第三章 材料的凝固与铁碳合金相图

合集下载

《机械工程材料》复习习题及答案

《机械工程材料》复习习题及答案

第一章材料的性能1.1 名词解释δb δb δsδ0.2 δ-1 a k HB HRC1.2 填空题1.材料常用的塑性指标有(延伸率)和(断面收缩率)两种,其中用(延伸率)表示塑性更接近材料的真实变形。

2.检验淬火钢成品件的硬度一般用( 洛氏)硬度,检测退火件、正火件和调质件的硬度常用(布氏)硬度,检验氮化件和渗金属件的硬度采用(维氏)硬度试验。

3.材料的工艺性能是指( 铸造)性能、(锻造)性能、(焊接)性能、(切削加工)性能和(热处理)性能。

4.工程上常用金属材料的物理性能有( 熔点)、(密度)、(导电性)、(磁性)和(热膨胀性)等。

5.表征材料抵抗冲击载荷能力的性能指标是(冲击韧性ak ),其单位是( J/cm2 )。

1.3 简答题2.设计刚性好的零件,应根据何种指标选择材料?采用何种材料为宜?3.常用的硬度方法有哪几种?其应用范围如何?这些方法测出的硬度值能否进行比较?1.4 判断1.金属的熔点及凝固点是同一温度。

( 错)2.导热性差的金属,加热和冷却时会产生内外温度差。

导致内外不同的膨胀或收缩,使金属变形或开裂。

( 对)3.材料的强度高,其硬度就高,所以刚度大。

( 错)4.所有的金属都具有磁性,能被磁铁所吸引。

( 错)5.钢的铸造性比铸铁好,故常用来铸造形状复杂的工件。

( 错)1.5 选择填空1.在有关零件图图纸上,出现了几种硬度技术条件的标注方法,正确的标注是( D )。

(a)HBS650—700 (b)HBS=250—300Kgf/mm2(c)HRCl5—20 (d) HRC 45—702.在设计拖拉机缸盖螺钉时应选用的强度指标是( a )。

(a) δb (b) δs(c) δ0.2(d) δp3.在作疲劳试验时,试样承受的载荷为( c )。

(a)静载荷(b)冲击载荷(c)交变载荷4.洛氏硬度C标尺使用的压头是( b )。

(a)淬硬钢球(b)金刚石圆锥体(c)硬质合金球5.表示金属密度、导热系数、导磁率的符号依次为( d )、( f )、( c )。

(完整word版)铁碳合金相图

(完整word版)铁碳合金相图

铁碳合金相图非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。

了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。

本章将着重讨论铁碳相图及其应用方面的一些问题。

铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。

C Fe 3的含碳量为6.69%,铁碳合金含碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。

相图的两个组元是Fe 和C Fe 3。

3.1 Fe -C Fe 3系合金的组元与基本相3.l.l 组元⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为2/m kg 3107.87⨯。

纯铁在不同的温度区间有不同的晶体结构(同素异构转变),即: δ-Fe (体心)γ-Fe (面心)α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。

可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。

⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。

C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度b σ=30MPa ,伸长率0=δ。

3.1.2 基本相Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的几种间隙固溶体相:⑴ 高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。

⑵ 铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。

F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。

铁碳合金相图

铁碳合金相图

钢锭及其冶炼
冶炼工艺的主要任务 冶炼工艺的主要方法
钢锭的结构
钢锭是由冒口、锭 身、 底部组成
钢锭的内部缺陷
激冷结晶区(细小等轴结晶区) 没问题 柱状结晶区 没多大问题 树枝状结晶区 多产生负V型偏析,因此这部分多产生偏析线、夹渣、气泡等缺陷 自由结晶区(粗大等轴结晶区) 多产生V型偏析,常产生偏析线、夹渣、金属夹杂物、渣孔、气泡等缺陷,呈 所谓疏松组织 淀淀结晶区 常产生夹渣类缺陷
实例
Elliptical head Upper shell (Ⅰ、 Ⅱ) Conical shell Intermediate shell (lower) (Ⅰ、Ⅱ、Ⅲ) Tube sheet Primary head (channel head)
实例
Upper head Core shell Lower head
锻造生产的特点及其在国民经济中的作用
特点 地位
大型锻件主要应用于以下方面
1、轧钢设备 2、锻压设备 3、矿山设备 4、火力发电设备 5、水力发电设备 6、核能发电设备 7、石油、化工设备 8、船舶制造工业 9、军工产品制造:
实例(核反应堆中主要锻件M140)
Closure head(monobloc) Vessel flange Inlet(outlet) nozzle Nozzle shell Core shell Transition ring Lower dome
3. Fe—Fe3C相图分析
如图为Fe—Fe3C相图 全貌。根据分析围绕三条 水平线可把Fe—Fe3C相图 分解为三个部分考虑:左 上角的包晶部分,右边的 共晶部分,左下角的共析 部分。 分析点、线、区特 别是重要的点、三条水平 恒温转变线 、重要的相

