第3章铁碳合金相图

合集下载

铁碳合金相图

铁碳合金相图

二 相图中点的含义
1A点 纯铁的熔点;温度 1538℃,Wc=0
2G点 纯铁的同素异晶转变点; 冷却到912℃时,发生 γF→α-Fe
3Q点 600℃时,碳在αFe中的 溶度,Wc=0 0057%
二 相图中点的含义
4D点 渗碳体熔点,温度 1227℃,Wc=6 69%
5C点 共晶点;温度1148℃,Wc=4 3% 成分为C的液相,冷却到此 温度时,发生共晶反应 Lc→A+Fe3C
一 铁碳合金的分类:
按含碳量的不同;铁 碳合金的室温组织可 分为工业纯钛 钢和 白口铸铁; 其中,把 含碳量小雨0 0218% 的铁碳合金称为纯铁; 把含碳量大于 0.0218%而小于2.11% 的铁碳合金称为钢; 把含碳量大于2.11% 的铁碳合金称为铸铁。
纯铁 钢和铸铁的含碳量:
⑴ 工业纯铁组织为单相铁素体 (<0 0218% C)
一次渗碳体+ 低温莱氏体
性能特 强度 硬 C↑,强度 硬度逐 强度较高,硬度 硬度较高,塑性差,
点平衡 度低、 渐提高,有较好的 适中,具有一定 随着网状二次渗碳
状态 塑性好 塑性和韧性
的塑性和韧性 体增加,强度降低
硬度高;脆性大,几乎没有塑性
1 亚共析钢的组织的变化顺序:
亚共析钢的室温组 织由珠光体和铁素体 组成合金的组织按下 列顺序变化:
课堂练习:
1 共析钢冷却到S点时;会发生共析转变,从奥氏体中
同时析出
铁和素(体
)渗的碳混体 合物,称为(
) ; 珠光体
2、过共晶白口铸铁的室温组织是(一次渗碳体 )加( )。低温莱氏体
3、共晶白口铸铁的含碳量为( 4 3 )%
一 填空题
1、常见的金属晶体类型有 晶格、( )晶格和( )晶格三种; 2、金属的整个结晶过程包括( )、( )两个基本过程组成 。 3、根据溶质原子在溶剂晶格中所处的位置不同;固溶体分为( )和 ( )两种。 4、铁碳合金的基本组织中属于固溶体的有( )和( ),属 于金属化合物的有( ),属于混合物的有( )和莱氏体。 5、原子呈无序堆积状态的物体叫( );原子呈有序、有规则排 列的物体叫( )。一般固态金属都属于( )。 6、常温下金属的塑性变形方式主要有( )和( )两种。 7、变形一般分为( )变形和( )变形两种,不能随载荷的去除 而消失的变形称为( )变形。 8、细化晶粒的根本途径是控制结晶时的( )及( )。

第3章B 铁碳合金相图 ppt

第3章B 铁碳合金相图 ppt

第3章 铁碳合金相图 高等教育出版社
机械工程材料
铁碳合金的基本组织性能特点 铁素体:碳与α-Fe形成的间隙固溶体。 性能-强度和硬度低,塑性和韧性好。 奥氏体:碳与γ-Fe形成的间隙固溶体;高温组织, 在大于727℃时存在。 性能-塑性好,强度和硬度高于F。 渗碳体:铁与碳形成的金属化合物。 性能-硬度高,脆性大。 珠光体:F与Fe3C组成的机械混合物 。 性能-力学性能介于两者之间。 莱氏体:A与Fe3C组成的机械混合物。 性能-硬度高,塑性差。
PSK PQ
第3章 铁碳合金相图
奥氏体转变为铁素体的终了线 碳在奥氏体中的溶解度线 含C量在0.0218 % --6.69%的铁碳合金至此反生 共析反应,产生珠光体P ,又称A1线。 碳在铁素体中的溶解度线
高等教育出版社
机械工程材料
3.2.2

铁碳合金的分类
按Fe-Fe3C相图中碳的质量分数及室温组织的不 同,铁碳合金分为以下三类: 1.工业纯铁wc≤0. 021 8%,室温组织为铁素体。 2.钢0.0218%<wc≤2.11%。按室温组织不同,又 可分为以下三种: ①共析钢,wc=0.77%,室温组织为珠光体。 ②亚共析钢,0.021 8% < wc<0.77%,室温组织为 珠光体+铁素体。 ③过共析钢,0.77% <wc≤2.11%,室温组织为珠 光体+二次渗碳体。
特性点
温度/℃
wc/(%)


