(完整版)勾股定理经典例题(含答案)

合集下载

(完整版)勾股定理经典例题(含答案)

(完整版)勾股定理经典例题(含答案)

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

勾股定理经典题型(后附答案)

勾股定理经典题型(后附答案)

勾股定理经典题型(后附答案)第 1 页共 5 页勾股定理经典题型(后附答案)⼀、经典例题精讲题型⼀:直接考查勾股定理例1.在ABC ?中,90C ∠=?.⑴已知6AC =,8BC =.求AB 的长. ⑵已知17AB =,15AC =,求BC 的长. 题型⼆:利⽤勾股定理测量长度例题1 如果梯⼦的底端离建筑物9⽶,那么15⽶长的梯⼦可以到达建筑物的⾼度是多少⽶?例题2 如图(8),⽔池中离岸边D 点1.5⽶的C 处,直⽴长着⼀根芦苇,出⽔部分BC 的长是0.5⽶,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求⽔池的深度AC.题型三:勾股定理和逆定理并⽤——例题3 如图3,正⽅形ABCD 中,E 是BC 边上的中点,F 是AB 上⼀点,且AB FB 41=那么△DEF 是直⾓三⾓形吗?为什么?题型四:利⽤勾股定理求线段长度——例题4 如图4,已知长⽅形ABCD 中AB=8cm,BC=10cm,在边CD 上取⼀点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.题型五:利⽤勾股定理逆定理判断垂直——例题5 如图5,王师傅想要检测桌⼦的表⾯AD 边是否垂直与AB 边和CD 边,他测得AD=80cm ,AB=60cm ,BD=100c m,AD 边与AB 边垂直吗?怎样去验证AD 边与CD 边是否垂直?例题6 有⼀个传感器控制的灯,安装在门上⽅,离地⾼4.5⽶的墙上,任何东西只要移⾄5⽶以内,灯就⾃动打开,⼀个⾝⾼1.5⽶的学⽣,要⾛到离门多远的地⽅灯刚好打开?第 2 页共 5 页题型六:旋转问题:例题7 如图,△ABC 是直⾓三⾓形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。

变式1: 如图,P 是等边三⾓形ABC 内⼀点,PA=2,PB=23,PC=4,求△ABC 的边长.变式2: 如图,△ABC 为等腰直⾓三⾓形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°,试探究222BE CF EF 、、间的关系,并说明理由.题型七:关于翻折问题例题8 如图,矩形纸⽚ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上⼀点,将矩形纸⽚沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.题型⼋:关于勾股定理在实际中的应⽤:例题9 如图,公路MN 和公路PQ 在P点处交汇,点A处有⼀所中学,AP=160⽶,点A 到公路MN 的距离为80⽶,假使拖拉机⾏驶时,周围100⽶以内会受到噪⾳影响,那么拖拉机在公路MN 上沿PN ⽅向⾏驶时,学校是否会受到影响,第 3 页共5页请说明理由;如果受到影响,已知拖拉机的速度是18千⽶/⼩时,那么学校受到影响的时间为多少?题型九:关于最短性问题例题10 如右图1-19,壁虎在⼀座底⾯半径为2⽶,⾼为4⽶的油罐的下底边沿A 处,它发现在⾃⼰的正上⽅油罐上边缘的B 处有⼀只害⾍,便决定捕捉这只害⾍,为了不引起害⾍的注意,它故意不⾛直线,⽽是绕着油罐,沿⼀条螺旋路线,从背后对害⾍进⾏突然袭击.结果,壁虎的偷袭得到成功,获得了⼀顿美餐.请问壁虎⾄少要爬⾏多少路程才能捕到害⾍?(π取3.14,结果保留1位⼩数,可以⽤计算器计算)变式:如图为⼀棱长为3cm 的正⽅体,把所有⾯都分为9个⼩正⽅形,其边长都是1cm ,假设⼀只蚂蚁每秒爬⾏2cm ,则它从下地⾯A 点沿表⾯爬⾏⾄右侧⾯的B 点,最少要花⼏秒钟?三、课后训练:⼀、填空题1.如图(1),在⾼2⽶,坡⾓为30°的楼梯表⾯铺地毯,地毯的长⾄少需________⽶. 2.种盛饮料的圆柱形杯(如图),测得内部底⾯半径为2.5㎝,⾼为12㎝,吸管放进杯⾥,杯⼝外⾯⾄少要露出 4.6㎝,问吸管要做㎝。

勾股定理(有答案)

勾股定理(有答案)

勾股定理1.勾股定理:对于任意的直角三角形,如果它的两条直角边分别为a 、 b ,斜边为c ,那么一定有222c b a =+. 等腰直角三角形:a:b:c=1:1:√2 ; 含30度角的直角三角形:a:b:c=1:√3:2 (知以求二)2.勾股定理逆定理:直角三角形的判定:如果三角形的三边长a 、 b 、 c 有关系:222c b a =+,那么这个三角形是直角三角形。

例题:在Rt △ABC 中,∠A =90°,则△ABC 三边满足的关系式为 b2+c2= a2 . 3.勾股数:①能够构成直角三角形的三边长的三个正整数称为勾股数,即222c b a =+中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。

