度大小 1.26 m/s 2。
4、一小车沿Ox 轴运动,其运动函数为233x t t =-,则2s t =时的速度为 -9m/s ,加速度为 -6m/s 2 ,2s t =内的位移为 -6m 。
5、质点在1t 到2t 时间内,受到变力2At B F x +=的作用(A 、B 为常量),则其所受冲量为3321211()()3B t t A t t -+-。
6、用N 10=F 的拉力,将g k 1=m 的物体沿30=α的粗糙斜面向上拉1m ,已知1.0=μ,则合外力所做的功A 为 4.13J 。
7、 银河系中有一天体,由于引力凝聚,体积不断收缩。
设它经一万年后,体积收缩了1%,而质量保持不变,那时它绕自转轴的转动动能将 增大 ; (填:增大、减小、不变)。
;8、 A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结。
开始时B 轮静止,A 轮以角速度A ω转动,设啮合过程中两飞轮不再受其他力矩的作用,当两轮连结在一起后,其相同的角速度为ω。
若A 轮的转动惯量为A I ,则B 轮的转动惯量B I 为A AA I I ωω- 。
9、斜面固定于卡车上,在卡车沿水平方向向左匀速行驶的过程中,斜面上物体m 与斜面无相对滑动。
则斜面对物体m 的静摩擦力的方向为 。
沿斜面向上;10、牛顿第二定律在自然坐标系中的分量表达式为n n F ma =;F ma ττ=11、质点的运动方程为22r ti t j =-,则在1s t =时的速度为 22v i j =-,加速度为2a j =-; 12、 一质点沿半径为0.1m 的圆周运动,其角位移342t +=θ,则2s t =时的法向加速度为 230.4m/s 2,切向加速度为 4.8m/s 2。
大学物理下册复习题
大学物理下册复习题# 大学物理下册复习题一、经典力学1. 牛顿运动定律:阐述牛顿的三个运动定律,并给出每个定律在实际问题中的应用实例。
2. 功和能:解释功的概念,以及如何计算一个力对物体做的功。
讨论动能定理和势能的概念。
3. 动量守恒:解释动量守恒定律,并给出一个涉及碰撞问题的实例,说明如何应用动量守恒定律解决问题。
4. 角动量守恒:介绍角动量守恒定律及其在天体物理和旋转系统中的重要性。
5. 刚体的转动:解释刚体转动的基本原理,包括转动惯量、角速度和角动量的概念。
二、热力学与统计物理1. 热力学第一定律:解释能量守恒原理在热力学中的应用,并给出一个系统能量转换的实例。
2. 理想气体定律:推导理想气体状态方程,并讨论其在不同条件下的应用。
3. 熵和热力学第二定律:解释熵的概念,以及热力学第二定律的含义和应用。
4. 相变:讨论物质在不同温度和压力下的相变过程,包括相图的解读。
5. 统计物理基础:介绍统计物理的基本概念,如微观状态、宏观状态和玻尔兹曼分布。
三、电磁学1. 电场和电势:解释电场强度和电势的概念,以及它们之间的关系。
2. 高斯定律:推导高斯定律,并用它来解决电场分布问题。
3. 电容器和电介质:讨论电容器的工作原理,以及电介质对电容器电容的影响。
4. 磁场和磁感应强度:介绍磁场的基本概念,包括磁感应强度和磁通量。
5. 安培环路定律:推导安培环路定律,并用它来分析电流产生的磁场。
四、波动学与光学1. 机械波:解释机械波的传播原理,包括纵波和横波的区别。
2. 波的干涉和衍射:讨论波的干涉条件,以及衍射现象的物理意义。
3. 光的波动性:介绍光的波动性质,包括光的干涉、衍射和偏振。
4. 光的粒子性:讨论光的粒子性,包括光电效应和康普顿散射。
5. 相对论基础:简要介绍狭义相对论的基本概念,如时间膨胀和长度收缩。
结语通过本复习题的练习,同学们应该能够对大学物理下册的主要内容有一个全面而深入的理解。
希望这些复习题能够帮助大家在考试中取得优异的成绩。
大学物理考试常考题大题(含答案详解)
习题一1-2.一质点在xOy 平面内运动,运动方程为22(m),48(m)x t y t ==-. (1)求质点的轨道方程并画出轨道曲线;(2)求=1 s =2 s t t 和时质点的位置、速度和加速度.解:(1) 由2,x t = 得:,2xt =代入248y t =- 可得:28y x =-,即轨道方程. 画图略(2)质点的位置矢量可表示为22(48)r ti t j =+-则速度d 28d ri t j t ==+v 加速度d 8d a j t==v当t =1s 时,有1224(m),28(m s ),8m s r i j i j a j --=-=+⋅=⋅v当t =2s 时,有1248(m),216(m s ),8m s r i j i j a j --=+=+⋅=⋅v1-3.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位. 求: (1)质点的轨迹方程;(2)在2s t =时质点的速度和加速度.解:(1)由题意可知:x ≥ 0,y ≥ 0,由2x t =,可得t =,代入2(1)y t =- 整理得:1 即轨迹方程(2)质点的运动方程可表示为 22(1)r t i t j =+-则d 22(1)d rti t j t ==+-v d 22d a i j t==+v因此, 当2s t =时,有1242(m s ),22(m s )i j a i j --=+⋅=+⋅v1-12. 一质点在半径为0.10m 的圆周上运动,其角位置变化关系为324(rad)t θ=+.试求:(1) 在t =2s 时,质点的法向加速度和切向加速度大小各为多少?; (2) 当切向加速度大小恰等于总加速度大小的一半时,θ值为多少? (3) 在什么时刻,切向加速度和法向加速度恰好大小相等? 解 (1) 角速度和角加速度分别为2d 12d t t θω== d 24d t tωβ==法向加速度22222n 0.1(12) 2.3010(m s )a r t ω-==⨯=⨯⋅切向加速度2t d 2.4 4.8(m s )d a r t tβ-====⋅v (2) 由 t /2a a =,2222t n t 4a a a a =+= 得22t n3a a = 22243(24)(12)r t r t =336t = 332424 3.15(rad)6t θ=+=+⨯= (3) 由 n t a a =,即22(12)24r t rt =,解得 0.55s t =习题二2-7. 