机械工程材料 第3章 铁碳合金相图及碳钢

机械工程材料 第3章 铁碳合金相图及碳钢
P+Fe3CⅡ+Ld’
第二节 铁碳合金相图
3) 过共晶白口铸铁的结晶过程
Ld’+Fe3CⅠ
第二节 铁碳合金相图
铁碳合金相图
工业纯铁
亚共析钢
共析钢
过共析钢
亚共晶白口铸铁
共晶白口铸铁
过共晶白口铸铁
第二节 铁碳合金相图
第二节 铁碳合金相图
3.2.3、铁碳合金含碳量与组织、性能的变化规律
第二节 铁碳合金相图
d -Fe1394°Cg -Fe912°Ca -Fe
● 晶格类型 bcc
fcc
bcc
● 致密度 0.68
0.74 →(胀大) 0.68
● 符合形核、长大结晶规律
● 转变过程恒温、可逆
纯铁在凝固后的冷却过程中,经两次同素异构转变后晶粒 得到细化,对于钢的性能提高具有十分重要的意义,是制 定热处理工艺和合金化的理论基础。
第一节 铁碳合金的相与组织 第二节 铁碳合金相图 第三节 碳素钢
第3章 铁碳合金相图及碳钢
重点:
1)铁碳合金相图的绘制 2)铁碳合金基本相与基本组织 3)碳素钢的牌号及应用
难点:
1)铁碳合金平衡结晶过程 2)铁碳合金相图的分析及应用
课时:
4 学时
第一节 铁碳合金的相与组织
3.1.1、纯铁的同素异构转变
1)按含碳量分: ● 低碳钢:C%﹤0.25%; ● 中碳钢:C%=0.25~0.60%; ● 高碳钢:C%﹥0.60%。 2)按冶金质量(S、P的含量)分: ● 普通碳素钢:WS≤ 0.035%, WP≤ 0.035% ; ● 优质碳素钢: WS≤ 0.030%, WP≤ 0.030% ; ● 高级优质碳素钢: WS≤ 0.020%, WP≤ 0.030% 。

第三章 铁碳合金(二、三)

第三章 铁碳合金(二、三)

§3-2铁碳合金的基本组织和性能钢和铁是工业上应用最广泛的金属材料,它们都是铁碳合金。

不同成分的钢和铸铁的组织都不相同,因此,它们的性能和应用也不一样。

铁碳合金中碳原子和铁原子可以有几种不同的结合方式:一种是碳溶于铁中形成固溶体;另一种是碳和铁化合形成化合物;此外,还可以形成由固溶体和化合物组成的混合物。

一、铁素体(F)它是碳溶解于α-Fe中的间隙固溶体称为铁素体(简称α固溶体)。

通常用符号F表示。

晶体结构呈体心立方晶格,碳在α铁中的溶解度极小,随温度的升高略有增加,在室温时的溶解度仅有0.008%,在727℃时最大溶解度为0.0218%。

铁素体的性能几乎与纯铁相同,它的强度和硬度较低,σb=250MPa,HBS=80,塑性和韧性则很高,δ= 50%。

二、奥氏体(A)碳溶解于γ-Fe中的间隙固溶体称为奥氏体(简称γ固溶体),通常用符号A表示。

晶体结构呈面心立方晶格。

由于γ铁晶格中间隙较大,因此在727℃时能溶解0.77%碳,在1148℃时的最大溶解度达到2.11%,奥氏体存在于727℃以上的高温区间,具有一定的强度和硬度,以及很好的塑性,是绝大多数钢在高温进行锻造或轧制时所要求的组织。