②记住常见的勾股数可以提高解题速度,如3,4,5; 6,8,10; 5,12,13; 7,24,25;等 例题解析:1.一直角三角形的一条直角边长是7cm ,另一条直角边与斜边长的和是49cm ,则斜边长为 25cm2.在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长为 14或43.一个三角形的三边分别是,1,2,122-+m m m ,则此三角形是 直角三角形4.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 6 cm5.在直角三角形中,如果有两边为3,4,那么另一边为 5或76.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为 40或3607.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是 132 分析:22211x y =+,()()1211211x y x y +-==⨯,121,1x y x y +=-=,所以x=61,y=60.8.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为 90 解析:2229)1(=-+x x ,40=x ,9041409=++9.一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移了 0.8米10.如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 答案:CD=3cm11.如图,某会展中心在会展期间准备将高5m,长13m ,宽2m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 答案:(13+5)×2×18=648元12.已知等边三角形ABC 的边长是6cm ,(1)求高AD 的长;(2)S △ABC. 答案:cm AD 3327936==-=∴AD BC S ABC ⋅⋅=∆21)2()(39336212cm =⨯⨯=5m 13m A B CCB AD E A BCD1.如图,用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC •为10cm .当折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•答案:EC=3cm2.在矩形纸片ABCD 中,AD=4cm ,AB=10cm,按图所示方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长。

勾股定理经典例题含答案

勾股定理经典例题含答案

勾股定理经典例题含答案11页勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2,若a、b、c都是正整数,(a,b,c)叫做勾股数组。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

“勾三,股四,弦五”是勾股定理的一个最着名的例子。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。

古埃及人也应用过勾股定理。

在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。

在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=(2)在△ABC中,∠C=90°,a=40,b=9,c=(3)在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13,CD=12∴AC2=AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB=4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,.求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P.求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

(完整版)勾股定理典型例题详解及练习(附答案)

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是()A.CD、EF、GHC. AB、CD GHB.AB、EF、GHD. AB、CD EF愿路分乐屮1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠2)解題思器;可利用勾脸定理直接求出各边长,再试行判断•』解答过整屮在取DEAF中,Af=l, AE=2,根据勾股定理,得昇EF = Q抡於十£尸° = Q +F二艮同理HE = 2百* QH. = 1 CD = 2^5计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. *縮題后KJ思专:*1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形・因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口*2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜迫而“固执”地运用公式川二/十就其实,同样是S6"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过程.a4•在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初例玉如圏,有一块直角三角形®椀屈U,两直角迫4CM5沁丸m・现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、*C/) "禎B. 3cm G-Icnin題童分析,本题着查勾股定理的应用刎:)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ・进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸九4解龜后的思琴尸勾股定理说到底是一个等式,而含有未知数的等式就是方程。

(完整版)八年级勾股定理典型练习题含答案

(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。

3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。

5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。

E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。

7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。

勾股定理典型例题【含答案】

勾股定理典型例题【含答案】

勾股定理温习一、知识要点:一、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也确实是说:若是直角三角形的两直角边为a、b,斜边为c ,那么a2 + b2= c2。

公式的变形:a2 = c2- b2,b2= c2-a2 。

勾股定理在西方叫毕达哥拉斯定理,也叫百牛定理。

它是直角三角形的一条重要性质,揭露的是三边之间的数量关系。

它的要紧作用是已知直角三角形的两边求第三边。

勾股定理是一个大体的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。

二、勾股定理的逆定理若是三角形ABC的三边长别离是a,b,c,且知足a2 + b2= c2,那么三角形ABC 是直角三角形。

那个定理叫做勾股定理的逆定理.该定理在应历时,同窗们要注意处置好如下几个要点:①已知的条件:某三角形的三条边的长度.②知足的条件:最大边的平方=最小边的平方+中间边的平方.③取得的结论:那个三角形是直角三角形,而且最大边的对角是直角.④若是不知足条件,就说明那个三角形不是直角三角形。

3、勾股数知足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必需是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

4、最短距离问题:要紧运用的依据是两点之间线段最短。

二、知识结构:三、考点剖析考点一:利用勾股定理求面积求:(1) 阴影部份是正方形; (2) 阴影部份是长方形; (3) 阴影部份是半圆.2. 如图,以Rt △ABC 的三边为直径别离向外作三个半圆,试探讨三个半圆的面积之间的关系.考点二:在直角三角形中,已知两边求第三边例如图2,已知△ABC 中,AB =17,AC =10,BC 边上的高,AD =8,则边BC 的长为( )A .21B .15C .6D .以上答案都不对【强化训练】:1.在直角三角形中,若两直角边的长别离为1cm ,2cm ,则斜边长为.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长别离为5和12, 求斜边上的高.(结论:直角三角形的两条直角边直角三角形 勾股定理应用判定直角三角形的一种方法的积等于斜边与其高的积,ab=ch)考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:应用勾股定明白得决楼梯上铺地毯问题例、某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。

(完整版)勾股定理练习题及答案(共6套)

(完整版)勾股定理练习题及答案(共6套)

