铁碳合金及相图

合集下载

铁碳合金相图分析

铁碳合金相图分析

1点以上
1~2点
2~3点
图3-3 共析钢结晶过程示意图
3点~室温
共析钢的室温组织全部为P,呈层片状,其室温下的显微组织如图3-4 所示。
图3-4 共析钢室温下的显微组织
(二)亚共析钢的结晶过程 图 3-2 中的合金Ⅱ为 wC 0.45% 的亚共析钢,其结晶过程如图 3-5 所示。
1点以上
1~2点
A3 线 合金冷却时从奥氏体中开始析出铁素体的析出线
三、铁碳合金的结晶过程
图3-2 简化后的Fe-Fe3C相图
根据碳的质量分数和室温显微组织不同,铁碳合金可以分为工业纯 铁、钢和白口铸铁三大类,具体如下。
(一)共析钢的结晶过程 在图 3-2 中,合金Ⅰ为 wC 0.77% 的共析钢,其结晶过程如图 3-3 所示。
图3-12 亚共晶白口铸铁室温下的显微组织
(六)过共晶白口铸铁的结晶过程 图 3-2 中的合金Ⅵ为 wC 5.0% 的过共晶白口铸铁,其结晶过程如图 3-13
所示。
1点以上
1~2点
2~3点
图3-13 过共晶白口铸铁的结晶示意图
3点~室温
过共晶白口铸铁室温下的显微组织如图 3-14 所示,图中白色条状为 Fe3CⅠ , 黑白 相间的 基 体 为 Ld′ 。所 有过共 晶 白口 铸铁 的 室温 组织 均 为 Ld Fe3CⅠ,只是随着碳含量的增加, Fe3CⅠ量增加。
0.09
碳在 δ-Fe 中的最大溶解度
J
1 495
K
727
0.17 6.69
包晶点 LB δH
A 1495℃ J
Fe3C 的成分
符号 N P S Q
温度 T/℃ 1 394 727
727 室温

铁碳合金相图

铁碳合金相图

二 相图中点的含义
1A点 纯铁的熔点;温度 1538℃,Wc=0
2G点 纯铁的同素异晶转变点; 冷却到912℃时,发生 γF→α-Fe
3Q点 600℃时,碳在αFe中的 溶度,Wc=0 0057%
二 相图中点的含义
4D点 渗碳体熔点,温度 1227℃,Wc=6 69%
5C点 共晶点;温度1148℃,Wc=4 3% 成分为C的液相,冷却到此 温度时,发生共晶反应 Lc→A+Fe3C
一 铁碳合金的分类:
按含碳量的不同;铁 碳合金的室温组织可 分为工业纯钛 钢和 白口铸铁; 其中,把 含碳量小雨0 0218% 的铁碳合金称为纯铁; 把含碳量大于 0.0218%而小于2.11% 的铁碳合金称为钢; 把含碳量大于2.11% 的铁碳合金称为铸铁。
纯铁 钢和铸铁的含碳量:
⑴ 工业纯铁组织为单相铁素体 (<0 0218% C)
一次渗碳体+ 低温莱氏体
性能特 强度 硬 C↑,强度 硬度逐 强度较高,硬度 硬度较高,塑性差,
点平衡 度低、 渐提高,有较好的 适中,具有一定 随着网状二次渗碳
状态 塑性好 塑性和韧性
的塑性和韧性 体增加,强度降低
硬度高;脆性大,几乎没有塑性
1 亚共析钢的组织的变化顺序:
亚共析钢的室温组 织由珠光体和铁素体 组成合金的组织按下 列顺序变化:
课堂练习:
1 共析钢冷却到S点时;会发生共析转变,从奥氏体中
同时析出
铁和素(体
)渗的碳混体 合物,称为(
) ; 珠光体
2、过共晶白口铸铁的室温组织是(一次渗碳体 )加( )。低温莱氏体
3、共晶白口铸铁的含碳量为( 4 3 )%
一 填空题
1、常见的金属晶体类型有 晶格、( )晶格和( )晶格三种; 2、金属的整个结晶过程包括( )、( )两个基本过程组成 。 3、根据溶质原子在溶剂晶格中所处的位置不同;固溶体分为( )和 ( )两种。 4、铁碳合金的基本组织中属于固溶体的有( )和( ),属 于金属化合物的有( ),属于混合物的有( )和莱氏体。 5、原子呈无序堆积状态的物体叫( );原子呈有序、有规则排 列的物体叫( )。一般固态金属都属于( )。 6、常温下金属的塑性变形方式主要有( )和( )两种。 7、变形一般分为( )变形和( )变形两种,不能随载荷的去除 而消失的变形称为( )变形。 8、细化晶粒的根本途径是控制结晶时的( )及( )。