5kg 的物体放在地面上,若物体与地面之间的摩擦系数为0.30,至少要多大的力才能拉动该物体?解:受力分析如解图2-7所示cos (sin )F f N mg F θμμθ===-则 cos sin mgF μθμθ=+要求F 最小,则分母cos sin θμθ+取极大值所以 cos sin θμθ+ 对θ求导为零,类似题2-5解得tan θμ= 带入F 公式,则 14.08N mgF μμ=min 2=1+解图2-72-13.一质量为m 的小球最初位于如题图2-13所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑,试求小球到达C 点时的角速度和对圆轨道的作用力.解:小球下滑过程机械能守恒21cos 2mgr m α=v …………① 又 r ω=v ………② 由①、②可得2cos g rαω=法向 2cos N mg m rα-=v ……③由①、③可得 =3cos N mg α2-34.一人从10 m 深的井中提水.起始时桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1 m 要漏去0.2 kg 的水.求水桶匀速地从井中提到井口,人所做的功. 解:选竖直向上为坐标y 轴的正方向,井中水面处为坐标原点. 由题意知,人匀速提水,所以人所用的拉力F 等于水桶的重量,即0.2107.8 1.96F mg gy y =-=-人的拉力所做的功为 0d d HW W F y ==⎰⎰=10(107.8 1.96)d =980 (J)y y -⎰2-37.一沿x 轴正方向的力作用在一质量为3.0kg 的质点上。
大学物理复习题100道
[1].如果在一固定容器内,理想气体分子方均根速率提高为原来的二倍,那么( )A 、温度和压强都提高为原来的二倍B 、温度提高为原来的四倍,压强提高为原来的二倍C 、温度提高为原来的二倍,压强提高为原来的四倍D 、 温度与压强都提高为原来的四倍E 、 由于体积固定,所以温度和压强都不变化[2]. 有两个载有相同电流的通电导线,彼此之间的斥力为F ,如果它们的电流均加倍,相互之间的距离也加倍,则彼此之间的斥力将为( )A 、 4FB 、 2FC 、 FD 、2FE 、 4F[3]. 两块电荷面密度均为σ+的 “无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x变化的关系曲线为:(设场强方向向右为正、向左为负)( )[4]. 一瓶氦气和一瓶氧气,它们的压强和温度都相同,但体积不同。
下列哪些结论正确( )(1) 单位体积的分子数相同 (2) 单位体积的质量相同 (3) 分子的平均平动动能相同 (4) 分子的方均根速率相同[5]. 一密封的理想气体的温度从C 27起缓慢地上升,直至其分子速率的均方根值是C 27时的均方根值的两倍,试问气体最终的温度为多高( )(B)(C)(D)(A)σ-0[6]. 、[7].半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( )[8]. 一根长为l ,质量为m 的均质链条放在光滑水平桌面上,而将其长度的5/l 悬挂于桌边下。
若将悬挂部分拉回桌面,需做功为( )[9]. 两无限长平行直导线a 、b 分别载有电流1I 和2I ,电流方向相反,如图所示。
L 为绕导线b 的闭合回路,c B为环路上c 点的磁感应强度。
当导线a 向左平行于导线b 远离时 ( )A 、 cB 减小,⎰⋅Ll B d 减小 B 、 c B 不变,⎰⋅Ll Bd 不变C 、 c B 增加,⎰⋅Ll B d 不变 D 、 c B 减小,⎰⋅Ll Bd 不变[10].设某种气体的分子速率分布函数为)(v f ,则速率在21~v v 区间内的分子的平均速率为( ) [11].一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的2H 和2O .开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:( )】15/l~[12].竖直上抛一小球,设空气阻力大小恒定。
(完整版)大学物理试题库及答案详解【考试必备】
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D). 1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s. 解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t TR x π2sin=',t TR y π2cos-=' 坐标变换后,在O x y 坐标系中有t TR x x π2sin='=, R t TR y y y +-=+'=π2cos0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e B A t B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下. 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v(2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan ==xy θ(3) 在任意时刻物品的速度与水平轴的夹角为 v v v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP uuu r (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos(cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-=因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4rr Q E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ 外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεεrd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内(3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-10 在一半径R =1.0cm 的无限长半圆柱形金属薄片中,自上而下地有电流I =5.0 A 通过,电流分布均匀.