A C D E F G K P S Q
第3章 铁碳合金相图
1538 1148 1227 1148 1148 912 727 727 727 600
0
4.3 6.69 2.11 6.69 0 6.69 0.0218 0.77 0.0057

第3章 铁碳合金相图

第3章  铁碳合金相图
ωc>0.9% →σ↓
硬度:ωc↑→Fe3C ↑→HB↑
塑性、韧性: ωc↑→Fe3C ↑ →塑性↓、韧性↓
3.3 对工艺性能的影响
主要表现在对切削加工性、可锻性、 22/24 铸造性和焊接性能的影响。
2020/5/12
2020/5/12
切削加工性:指金属经切削加工形成工件的难易程度。低碳钢切削加 工性差。高碳钢中Fe3C多,刀具磨损严重,切削加工性也差。中碳 钢中F和Fe3C的比例适当,切削加工性好。
(Acm) GS A F(A3)
PQ F Fe3CⅢ
ACM A3
A1
600
15/24
2020/5/12
共晶转变: ECF 共晶线
1148°C
C 共晶点
ωC =4.3%
LC Ld(A+Fe3C) 室温下: Ld Ld´ 低温莱氏体Ld´ (P+ Fe3CⅡ+Fe3C)
共析转变: PSK 共析线 S 共析点
莱氏体:奥氏体和渗碳体组成的机械混合物,常用Ld表示,它是碳的质 量分数为4.3%的铁碳合金液体在1148℃发生共晶转变的产物。在 727℃以下,莱氏体中的奥氏体将转变为珠光体,由珠光体与渗碳体组 成的机械混合物,称为低温莱氏体,用符号Ld′表示。 8/24 莱氏体的硬度很高,塑性、韧性极差。
2020/5/12
晶界上(如Fe3CⅢ),变为分布在 F的基体内(如P),进而分布在
原A的晶界上(如Fe3CⅡ),最后 形成Ld′时,Fe3C已作为基体出 现。碳的质量分数不同,铁碳合
金的组织和性能也不同。
21/24
3.2 对力学性能的影响
强度:ωc<0.77% ωc↑→P↑ F↓
σ↑
0.77 % <ωc<0.9% 强度增加缓慢

第三章铁碳合金相图详解版

第三章铁碳合金相图详解版

第 二 节 铁碳合金状态图
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,它们都可以作为纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆, 已无实用价值。
实际所讨论的铁碳合金相图是Fe- Fe3C相图。
Fe
Fe3C Fe2C
FeC
C
C%(at%) →
一、Fe - Fe3C 相图的建立
4. 铁碳合金分类
(1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
(2) 碳钢 共析钢 0.77% C 过共析钢 >0.77% C 亚共晶白口铸铁<4.3% C
(3) 白口铸铁 共晶白口铸铁 4.3% C 过共晶白口铸铁 >4.3% C
三、典型铁碳合金的结晶过程
1 1)共析钢的结晶过程
1 3)过共析钢的结晶过程
T12钢组织
室温组织:P+Fe3CⅡ
1
补充:工业纯铁的结晶过程
4)共晶白口铁结晶过程
室温组织为: Ld‘ ( P+ Fe3C共晶+ Fe3CⅡ )
1
5)亚共晶白口铁的结晶过程 室温组织为P+Fe3CⅡ+Ld’。
1
6)过共晶白口铁的结
晶过程
室温组织为:Fe3CⅠ +Ld‘ Ld‘( P+ Fe3C共晶+ Fe3CⅡ )
1
第三节 含碳量对碳钢组织与性能的影响
一 、含碳量对碳钢室温平衡组织的影响 含碳量与缓冷后相及组织组成物之间的定量关系为:
钢铁 分类