铁碳相图和铁碳合金(白底+简化)

铁碳相图和铁碳合金(白底+简化)

2020/11/4
12
铁素体的显微组织
铁素体的显微组织与纯铁相同,用4%硝 酸酒精溶液浸蚀后,在显微镜下呈现明 亮的多边形等轴晶粒。
2020/11/4
13
奥氏体的组织
奥氏体的组织与铁素体相似,但晶界较为 平直,且常有孪晶存在。
2020/11/4
14
(3)Fe3C(渗碳体) cementite
2020/11/4
4
(1)纯铁pure iron(多型性)
2020/11/4
➢ 纯铁熔点1538℃,温度变化 时会发生同素异构转变。
➢ 在912℃以下为体心立方 , 称α铁(α-Fe);
➢ 低温的铁具有铁磁性,在 770℃ 以 上 铁 磁 性 趋 于 消 失 。
➢ 912℃—1394℃ 之 间 为 面 心 立方,称为γ铁(γ-Fe);
称为铸铁 ➢含碳量小于0.0218%的铁碳合金则称为工
业纯铁
2020/11/4
25
根据组织特征可将铁碳合金分为以下七种
①工业纯铁(<0.0218%C); ②共析钢,0.77%C; ③亚共析钢(0.0218%—0.77%C); ④过共析钢(0.77%-2.11%C); ⑤共晶铸铁(4.30%C); ⑥亚共晶铸铁(2.11%-4.30%C); ⑦过共晶铸铁(4.30%—6.69%C)。
G 912
2020/11/4
0
α与γ同素异构转变点(A3)
17
2、 Fe-Fe3C相图分析
特征点
符号 H J K N P S Q
2020/11/4
温度/℃ 1495 1495 727 1394 727 727 室温
含碳量/% 含义
0.09 碳在δ-Fe中的最大溶解度

4.3_铁碳合金相图及应用

4.3_铁碳合金相图及应用

4.过共析钢((0.77%~2.11%C) 过共析钢的结晶过程如图所示。 由示意图分析可知,过共析钢结晶过程的基本反应为 [匀晶反应+二次析出反应+共析反应],室温组织为珠光体+ 二次渗碳体,显微组织如图所示。 过共析钢中Fe3CⅡ的最大相对量为:
2.11 0.77 Fe3CⅡ 100 % 22.6% 6.69 0.7
两者性能与晶粒大小、杂质含量有关
2.奥氏体 奥氏体是碳在γ-Fe中的固溶体,用符号“A”表示。高 温奥氏体的显微组织如图所示。 奥氏体的特点: ① 在1148℃时有最大溶解度2.11%C,727℃时可固溶 0.77%C; ② 其力学性能与含碳量及晶粒大小有关,一般170~ 220HBS、δ=40~50%; ③ 形变能力好,形变抗力小。
⑤ 热处理工艺性能和热处理效果。
“铁碳合金相图及应用”部分结束! 请转入:
“钢的热处理”
3)白口铸铁(2.11~6.67%C),根据室温的不同,分为: ① 亚共晶白口铸铁 ② 共晶白口铸铁(≈4.3 %C)
③ 过共晶白口铸铁(>4.3%C)
2.共析钢(≈0.77%C) 共析钢的结晶过程如图a)所示。
由示意图分析可知,共析钢结晶过程的基本反应为[匀晶 反应+共析反应],室温组织为珠光体显微组织。 P中F和Fe3C的相对量:
三、典型铁碳合金的平衡结晶过程及其组织
1.铁碳合金相图上的各种合金,一般分为三类: 1)工业纯铁(<0.02% C ),室温组织为α固溶体; 2)钢(0.02~2.11%C), 根据室温组织不同,分为: ① 亚共析钢(<0.77%C ) ② 共析钢(≈0.77%C) ③ 过共析钢(>0.77%C)
1.铁碳合金的含碳量对组织的影响 2.含碳量对热轧状态钢的力学性能的影响

