(完整版)《概率论与数理统计》讲义

合集下载

概率论与数理统计讲义稿完整版

概率论与数理统计讲义稿完整版

概率论与数理统计讲义稿HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第一章随机事件与概率§1.1 随机事件1.1.1 随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只一个,且都是事先可以知道的;(3)每一次试验都会出现上述可能结果中的某一个结果,至于是哪一个结果则事前无法预知。

为简单计,今后凡是随机试验皆简称试验,并记之以英文字母E。

称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别用希腊字母ω和Ω表示样本点及样本空间。

必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的目的。

假设抛掷一枚硬币两次,出于某些目的,也许只需要考虑三种可能的结果就足够了,两次都是正面,两次都是反面,一次是正面一次是反面。

于是这三个结果就构成了样本空间Ω。

但是,如果要知道硬币出现正反面的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正面-正面、反面-反面、正面-反面、反面-正面。

如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。

经常使用比绝对必要的样本空间较大的样本空间,因为它便于使用。

比如,在前面的例子中,由四个可能结果组成的样本空间便于问题的讨论,因为对于一个“均匀”的硬币这四个结果是“等可能”的。

尽管这在有3种结果的样本空间内是不对的。

E:从最简单的试验开始,这些试验只有两种结果。

在抛掷硬币这一试验例1.1.11中出现“正面”或“反面”;在检查零件质量时,可能是“合格”或“不合格”;当用来模拟电子产品旋转的方向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正面,反面}。

E:更复杂一些,有的随机试验会产生多种可能的结果,比如掷一颗骰子,观察出2现的点数。

概率论与数理统计讲义

概率论与数理统计讲义

概率论与数理统计讲义概率论与数理统计知识体系结构第一章概率论的基本概念 1.随机试验2.样本空间、样本点、事件、基本事件、必然事件、不可能事件3.事件间的关系4.事件的运算5.事件运算的规律6.概率的定义7.概率的运算性质 8.等可能概型(古典概型) 9.几何概型 10.条件概率 11.事件的独立性 12.全概率公式 13.贝叶斯公式第二章随机变量及其分布一.随机变量1.随机变量的定义2.离散型随机变量3.随机变量的分布函数 (1)分布函数的定义(2)分布函数的性质(3)离散型随机变量的分布函数 4.连续型随机变量及其概率密度 (1)连续型随机变量的定义 (2)概率密度函数的性质(3)连续型随机变量分布函数的性质 (4)几种常见的连续型随机变量 5.随机变量的函数的分布 (1)随机变量的函数的定义(2)离散型随机变量的函数的分布律 (3)连续型随机变量的函数的分布①连续型随机变量的函数的分布函数②连续型随机变量的函数的概率密度函数4 45 5 5 5 56 67 789 9 11 12 13 13 13 13 16 16 16 16 17 17 17 17 17 18 18 19 19 19 191第三章多维随机变量及其分布一.二维随机变量1.二维随机变量的定义2.二维随机变量的联合分布函数3.二维随机变量联合分布函数的几条性质4.二维离散型随机变量5.二维连续型随机变量二.边缘分布1.边缘分布函数的定义2.边缘分布函数的计算3.二维离散型随机变量的边缘分布律 3.二维连续型随机变量的边缘概率密度三.二维随机变量的条件分布1.二维离散型随机变量的条件分布律2.二维连续型随机变量的条件概率密度四.相互独立的随机变量1.随机变量独立的定义2.离散型随机变量相互独立的充分必要条件3.连续型随机变量相互独立的充要条件五.两个随机变量函数的分布1.随机变量和的分布2.随机变量差的分布3.随机变量积的分布4.随机变量商的分布5.随机变量的最值的分布第四章随机变量的数字特征一.期望1.离散型随机变量期望的定义2.连续型随机变量的数学期望的定义3.随机变量的函数的数学期望的求法4.多维随机变量的函数的数学期望的求法5.随机变量的数学期望的性质二.随机变量的方差1.方差的定义2.标准差(均方差)的定义3.方差的计算 5.方差的性质 6.切比雪夫不等式三.随机变量的协方差1.协方差、相关系数的定义20 20 20 20 21 21 22 22 22 22 23 23 24 24 24 25 25 25 25 25 25 26 26 28 28 30 30 30 30 30 30 31 31 31 31 32 32 33 34 3422.协方差的计算3.协方差的性质4.相关四.矩与协方差矩阵1.原点矩定义2.中心矩定义3.混合矩定义4.混合中心矩第五章大数定律和中心极限定理一.大数定律1.辛钦大数定律(弱大数定律)2.依概率收敛3.伯努利大数定律4.切比雪夫大数定律二.中心极限定理1.独立同分布的中心极限定理(林德伯格-列维定理)2.棣莫弗-拉普拉斯中心极限定理3.李雅普诺夫中心极限定理34 34 36 36 36 36 36 36 38 38 38 38 39 39 40 40 40 413概率论与数理统计知识体系结构第一章概率论的基本概念第二章一维随机变量及其概率分布第三章二维随机变量及其概率分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及其抽象分布第七章参数估计第八章假设检验4第一章概率论的基本概念1.随机试验满足以下三大条件的试验叫做随机试验: (1) 可以在相同的条件下重复地进行;(2) 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; (3) 在进行一次试验之前不能确定哪一个结果会出现.2.样本空间、样本点、事件、基本事件、必然事件、不可能事件(1) 将试验E的所有可能结果组成的集合成为样本空间,记为S. (2) 样本空间的元素,即试验E的每个结果,称为样本点. (3) 试验E的样本空间S的子集,称为随机事件,简称事件. (4) 由一个样本点组成的单点集,称为基本事件.(5) 样本空间S包含其所有样本点,是其自身的子集,在每次试验时它总会发生,S称为必然事件.(6) 空集?不包含任何样本点,它也作为样本空间的子集,在每次试验时它总不会发生,?称为不可能事件.3.事件间的关系(1) 若事件A发生,事件B就发生,则称事件B包含A,记为A?B. (2) 若事件A、B满足A?B,且B?A,则称事件A与B相等.4.事件的运算(1) 事件A?B?xx?A?or?x?B称为事件A,B的和事件。