共析钢

铁 亚共析钢 过共析钢
白口 铸 铁
共晶白口铸铁

第三章 材料的凝固与铁碳合金相图

第三章  材料的凝固与铁碳合金相图

• 一切物质从液态到固态的转 变过程称为凝固,如凝固后 形成晶体结构,则称为结晶。 金属在固态下通常都是晶体, 所以金属自液态冷却转变为 固态的过程,称为金属的结 晶。它的实质是原子从不规 则排列状态(液态)过渡到规 则排列状态(晶体状态)的过 程。
玻璃制品 水晶
• 冷却曲线与过冷
• 冷却曲线:金属结晶时温度 与时间的关系曲线称冷却 曲线。曲线上水平阶段所 对应的温度称实际结晶温 度T1。
度增加,N/G值增加,晶 粒变细。
• ⑵ 变质处理: 又称孕育 处理。即有意向液态金属 内加入非均匀形核物质从 而细化晶粒的方法。所加 入的非均匀形核物质叫变 质剂(或称孕育剂)。
• 1 影响晶核形成和长大的因素 • (1)过冷度的影响(2)未熔杂质的影响 • 2 铸态金属晶粒细化的方法 • (1)增大过冷度 • (2)变质处理 • (3)振动、搅拌
非自发形核更为普遍。
均匀形核
• 晶核的长大方式
• 晶核的长大方式有两种,即均匀长大和树枝状 长大。
树枝状长大的实际观察
均匀长大
• 实际金属结晶主要以树枝状长大. • 这是由于存在负温度梯度,且晶核棱角处的散热
条件好,生长快,先形成一次轴,一次轴又会产 生二次轴…,树枝间最后被填充。
树枝状结晶

• 曲线上水平阶段是由于结 晶时放出结晶潜热引起的.
纯金属的冷却曲线
• 2、过冷与过冷度
• 纯金属都有一个理论结晶温度T0(熔点或平衡结晶 温度)。在该温度下, 液体和晶体处于动平衡状态。
• 结晶只有在T0以下的实际


结晶温度下才能进行。
• 液态金属在理论结晶温 度以下开始结晶的现象 称过冷。
• 铸锭(件)的宏观组织通常由三个区组成: • ⑴ 表层细晶区:浇注时, 由于冷模壁产生很大的过 冷度及非均匀形核作用, 使表面形成一层很细的等 轴晶粒区。

铁碳合金相图

铁碳合金相图
L+、L+Fe3C、 +、 +Fe3C、+ 、+Fe3C
⑶ 三个三相区:即HJB
(L++)、ECF (L++ Fe3C)、 PSK (++ Fe3C)三条水平线
三、典型合金的平衡结晶过程
铁碳相图上的合金,按成分可分为三类:
⑴ 工业纯铁(<0.0218% C), 组织为单相铁素体。
重量百分比为:
w( ) SK 6.69 0.77 88.8%,
PK 6.69 0.0218
w(Fe3C) 100% 88.8% 11.2%
1 2
珠光体中的渗碳体称共析渗碳体。
S点以下,共析 中析出Fe3CⅢ,
与共析Fe3C结合不易分辨。室温 组织为P。
3 QQ 4
2.11
4.3
6.69
组织组
100
铁素体
成物相
对量% 0
三次渗碳体
相组成 100
物相对
量% 0
珠光体

二次渗碳体
莱氏体
一次渗碳体
Fe3C
三、典型合金的平衡结晶过程
⒉ 含碳量对力学性能的影响 亚共析钢随含碳量增加,P 量
增加,钢的强度、硬度升高, 塑性、韧性下降。
0.77%C时,组织为100% P, 钢的性能即P的性能。
铁碳合金相图是 研究碳钢和铸铁的成 分、温度、组织及性 能之间关系的理论基 础,是制定热加工、 热处理、冶炼和铸造 等工艺依据。
二、铁碳合金相图
⒈ 特征点

⇄ ⇄
⇄ ⇄
二、铁碳合金相图
⒉ 特征线
⑴ 液相线—ABCD, 固相线—AHJECFD

3-3 铁碳合金相图

3-3 铁碳合金相图

铁 碳 合 金 状 态 图
5) ECF水平线(1148C)为共晶线: 与该线成分(2.11%~6.69%C)对应的合金在 该线温度下将发生共晶转变:L4.3 A2.11 + Fe3C。 转变产物为奥氏体和渗碳体的机械混合物,称为 莱氏体,用符号“Ld”表示。莱氏体的组织特点 为蜂窝状,以Fe3C为基,性能硬而脆。
3、过共析钢的结晶过程 过共析钢在3点以前与共析钢类似; 当缓冷到3点温度时,奥氏体的溶碳量随着温度的 下降而逐渐降低,并沿着奥氏体晶界析出二次渗 碳体;随着温度继续下降,二次渗碳体不断析出 ,而剩余奥氏体的碳含量沿ES线逐渐减少; 温度降到4点(727℃)时;剩余奥氏体恒温下发生 共析转变而形成珠光体; 共析转变结束后,合金组织为珠光体加二次渗碳 体,直至室温。 所有过共析钢的室温平衡组织都是珠光体+网状二 次滲碳体。 但随着含碳量的增加,组织中珠光体的数量减少 ,网状二次 滲碳体的数量增加,并变得更粗大。
L(4.3%C) Ld(A+Fe3C)
铁 碳 合 金 状 态 图
2、主要特性线 2) ) ACD AECF 线 31 ) GS 线线 液相线,由各成分合金开始结晶温度点所组成 固相线,由各成分合金结晶结束温度点所组成 奥氏体冷却时开始向铁素体转变的温度线,通 的线,铁碳合金在此线以上处于液相。 的线。在此线以下,合金完成结晶,全部变为固体 常称为 A3线。 AC线下结晶出奥氏体;CD线下结晶出渗碳体。 状态。
w
2、亚共析钢(以 c=0.45%为例) 过W c=0.45%的亚共析钢作合金线,与相图 分别交于1、2、3、4点温度。 亚共析钢在3点以前的结晶过程与共析钢类似; 当缓冷到3点时,从均匀的奥氏体中开始析出铁素 体; 温度继续下降,奥氏体量逐渐减少,铁素体 量逐渐增加,就会将多余的碳原子转移到尚未转 变的奥氏体中,引起未转变的奥氏体的含碳量沿 GS线逐渐增加。 当温度降至4点(727℃)时,剩余奥氏体含碳 量增加到了Wc=0.77%,具备了共析转变的条件, 转变为珠光体。原铁素体不变保留了在基体中。 4点以下不再发生组织变化。故亚共析钢的室 温组织为铁素体+珠光体。