三、渗碳体(Fe3C)它是铁与碳形成的金属化合物Fe3C,含碳量为6.69%,其晶胞是八面体,晶格构造十分复杂。

渗碳体的性能很硬很脆,HBW≈800,δ≈0。

渗碳体在钢中主要起强化作用,随着钢中含碳量的增加,渗碳体的数量增多,钢的强度和硬度提高,而塑性下降。

四、珠光体(P)珠光体是由铁素体和渗碳体组成的机械混合物,用符号P表示,它是由硬的渗碳体片和软的铁素体片层片相间,交错排列而成的组织。

所以其性能介于它们二者之间,强度较高,σb=750MPa ,HBS=180,同时保持着良好的塑性和韧性δ=(20~25)%。

五、莱氏体(L d)奥氏体与渗碳体的机械混合物称为莱氏体,用符号Ld表示。

它是C=4.3%的铁碳合金液体在1148℃发生共晶转变的产物。

3.--材料的凝固与铁碳相图资料

3.--材料的凝固与铁碳相图资料
一. 冷却曲线与过冷度 二. 结晶的一般过程 三. 同素异构转变
一、冷却曲线与过冷
1、冷却曲线 金属结晶时温度与时间的
关系曲线称冷却曲线。曲 线上水平阶段所对应的温 度称实际结晶温度T1。 曲线上水平阶段是由于结 晶时放出结晶潜热引起的.
纯金属的冷却曲线
2、过冷与过冷度 纯金属都有一个理论结晶温度T0(熔点或平衡结晶
PQ—碳在-Fe中的固
溶线。
⒊ 相区
⑴ 五个单相区:
L、、、、Fe3C ⑵ 七个两相区: L+、
L+、L+Fe3C、 +、 +Fe3C、+ 、 +Fe3C
⑶ 三个三相区:即HJB (L++)、ECF(L++ Fe3C)、 PSK(++ Fe3C)三条水平线
三、典型合金的平衡结晶过程
铁碳相图上的合金,按成分可分为三类: ⑴ 工业纯铁(<0.0218% C) 组织为单相铁素体。
亚共析钢的结晶过程
含0.20%C钢的组织
亚共析钢室温下的组织 为F+P。
在0.0218~0.77%C 范围 内珠光体的量随含碳量 增加而增加。
含0.45%C钢的组织
含0.60%C钢的组织
㈣ 过共析钢的结晶过程
合金在1~2点转变为 , 到3点, 开始析出Fe3C。从奥氏
体中析出的Fe3C称二次渗碳体, 用Fe3CⅡ表示, 其沿晶 界呈网状分布.
含1.4%C钢的组织
工业纯铁的结晶过程
从铁素体中析出的渗碳体称三次渗碳体,用Fe3CⅢ 表示。 Fe3CⅢ以不连续网状或片状分布于晶界。
随温度下降,
Fe3CⅢ量不断 增加,合金的

材料的凝固与铁碳相图资料课件

材料的凝固与铁碳相图资料课件
在凝固过程中,物质从液态转变为固态时,系统的自由能发生变化。自由能的变化决定了相变是否可以自发进行以及相变的速度。当自由能变化为负值时,相变可以自发进行;当自由能变化为正值时,相变不能自发进行。因此,了解自由能的变化是理解凝固过程的重要基础。
总结词
总结词
凝固过程中溶质再分配和成分过冷现象影响晶体形貌和相组成。
工艺制定
通过铁碳相图可以控制材料的熔炼、浇注、冷却等过程,确保获得高质量的铸件或锻件。
质量控制
铁碳合金的凝固过程
03
铁碳合金的凝固点取决于其成分,随着碳含量的增加,凝固点温度逐渐降低。
凝固点
形核与长大
热力学条件
在液态向固态转变过程中,铁碳合金中的原子首先形成晶核,随后晶核逐渐长大形成固态结构。
液态向固态的转变需要满足一定的热力学条件,如温度和压力等。
成分不均
由于合金在液态和固态下各组分扩散速度的差异,导致合金内部各部分成分分连续或断续的缝隙,通常是由于热应力和组织应力共同作用的结果。
变形
铸件在凝固和冷却过程中,由于各部位收缩不均匀或受到外力作用而产生的形状和尺寸变化。
铁碳合金的凝固工艺
06
合金元素可以改变材料的物理性能、机械性能和加工性能等,通过合理添加合金元素,可以提高材料的综合性能。
详细描述
总结词:结晶动力学是研究晶体生长速度、晶体形态和晶体结构随时间变化的科学。
铁碳相图
02
铁碳相图是表示铁碳合金在平衡状态下,温度、压力和各相之间关系的图形。
定义
铁碳相图由水平线(温度)、垂直线(压力)和曲线组成,其中曲线表示不同成分的铁碳合金在不同温度和压力下的平衡状态。
组成
铁碳相图反映了不同成分的铁碳合金在不同温度下的相变规律,如熔化、结晶、固态转变等。