勾股定理课时练(1)8. 一个部件的形状以下图,已知AC=3cm, AB=4cm,BD=12cm。

求 CD的长 .1. 在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2 BC 2 AC 2的值是()2.如图 18-2- 4 所示 ,有一个形状为直角梯形的部件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该部件另一腰 AB 的长是 ______ cm(结果不取近似值) . 第 8 题图3. 直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.9. 如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .4.一根旗杆于离地面12 m处断裂,如同装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂以前高多少m ?第 9 题图10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋 B 的西 8km 北 7km 处,5. 如图,以以下图,今年的冰雪灾祸中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4 他想把他的马牵到小河畔去饮水,而后回家. 他要达成这件事情所走的最短行程是多少?米处,那么这棵树折断以前的高度是米 .“路”3m4m第 5 题图第 2 题图11 如图,某会展中心在会展时期准备将高5m, 长 13m,宽 2m 的楼道上铺地毯 , 已知地毯平方米 18 6. 飞机在空中水平飞翔, 某一时辰恰巧飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离元,请你帮助计算一下,铺完这个楼道起码需要多少元钱?这个男孩头顶 5000 米, 求飞机每小时飞翔多少千米 ?13m 5m第 11 题12. 甲、乙两位探险者到荒漠进行探险,没有了水,需要找寻水源.为了不致于走散,他们用两部7. 以下图,无盖玻璃容器,高18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一对话机联系,已知对话机的有效距离为15 千米.清晨 8:00 甲先出发,他以 6 千米 / 时的速度向蜘蛛,与蜘蛛相对的容器的上口外侧距张口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北前进,上午10: 00,甲、乙二人相距多远?所走的最短路线的长度 . 还可以保持联系吗?第 7 题图第一课时答案:1.A ,提示:依据勾股定理得BC 2 AC 2 1,所以AB 2BC 2 AC 2 =1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m,而 3+4-5=2 m ,所以他们少走了 4 步.3. 60 ,提示:设斜边的高为x ,依据勾股定理求斜边为122 52 169 13 ,再利13用面积法得,15 12 1 13 x, x 60 ;2 2 134.解:依题意, AB=16 m, AC=12 m,在直角三角形 ABC 中 ,由勾股定理 ,BC 2AB 2AC 216 212 220 2,所以 BC=20 m ,20+12=32( m ),故旗杆在断裂以前有32 m高.6. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002400023000(米),3所以飞机飞翔的速度为540 (千米/小时)2036007.解:将曲线沿 AB睁开,以下图,过点 C 作 CE⊥ AB于 E.在R t CEF , CEF90 ,EF=18-1-1=16( cm ),1CE=30(cm) ,2. 60CE 2 EF 2 30 2 16 2 34( ) 由勾股定理,得CF=8.解:在直角三角形ABC中,依据勾股定理,得在直角三角形 CBD中,依据勾股定理,得2 2 2 2CD=BC+BD=25+12 =169,所以 CD=13.9.解:延伸 BC、AD交于点 E. (以下图)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8,设 AB=x,则 AE=2x,由勾股定理。

(完整版)勾股定理经典题目及答案

(完整版)勾股定理经典题目及答案

勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。

②如果k 是大于1的奇数,那么k, ,是一组勾股数。

212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。

122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。

典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。

勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案一、选择题1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理,直角三角形的两直角边的平方和等于斜边的平方。

所以斜边的平方= 5²+ 12²= 25 + 144 = 169,斜边长为 13 厘米。

2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:对于选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,因为25 ≠ 36,所以不能组成直角三角形;对于选项 B,5²+ 12²= 25 + 144 =169,13²= 169,因为 169 = 169,所以能组成直角三角形;对于选项C,5²+ 11²= 25 + 121 = 146,12²= 144,因为146 ≠ 144,所以不能组成直角三角形;对于选项 D,2²+ 3²= 4 + 9 = 13,4²= 16,因为13 ≠ 16,所以不能组成直角三角形。

3、一个直角三角形的三边长分别为 2,3,x,则 x 的值为()A √13B √5C √13 或√5D 无法确定答案:C解析:当 x 为斜边时,x =√(2²+ 3²) =√13;当 3 为斜边时,x =√(3² 2²) =√5。

所以 x 的值为√13 或√5 。

4、已知直角三角形的两条边长分别是 5 和 12,则第三边的长为()A 13B √119C 13 或√119D 不能确定答案:C解析:当 12 为斜边时,第三边的长为√(12² 5²) =√119;当 5 和12 为直角边时,第三边的长为√(5²+ 12²) = 13。

勾股定理经典例题含答案.

勾股定理经典例题含答案.

勾股定理经典例题含答案11页勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

“勾三,股四,弦五”是勾股定理的一个最著名的例子。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。

古埃及人也应用过勾股定理。

在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。

在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

(完整版)八年级勾股定理典型练习题含答案

(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。

3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。

5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。

E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。

7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。

勾股定理经典例题(含答案)

勾股定理经典例题(含答案)

经典例题透析(一)类型一:勾股定理的直接用法1:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.3如图,已知:,,于P. 求证:.4已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD的面积。

类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。

(1)求A、C两点之间的距离。

(2)确定目的地C在营地A的什么方向。

(二)用勾股定理求最短问题如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.利用勾股定理作长为的线段5、作长为、、的线段。

举一反三【变式】在数轴上表示的点。

经典例题透析(二)类型一:勾股定理及其逆定理的基本用法1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。

【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。

【变式3】若直角三角形的三边长分别是n+1,n+2,n+3,求n。

【变式4】以下列各组数为边长,能组成直角三角形的是()A、8,15,17B、4,5,6C、5,8,10D、8,39,40类型二:勾股定理的应用2、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。