第三章 铁碳合金相图

第三章 铁碳合金相图

A金属 bcc 高 100% 90% 80% …….. 20% 10% 0%
B金属 bcc 低 0% 10% 20% ……. 80% 90% 100%
不同成分以及经过不同加工处理的合金具有不同的性能。 这种现象就是由其不同的相结构和组织引起的。
合金中相的晶体结构称为相结构 在显微镜下观察到的具有某种形态或形 貌特征的组成部分总称为组织。
Fe3( C、N)或 Fe3( C、B)
Fe3C→3Fe+G(石墨)
机电学院 NWPU
4、珠光体(P)
定义:F与 Fe3C 所形成的机械混合物(平均含碳量:
0.77%)。其显微组织珠光体强度较高,塑性、韧性和硬 度介于渗碳体和铁素体之间。
性能:Rm≈750MPa HBS=180 A≈20%~25%
室温组织:P+Fe3C(网状)
过共析钢的结晶过程
过共析钢组织金相图
过共析钢应用举例
T12 钢 碳含量 1.2%
返回
5.共晶白口铁 ( Wc = 4.3% )
室温组织:
(P + Fe3CII + (低温)莱氏体 Le′ ),
莱氏体 Le′的性能:硬而脆
共晶白口铁组织金相图
(6)亚共晶白口铁 (2.11%<Wc % <4.3 % )结晶过程
合金中的各种相是组成合金的基本单元; 合金组织是合金中各种相的综合体。
不同含碳量的显微组织
二.合金的相结构
根据构成合金的各组元之间相互作用的不同,固态
合金的相可分为固溶体和金属化合物两大类。
1)固溶体
固溶体是指合金在固态下,组元间仍能互相溶解而形
成的均匀相。
固溶体
置换固溶体

铁碳合金相图

铁碳合金相图
LC 1148CC (AE F3C)
共晶反应的产物是奥氏体与渗碳体的共晶混和物,称莱氏 体,以符号Ld表示。含碳量在2.11%~6.69%之间的铁碳合金, 在平衡结晶过程中均发生共晶反应。
第3章 铁碳合金相图
PSK水平线为共析反应线,S点为共析点。合金在平衡结晶 过程中冷却到727℃时,S点成分的奥氏体发生共析反应,生成P 点成分的铁素体和Fe3C。共析反应在恒温下进行,反应过程中 奥氏体、铁素体、Fe3C三相共存。共析转变的表达式如下:
第3章 铁碳合金相图
(2) 相图中的特性线。相图中各条线都表示铁碳合金发生组 织转变的界限,这些线就是组织转变线,又称作特性线。下面 简单介绍一下主要特性线的含义。
ACD线为液相线。此线以上的区域是液相区,液态合金冷 却到此线温度时,便开始结晶。
AECF线为固相线。表示合金冷却到此线温度时将全部结晶 成固态。
图3-1所示为纯铁的冷却曲线。液态纯铁在1538℃进行结 晶,得到具有体心立方晶格的δ-Fe。继续冷却到1394℃时发生 同素异构转变,成为面心立方晶格的γ-Fe。再冷却到912℃时 又发生一次同素异构转变,成为体心立方晶格的α-Fe。正因为 纯铁具有同素异构转变,才使钢和铸铁通过热处理来改变其组 织和性能成为可能。
第3章 铁碳合金相图
(6) 莱氏体(合金的基本组织之一)。它是奥氏体和渗碳体的 机械混合物,由于其中的奥氏体属高温组织,这时称高温莱氏 体,用符号Ld表示。高温莱氏体冷却到727℃以下时,将转变 为珠光体和渗碳体的机械混合物(P+Fe3C),称低温莱氏体,用 符号Ld′表示。
莱氏体的含碳量为4.3%。由于莱氏体中含有的渗碳体较多, 故其力学性能与渗碳体相近。
第3章 铁碳合金相图 图3-1 纯铁的冷却曲线