铁碳合金相图

铁碳合金相图

F % ≈ 1 – 12 % = 88 %
珠光体
强度较高,塑性、韧性和硬度介于 Fe3C 和 F 之间。
室温组织: 层片状 P ( F + 共析 Fe3C ) 500×
(3)亚共析钢 ( C % = 0.4 % )结晶过程
各组织组成物的相对量:
P % = ( 0.4 – 0.0218 ) / ( 0.77 – 0.0218 ) ≈ 51 % F % ≈ 1 – 51 % = 49 %

白口铸铁 —— 2.11 % < C % < 6.69 % 亚共晶白口铁 < 4.3 % 共晶白口铁 = 4.3 % 过共晶白口铁 > 4.3 % 类型 钢号 碳质量分数/% 亚共析钢 20 45 60 0.20 0.45 0.60 共析钢 T8 0.80 过共析钢 T10 T12 1.00 1.20
(4)各相的质量: QL= 50×2/3 = 33.3(kg) Qα = 50-33.3 = 16.7(kg)
2) 室温下,金属晶粒越细,则强度越高、塑性越低。( No )
3) 晶粒度级数数值越大,晶粒越细。(Yes )
5. 1) 金属结晶时,冷却速度越快,其实际结晶温度将: a. 越高 b. 越低 c. 越接近理论结晶温度
2) 为细化晶粒,可采用: a. 快速浇注 b. 加变质剂
√ √
c. 以砂型代金属型
各相的相对量:
Fe3CII % ≈ 1.2 / 6.69 = 18 % F % ≈ 1 – 18 % = 82 %
室温组织
P + Fe3CII
400×
(5)共晶白口铁 ( C % = 4.3 % )结晶过程
室温组织 (低温)莱氏体 (P + Fe3CII + 共晶 Fe3C) 莱氏体 Le′的性能

第三节 铁碳合金及相图

第三节 铁碳合金及相图

3) Fe-Fe3C相图相区分析:
包括: (1)液相区: (2)液、固两相区: (3)固相区: 也包括: (1) 单相区:L、F、A、Fe3C (2) 两相区:L+A、L+ Fe3C、A+F、F+ Fe3C (3) 三相区:Le+A+ Fe3C、P+Le’+ Fe3C
简化后的Fe-Fe3C状态图
G Q
S
FP
Fe3 C K
4.3 6.69
P
0.0218 0.77 2.11
C%
C—共晶点,1148℃ 4.3%C 共晶点—发生共晶反应的点。 共晶反应 — 在一定的温度下,由一定成分的液体同时结 晶出一定成分的两个固相的反应。
共晶反应的产物——共晶体——机械混合物
L(4.3%C)
1148℃
A(2.11%C )+ Fe3C (6.69%C )
纯铁
0.01%C铁素体500×
2)奥氏体(A):碳溶解在γ -Fe中形成的间隙固溶体。 γ -Fe的溶碳能力较高,最大为2.11%(1148℃)。 由于γ -Fe一般存在于727~1394℃之间,所以奥氏体也 只出现在高温区域内。显微镜观察,奥氏体呈现外形不 规则的颗粒状结构,并有明显的界限。 其 δ =40~50%,具有良好的塑性和低的变形抗力。是 绝大多数钢种在高温进行压力加工所需的组织。 3)渗碳体(Fe3C):铁与碳形成的稳定化合物。含碳 量为6.69%。 HB=800,硬度很高,脆性极大,是钢中的强化相。 显微镜下观察,渗碳体呈银白色光泽。
Fe-Fe3C相图中主要特性点含义见表:
2)Fe-Fe3C相图中特性线:
ACD线—液相线 AC—析出A CD—析出 Fe3C AECF线—固相线 AE—A析出终了线