第三章铁碳合金相图PPT课件

第三章铁碳合金相图PPT课件

化学工业出版1社6
(二)含碳量与工艺性能间的关系 1.铸造性能 2.锻压性能 3.焊接性能 4.切削加工性能 5.热处理性能
化学工业出版1社7
第五节 碳 素 钢 碳素钢(碳钢)是指wC≤2.11%,并含有少量锰、硅、 硫、磷等杂质元素的铁碳合金。
一、杂质元素对碳钢性能的影响 (一)锰的影响 钢中的一种有益元素。 (二)硅的影响 钢中的有益元素。 (三)硫的影响 产生热脆性。可改善钢的切削加工性能。 (四)磷的影响 产生冷脆现象。改善钢的切削加工性利。 (五)非金属夹杂物的影响
化学工业出版社3
第二节 铁碳合金相图
铁碳合金相图:表示在平衡条件下,不同成分的铁 碳合金、在不同温度下与组织或状态之间关系的图形。
温度/ ℃
1600A
L+δ
δ δ+A
H
B
L
J
D
1400
1394℃
L+A
1200
A
1148℃
L+Fe3CⅠ F
E
C
1000 G 912℃
F+A
A+Fe3CⅡ
A+Fe3CⅡ+Ld
Q255、Q275钢 强度较高,可代替30、40钢制造较重 要的某些零件。
化学工业出版社5
二、铁碳合金的分类 分为工业纯铁、钢和白口铸铁。 (一)工业纯铁 wC<0.0218%的铁碳合金,其室温组织:铁素体。 (二)钢 0.0218~2.11%C的铁碳合金。 1.共析钢 成分为0.77%C的铁碳合金,室温组织: 珠光体; 2.亚共析钢 成分为0.0218~0.77%C的铁碳合金,室 温组织:铁素体+珠光体; 3.过共析钢 成分为0.77~2.11%C的铁碳合金,室温 组织:珠光体+二次渗碳体。

二元相图,Fe-C相图

二元相图,Fe-C相图

3 匀晶系中的非平衡凝固过程(nonequilibrium solidification) 原因:实际凝固过程中,冷却速度较快,固体中原子不能充分扩散, 结晶过程不能遵循平衡变化规律; ● 固相平均成分线和液相平均成分线
● 非平衡凝固总是导致凝固终结温度低
于平衡凝固时的终结温度。
● 先结晶部分总是富高熔点组元,
§3.1 相图的基本知识 3.1.1 相律 描述系统的组元数、相数和自由度之间关系的法则。
Gibbs相律
f=C–P+2
P: 平衡相数
f:自由度数:保持相平衡条件下可独立变化的变量 C:系统的组元数,
2:压力、温度自由度 在恒压条件下:f = C – P + 1
相成分变量:p(c-1)
向平衡条件:
i1 i2 3 ip
无序固溶体,无热效应
0, 0, H 0
有序固溶体, 放热反应
0, 0, H 0
不均匀固溶体
吸热反应
化学位的图解
2 公切线法则(common tangent line)
对二元合金,若溶体的自由焓已知, 可采用作公切线的方法求得二组元的化学位
依据:合金中多相平衡的条件是同一组元在各相中的化学位相等,
利用相图可以:
1 可以了解各种成分材料(合金)的熔点和发生固态转变的温度;
2 用于研究材料(合金)的凝固过程和凝固后的组织; 3 是制定材料(合金)熔铸、压力加工、热处理工艺的重要依据; 4 相图是在平衡条件下测得的,也叫平衡状态图 (equilibrium or constitutional diagram)。 平衡凝固过程(equilibrium solidification): 指在极缓慢凝固过程中,每个阶段都能达到平衡的结晶过程

3-材料的凝固与铁碳合金相图的分析及应用-机械工程学院

3-材料的凝固与铁碳合金相图的分析及应用-机械工程学院
则 QL + Q =1
QL x1 + Q x2 =1×x
解方程组得
x2 x QL x 2 x1 x x1 Qα x 2 x1

式中的x2-x、x2-x1、x-x1即为相图中线段xx2 (ob)、
x1x2 (ab)、 x1x对 重量百分比为:


第一节 纯金属的结晶
一. 冷却曲线与过冷度 二. 结晶的一般过程 三. 同素异构转变



一、冷却曲线与过冷
1、冷却曲线

金属结晶时温度与时间的
关系曲线称冷却曲线。

曲线上水平阶段所对应的 温度称实际结晶温度T1。

曲线上水平阶段是由于结 晶时放出结晶潜热引起的.

2、过冷与过冷度
xx2 ob QL x1 x 2 ab x1 x ao Q x1 x 2 ab
两相的重量比为:
QL xx2 ob ( ) 或QL x1 x Q xx2 Q x1 x ao

上式与力学中的杠杆定律完全相似,因此称之为杠 杆定律。即合金在某温度下两平衡相的重量比等于 该温度下与各自相区距离较远的成分线段之比。 在杠杆定律中,杠杆的支点是合金的成分,杠杆的 端点是所求的两平衡相(或两组织组成物)的成分。
二次轴…,树枝间最后被填充。
负温度梯度
树枝状长大
树枝状长大的实际观察
树枝状结晶
金 属 的 树 枝 晶 金 属 的 树 枝 晶
金 属 的 树 枝 晶
冰 的 树 枝 晶