第三章 铁碳合金和铁碳相图

第三章  铁碳合金和铁碳相图

共析钢的平衡结晶过程
注意事项
共析反应生成的珠光体在冷却过程中,其中的铁素体 产生三次析出,生成Fe3CⅢ,但与共析的Fe3C连在一 起,难以分辨。
共析钢的室温平衡组织:P
P:铁素体(F)和渗碳体的两相 混合物,两相的相对质量是多少?
杠杆定律
计算二元相图中 平衡状态下 两平衡相的相对质量分数。 杠杆的支点是两相合金的成分点,端点分别是两个相的成 分点。
亚共析钢的平衡结晶过程
L相+ δ相→ γ相,并且L相有剩余
γ单相的冷却
γ相→ α相,但γ相有剩余 共析反应:剩余γ相→P(α+Fe3C),存在先析α相
亚共析钢的平衡结晶过程
注意事项
先析铁素体(α相)在随后的冷却过程中会析出Fe3CⅢ,但量很少可忽略
亚共析钢室温平衡组织:先析铁素体+珠光体P
利用杠杆定律计算先析铁素体与珠光体的质量分数,计算铁素体(先析铁 素体+P光体中的铁素体)与渗碳体的质量分数
化不大且值很低, 趋于Fe3C的强度(约20 MPa~30 MPa)。


含碳量对铁碳合金力学性能的影响
• 铁碳合金中Fe3C是极脆的相, 没有塑性。合金的塑性变 形全部由F提供。所以随碳含量的增大, F量不断减少时, 合金的塑性连续下降。到合金成为白口铸铁时, 塑性就
降到近于零值了。
返回
3.5 钢中的杂质元素
A(0.0008)
C 0.77
Fe3C
B(6.69)
相的质量分数
6.69 0.77 M 100 % 88.5% 6.69 0.0008
M Fe 3C 0.77 0.0008 100 % 11.5% 6.69 0.0008

铁碳相图(有各特征点、线顺序演示画法)

铁碳相图(有各特征点、线顺序演示画法)

亚共析钢室温组织:F+P, 随C%增加,P含量增加。
含0.20%C钢的组织
含0.45%C钢的组织
含0.60%C钢的组织
室温下相的相对重量百分比:
Q Fe3C
0.45 6.69
100%
6.7%
QF 93.3%
室温下组织组成物的相 对重量百分比为:
QP
0.45 0.77
100%
58.4%
Q
L+A
E
C
A + Fe3C
F + Fe3C
L+Fe3C D 1148 F
727 K
Q
0 0.0218 0.77
Fe
1
2.11
4.3
2
3 ωc% 4
5
6.69
6 Fe3C
一.组元及基本相 * 铁 ( ferrite ) * 渗碳体 ( Cementite )
1、纯铁
L
1538℃
δ-Fe
1394℃
γ-Fe
F和Fe3C形态在发生变化 Fe3CⅢ薄片状→共析Fe3C层片状 →Fe3CⅡ网状 →共晶Fe3C连续基体 →Fe3CⅠ粗大片状 含碳量变化→相的相对量变化、形态和分布变化 →组织变化→性能变化
相构成 决定组织 决定性能 决定用途
含碳量与缓冷后相及组织组成物之间的定量关系为
工 业

纯 铁
亚共析钢
过共析钢
727 ℃时0.0218% 性能接近于纯铁,强度、硬度低,塑性好
4、奥氏体(A或γ表示)
碳溶于γ-Fe中形成的间隙固溶体。 金相显微镜下位规则多边形晶粒。 奥氏体体中碳的溶解度较大,727 ℃时0.77%,1148 ℃时

第3章铁碳合金(07)