铁碳合金--超全金相图

铁碳合金--超全金相图

2.按钢的质量分类:
* 碳素钢: Wp = (0.035% ~ 0.045%) Ws = (0.035% ~ 0.050%) * 优质碳素钢: Wp = 0.035% Ws = (0.030% ~ 0.035%) * 高级优质碳素钢: Wp ≤ 0.030% Ws = ( 0.020%~0.025% )
二)钢锭的组织及其宏观缺陷
镇静钢 半镇静钢
沸腾钢
1.镇静钢 ( killed steel )
钢液在浇注前用锰铁、硅铁和铝 进行了充分脱氧 ,Wo = 0.01%左右, 成 分较均匀、组织较致密。主要用于机 械性能要求较高的零件。
2.沸腾钢 ( boiling steel )
钢液在浇注仅前进行轻度脱氧, Wo = 0.03%~0.07%,成分偏析较严重、 组织不致密。机械性能不均匀, 冲击韧 性差, 常用于要求不高的零件。
Fe – C 二元相图
温 度
Fe
Fe3C Fe2C (6.69%C)
FeC
C
第二节 形成Fe - Fe3C 相图组元 和基本组织的结构与性能
一.组元 * 铁 ( ferrite ) * 渗碳体 ( Cementite )
二.基本组织
1.铁素体 ( F ) ( Ferrite ) 碳溶于 α–Fe中形成 的间隙固溶 体。
第六节 铁碳合金的生产及分类
钢铁的冶炼。 钢锭的组织、质量及缺陷。 碳素钢的分类、编号及用途。
一.钢铁的冶炼
铸铁锭 高炉 炼铁 炼钢生铁 生产铸铁件
转炉 平炉 电炉
生产钢件
平炉炼钢
转炉炼钢
电弧炉炼钢
1.炼铁的冶金反应特点:还原反应
Fe2O3 Fe3O4 FeO Fe 高温 CO气体

铁碳合金相图分析

铁碳合金相图分析

⑶ 白口铸铁(2.11~6.69%C)
铸造性能好,硬而脆 ① 亚共晶白口铸铁 (2.11~4.3%C) ② 共晶白口铸铁(4.3%C)
③ 过共晶白口铸铁
(4.3~6.69%C)
典型铁碳合金平衡结晶过程分析
1.工业纯铁 2.共析钢
3.亚共析钢 4.过共析钢 5.共晶白口铁
6.亚共晶白口铸铁 7.过共晶白口铸铁
2、含碳量对力学性能的影响 亚共析钢随含碳量增加,P 量增加,钢的强度、硬度升 高,塑性、韧性下降。 0.77%C时,组织为100%P, 钢的性能即P的性能。 >0.9%C, Fe3CⅡ为 晶界连续网 状, 强度下降, 但硬度仍上升。 >2.11%C, 组织中有以Fe3C为 基的Le’,合金太脆。
d.形态:组织为不规则多面体晶粒,晶界较直。
e.性能:强度低、塑性好,钢材热 加工都在区进行。 碳钢室温组织中无奥氏体。
奥氏体
⑶ 渗碳体:即Fe3C,含碳6.69%,用Fe3C或Cm表示。 a.晶格结构:复杂正交 b.性能: Fe3C硬度高、脆性大,塑性几乎为零。 Fe3C是一个亚稳相,在一定条件下可发生分解: Fe3C→3Fe+C(石墨),该反应对铸铁有重要意义。 c.溶解度:由于碳在-Fe中的溶解度很小,因而常温下 碳在铁碳合金中主要以Fe3C或石墨的形式存在。
6.亚共晶白口铸铁 2.11%<C%<4.3%
相组成物:F,Fe3C 相相对量:
F%=
Fe3C%= 组织组成物:P,Le’,Fe3CII
亚共晶白口铁金相
7.过共晶白口铸铁
亚共晶、过共晶生铁结晶过程分析
L’d—变态莱氏体
相组成物 :F,Fe3C F%=
Fe3C%= 组织组成物:Le’,Fe3C

2.5 铁碳合金和铁碳相图

2.5 铁碳合金和铁碳相图


度 含碳量对铁碳合金力学性能的影响
• C%↑, 亚共析钢中P增多而F减少。P的强度高。组织越细密,
则强度值越高。F的强度较低。所以亚共析钢的强度随C%
↑而增大。 • 共析成分之上, 由于强度很低的Fe3CII沿晶界出现, 合金强度 的增高变慢, 到约0.9%C时, Fe3CII沿晶界形成完整的网, 强度 迅速降低, 随着碳质量分数的进一步增加, 强度不断下降, 到
C点为共晶点 1148 ℃时, C点成分的L发 生共晶反应, 生成E点成分的γ和Fe3C(莱 氏体)。
S点为共析点 727 ℃时, S点成分的γ发生共 析反应, 生成P点成分的α和Fe3C(P)。
返回
Fe-Fe3C相图
返回
Fe-Fe3C相图
共晶反应:L=Ld( FeC3+ γ ) 共析反应: γ=P (FeC3+ α)
P+Fe3CⅡ
P+Fe3CⅡ+Ld’
Ld’
Fe3C+Ld’