概率论与数理统计课件(最新完整版)

概率论与数理统计课件(最新完整版)

“骰子出现2点”
图示 A与B互斥
A B

说明 当AB= 时,可将AB记为“直和”形式 A+B. 任意事件A与不可能事件为互斥.
5. 事件的差 事件 “A 出现而 B 不出现”,称为事件 A 与
B 的差. 记作 A- B(或 AB
)
实例 “长度合格但直径不合格”是“长度合格”
与“直径合格”的差.
实例4 “从一批含有正
其结果可能为:
品和次品的产品中任意抽
取一个产品”.
正品 、次品.
实例5 “过马路交叉口时,
可能遇上各种颜色的交通
指挥灯”.
实例6 “一只灯泡的寿命” 可长可 短. 随机现象的特征: 条件不能完全决定结果
说明 1. 随机现象揭示了条件和结果之间的非确定性联
系 , 其数量关系无法用函数加以描述.
1. 包含关系 若事件 A 出现, 必然导致 B 出现 , 则称事件 B 包含事件 A,记作 B A 或 A B. 实例 “长度不合格” 必然导致 “产品不合 格” 所以“产品不合格” 包含“长度不合格”. 图示 B 包含 A.
A
B

若事件A包含事件B,而且事件B包含事件A, 则称事 件A与事件B相等,记作 A=B. 2. 事件的和(并) “ 二 事 件A, B至 少 发 生 一 个 ” 也 是 个 一事件 , 称 为 事 件A 与 事 件 B的和事件.记 作A B, 显 然 A B {e | e A或e B}. 实例 某种产品的合格与否是由该产品的长度与 直径是否合格所决定,因此 “产品不合格”是“长度 不合格”与“直径不合格”的并. 图示事件 A 与 B 的并.
(2) ABC or AB C;
( 3) ABC ;