第3章铁碳合金(07)
图3-2 珠光体的显微组织
第3章 铁碳合金相图 (6) 莱氏体(合金的基本组织之一)。
莱氏体是奥氏体和渗碳体的机械混合物,由于其中的奥氏体 属高温组织,这时称高温莱氏体,用符号Ld表示。高温莱氏体冷 却 到 727℃ 以 下 时 , 将 转 变 为 珠 光 体 和 渗 碳 体 的 机 械 混 合 物 (P+Fe3C),称低温莱氏体,用符号Ld′表示。 莱氏体的含碳量为4.3%。 由于莱氏体中含有的渗碳体较多, 故其力学性能与渗碳体相近。
呈条状、网状、片状、粒状等不同形态,其
数量、形态和分布对铁碳合金的力学性能有 很大影响。
第3章 铁碳合金相图
(5) 珠光体(合金的一种基本组织)。
珠光体是铁素体和渗碳体组成的机械混合物,用符号P表示。 珠光体的含碳量为0.77%。 珠光体在显微镜下呈片层状。 图中黑色层片为渗碳体,白色 基体为铁素体。 力学性能:抗拉强度较高,硬度 较高且仍有一定的塑性和韧性。 具有较好的综合力学性能。
PQ线- 碳在铁素体中的溶解度变化曲线。
第3章 铁碳合金相图 3.2.2 典型合金结晶过程分析 1.铁碳合金的分类 根据Fe-Fe3C相图,铁碳合金可分为三类:
纯铁(ω c≤0.0218%) 钢 ( 0.0218%<ω c≤2.11%) ( ω c=0.77%) 亚共析钢( ω c<0.77%) 共析钢 过共析钢( ω c>0.77%) 白口铸铁( 2.11%<ω c<6.69%) 亚共晶白口铸铁( ω c<4.3%) 共晶白口铸铁 ( ω c=4.3%)
⑵第二相强化
合金中固溶体与金属化合物是两种截然不同的相,当合金中有第二相金 属化合物存在时,通常能提高合金的强度、硬度和耐磨性,但也会降低塑 性和韧性。 金属化合物是各类合金钢、硬质合金及许多非铁合金的重要组成部分。 多数工业合金均为固溶体和少量金属化合物构成的混合物,通过调整 固溶体的溶解度和其中的化合物的形态、数量、大小及分布,可使合金的 力学性能在一个相当大的的范围内变动,从而满足不同的性能要求。

第三章-铁碳合金相图【详解版】

第三章-铁碳合金相图【详解版】

⑴ 五个单相区:
L、、、、Fe3C ⑵ 七个两相区: L+、
L+、L+Fe3C、 +、 +Fe3C、+ 、 +Fe3C
• ⑶ 三个三相区:即HJB (L++)、ECF(L++ Fe3C)、 PSK(++ Fe3C)三条水平线
2021/1/18
4. 铁碳合金分类
• (1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
• 亚共析钢随含碳量增加,P 量增加,钢的强度、硬度 升高,塑性、韧性下降。
0.77%C时,组织为100% P, 钢的性能即P的性能。
>0.9%C,Fe3CⅡ为晶界 连续网状,强度下降, 但 硬度仍上升。
>2.11%C,组织中有以
Fe3C为基的Ld’,合金太脆.
1
2021/1/18
• 三、 含碳量对工艺性能的影响
2021/1/18
2)亚共析钢的 结晶过程
L→L+A →A→A+F先共析 AS(0.77% C) →P 室温组织为:P+F
2021/1/18
20钢组织
40钢组织
2021/1/18
• 亚共析钢室温下的组织 为F+P。
• 在0.0218~0.77%C 范围 内珠光体的量随含碳量 增加而增加。
60钢组织
2021/1/18
bcc
fcc
bcc
二、铁碳合金中的基本相
铁碳合金中的组元:Fe、C
L相:液态下无限互溶、成分均匀
Fe和C
固溶体相:C溶于Fe中形成 F、A等
金属化合物相:Fe与C化合形成Fe3C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