度 含碳量对铁碳合金力学性能的影响
硬度主要决定于组织中组成相或组织组成物的硬度和 质量分数, 随碳含量的增加, 由于硬度高的Fe3C增多, 硬度 低的F减少,合金的硬度呈直线关系增大, 由全部为F的硬度
约80 HB增大到全部为Fe3C时的约800 HB。
亚共析钢的平衡结晶过程
注意事项
先析铁素体(α相)在随后的冷却过程中会析出Fe3CⅢ,但量很少可忽略
亚共析钢室温平衡组织:先析铁素体+珠光体P
利用杠杆定律计算先析铁素体与珠光体的质量分数,计算铁素体(先析铁 素体+P光体中的铁素体)与渗碳体的质量分数
过共析钢的平衡结晶过程
单相液体的冷却 L相→ γ相

铁碳合金相图

铁碳合金相图

Fe —Fe 3C 相图中的七个特性点及其温度、含碳量和含义见表3-3
A 点:纯铁的熔点,1538°C ,含碳量为0。

D 点:渗碳体的熔点,1227°C ,含碳量为6.69%
C 点:共晶点,1148°C ,含碳量为4.3% , LC= (A+Fe3Ci)
E 点:1148°C , C 在奥氏体(γ-Fe )中最大溶解度点,C=2.11%
G 点:纯铁的同素异构转变点,912°C ,α-Fe γ-Fe
S 点:共析点,727°C ,0.77 As P (F+Fe 3C Ⅰ)
P 点:727°C , C 在奥氏体(-Fe )中最大溶解度点,C=0.0218%
二、主要特性线
Fe —Fe 3C 相图中的六条线特性线及含义
(着重讲清Fe —Fe 3C 相图中的六条特性线及含义,以列表的形式,清析、明了)
1. ACD 线:液相线,在此线的上方所有的铁碳合金都为液体。

2. AECF 线:固相线,在此线的下方所有的铁碳合金都为固体。

在ACD 线与
AECF 线之间是结晶区,即过渡区。

3. GS 线:从A 中析出F 的开始线,又称A3线
4. ES 线:C 在A 中溶解度曲线,亦称为Acm 线。

5. ECF :共晶线,温度为1148° C ,c L )(3C F A e +⇔
6. PSK 线:共析线,727°C ,A1线,)(3C F F A e s +⇔。

铁碳合金相图图文解析

铁碳合金相图图文解析

铁碳合金相图图文解析一、铁碳图相简介:Fe-C合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。

铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。

1、Fe-C相图中重要的点2、Fe-C相图中重要的线3、Fe-C合金平衡结晶过程Fe-Fe3C相图中的相:Ⅳ、过共析钢(0.77%<2.11%)Ⅴ、共晶白口铁(C%=4.3%)Ⅶ、过共晶白口铸铁(C%>4.3%)二、钢中常见组织分类:奥氏体:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性铁素体:碳与合金元素溶解在a-Fe中的固溶体,具有体心立方晶格,溶碳能力极差;特征:具有良好的韧性和塑性;呈明亮的多边形晶粒组织;马氏体:碳溶于α-Fe的过饱和的固溶体,体心正方结构;常见的马氏体形态:板条、片状;板条马氏体:在低、中碳钢及不锈钢中形成,由许多成群的、相互平行排列的板条所组成的板条束。

空间形状是扁条状的,一个奥氏体晶粒可转变成几个板条束(通常3到5个);片状马氏体(针状马氏体):常见于高、中碳钢及高Ni的Fe-Ni合金中;当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶马氏体。

在生产中正常淬火得到的马氏体,一般都是隐晶马氏体。

回火马氏体:低温(150~250oC)回火产生的过饱和程度较低的马氏体和极细的碳化物共同组成的组织。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。