三、结晶晶粒的大小及控制 晶粒的大小称为晶粒度。晶粒度取决于 形核率和长大速度G的相对大小。 若形核率越大,而长大速度越小,单位 体积中晶核的数目越多,每个晶核来不 及长大,从而得到的晶粒越细小。 细晶强化:常温下,晶粒越小,金属的 强度、硬度越高,塑性和韧性越好。

铁碳合金相图

铁碳合金相图

2.奥氏体:
碳原子固溶到-Fe中所形成的间隙固溶体,----A或 。 碳原子在-Fe中的溶解度大于在-Fe中的溶解度。 特点:强度不高塑性很好,适合锻造。存于727℃以上
3.渗碳体 :
它是铁与碳形成的间隙化合物,分子式是Fe3C。 特点:具有高硬度、高脆性、低强度和低塑性 是钢的强化相
4.珠光体:
含碳量对铁碳合金组织和性能的影响
1.含碳量对机械性能的影响
渗碳体含量越多,分布越均匀,材料的硬度和 强度越高,塑性和韧性越低;但当渗碳体分布在 晶界或作为基体存在时,则材料的塑性和韧性大 为下降,且强度也随之降低。
2.含碳量对工艺性能的影响

切削加工性:一般认为中碳钢的塑性比较适中, 硬度在HB200左右,切削加工性能最好。含碳量 过高或过低,都会降低其切削加工性能。
• 可锻性:低碳钢比高碳钢好
由于钢加热呈单相奥氏体状态时,塑性好、强度 低,便于塑性变形,所以一般锻造都是在奥氏体 状态下进行。锻造时必须根据铁碳相图确定合适 的温度,始轧和始锻温度不能过高,以免产生过 烧;始轧和温度也不能过低,以免产生裂纹。
• 铸造性:铸铁的流动性比钢好,易于铸造,特别 是靠近共晶成分的铸铁,其结晶温度低,流动性 也好,更具有良好的铸造性能。从相图的角度来 讲,凝固温度区间越大,越容易形成分散缩孔和 偏析,铸造性能越差。
共 析 点 共析 转变 区
奥氏体+渗碳体---莱氏体Ld
珠光体P+渗碳体---低温莱氏体Ld'
四 Fe-Fe3C相图中铁碳合金的分类
1. 工业纯铁 它是wc≤0.02%的铁碳合金。 2. 碳素钢 它是0.02%<wc≤2.11%的铁碳合金。按起 室温下先微组织的不同又分为三种: 共析钢: wc=0.77% 亚共析钢:0.02%<wc<0.77% 过共析钢:0.77%<wc≤2.11% 3.白口铸铁 它是2.11%<wc<6.69%的铁碳合金。 按其室温下显微组织的不同又分为三种: 共晶白口铸铁: wc=4.3% 亚共晶白口铸铁:2.11%<wc<4.3% 过共晶白口铸铁:4.3%<wc<6.69%

第三章 铁碳合金和铁碳相图

第三章  铁碳合金和铁碳相图

共析钢的平衡结晶过程
注意事项
共析反应生成的珠光体在冷却过程中,其中的铁素体 产生三次析出,生成Fe3CⅢ,但与共析的Fe3C连在一 起,难以分辨。
共析钢的室温平衡组织:P
P:铁素体(F)和渗碳体的两相 混合物,两相的相对质量是多少?
杠杆定律
计算二元相图中 平衡状态下 两平衡相的相对质量分数。 杠杆的支点是两相合金的成分点,端点分别是两个相的成 分点。
亚共析钢的平衡结晶过程
L相+ δ相→ γ相,并且L相有剩余
γ单相的冷却
γ相→ α相,但γ相有剩余 共析反应:剩余γ相→P(α+Fe3C),存在先析α相
亚共析钢的平衡结晶过程
注意事项
先析铁素体(α相)在随后的冷却过程中会析出Fe3CⅢ,但量很少可忽略
亚共析钢室温平衡组织:先析铁素体+珠光体P
利用杠杆定律计算先析铁素体与珠光体的质量分数,计算铁素体(先析铁 素体+P光体中的铁素体)与渗碳体的质量分数
化不大且值很低, 趋于Fe3C的强度(约20 MPa~30 MPa)。


含碳量对铁碳合金力学性能的影响
• 铁碳合金中Fe3C是极脆的相, 没有塑性。合金的塑性变 形全部由F提供。所以随碳含量的增大, F量不断减少时, 合金的塑性连续下降。到合金成为白口铸铁时, 塑性就
降到近于零值了。
返回
3.5 钢中的杂质元素
A(0.0008)
C 0.77
Fe3C
B(6.69)
相的质量分数
6.69 0.77 M 100 % 88.5% 6.69 0.0008
M Fe 3C 0.77 0.0008 100 % 11.5% 6.69 0.0008