—溶质原子取代了溶剂原子。
固溶体的性能:比原来的纯 金属强度和硬度要高,但不是很 高; 塑性和韧性比纯金属要低, 但仍然很好。

3.1 --铁碳合金的基本组织
铁碳合金在液态时铁和碳可以无限互溶;在固态时根据碳 的质量分数不同: 碳溶解在铁中形成固溶体; 碳与铁形成金属化合物; 固溶体与金属化合物组成的机械混合物。
合金的相结构
固溶体 溶剂
+
合金中两组元在液态和固态下都互相 溶解,共同形成一种成分和性能均匀 的、且结构与组元之一相同的固相。
溶质
一种固相
能够保持其原有晶格类型并 与固溶体晶格相同的组元称 为溶剂。 固溶体 间隙固溶体(有限) 置换固溶体
失去原有晶格类型的组元称 为溶质,一般在合金中含量 较少。
固溶强化:由于溶质原子 的溶入,固溶体发生晶格 畸变,增加位错运动阻力, 使金属的变形抗力增大, 强度、硬度升高。
3.2铁碳合金相图分析
特性线:
ACD 液相线 AECF 固相线 ECF 共晶线 L Ld A3 ACM
PSK 共析线(A1) A P ES A1 A Fe3CⅡ (Acm) F(A3)
600
GS A PQ F
Fe3CⅢ
3.2铁碳合金相图分析
共晶转变: ECF 共晶线
1148°C
ACM A3
共晶点 WC =4.3% LC Ld(A+Fe3C) 室温下: Ld Ld´ 低温莱氏体Ld´ (P+ Fe3CⅡ+Fe3C) C
600
A+ Fe3CⅡ+Ld Fe3CⅠ + Ld P+F P+Fe3CⅡ + Ld´ Fe3CⅠ + Ld´
3.2铁碳合金相图分析--铁碳合金的分类
1.工业纯铁 wC%<=0.0218%
2.钢
0.0218%<wC%<= 2.11%
亚共析钢
0.0218%<C%<0.77%
共析钢 0.77% 过共析钢 3.白口铸铁
置换固溶体
间隙固溶体
3.1纯铁及铁碳合金的基本组织--合金的相结构
铜和金形 成的置换 固溶体
碳在α- Fe 中的间隙固 溶体(铁素 体 )
• 固溶体与纯金属相比强度、硬度升高,它是强化金属材 料的重要途径之一。 • 固溶体的强度和塑性、韧性之间有较好的配合,所以, 其综合性能较好,常作为结构合金的基体相。
1394℃
γ-Fe
912℃
-Fe
γ-Fe (面心立 方晶格) -Fe (体心立 方晶格) 纯铁在770℃时发生磁性转变。在770℃以下 的-Fe呈铁磁性,在770℃以上-Fe的磁性 消失。770℃称为居里点. 工业纯铁塑性好,强度低,所以很少用它 制造机械零件。
3.1纯铁及铁碳合金的基本组织--合金基本概念
合金的基本概念 合金:由两种或两种以上的金属元素或(Fe、C、Fe3C)。 组元:组成合金的独立的,最基本的单元称组元。组元可 以是金属(Fe) 、非金属(C)或稳定化合物(Fe3C渗碳体)。 相:在合金中成分、结构相同并与其他部分以界面分开 的均匀组成部分,(液相、固相、气相)。 相结构:合金中相的晶体结构。 组织:组织是指金相显微镜下观察到的材料的微观形貌 特征。
A1 共析转变: PSK 共析线 S 共析点 WC =0.77% AS P(FP+Fe3C) 室温下:P
600
3.2铁碳合金相图分析
相区:
单相区: ACD以上 L相区 AESGA A相区 GPQG F相区 DFK Fe3C 两相区: L+A L+ Fe3CⅠ A+F A+ Fe3CⅡ F+ Fe3CⅢ
400
40-50
170270
珠光体P 莱氏体Ld
Fe3C
0800H Biblioteka WPLd770
20-35
0
180

3.2铁碳合金相图分析
二元合金相图:在平衡条件下给定合金系中合金的成分、 温度与其相和组织状态之间关系的一种图解。
Cu-Ni
液相
液、固 两相 固相
3.2铁碳合金相图分析--铁碳合金相图
组元: Fe- Fe3C
3.2铁碳合金相图分析
单相区
液相 L
铁素体 F
奥氏体 A
渗碳体 Fe3C 珠光体 P 莱氏体 Ld
3.2铁碳合金相图分析
特性点: :
A C D E G
P
600
S Q
纯铁熔点 共晶点 Fe3C熔点 c在于 -Fe 中最大溶解度 -Fe和 -Fe 同素异构转变 727度碳在 -Fe中最大 溶解度 共析点 室温下碳在 -Fe中最大 溶解度
莱氏体:是奥氏体和渗碳体组成的机械混合物 ,常用Ld表示。它是碳的质 量分数为4.3%的铁碳合金液体在1148℃发生共晶转变的产物。在727℃ 以下,莱氏体中的奥氏体将转变为珠光体,由珠光体与渗碳体组成的机 械混合物,称为低温莱氏体,用符号L’d表示。 。 莱氏体硬度很高,塑性、韧性极差。
Table 10-1 principal stable phases of steel 钢中最基本的稳定相
3.1纯铁及铁碳合金的基本组织--合金的相结构
合金的相结构 它是合金组元相互作用形成的晶格类型和 金属化合物。 特性完全不同于任一组元的新相,可用分 子式表示(Fe3C)。
金属化合物 正常价化合物 电子化合物 间隙化合物
• 一般具有复杂的晶体结构, 熔点高,硬而脆,工业中无 法应用。 • 合金中出现金属化合物时, 常能提高合金的强度、硬度 和耐磨性,但会降低塑性和 韧性
对力学性能的影响 强度:wc<0.77%
wc↑→P↑
σ↑
F↓ 0.77 % <wc<0.9% 强度增加缓慢 wc>0.9% →σ↓ 硬度:wc↑→Fe3C ↑→HB↑
塑性、韧性: wc↑→Fe3C ↑ →塑性↓、韧性↓ 对工艺性能的影响 切削加工性、可锻性、铸造性 能、可焊性
3.3--铁碳合金相图的应用
3.1
--铁碳合金的基本组织
代号
F
相结构
固溶体(c 溶于-Fe)
组织
单相固溶 体
C含量 wc% 0.0218 (727°C)
(Mpa) 180280
(%) 30-50
硬度 (HBS) 铁素体F 50-80 奥氏体 A 渗碳体 Fe3C
A
0.77 固溶体(c 单相固溶 (727°C) 溶于 -Fe) 体 2.11 (1148°C) 金属化合 物 (F+Fe3C) (A+Fe3C) 单相金属 化合物 机械混合 物 机械混合 物 6.69
Fe3C的晶体结构
2) two main types of solid solution