渗碳体:碳与铁形成的一种化合物Fe3C;特征:含碳量为6.67%,具有复杂的斜方晶体结构;硬度很高,脆性极大,韧性、塑性几乎为零;珠光体:铁碳合金中共析反应所形成的铁素体与渗碳体组成的片层相间的机械混合物;特征:呈现珍珠般的光泽;力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好;片状珠光体:铁素体和渗碳体以薄层形式,交替重叠形成的混合物;根据珠光体片间距的大小不同可以分为:珠光体(片间距450~150nm,形成温度范围A1~650℃,在光学显微镜下能明显分辨出来)索氏体(片间距150~80nm,形成温度范围650~600℃,只有高倍光学显微镜下才分辨出来)屈氏体(片间距80~30nm,形成温度范围600~550℃,只能用电子显微镜才能分辨出来)粒状珠光体:由铁素体和粒状碳化物组成。

铁碳合金相图及应用

铁碳合金相图及应用
图4-19含碳量对铁铁碳碳合金合相金图及机应械用性能的影响
§5 铁碳合金相图应用简介
1.为选材提供成分依据 2.为制定热加工工艺提供依据
铁碳合金相图及应用
1.为选材提供成分依据
若零件要求塑性,韧性好,如建筑结构和容器等, 应选用低碳钢(0.10~0.25%C);若零件要求强 度、塑性、韧性都较好,如轴等,应选用中碳钢 (0.25~0.60%C);若零件要求硬度高、耐磨性 好,如工具等,应选用高碳钢(0.6~1.3%C)。
晶过程的简明图解称为相图,又称状态图或
平衡图。
铁碳合金相图及应用
§2铁碳合金基本相
一.组元的性质 ——多晶型性
纯铁的同素异构转变:
室温~912℃ 体心立方(b、c、c)称 Fe
912℃~1394℃面心立方(f、c、c)称 Fe 1394℃~熔点体心立方(b、c、c)称 Fe
铁碳合金相图及应用
图4-16 过铁共碳合晶金白相图口及铁应用结晶过程示意图
过共晶白口铁组织金相图
铁图碳4合-金1相7图及应用
§4 合金成分、组织与性能关系
含碳量对平衡组织的影响 含碳量对铁碳合金机械性能的影响
铁碳合金相图及应用
含碳量对平衡组织的影响
铁碳合金随含碳量增高,其组织发生如下变化:
F F 3 C Ⅲ F e P P P F 3 C Ⅱ P e F 3 C Ⅱ L d ‘ e L d ‘ F 3 C Ⅲ L d ‘ e
白口铁具有很高的硬度和脆性,应用很少,但因其 具有很高的抗磨损能力,可应用于少数需要耐磨而 不受冲击的零件,如:拔丝模、轧辊和球磨机的铁 球等。
铁碳合金相图及应用
2.为制定热加工工艺提供依据
对铸造:确定铸造温度;根据相图上液相线和固相 线间距离估计铸造性能的好坏.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 1.定义 •
匀晶相图
二组元在液态和固态下均无 限溶解的二元相图叫做匀晶相 图。形成此类相图的合金系有 Cu-Ni、Bi-Sb,W-Mo,Ti-Zr,TiHf等。
• 2. 相率 在单相区f=C-P+1=2
在两相区f=C-P+1=1,即只有1 个独立变量。假定T为独立变量, 则相的成分就是温度的函数。 给定温度就可以确定相的成分。
化来建立相图的。后两种方法适用于测定材料在固态
下发生的转变。
合金成分的表示方法有两种:质量分数和摩尔分数。 如A组元的质量分数为wA、摩尔分数为xA,其 相对原子量为MA;B组元的质量分数为wB、摩尔 分数为xB,其相对原子量为MB,则:
xA=(wA/MA)/(wA/MA + wB/MB)
xB=(wB/MB)/(wA/MA + wB/MB)
其它相图。
• 2. 相图的组成元素
组元 • 组成相图的独立组成物。组元可 以是纯的元素,如金属材料的纯金 属,也可以是稳定的化合物,如陶 瓷材料的Al2O3,SiO2等。
相区 相图中代表不同相的状态的区域叫相区,相区可分为单相 区、双相区和三相区。单相区中液相一般以L表示,当有几个 固态单相区时,则由左向右依次以、、等符号表示。在两 个单相区之间有对应的两相区存在。
与一个固相在恒定温
度下转变成另外一个
成分不同的固相的过 程。
L + 。
包晶反应机理
由于相是在包围初生相,并使之与液相格开的形 式下生长的,故称之为包晶反应。
§2 铁碳合金中的组元和基本相
组 元: 纯铁、渗碳体 基 本 相: 高温铁素体(δ)、 铁素体(α)、 奥氏体(γ) 基本组织: 珠光体(P)、 莱氏体(Le/Le’)
设计合金的成分
将上述合金分别熔化后,以 非常缓慢的速度冷却到室温, 测出各合金的(温度-时间)冷 却曲线。合金在冷却过程中 发生转变(如:结晶)的起始温 度和结束温度,对应着冷却 曲线上的折点(如:L1、L2 和
S1、S 2等),即临界点。
测量合金的冷却曲线
1) 冷却速度越慢,越接近平衡条件,测量结果越准确; 2) 纯金属在恒温下结晶,冷却曲线应有一段水平线。
杠杆定律
计算二元相图中 平衡状态下 两平衡相的相对质量分数。 杠杆的支点是两相合金的成分点,端点分别是两个相的成 分点。
F = 0的含义是:在保持系统平衡状态不变的条件下,没有可以 独立变化的变量。即,任何变量的变化都会造成系统平衡状态 的变化。
纯水的PT相图:在a点,水在1 大气压、(0℃)条件下,保持液(水) –固(冰)二相平衡。温度升高,冰 溶化成水;温度降低,水结晶成 冰。也就是说,此时水的液-固平 衡转变是在恒温(0℃)下进行的。 b点是气–液二相平衡点,意义与a 点相似。在a、b之间(0℃~100℃), 水是单一的液相(P =1),此时F =1, 这说明在此范围内温度的变化不 会引起状态的改变。
2 ——表示温度(Temperature)和压力(Pressure)两个变量。对 于绝大多数的常规材料系统而言,压力的影响极小,可以不把 压力当作变量而看作常量:1个大气压(atm),因此自由度数减 少一个,相律的表达式为:
F C P 1
1、单元系统(C=1)
在压力不变(1atm)的条件下,F = C–P +1 = 2–P。自由度数F 的最小值为0,当F = 0时,P = 2。这说明,在压力不变(1atm)条 件下,单元系统最多只能有二相同时存在。 如果压力也是可变的,F = 0时,由公式F =C-P+2可知P = 3, 这意味着单元系统最多可以有三相共存。 例如炭:气相、液相、固相。 但碳的相图中最多只能三相共 存,不可能四相共存。
二、相图的建立
建立相图的方法有两种: 利用已有的热力学参数,通过热力学计算和分析建立相图; 依靠实验的方法建立相图。 目前计算法还在发展之中,实际使用的相图都是实验法建立的。 实验法建立相图的原理和步骤: 以A-B二元合金相图的建立为例。 首先,将A-B二元合金系分成 若干种不同成分的合金。 1) 合金成分间隔越小,合金数目 越多,测得的相图越精确; 2) 合金成分间隔不需要相等。
返回
工业纯铁
碳素钢
白口铸铁
3.2 Fe-Fe3C相图
过共析钢 亚共析钢 共析钢
亚共晶白口铁
过共晶白口铁
共晶白口铁
亚共析钢用途实例
45#钢 碳含量0.45%
60#钢 碳含量0.60%
共析钢的应用举例
T8钢 碳含量 0.80%
过共析钢应用举例
T12 钢 碳含量 1.2%
返回
4
典型合金的平衡结晶