假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。

完整版勾股定理习题含解析

完整版勾股定理习题含解析

勾股定理习题1. 赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的 赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一 个大正方形,设直角三角形较长直角边长为 a ,较短直角边长为b ,若(a+b ) 2=21,大正方形的面积为13,则小正方形的面积为(【解答】解:如图所示:•••( a+b ) 2=21, ••• a 2+2ab+b 2=21,•••大正方形的面积为13,2ab=21 - 13=8,•••小正方形的面积为13-8=5.2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为A . 20B . 22C . 24D . 26【解答】解:•••两条边长是连续偶数,可设另一直角边为 X ,则斜边为(x+2),根据勾股定理得:(X+2) 2 - x 2=62,解得 x=8,.・. x+2=10,•••周长为:6+8+10=24.故选C5 D . 63. 在下列四组数中,不是勾股数的一组数是(A .a=15, b=8, c=17B .a=9, b=12, c=15C .a=7, b=24, c=25D .a=3, b=5, c=7【解答】解:由题意可知,在A 组中,152+82=172=289,在 B 组中,92+122=152=225,在 C 组中,72+242=252=625,而在 D 组中,32+52工72,6, 8, 10 ② 13, 5, 12 ③ 1, 2,3④9, 40, 41⑤3, 4, 5•其中能构成直角三角形的有()组. A .2B .3C . 4D .5 【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的7. △ ABC 的三边长分别为a, b, C ,下列条件:/ C=3: 4: 5:③a 2= ( b+c ) (b - c );④a :逆定理,所以能构成直角三角形的有三组.故选B .故选 D .4. 下列各组数,可以作为直角三角形的三边长的是(2, 3, 4 B .7, 24, 25C .8, 12, 20D .5, 13, 15 【解答】解:A 、T 22+32工42,二不能构成直角三角形;••• 72+242=252,二能构成直角三角形;A .B 、C 、 ••• 82+122工202,A 不能构成直角三角形;D 、 ••• 52+132工152,A 不能构成直角三角形.故选 B .5. 下列各组数中,能构成直角三角形的是(4, 5, 6 B .1, 1, 2C .6, 8, 11 【解答】解:A 、T 42+52工62,A 不能构成直角三角形,故 A 错误;B 、T 12+12=,二能构成直角三角形,故 B 正确;••• 62+82工112,A 不能构成直角三角形,故 ••• 52+122工232,A 不能构成直角三角形,故 A . C 、 D 、 D .5, 12, 23 C 错误;D 错误.故选: B .分别以下列五组数为一个三角形的边长:① 6. ①/ A=/ B-/ C ;②/A : / B : b : c=5: 12: 13,其中能判断△ABC 是直角三角形的个数有()A . 1 个B . 2 个C . 3 个D .4 个 【解答】解;①/ A=/ B-/ C,/ A+/ B+/ C=180,解得/ B=90°,故①是直角 三角形; ②/ A : / B : / C=3:4:5, / A+/ B+/ C=180,解得/ A=45 , / B=6ff , / C=75, 故②不是直角三角形;③ ••• a 2= (b+c ) (b - c), ••• a 2+c 2=b 2,符合勾股定理的逆定理,故③是直角三角形;④ ••• a : b : c=5: 12: 13,Aa 2+b 2=c 2,符合勾股定理的逆定理,故④是直角三角 形.能判断△ ABC 是直角三角形的个数有3个;故选:C .8. 下列三角形中,是直角三角形的是(A .三角形的三边满足关系 a+b=c B.三角形的三边比为1: 2: 3 C •三角形的一边等于另一边的一半 D .三角形的三边为9, 40, 41 【解答】解:A 、不能判定是直角三角形,此选项错误;B 、 由于12+22工32,所以不是直角三角形,此选项错误;C 、D 、不能判定是直角三角形,此选项错误; 由于 92+402=412,是直角三角形,此选项正确.故选 D . 9. 一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三 个数据与其它的数据弄混了,请你帮助他找出来,是第( )组.13,12,12B . 12,12,8 C . 13,10,12D . 5,8,4 【解答】解:A 、132工122+62,错误;B 、122工82+62,错误;C 、 确; A . 132=122+52,正D . 82工52+22,错误.故选C.10.下列说法正确的有()①如果/ A+/B=/ C,那么△ ABC是直角三角形;②如果/ A:/ B:/ C=1: 2:3,则三角形是直角三角形;③如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形;④有一个角是直角的三角形是直角三角形.A. 1个B. 2个C. 3个D. 4个【解答】解:①•••/ A+/ B=/ C,且/ A+/B+/C=180,得/ C=90,:.△ ABC是直角三角形,故①正确;②设/ A=x,/ B=2x,/ C=3x,则/ A+/ B=/ C,由①知,该三角形是直角三角形,故②正确;③42=16, 62=36,显然42+42工62,不符合勾股定理的逆定理,该三角形不是直角三角形,故③正确;④符合直角三角形的判定方法,故④正确;所以4个结论都正确,故选D.11.若等边△ ABC的边长为A. 1cm2B. 2cm2C. 2cm,那么△ ABC的面积为( 3cm2D. 4cm2【解答】故选A.12.如图,四边形ABCD中,AD// BC, / ABO/DCB=90, 且BC=2AD 以ABBC DC为边向外作正方形,其面积分别为Si、S2、S3, 若S=3, 9=9,则9D. 48【解答】V S=3 , 3=9 , A AB=CD=3,过A作AE// CD交BC于E,则/ AEB=/DCB V AD // BC, A四边形AECD是平行四边形,A CE=AD AE=CD=3V/ ABC+Z DCB=90,.・./ AEB F/ABC=9O,•••/ BAE=9O,•••BE==2 V BC=2AD二BC=2BE=4 A◎二(4) 2=48,故选D.13. 一个三角形的三边的长分别是 3 , 4 , 5 ,则这个三角形最长边上的高是14.已知直角三角形两边的长为3和4 ,则此三角形的周长为【解答】解:设RtAABC的第三边长为x, ①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+77 ,15.女口图所示,AB=BC=CD=DE=1AB丄BC, AC丄CD, AD丄DE,贝U AE=16.如图,在四边形 ABCD 中,AB=1, BC=1, CD=2, DA=且/ ABC=90,则四边形ABCD 的面积是17. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是18. 等腰三角形的腰长为10,底长为12,则其底边上的高为19. 如图字母B 所代表的正方形的面积是【解答】解:由题可知,在直角三角形中,斜边的平方=169, —直角边的平方=25, 根据勾股定理知,另一直角边平方=169-25=144,即字母B 所代表的正方形的面 积是144.21. 一直角三角形的三边分别为 2、3、X ,那么以x 【解答】解:当2和3都是直角边时,则X 2=4+9=13; 4=5.故选C.20.直角三角形的两条直角边的长分别为5, 12, 则斜边上的高线的长为 为边长的正方形的面积为当3是斜边时,则X 2=9-22.如图,在△ ABC 中,AD 丄BC 于 D,AB=17,BD=15,DC=6,J 则 AC 的长为 D . 8 【解答】解:女口图,V AD 丄BC, •••/ ADB=/ ADC=90. 又 v AB=17, BD=15,DC=6 •••在直角△ ABD 中,由勾股定理得到:AD 2=AB^ - BD 2=64.在直角△ ACD 中,由勾股定理得到:AC===10即AC=1Q 故选:B.23.如图,校园内有两棵树,相距 8米,一棵树树高13米,另一棵树高7米, 一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞 __________ 。

八年级数学勾股定理30道必做题(含答案和解析)

八年级数学勾股定理30道必做题(含答案和解析)

八年级数学勾股定理30道必做题(含答案和解析)1、如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a ,b ,c. A ,B ,N ,E ,F 五点在同一直线上,则c = .(用含有a ,b 的代数式表示).答案:√a 2+b 2.解析:由三个正方形如图的摆放.∵四边形ABCD ,EFGH ,NHMC 都是正方形. ∴∠CNB +∠ENH =90°.又∵∠CNB +∠NCB =90°,∠ENH +∠EHN =90°. ∴∠CNB =∠EHN ,∠NCB =∠ENH. 在△CBN 和△NEH 中:{∠BNC =∠EHNNC =HN ∠NCB =∠HNE .∴△CBN ≌△NEH (ASA ). ∴HE =BN.在Rt △CBN 中,BC 2+BN 2=CN 2.又已知三个正方形的边长分别为a ,b ,c. 则有a 2+b 2=c 2. ∴c =√a 2+b 2.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理. 四边形——正方形——正方形的性质.2、在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( ). A.9 B.18 C.6 D. 无法计算答案:B.解析:在Rt△ABC中,斜边长BC=3.BC2=AB2+AC2=9.∴AB2+AC2+BC2=9+9=18.考点:三角形——直角三角形——勾股定理.3、三角形三边长分别为① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.其中能构成直角三角形的有.答案:①②③④⑤⑥.解析:① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.全都能构成直角三角形.考点:三角形——直角三角形——勾股数.4、已知点A(3,5),B(-1,1)那么线段AB的长度为().A.4B.3√2C.4√2D.5答案:C.解析:已知A(3,5)和B(-1,1),由两点间的距离公式可知AB=√(3+1)2+(5−1)2=4√2.考点:函数——平面直角坐标系——坐标与距离.5、等腰直角三角形的斜边为10,则腰长为,斜边上的高为.答案:1.5√2.2.5.解析:等腰三角形的三边关系为1∶1∶√2.因为等腰直角三角形的斜边为10,则腰长为5√2.斜边上的高,即为斜边的中线,为斜边的一半,长为5.考点:三角形——直角三角形——等腰直角三角形——勾股定理.6、若正方形的周长为40,则其对角线长为().A.100B.20√2C.10√2D.10答案:C.解析:正方形边长为10,根据勾股定理得对角线长为10√2.考点:三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.7、在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC的长是().A.2B.√32C.√3D.√3+2答案:C.解析:略.考点:三角形——直角三角形——勾股定理.8、等边三角形的边长为4,则它的面积是.答案:4√3 .解析:等边三角形的面积=√34×42=4√3.考点:三角形——直角三角形——含30°角的直角三角形.9、已知一个直角三角形的两条直角边分别为3,4,则此三角形斜边是__________,斜边上的高为__________.A.5;125B.6;145C.6;125D.5;145答案:A.解析:略.考点:三角形——三角形基础——三角形面积及等积变换.直角三角形——勾股定理.10、直角三角形两直角边长分别为5和12,则它的斜边上的高为.答案:6013.解析:设斜边的长为c,斜边上的高为h.∵直角三角形的两直角边长分别为5和12.∴c=√52+122=13.∴5×12=13h,解得h=60.13考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.11、如图所示,小明同学在距离某建筑物6米的点A处测得条幅两端点B,C点的仰角分别为60°和30°,则条幅的高度BC为米(结果可以保留根号).答案:4√3.=2√3,BC=BD−CD=4√3.解析:依题可知,BC=6√3,CD=√3考点:三角形——直角三角形——含30°角的直角三角形.三角形——锐角三角函数——解直角三角形.12、一张直角三角形的纸片,按图所示折叠,使两个锐角的顶点A,B重合,若∠B=30°,AC=√3,则DC的长为.答案:1.解析:由题知∠DAE=∠B=30°.∴∠DAC=90°-∠B-∠DAE=30°.AC=1.∴在Rt△ADC中,DC=√33考点:三角形——直角三角形——含30°角的直角三角形.13、已知:如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,D是AB延长线上一点且∠CDB=45°.求DB与DC的长.答案:证明见解析.解析:过C作CE⊥AB于E.在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4.∴BC=2,∠ABC=60°.∴∠BCE=30°.∴BE=1,CE=√3.在Rt△CDE中,∠CED=90°,∠CDB=45°.∴∠ECD=45°.∴DE=CE=√3.∴CD=√CE2+DE2=√6.∴BD=√3-1.考点:三角形——直角三角形——含30°角的直角三角形——等腰直角三角形——勾股定理.14、如图,数轴上有两个Rt△OAB,Rt△OCD,OA,OC是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA,OC为半径画弧交x轴于E,F,则E,F分别对应的数是.答案:−√2,√5.解析:在Rt△OAB中,OA=√OB2+AB2=√2.∴OE=√2.∴点E对应的数为−√2.在Rt△OCD中,OC=√OD2+CD2=√5.∴OF=√5.∴点F对应的数为√5.考点:数——有理数——数轴.三角形——直角三角形——勾股定理.15、在△ABC中,三条边的长分别为AB=√5,BC=√10,AC=√13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格,其中每个小正方形的边长为1,再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样就不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为√2a,√13a,√17a(a>0).请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上.(3)若△ABC中有两边的长分别为√2a,√10a(a>0).且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上..答案:(1)72a2.(2)52(3)4a或2√2a.解析:(1)△ABC的面积为72.(2)△ABC的面积为52a2.(3)图中三角形为符合题意的三角形.第三边的长度为4a或2√2a.考点:函数——平面直角坐标系——坐标与面积.三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.16、在Rt△ABC中,∠C=90°,若a+b=5,c=4,则S△ABC=.答案:94.解析:在Rt△ABC中,由勾股定理得,a2+b2=c2.又有(a+b)2=a2+b2+2ab,∴(a+b)2-c2=2ab.∴S△ABC=12ab=94.考点:三角形——直角三角形——勾股定理.17、已知Rt△ABC的周长为2+√6,其中斜边AB=2,则这个三角形的面积为.答案:12.解析:在Rt△ABC中,设BC=a,AC=b.由勾股定理得a2+b2=4.由题意得a +b +2=2+√6. ∴a +b =√6. ∴ab =(a+b)2−(a 2+b 2)2=6−42=1.∴s =12ab =12.考点:式——整式——完全平方公式.三角形——直角三角形——勾股定理.18、在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为 . 