机械工程材料_专升本习题集答案(1)

机械工程材料_专升本习题集答案(1)

第1章材料的性能一、选择题3.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是( B)A.HB B.HRC C.HV D.HS4.金属材料在载荷作用下抵抗变形和破坏的能力叫(A ) A.强度 B.硬度 C.塑性 D.弹性二、填空1.金属材料的强度是指在载荷作用下其抵抗(塑性变形)或(破坏)的能力。

2.金属塑性的指标主要有(断后伸长率)和(断面收缩率)两种。

3.低碳钢拉伸试验的过程可以分为弹性变形、(塑性变形)和(断裂)三个阶段。

4.常用测定硬度的方法有(布氏硬度测试法)、(洛氏硬度测试法)和维氏硬度测试法。

5.疲劳强度是表示材料经(无数次交变应力循环)作用而(不发生断裂时)的最大应力值。

三、是非题1.用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。

是四、改正题1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。

将冲击载荷改成交变载荷2. 渗碳件经淬火处理后用HB硬度计测量表层硬度。

将HB改成HR3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。

将疲劳强度改成冲击韧性5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。

将载荷改成冲击载荷五、简答题1.说明下列机械性能指标符合所表示的意思:σs、σ0.2、HRC、σ-1、σb、δ5、HBS。

σs: 屈服强度σ0.2:条件屈服强度HRC:洛氏硬度(压头为金刚石圆锥)σ-1: 疲劳极限σb: 抗拉强度σ5:l0=5d0时的伸长率(l0=5.65s01/2)HBS:布氏硬度(压头为钢球)第2章材料的结构一、选择题1. 每个体心立方晶胞中包含有(B)个原子 A.1 B.2 C.3 D.42. 每个面心立方晶胞中包含有(D)个原子 A.1 B.2 C.3 D.43. 属于面心立方晶格的金属有(C) A.α-Fe,铜B.α-Fe,钒 C.γ-Fe,铜 D.γ-Fe,钒4. 属于体心立方晶格的金属有(B) A.α-Fe,铝B.α-Fe,铬 C.γ-Fe,铝 D.γ-Fe,铬6. 在立方晶系中,指数相同的晶面和晶向(B)A.相互平行B.相互垂直C.相互重叠D.毫无关联二、是非题1. 金属或合金中,凡成分相同、结构相同,并与其他部分有界面分开的均匀组成部分称为相。

合金的结构与相图(材料第三章)

合金的结构与相图(材料第三章)

x x1 x2 x1
式中的x2-x、x2-x1、x-x1即为相图中线段xx2 (ob)、
x1x2 (ab)、 x1x(ao)的长度。
23
因此两相的相对 重量百分比为:
QL
xx 2 x1x2
ob ab
Q
x1x x1x2
ao ab
两相的重量比为:
Q Q Lx x1x 2x (a o)o b或 Q Lx1xQ x2x
化, Ⅱ的重量增加。
F4
室温下Ⅱ的相对重量百分比为:QⅡ
F
1 G
0% 0
由于二次
相析出温
度较低,
一般十分
细小。
Q
Q Ⅱ
36
Ⅰ合金室温组织
为 + Ⅱ 。
A C
F
B 成分大于 D点合金结晶
E
D
过程与Ⅰ合金相似,室
温组织为 + Ⅱ 。
G 37
② 共晶合金(Ⅱ合金)的结晶过程 液态合金冷却到E 点时同时被Pb和Sn饱和, 发生共
第三章 合金的结构与相图
第一节 固态合金中的相结构 第二节 二元合金相图的建立 第三节 匀晶相图 *第四节 二元共晶相图 *第五节 二元包晶相图 *第六节 形成稳定化合物的二元合金相图 *第七节 具有共析反应的二元合晶相图 第八节 合金的性能与相图之间的关系
1
第一节 固态合金中的相结构
合金是指由两种或两种以上 元素组成的具有金属特性的 物质。
固态合金中的相分为固溶体
和金属化合物两类。
两相 合金
3
一、 固溶体 合金中其结构与组成元素之一的晶体结构相同的固
相称固溶体。习惯以、、表示。
与合金晶体结构相同的元素称溶 剂。其它元素称溶质。

第3章铁碳合金(07)