共晶反应产物(+)称为
共晶体或共晶组织,具有共
晶反应的相图称为共晶相图。 • 成分低于共晶成分的合金 称为亚共晶合金;高于共晶 成分的合金称为过共晶合金。
(三)共析转变的相图
• 一个固相 在恒定温度 下同时析出 两个成分不 同固相的转 变,即:
• →+。
包晶反应
包晶反应:一个液体L
相界线 • 在相图上将各相区分隔开的线叫 相界线,由于相界线的特性不同, 可区分为: • ①液相线:其上全为液相,线下有 固相出现,可以表示为L/L+。 • ②固相线:其下全为固相,可表示 为L+/L。
③固溶线:当单相固溶体处于有限溶解时,其饱和溶解度决定 于温度,温度降低,溶解度减少,因此自固溶体中析出第二相, 相图中以固溶线反应这种析出转变。 ④水平反应线:在共晶、包晶等类型相图中有水平线,代表在 此恒定温度下发生某种三相反应。 ⑤其它相界线:不具有以上特性,仅作为相区分界线的相界线
纯铁的T-P相图 铜-银合金(的T-C)相图
水的T-P相图
我们可以从相图中得到许多重要的信息: 1 某一成分的合金,在一定的温度所处的状态及相的组 成;
2 合金在冷却过程中发生了哪些反应或转变,以及发生
反应或转变的开始与终了温度; 3 一定成分的合金室温下具有什么样的平衡组织,进一 步可以根据组织与性能的关系,预测材料的性能; 4 相图与材料的加工工艺性能也存在一定的对应关系。
C点为共晶点 1148 ℃时, C点成分的L发 生共晶反应, 生成E点成分的γ和Fe3C(莱 氏体)。
S点为共析点 727 ℃时, S点成分的γ发生共 析反应, 生成P点成分的α和Fe3C(P)。
返回
返回
包晶反应:L+δ=γ
共晶反应:L=Le( FeC3+ γ ) 共析反应: γ=P (FeC3+ α)
单相液体的冷却
匀晶反应L相中析出γ相(奥氏体A)
γ单相固溶体的冷却
γ相发生共析反应生成珠光体P
共析钢的平衡结晶过程
注意事项
共析反应生成的珠光体在冷却过程中,其中的铁素体 产生三次析出,生成Fe3CⅢ,但与共析的Fe3C连在一 起,难以分辨。
共析钢的室温平衡组织:P
P:铁素体(F)和渗碳体的两相 混合物,两相的相对质量是多少?
铁碳合金和铁碳相图
§1 相图的基础知识
§2 铁碳合金中的组元和基本相
§3 Fe-Fe3C相图 §4 典型合金的平衡结晶 §5 含碳量对铁碳合金组织和性能的影响
§1 相图的基础知识
日常生活中的实例:溜冰