答案:132cm. 解析:略.考点:三角形——直角三角形——勾股定理.19、如图所示,在平静的湖面上,有一支红莲,高出水面1m ,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求水深是多少?答案:水深为1.5米.解析:设水深AC 为x 米.则红莲的长是(x +1)米.在Rt △ABC 中,根据勾股定理得,AC 2+BC 2=AB 2. ∴(x +1)2=x 2+4. 解得x =1.5. 答:水深为1.5米.考点:三角形——直角三角形——勾股定理——勾股定理的应用.20、如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD =1,BD =√17,则BC 的长为 ..答案:178解析:在Rt△ABD中,由勾股定理可知,AD=1,BD=√17,AB=4.设BC=BD=x,AC=4-x..由勾股定理可知12+(4-x)2=x2,解得x=178考点:三角形——直角三角形——勾股定理.21、如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于.答案:6.解析:∵AB=10,EF=2.∴大正方形的面积是100,小正方形的面积是4.∴四个直角三角形的面积和为100-4=96.ab=96.设AE=a,DE=b,即4×12∴2ab=96,a2+b2=100.∴a+b=14.∵a-b=2.解得a=8,b=6.∴AE=8,DE=6.∴AH=8-2=6.考点:方程与不等式——二元一次方程组——解二元一次方程组.三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.22、在Rt△ABC中,AC=5,BC=12,则AB边的长是.答案:13或√119.解析:若AC=5,BC=12都是直角边,则AB=13.若BC=12是斜边,则AB=√122−52=√119.考点:三角形——直角三角形——勾股定理.23、等腰三角形的一边长为12,另一边长是10,则其面积为.答案:48或5√119.解析:作出底边上的高AD.当AB=AC=12,BC=10时,BD=5.由勾股定理得:AD=√AB2−BD2=√119.∴S=12BC×AD=12×10×√119=5√119.当AB=AC=10,BC=12时,BD=6.由勾股定理得:AD=√AB2−BD2=√102−62=8.∴S=12BC×AD=48.考点:三角形——直角三角形——勾股定理.24、在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.答案:66或126.解析:如图所示,分如下两种情况:由勾股定理可得,B1H=B2H=5,CH=16.∴CB1=21,CB2=11.∴△ABC的面积为66或126cm2.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.25、下列各组数中,不能构成直角三角形的是().A.3,4,5B.1,1,√2C.5,12,13D.4,6,8答案:D.解析:∵32+42=52,∴选项A正确.∵12+12=(√2)2,∴选项B正确.∵52+122=132,∴选项C正确.∵42+62≠82,∴选项D错误.考点:三角形——直角三角形——勾股定理的逆定理.26、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是.答案:∠A和∠C.解析:∵b2-a2=c2.∴b2=a2+c2.∴△ABC为直角三角形,且∠B=90°.∴∠A+∠C=90°.考点:几何初步——角——余角和补角.三角形——直角三角形——勾股定理的逆定理.27、如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD.求证:△AEF 是直角三角形.答案:证明见解析.解析:如图所示,延长FE交AB的延长线于点G.∵∠C=∠GBE=90°,CE=BE,∠1=∠2.∴△CEF≌△BEG.∴EF=EG,CF=BG.设正方形ABCD的边长为a,则CF=14a,DF=34a.在Rt△ADF中,根据勾股定理,得AF2=AD2+DF2=a2+(34a)2=2516a2.∴AF=54a,BG=14a.∴AG=54a.∴AF=AG.∵EF=EG.∴AE⊥FG.∴∠AEF=90°.∴△AEF是直角三角形.考点:三角形——全等三角形——全等三角形的应用.三角形——等腰三角形——等腰三角形的性质.三角形——直角三角形——勾股定理——勾股定理的逆定理.28、如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.答案:四边形ABCD的面积为1+√5.解析:连接AC.∵∠ABC=90°,AB=1,BC=2.∴AC=√AB2+BC2=√5.在△ACD中,AC2+CD2=5+4=9=AD2.∴△ACD是直角三角形.∴S四边形ABCD=12AB×BC+12AC×CD=12×1×2+12×√5×2=1+√5.故四边形ABCD的面积为1+√5.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理——勾股定理的逆定理.29、在△ABC中,点D为BC的中点,点M,N分别为AB,AC上的点,且MD⊥ND.(1)若∠A=90°,以线段BM,MN,CN为边能否构成一个三角形?若能,该三角形是锐角三角形,直角三角形或钝角三角形?(2)如果BM2+CN2=DM2+DN2,求证AD2=14(AB2+AC2).答案:(1)能,该三角形是直角三角形.(2)证明见解析.解析:(1)略.(2)延长ND至E,使DE=DN,连接EB,EM,MN.因为DE=DN,DB=DC,∠BDE=∠CDN,则△BDE≌△CDN.从而BE=CN,∠DBE=∠C.而DE=DN,∠MDN=90°,故ME=MN.因此DM2+DN2=MN2=ME2.即BM2+BE2=ME2,则∠MBE=90°.即∠MBD+∠DBE=90°.因为∠DBE=∠C,故∠MBD+∠C=90°.则∠BAC=90°.AD为Rt△ABC斜边BC上的中线.BC.故AD=12(AB2+AC2).由此可得AD2=14考点:三角形——全等三角形——全等三角形常用辅助线——倍长中线.三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理.30、阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP’C,连接PP’,得到两个特殊的三角形,从而将问题解决.(1)图1中∠APB的度数等于.(2)如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17,则∠APB的度数等于,正方形的边长为.(3)如图,在正六边形ABCDEF内有一点,且PA=2,PB=1,PF=√13,则∠APB的度数等于,正六边形的边长为(并写出解答过程).答案:(1)150°.(2)1.135°.2.√13.(3)1.120°.2.√7.解析:(1)∵△ABC为正三角形,PA=P’A.∴△AP P’为正三角形.∴∠A P’P=60°,P’P=AP=3.∵P’C=PB=4,PC2=P’P2+P’C2.∴∠PP’C=90°.∴∠APB=∠AP’C=150°.(2)1.135°;2.√13.(3)图4中∠APB的度数等于120°,正六边形的边长为√7.将△APB绕点A逆时针旋转120°得到△A P’F,连接P’P.过点A作AN⊥P’P,过点A作AH⊥FP’于点H.∵△APB绕点A逆时针旋转120°得到△A P’F.∴∠PAP’=120°,P’A=PA=2,P’F=PB=1.∴∠AP’P=30°.在Rt△ANP’中,P’A=2AN=2.∴P’N=√3.∴PP’=2√3.在△FPP’中,PF=√13,PP’=2√3,P’F=2.∴PF2=P’F2+P’P2.∴∠FP’P=90°.∴∠APB=∠FP’A=∠FP’P+∠AP’P=120°.∴∠HP’A=60°.在Rt△HP’A中,AP’=2, ∠P’AH=30°.∴HP’=1.在Rt△HFA中,FA2=FH2+HA2.∴FA=√FH2+HA2=√7.考点:三角形——直角三角形——勾股定理——勾股定理的逆定理.几何变换——图形的旋转——旋转全等.。