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计讲义

概率论与数理统计讲义

概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。

它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。

1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。

概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。

1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。

方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。

1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。

这些性质能够帮助我们更好地理解随机事件的规律和特征。

二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。

统计学广泛应用于社会调查、市场研究以及科学实验等领域。

2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。

它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。

2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。

点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。

2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。

它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。

2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。

方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。

三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。

通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。

3.2 医学研究数理统计在医学研究中具有广泛的应用。

概率论与数理统计课件最新完整版

概率论与数理统计课件最新完整版

时间序列分析是一种统计学方法,用于分析和预测时间序列数据。随机过程在时间序列分析中用于描述数据随时间变化的随机性质。
随机过程在时间序列分析中用于建模和预测时间序列数据。通过使用随机过程,可以描述数据在不同时间点的变化和相关性,并基于历史数据预测未来的发展趋势。
THANK YOU
概率论与数理统计课件最新完整版
概率论基础数理统计初步概率论的应用数理统计的应用概率论与数理统计的交叉应用
01
概率论基础
概率是描述随机事件发生可能性大小的数值,通常用P表示。概率的取值范围在0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
概率的定义
概率具有可加性、可减性和有限可加性。可加性是指互斥事件的概率之和等于该事件的总概率;可减性是指对立事件的概率之和等于1;有限可加性是指任意有限个两两互斥事件的概率之和等于这些事件的总概率。
02
统计决策理论的基本思想是通过建立概率模型来描述不确定性,然后利用这些模型进行决策分析。
03
在统计决策理论中,常用的方法包括贝叶斯分析、假设检验和置信区间估计等。
04
统计决策理论在经济学、金融学、管理学等领域有广泛的应用,例如风险评估、投资组合优化和市场营销策略等。
01
试验设计涉及到如何选择合适的实验方法、如何分配实验对象、如何控制实验条件等问题。
03
概率论的应用
贝叶斯推断是一种基于概率的推理方法,它通过将先验知识与新获取的数据相结合,对未知参数进行估计和预测。
通过将先验概率分布和似然函数结合,可以得到后验概率分布,从而对未知参数进行推断。
在贝叶斯推断中,先验概率分布反映了在获取新数据之前对未知参数的认知,而似然函数则描述了数据与未知参数之间的关系。

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

概率论与数理统计课件(完整)

概率论与数理统计课件(完整)
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;

(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2

CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有

概率论与数理统计完整版课件全套ppt教学教程-最全电子讲义(最新)

概率论与数理统计完整版课件全套ppt教学教程-最全电子讲义(最新)
点”或“6 点”3 个基本事件,即 A {2 ,4 ,6} 。
四、事件的关系与运算
在一个样本空间中显然可以定义不止一个事件。概率论的重要研究课 题之一是希望从简单事件的概率推算出复杂事件的概率。为此,需要研究 事件间的关系与运算。
事件是一个集合,因此事件间的关系和运算自然按照集合之间的关系 和运算来处理。
1 事件的包含与相等
若 A B ,则称事件 B 包含事件 A ,这里指的是事件 A 发生必然导致事件 B 发生, 即属于 A 的样本点都属于 B ,如图1-2所示。显然,对任何事件A,必有 A 。
若 A B 且 B A ,则称事件 A 与 B 相等,记为 A B。
图1-2 A B
事件 A B {x | x A或x B},称为事件A与事件B的和事件,即当且仅当事件 A 或 事件 B 至少有一个发生时,和事件 A B 发生。它由属于 A 或 B 的所有公共样本点构 成,如图 1-4 所示。
图 1-4 A B
4 事件的差
事件 A B {x | x A且x B}称为事件 A 与事件 B 的差事件,即当且仅当事件 A 发 生但事件 B 不发生时,积事件A B发生。它是由属于 A 但不属于 B 的样本点构成的集 合,如图1-5所示。差事件 A B 也可写作 AB 。
定义1 在相同的条件下重复进行了 n 次试验,如果事件 A 在这 n 次试验中出现
了 nA
次,则称比值
nA n
为事件 A
发生的频率,记为fn ( 源自) ,即fn( A)
nA n
显然,频率 fn ( A) 的大小表示了在 n 次试验中事件 A 发生的频繁程度。频率 大,事件 A 发生就频繁,在一次试验中 A 发生的可能性就大,也就是事件 A 发