材料是由相组成的,相之间有界面存在。

多相材料的整体性能取决:
相的数目
它们的相对量
各相的成分与结构
纯铁
纯铁强度低,硬度低,塑性好,很少做结构材料。
由于有高的磁导率,可作为电工材料用于各种铁芯。 同素异构转变:金属在温度(压力)改变时发生晶 体结构变化的现象。
3 Fe-Fe3C相图
相图中的三个重要点
相图中的五个单相(区) 相图中的三条水平线 相图中的四条垂直线
3 Fe-Fe3C相图
J为包晶点: 1495 ℃时, B点成分的L与H 点成分的 δ 发生包晶反应, 生成J点成分的 γ。
2.杠杆定律
此关系符合力学杠杆原理,故称之为杠杆定律。这说明在确定 的温度下,两相的相对含量可以根据杠杆定律确定。
(二)共晶合金
1.相图结构分析 共晶转变:一个液 相在恒定温度下同
时结晶为两个成分
不同的固相的转变 过程。即L→+

共晶反应的温度称为共晶 温度,E点称为共晶成分点 或共晶点。
相的尺寸和空间分布
相图(Phase diagrams)是一个材料系统在不同的化学成分、温 度、压力条件下所处状态的图形表示,因此,相图也称为状态 图。由于相图都是在平衡(Equilibrium)条件(极缓慢冷却)下 测得的,所以,相图也称为平衡相(状态)图。
相图中的相(Phase)是指具有相同的状态(气、液、固)、相 同的化学成分和结构的区域。对于成分单一的纯物质,如纯水、 纯金属、纯氧化物等,由于没有成分的变化,一般采用压力 (Pressure)-温度(Temperature)相图(PT phase diagrams)。对于常 用的合金相图,因为压力的影响很小,况且一般都是处在1个大 气压的条件下,所以不再把压力当作变量考虑,而采用温度-成 分相图。本章所介绍的主要是这一类的二元合金相图。
因此,相图在新材料的研究和开发、材料的生产加工
过程中都起着十分重要的作用。
一、相律
在平衡条件下,一个系统的组成物的组元数、相数、和自由 度数之间的关系可以由相律(Gibbs phase rule)来确定。相律的 数学表达式如下:
F CP2
式中各符号的意义分别为: F ——系统的自由度数, 即不影响系统状态的条件下,能够独 立变化的因素数。这些因素有:温度、压力、成分、相数。 C ——组成物的组元数,即系统由几种物质(纯净物)组成。 例如:纯水系统,C = 1; 对于盐水来说,由于水中含有NaCl, 所以C = 2; Al–Si合金系统,组成物为Al和Si,故C = 2。 P ——系统中能够同时存在的相(如:固相、液相等)数。
相关文档
最新文档