勾股定理经典例题含答案

勾股定理经典例题含答案

勾股定理经典例题含答案11页勾股定理是一个大体的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。

若是直角三角形两直角边为a和b ,斜边为c ,那么a2+b2=c2,假设a、b、c都是正整数,(a,b,c)叫做勾股数组。

勾股定理现约有500种证明方式,是数学定理中证明方式最多的走理之一°勾股定理是人类发觉并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是的纽带之一。

"勾三,股四,弦五"是勾股走理的一个最闻名的。

远在公元前约三千年的人就明白和应用勾股定理,还明白许多勾股数组。

古埃及人也应用过勾股定理。

在中国,西周的提出了 "勾三股四弦五"的勾股走理的特例。

在西方,最先提出并证明此走理的为公元前6世纪古希腊的,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

类型一:勾股定理的直接用法—、在Rt-ABC 中,zC=90°⑴已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.思路点拨:写解的进程中,必然要先写上在哪个直角三角形中,注意勾股走理的变形利用。

解析:⑴在"BC 中,zC=90°, a=6 , c=10,b=J』一』=8(2) 在3\BC 中,zC=90°, a=40 , =41(3) 在厶ABC 中,zC=90°, c=25 , b=15,a=一护=20触类旁通【变式】:如图^B=^ACD=^°, AD=X3.CD=12. BC=3.那么AB的长是多少?【答案】•. "100=90°AD=13, CD=12.••AC2 =AD2 - CD2=132 - 122=25:.AC=S又・・ zABO90°且BC=3.••由勾股走理可得AB2 =AC2 ・ BC2=52 - 32:.AB= 4• ・AB 的长是4类型二:勾股走理的构造应用二如图,已知:在山力中,= 60° , AC = 10,血=30.求:30的长.思路点拨:由条件= 6胪,想到构造含刃°角的直角三角形,为此作2D 丄于0,那么有的长.解析:作丄。