概率论与数理统计ppt课件

概率论与数理统计ppt课件
P( A) m( A)
m( )
(其中m( ) 是样本空间的度量, m( A) 是构成事件A 的子区域的度量) 这样借助于几何上的度量来合理 规定的概率称为几何概率. 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概率.
20
会面问题
例1 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不相 关. 求甲、乙两人能会面的概率.
(2) 计算样本点总数n及事件A包含的样本点数k.
(3) 用下列公式计算:
P( A)
SA中中的的基基本本事事件件总数数
k n
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
1. 定义: 设A, B是两个事件, 且P(A)>0, 称

《概率论与数理统计》课件

《概率论与数理统计》课件
n
XXXX大学
单选题 1分
下列对古典概型说法正确的个数是 ( )。 A ①试验中可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
B ③若基本事件总数为n ,事件 A 包括 k 个基本事件,则P(A) = k n ;
④每个基本事件出现的可能性相等。 C A. 0
B. 1 C. 2 D D. 3
柯尔莫哥洛夫
概率的公理化定义
概率的性质
频率方法:
频率= nA n
概率=频率的稳定值
Ⅰ.规范性 Ⅱ.非负性 Ⅲ.可列可加
Ⅰ.P( ) = 0 ; Ⅱ.有限可加性 Ⅲ.对
立事件概率Ⅳ.减法公式; Ⅴ加法公式
概率
三种计算方法
几何方法:一维线段的长度;
二维区域的面积; 三维立体的体积.
古典方法:
Ⅰ .随机试验中只有有限个可能的结果;
AB
A
B
A = (A− B) + AB 显然A− B与AB互斥
2
P(A) = P(A− B) + P(AB)
P(A− B) = P(A) − P(AB)
B 仁 A,则P(A− B) = P(A) − P(B). 显然P(A) > P(B)
1.3.2概率的公理化定义及其性质
P( ) = 0;
A1 , A2 , , An
A
B. P(AB) = 1− P(A) − P(B) + P(AB) C. P(AB) = P(A)P(B)
B
D. P(A− B) = 0
C
P(A− B) = P(A) − P(AB) ,排除选项 A。
D
1− P(A) − P(B) + P(AB)=P(A) −1+ P(B) + P(A B)

《概率论与数理统计》课件

《概率论与数理统计》课件

条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析

04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

例如:掷一枚硬币,出现正面及出现反面;掷一颗骰子,出现“1”点、“5”点和出现偶数点都是随机事件;电话接线员在上午9时到10时接到的电话呼唤次数(泊松分布);对某一目标发射一发炮弹,弹着点到目标的距离为0.1米、0.5米及1米到3米之间都是随机事件(正态分布)。

在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:(1) 每进行一次试验,必须发生且只能发生这一组中的一个事件;(2) 任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示,例如n ωωω ,,21(离散)。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A ,B ,C ,…表示事件,它们是Ω的子集。

如果某个ω是事件A 的组成部分,即这个ω在事件A 中出现,记为A ∈ω。

如果在一次试验中所出现的ω有A ∈ω,则称在这次试验中事件A 发生。

如果ω不是事件A 的组成部分,就记为A ∈ω。

在一次试验中,所出现的ω有A ∈ω,则称此次试验A 没有发生。

Ω 为必然事件,Ø为不可能事件。

(2)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

A、B同时发生:A B,或者AB。

A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。

基本事件是互不相容的。

Ω-A称为事件A的逆事件,或称A的对立事件,记为A。

它表示A不发生的事件。

互斥未必对立。

②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:∞=∞==11iiii AABABA=,BABA=例1.16:一口袋中装有五只乒乓球,其中三只是白色的,两只是红色的。

现从袋中取球两次,每次一只,取出后不再放回。

写出该试验的样本空间Ω。

若A表示取到的两只球是白色的事件,B表示取到的两只球是红色的事件,试用A、B表示下列事件:(1)两只球是颜色相同的事件C,(2)两只球是颜色不同的事件D,(3)两只球中至少有一只白球的事件E。