interstitial solid solution (间隙固溶体)
——溶质原子位于溶剂原子之间的
间隙之中。
2) two main types of solid solution

substitutional solid solution (置换固溶体)
3.1纯铁及铁碳合金的基本组织--合金基本概念
合金的基本概念
相是组成合金的基本元素。组织是合金中相的综合体。 合金的力学性能不仅取决于它的化学成分,更取决于它
的显微组织。
金属通过热处理可以在不改变化学成分的前提下获得不
同的组织,从而获得不同的力学性能。
3.1纯铁及铁碳合金的基本组织--合金的相结构
0.77%<C%<= 2.11%
2.11%<wC%<6.69%
亚共晶白口铸铁
2.11%<C%<4.3%
共晶白口铸铁 4.3% 过共晶白口铸铁
4.3 %<C%<6.69%
0.0218
0.77
2.11
4.3
6.69

白口铸铁
图10-9 退火后碳钢的显微结构 白色区域为铁素体,黑色区域为珠光体。
3.3碳的质量分数对铁碳合金组织、性能的影响
铁碳合金相图是研究铁碳合金的工具,是研究碳钢和 铸铁成分、温度、组织和性能之间关系的理论基础,可以 作为制定金属材料熔炼、铸造、锻造和热处理等工艺规程 的重要依据。 1、在钢铁选材方面的应用 2、在铸造工艺方面的应用 3、在压力加工方面的应用 4、在焊接方面的应用 5、在热处理工艺方面的应用

Ferrite
铁素体:碳溶解于铁的体心立方晶格中的固溶体; 性能: 软,塑性好,具有铁磁性;

Austenite 奥氏体:碳溶解于铁的面心立方晶格中的固溶体;
性能: 软,中等强度,没有铁磁性;

Cementite 渗碳体;铁和碳的化合物(中间相),Fe3C
性能:硬而脆;
,
但是,在大多数情况下,渗碳体与铁素体以片状交替的混合形 式出现,这种显微结构称之为珠光体 Pearite。
铁素体:碳溶于-Fe中形成的间隙固溶体, 常用符号F表示。在727℃时,溶碳能力为最大c=0.0218 %,显微镜下呈明亮多边形晶粒 。 铁素体的力学性能:塑性韧性较好,强度、硬度较低。 奥氏体:碳溶于γ -Fe中形成的间隙固溶体,常用 符号A表示。在1148℃时溶碳能力为最大c= 2.11%,在727℃时为0.77%。显微组织与F相 似,但晶界较F平直。 奥氏体是一个硬度较低塑性较高的相,适用于 锻造。
3.1
--铁碳合金的基本组织
渗碳体:是铁与碳形成的金属化合物 ,常用Fe3C表示。渗碳体中的 c=6.69%,溶点大致为1227℃。 渗碳体:的硬度很高,塑性和韧性几乎等于零,是钢中主要强化相 。
珠光体:是铁素体和渗碳体组成的机械混合物 ,常用P表示。珠光体是 碳的质量分数为0.77%的奥氏体在727℃时,发生共析转变的产物。显 微组织在放大陪数较大时可看到铁素体和渗碳体交错排列 珠光体力学性能:介于铁素体和渗碳体之间。
相关文档
最新文档