(完整版)《勾股定理》练习题及答案

(完整版)《勾股定理》练习题及答案

《勾股定理》练习题及答案测试1 勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C 所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个 (C)3 (D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形,探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.测试2 勾股定理(二)学习要求掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km . 3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m . 二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ). (A)5m(B)7m(C)8m(D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ). (A)212 (B)310 (C)56(D)58三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?9 10 11 12拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD =3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,则AC=______,AB边上的高CD=______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ).(A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41(C)24(D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10-及13的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形. 7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______. 二、选择题9.下列线段不能组成直角三角形的是( ). (A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2(B)1∶3∶4 (C)9∶25∶26(D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形(D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案 第十八章 勾股定理 测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2.3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..310 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF中(8-x )2=x 2+42,解得x =3.13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB 15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论. 15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长AD、BC交于E。

∵∠A=∠60°,∠B=90°,∴∠E=30°。

∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==。

∵DE2= CE2-CD2=42-22=12,∴DE==。

∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。

(1)求A、C两点之间的距离。

(2)确定目的地C在营地A的什么方向。

解析:(1)过B点作BE//AD∴∠DAB=∠ABE=60°∵30°+∠CBA+∠ABE=180°∴∠CBA=90°即△ABC为直角三角形由已知可得:BC=500m,AB=由勾股定理可得:所以(2)在Rt△ABC中,∵BC=500m,AC=1000m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°即点C在点A的北偏东30°的方向举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米(大门宽度一半),OD=0.8米(卡车宽度一半)在Rt△OCD中,由勾股定理得:CD===0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为AB+BC+CD=3,AB+BC+CD=3图(3)中,在Rt△ABC中同理∴图(3)中的路线长为图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH由∠FBH=及勾股定理得:EA=ED=FB=FC=∴EF=1-2FH=1-∴此图中总线路的长为4EA+EF=3>2.828>2.732∴图(4)的连接线路最短,即图(4)的架设方案最省电线.举一反三【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.解:如图,在Rt△ABC中,BC=底面周长的一半=10cm,根据勾股定理得(提问:勾股定理)∴AC===≈10.77(cm)(勾股定理).答:最短路程约为10.77cm.类型四:利用勾股定理作长为的线段5、作长为、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。

作法:如图所示(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;(2)以AB为一条直角边,作另一直角边为1的直角。

斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是、、、。

举一反三【变式】在数轴上表示的点。

解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为。

类型五:逆命题与勾股定理逆定理6、写出下列原命题的逆命题并判断是否正确1.原命题:猫有四只脚.(正确)2.原命题:对顶角相等(正确)3.原命题:线段垂直平分线上的点,到这条线段两端距离相等.(正确)4.原命题:角平分线上的点,到这个角的两边距离相等.(正确)思路点拨:掌握原命题与逆命题的关系。

解析:1. 逆命题:有四只脚的是猫(不正确)2. 逆命题:相等的角是对顶角(不正确)3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.•(正确)4. 逆命题:到角两边距离相等的点,在这个角的平分线上.(正确)总结升华:本题是为了学习勾股定理的逆命题做准备。

7、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。

思路点拨:要判断ΔABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。

解析:由a2+b2+c2+50=6a+8b+10c,得:a2-6a+9+b2-8b+16+c2-10c+25=0,∴(a-3)2+(b-4)2+(c-5)2=0。

∵(a-3)2≥0, (b-4)2≥0, (c-5)2≥0。

∴a=3,b=4,c=5。

∵32+42=52,∴a2+b2=c2。

由勾股定理的逆定理,得ΔABC是直角三角形。

总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。

举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

【答案】:连结AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.分析:本题是利用勾股定理的的逆定理,只要证明:a2+b2=c2即可证明:所以△ABC是直角三角形.【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。

请问FE与DE是否垂直?请说明。

【答案】答:DE⊥EF。

证明:设BF=a,则BE=EC=2a, AF=3a,AB=4a,∴EF2=BF2+BE2=a2+4a2=5a2;DE2=CE2+CD2=4a2+16a2=20a2。

连接DF(如图)DF2=AF2+AD2=9a2+16a2=25a2。

∴DF2=EF2+DE2,∴FE⊥DE。

经典例题精析类型一:勾股定理及其逆定理的基本用法1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。

思路点拨:在直角三角形中知道两边的比值和第三边的长度,求面积,可以先通过比值设未知数,再根据勾股定理列出方程,求出未知数的值进而求面积。

解析:设此直角三角形两直角边分别是3x,4x,根据题意得:(3x)2+(4x)2=202化简得x2=16;∴直角三角形的面积=×3x×4x=6x2=96总结升华:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。

举一反三【变式1】等边三角形的边长为2,求它的面积。

【答案】如图,等边△ABC,作AD⊥BC于D则:BD=BC(等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等)∴BD=1在直角三角形ABD中,AB2=AD2+BD2,即:AD2=AB2-BD2=4-1=3∴AD=S△ABC=BC·AD=注:等边三角形面积公式:若等边三角形边长为a,则其面积为a。

【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。

【答案】设此直角三角形两直角边长分别是x,y,根据题意得:由(1)得:x+y=7,(x+y)2=49,x2+2xy+y2=49 (3)(3)-(2),得:xy=12∴直角三角形的面积是xy=×12=6(cm2)【变式3】若直角三角形的三边长分别是n+1,n+2,n+3,求n。

思路点拨:首先要确定斜边(最长的边)长n+3,然后利用勾股定理列方程求解。

解:此直角三角形的斜边长为n+3,由勾股定理可得:(n+1)2+(n+2)2=(n+3)2化简得:n2=4∴n=±2,但当n=-2时,n+1=-1<0,∴n=2总结升华:注意直角三角形中两“直角边”的平方和等于“斜边”的平方,在题目没有给出哪条是直角边哪条是斜边的情况下,首先要先确定斜边,直角边。

相关文档
最新文档