第3章铁碳合金(07)
图3-2 珠光体的显微组织
第3章 铁碳合金相图 (6) 莱氏体(合金的基本组织之一)。
莱氏体是奥氏体和渗碳体的机械混合物,由于其中的奥氏体 属高温组织,这时称高温莱氏体,用符号Ld表示。高温莱氏体冷 却 到 727℃ 以 下 时 , 将 转 变 为 珠 光 体 和 渗 碳 体 的 机 械 混 合 物 (P+Fe3C),称低温莱氏体,用符号Ld′表示。 莱氏体的含碳量为4.3%。 由于莱氏体中含有的渗碳体较多, 故其力学性能与渗碳体相近。
呈条状、网状、片状、粒状等不同形态,其
数量、形态和分布对铁碳合金的力学性能有 很大影响。
第3章 铁碳合金相图
(5) 珠光体(合金的一种基本组织)。
珠光体是铁素体和渗碳体组成的机械混合物,用符号P表示。 珠光体的含碳量为0.77%。 珠光体在显微镜下呈片层状。 图中黑色层片为渗碳体,白色 基体为铁素体。 力学性能:抗拉强度较高,硬度 较高且仍有一定的塑性和韧性。 具有较好的综合力学性能。
PQ线- 碳在铁素体中的溶解度变化曲线。
第3章 铁碳合金相图 3.2.2 典型合金结晶过程分析 1.铁碳合金的分类 根据Fe-Fe3C相图,铁碳合金可分为三类:
纯铁(ω c≤0.0218%) 钢 ( 0.0218%<ω c≤2.11%) ( ω c=0.77%) 亚共析钢( ω c<0.77%) 共析钢 过共析钢( ω c>0.77%) 白口铸铁( 2.11%<ω c<6.69%) 亚共晶白口铸铁( ω c<4.3%) 共晶白口铸铁 ( ω c=4.3%)
⑵第二相强化
合金中固溶体与金属化合物是两种截然不同的相,当合金中有第二相金 属化合物存在时,通常能提高合金的强度、硬度和耐磨性,但也会降低塑 性和韧性。 金属化合物是各类合金钢、硬质合金及许多非铁合金的重要组成部分。 多数工业合金均为固溶体和少量金属化合物构成的混合物,通过调整 固溶体的溶解度和其中的化合物的形态、数量、大小及分布,可使合金的 力学性能在一个相当大的的范围内变动,从而满足不同的性能要求。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 一切物质从液态到固态的转 变过程称为凝固,如凝固后 形成晶体结构,则称为结晶。 金属在固态下通常都是晶体, 所以金属自液态冷却转变为 固态的过程,称为金属的结 晶。它的实质是原子从不规 则排列状态(液态)过渡到规 则排列状态(晶体状态)的过 程。
玻璃制品 水晶
• 冷却曲线与过冷
• 冷却曲线:金属结晶时温度 与时间的关系曲线称冷却 曲线。曲线上水平阶段所 对应的温度称实际结晶温 度T1。
度增加,N/G值增加,晶 粒变细。
• ⑵ 变质处理: 又称孕育 处理。即有意向液态金属 内加入非均匀形核物质从 而细化晶粒的方法。所加 入的非均匀形核物质叫变 质剂(或称孕育剂)。
• 1 影响晶核形成和长大的因素 • (1)过冷度的影响(2)未熔杂质的影响 • 2 铸态金属晶粒细化的方法 • (1)增大过冷度 • (2)变质处理 • (3)振动、搅拌
非自发形核更为普遍。
均匀形核
• 晶核的长大方式
• 晶核的长大方式有两种,即均匀长大和树枝状 长大。
树枝状长大的实际观察
均匀长大
• 实际金属结晶主要以树枝状长大. • 这是由于存在负温度梯度,且晶核棱角处的散热
条件好,生长快,先形成一次轴,一次轴又会产 生二次轴…,树枝间最后被填充。
树枝状结晶

• 曲线上水平阶段是由于结 晶时放出结晶潜热引起的.
纯金属的冷却曲线
• 2、过冷与过冷度
• 纯金属都有一个理论结晶温度T0(熔点或平衡结晶 温度)。在该温度下, 液体和晶体处于动平衡状态。
• 结晶只有在T0以下的实际