如题9-10图所示.试求圆柱轴线任一点P 处的磁感应强度.题9-10图解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如题9-10图所示,取宽为l d 的一无限长直电流l RII d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R IR I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ= RI B B y 202d sin )2cos(d d πθθμ-=θ+π= ∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y ∴ i B51037.6-⨯= T9-16 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别 为b ,c )构成,如题9-16图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小解: ⎰∑μ=⋅LI l B 0d(1)a r < 2202RIr r B μπ=202R IrB πμ=(2) b r a << I r B 02μπ=rIB πμ20=(3)c r b << I b c b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ (4)c r > 02=r B π0=B题9-16图题9-17图9-20 如题9-20图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力; (2)矩形线圈所受合力和合力矩. 解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.9-25 电子在B =70×10-4T 的匀强磁场中作圆周运动,圆周半径r =3.0cm .已知B垂直于纸面向外,某时刻电子在A 点,速度v向上,如题9-25图. (1)试画出这电子运动的轨道;(2)求这电子速度v的大小; (3)求这电子的动能k E .题9-25图解:(1)轨迹如图(2)∵ rv m evB 2=∴ 7107.3⨯==m eBrv 1s m -⋅ (3) 162K 102.621-⨯==mv E J题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则 b a b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln0πμ 题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →10-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ12-12在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k 个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r 10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯= 31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-= ∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长.解:单缝衍射的明纹公式为)12(sin +=k a ϕ2λ 当6000=λo A 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ 得 4286600075=⨯=x λo A 13-15 波长为5000o A 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m (1)由光栅衍射明纹公式 λϕk b a =+sin )(,因1=k ,又f x ==ϕϕtan sin所以有λ=+fx b a 1)( 即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ 2100.6-⨯=m 6= cm(2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ 故22103010602121--⨯=⨯⨯==f x m 30= cm 这就是中央明条纹的位移值.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径.解:由爱里斑的半角宽度 47105.302.010500022.122.1--⨯=⨯⨯==D λθ ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 D λθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少?解:由马吕斯定律ο20160cos 2I I =80I = 32930cos 30cos 20ο2ο20I I I == ∴25.2491==I I 14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少?解:(1) max 120131cos 2I I I ==α 又 20max I I =∴ ,601I I = 故 'ο11124454,33cos ,31cos ===ααα. (2) 0220231cos 2I I I ==α ∴ 'ο221635,32cos ==αα 14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少?解:(1),140.1tan 0=i ∴'ο02854=i (2) 'ο0ο323590=-=i y。