例1.17:硬币有正反两面,连续抛三次,若Ai表示第i次正面朝上,用A i 表示下列事件:(1)前两次正面朝上,第三次正面朝下的事件C ,(2)至少有一次正面朝上的事件D ,(3)前两次正面朝上的事件E 。

3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1,2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎪⎪⎭⎫ ⎝⎛11)(i i i i A P A P常称为可列(完全)可加性。

则称P(A)为事件A 的概率。

(2)古典概型(等可能概型)1° {}n ωωω 21,=Ω, 2° nP P P n 1)()()(21===ωωω 。

设任一事件A ,它是由m ωωω 21,组成的,则有P(A)={})()()(21m ωωω =)()()(21m P P P ωωω+++nm =基本事件总数所包含的基本事件数A = 例1.18:集合A 中有100个数,B 中有50个数,并且满足A 中元素与B 中元素关系a+b=10的有20对。

问任意分别从A 和B 中各抽取一个,抽到满足a+b=10的a,b 的概率。

例1.19:5双不同颜色的袜子,从中任取两只,是一对的概率为多少? 例1.20:在共有10个座位的小会议室内随机地坐上6名与会者,则指定的4个座位被坐满的概率是A .141B .131C .121D . 111 例1.21:3白球,2黑球,先后取2球,放回,2白的概率?(有序) 例1.22:3白球,2黑球,先后取2球,不放回,2白的概率?(有序) 例1.23:3白球,2黑球,任取2球,2白的概率?(无序)注意:事件的分解;放回与不放回;顺序问题。

4、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)例1.24:从0,1,…,9这十个数字中任意选出三个不同的数字,试求下列事件的概率:A =“三个数字中不含0或者不含5”。

(2)减法公式P(A-B)=P(A)-P(AB)当B ⊂A 时,P(A-B)=P(A)-P(B)当A=Ω时,P(B )=1- P(B)例1.25:若P(A)=0.5,P(B)=0.4,P(A-B)=0.3,求P(A+B)和P(A +B ). 例1.26:对于任意两个互不相容的事件A 与B , 以下等式中只有一个不正确,它是: (A) P(A-B)=P(A) (B) P(A-B)=P(A) +P(A ∪B )-1 (C) P(A -B)= P(A )-P(B) (D)P[(A∪B)∩(A -B)]=P(A) (E)p[B A -]=P(A) -P(A ∪B )(3)条件概率和乘法公式定义 设A 、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1⇒P(B /A)=1-P(B/A)乘法公式:)/()()(A B P A P AB P =更一般地,对事件A 1,A 2,…A n ,若P(A 1A 2…A n-1)>0,则有21(A A P …)n A )|()|()(213121A A A P A A P A P =……21|(A A A P n …)1-n A 。

例1.27:甲乙两班共有70名同学,其中女同学40名,设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率。

例1.28:5把钥匙,只有一把能打开,如果某次打不开就扔掉,问以下事件的概率?①第一次打开;②第二次打开;③第三次打开。

(4)全概公式设事件n B B B ,,,21 满足1°n B B B ,,,21 两两互不相容,),,2,1(0)(n i B P i =>,2° n i iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++= 。

此公式即为全概率公式。

例1.29:播种小麦时所用的种子中二等种子占2%,三等种子占1.5%,四等种子占1%,其他为一等种子。

用一等、二等、三等、四等种子播种长出的穗含50颗以上麦粒的概率分别为0.5,0.15,0.1,0.05,试求种子所结的穗含有50颗以上麦粒的概率。

例1.30:甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只。

从这三只盒子的任意一只中任取出一只球,它是红球的概率是:A .0.5625B .0.5C .0.45D .0.375E . 0.225例1.31:100个球,40个白球,60个红球,不放回先后取2次,第2次取出白球的概率?第20次取出白球的概率?(5)贝叶斯公式设事件1B ,2B ,…,n B 及A 满足1° 1B ,2B ,…,n B 两两互不相容,)(Bi P >0,=i 1,2,…,n ,2°n i iB A 1=⊂,0)(>A P ,则 ∑==n j jj i i i B A P B P B A P B P A B P 1)/()()/()()/(,i=1,2,…n 。

相关文档
最新文档