结晶温度下才能进行。
• 液态金属在理论结晶温 度以下开始结晶的现象 称过冷。
• 铸锭(件)的宏观组织通常由三个区组成: • ⑴ 表层细晶区:浇注时, 由于冷模壁产生很大的过 冷度及非均匀形核作用, 使表面形成一层很细的等 轴晶粒区。
• ⑵ 柱状晶区:由于模壁温度升高,结晶放出潜热, 使细晶区前沿液体的过冷度减小,形核困难。加上 模壁的定向散热,使已有的晶体沿着与散热相反的 方向生长而形成柱状晶区。
• 2、影响晶核形成和长大的因素 • 晶粒的大小取决于晶核的形成速度和长大速度。
单位时间、单位体积内形成 的晶核数目叫形核率(N)。
过冷度对N、G的影响
单位时间内晶核生长的长度 叫长大速度(G)。
N/G比值越大,晶粒越细小. 因此,凡是促进形核、抑制 长大的因素,都能细化晶粒.
3、控制晶粒度的方法 • ⑴ 控制过冷度: 随过冷
硫在钢锭中偏析的模拟结果
返回
第二节 二元合金相图
• 1、二元相图的建立 • 2、相组成分析与杠杆定律 • 3、二元相图的基本类型 • 4、二元匀晶相图 • 5、二元共晶相图 • 6、二元包晶相图 • 7、具有共析反应的二元相图 • 8、二元相图的分析步骤
• ⑶中心粗等轴晶区: 由于结晶潜热的不断放出,散 热速度不断减慢,导致柱状晶生长停止,当心部液 体全部冷至实际结晶温度T1以下时,在杂质作用下 以非均匀形核方式形成许多尺寸较大的等轴晶粒。
• 图3-6 铸锭中强度较差的区域
3.1.4、铸造缺陷
缩孔
铸造缺陷的类型较多,
常见的有缩孔、气孔、
疏松、偏析、夹渣、白
• 晶核形成后便向各方向生长,同时又有新的晶 核产生。晶核不断形成,不断长大,直到液体 完全消失。每个晶核最终长成一个晶粒,两晶 粒接触后形成晶界。
• 2、晶核的形成方式 • 形核有两种方式,即自发形核和非自发形核。 • 由液体中排列规则的原子团形成晶核称自发形核。 • 以液体中存在的固态杂质为核心形核称非自发形核。
• 理论结晶温度与实际结 晶温度的差T称过冷度
T= T0 –T1 • 过冷度大小与冷却速度
有关,冷速越大,过冷 度越大。
2、结晶过程 • 1、结晶的基本过程 • 结晶由晶核的形成和晶核的长大两个基本
过程组成.
• 液态金属中存在着原子排列规则的小原子 团,它们时聚时散,称为晶胚。
在T0以下, 经一段时间后(即孕育期), 一些大 尺寸的晶胚将会长大,称为晶核。
点等,它们对性能是有
害的。
图3-7 圆柱形铸件中缩孔的形成
• ⑵气孔: 气孔是指液态金属中溶解的气体或反应生成
的气体在结晶时未逸出而存留于铸锭(件)中的气泡.
铸锭中的封闭的气孔可在热加工时焊合,张开的气
孔需要切除。铸件中出现气

孔则只能报废。

铸件中的气孔
• ⑶ 偏析:合金中各部分化 学成分不均匀的现象称为 偏析。铸锭(件)在结晶时, 由于各部位结晶先后顺序 不同,合金中的低熔点元 素偏聚于最终结晶区,造 成宏观上的成分不均匀, 称宏观偏析。适当控制浇 注温度和结晶速度可减轻 宏观偏析。

属 的
属 的






金 属 的 树 枝
冰 的 树 枝 晶

3.1.2 晶粒大小及控制方法
• 1、晶粒度 • 表示晶粒大小的尺度叫晶
粒度。可用晶粒的平均面 积或平均直径表示。 • 工业生产上采用晶粒度等 级来表示晶粒大小。 标准晶粒度共分八级,一级最粗,八级最细。通过 100倍显微镜下的晶粒大小与标准图对照来评级。
Al-Si合金组织
缓冷
快冷
未变质
变质
铸铁变质处理前 后的剂为 硅铁或硅钙合金。
• ⑶ 振动、搅拌等:对正在结晶的金属进行振动或 搅动,一方面可靠外部输入的能量来促进形核, 另一方面也可使成长中的枝晶破碎,使晶核数目 显著增加。
电磁搅拌细化晶粒示意图
气轮机转子的宏观组织(纵截面)
细晶的熔模铸件(上)
普通铸件(下)
3.1.3 金属铸态组织
• 在实际生产中,液态金属被 浇注到锭模中便得到铸锭, 而注入到铸型模具中成型则 得到铸件。
• 铸锭(件)的组织及其存在的 缺陷对其加工和使用性能有 着直接的影响。
• 图3-4 钢锭组织的示意图(1-表面细晶粒层;2- 柱状晶粒区;3-心部粗等轴晶粒区
第一节 二元合金的结晶
• 一. 凝固与结晶 • 二. 晶粒大小及控制方法 • 三.金属铸态组织的形成及其性能
晶粒大小对金属性能的影响
• 常温下,晶粒越细,晶界面 积越大,因而金属的强度、 硬度越高,同时塑性、韧性 也越好,即细晶强化。
s= i+Kd-1/2
晶粒大小与金属强度的关 系
室温
高温
单晶叶 片
相关文档
最新文档