铁碳合金相图分析(课堂PPT)

合集下载

铁碳合金相图 ppt课件

铁碳合金相图  ppt课件

ppt课件
31
(二)铁碳合金相图分析
2、Fe-Fe3C相图中的主要特征线
ppt课件
32
(二)铁碳合金相图分析
2、Fe-Fe3C相图中的主要特征线
PSK线是共析线(727℃) PSK线又称为A1线。 在相图中,WC=0.0218%~6.69% 的铁碳合金都要发生共析转变。
ppt课件
33
(二)铁碳合金相图分析
ppt课件
48
(五)铁碳合金相图的应用
(2)在铸造方面的应用 选择浇注温度:常为液相线上50~1000C 广泛应用共晶成分的铸铁 铸钢常用含碳量为0.3-0.6%成分
(3)在锻压方面的应用 选择始锻温度: 在AE线以下150-2500C 选择终锻温度: 亚共析钢在8000C左右 过共析钢略高于PS线
3
(一)铁碳合金的基本组元与基本相
(2)铁素体 性能:
与纯铁相似,强度、 硬度低,而塑性和韧性好。 组织:
呈明亮的多边形晶粒, 晶界曲折。
ppt课件
4
(一)铁碳合金的基本组元与基本相
(3)奥氏体
碳溶于γ—Fe中形成的间隙固溶体,用符号A表示。
727℃
溶碳量0.77%
1148℃
溶碳量2.11%
ppt课件
35
(二)铁碳合金相图分析
3、Fe-Fe3C相图中的相区
(1)单相区 相图中有F、A、
L和Fe3C四个单相区。
ppt课件
36
(二)铁碳合金相图分析
3、Fe-Fe3C相图中的相区
(2)两相区 相图中有A+F、L+A、
F+ Fe3C 、L+ Fe3C和 A+Fe3C五个两相区。

课题四铁碳合金相图课件

课题四铁碳合金相图课件

市场需求的预测
汽车工业需求
随着电动汽车和智能网联汽车的发展,对高性能、轻量化铁碳合 金材料的需求将不断增加。
航空航天需求
随着航空航天技术的进步,对高强度、耐高温的铁碳合金材料的 需求也将不断增长。
基础设施建设需求
随着全球基础设施建设的不断推进,对高强度、耐腐蚀的铁碳合 金材料的需求也将持续增加。
THANKS
化学成分和组织结构等。
数据处理
对实验数据进行整理、分析和处 理,利用数学方法绘制出相图。
图形绘制
将处理后的数据用图形的方式表 示出来,形成铁碳合金相图。
相图的解读
平衡状态
根据相图可以确定不同成分的铁碳合金在不同温度下的平衡状态 ,如单相区、两相区、固溶体区等。
相变规律
相图描述了铁碳合金在不同温度和成分下的相变规律,包括同素异 晶转变、共晶反应和共析反应等。
感谢观看
生产工艺的改进
高效成形技术
01
采用先进的成形工艺,如精密铸造、粉末冶金等,提高铁碳合
金材料的生产效率和产品质量。
节能减排技术
02
在生产过程中引入节能减排技术,降低铁碳合金生产的能耗和
污染物排放,实现绿色制造。
智能化生产
03
利用物联网、大数据等先进技术,实现铁碳合金生产的智能化
和自动化,提高生产效率和产品质量。
相图中的各个区域代表了不同成分 的铁碳合金在不同温度下的平衡状 态,包括液相区、固相区和两相区 。
特性线
特性线是相图中的一些关键温度线 ,如熔点线、共晶点线、共析点线 等,它们对确定合金的平衡状态和 相变过程具有重要意义。
相图的绘制
实验数据
铁碳合金相图的绘制需要大量的 实验数据,包括不同成分的铁碳 合金在不同温度下的物理性质、

铁碳合金相图教学课程.ppt

铁碳合金相图教学课程.ppt

铁碳合金相图教学课程.ppt第一节铁碳相图铁碳合金的各种化合物:一、铁碳合金的组元 1、Fe: 过渡族元素,熔点1538℃,密度 7.84g/cm3。

纯铁有同素异构转变:金属在固态下发生的晶格类型的转变。

2、Fe3C :是铁和碳组成的复杂结构的间隙化合物,又叫渗碳体。

性能特点是硬而脆。

性能如下:σb=30MPa,δ=0,ψ=0 aK=0,HB=800kgf/mm2 二、铁碳合金中的相 1、液相L。

2、δ相,又叫高温铁素体。

在1495℃时的最大溶碳量为0.09%。

3、α相,又叫铁素体( F,α)。

在727 ℃时的最大溶碳量为0.0218%。

4、γ相,又叫奥氏体(A,γ)。

1148 ℃时的最大溶碳量为2.11%。

5、 Fe3C相,化合物相,有条状,网状,片状和粒状。

三、相图中重要的点和线包晶反应:LB+δH A J 共晶反应: LC A E +Fe3C 共晶反应产物是奥氏体与渗碳体的共晶混合物,叫莱氏体,以Le表示,莱氏体中的渗碳体叫共晶渗碳体。

共析反应:As F P +Fe3C 共析反应产物是铁素体与渗碳体的共析混合物,叫珠光体,以P表示,珠光体中的渗碳体叫共析渗碳体。

珠光体的强度高,塑性、韧性和硬度介于渗碳体和铁素体之间。

GS线是合金冷却时自A 中开始析出F的临界温度线,叫A3线。

ES线是碳在A中的固溶线,叫Acm线。

二次渗碳体:碳含量大于0.77%的铁碳合金自1148℃冷却到727℃的过程中,从A中析出的渗碳体,用Fe3C Ⅱ表示, Acm 线即为从A中开始析出Fe3C Ⅱ的临界温度线。

PQ线为碳在F中的固溶线。

三次渗碳体:从碳含量大于0.008%的铁碳合金自727℃冷至室温的过程中,从F中析出的渗碳体,用Fe3C Ⅲ表示, PQ线为从F中开始析出Fe3C Ⅲ的临界温度线。

第二节铁碳合金的平衡结晶过程根据铁-渗碳体相图,铁碳合金可分为三类:(1)工业纯铁:C<0.0218% (2)钢( 0.0218%< C<=2.11%) 共析钢:C=0.77%,亚共析钢:C<0.77%,过共析钢:C>0.77%。

铁碳合金相图PPT课件

铁碳合金相图PPT课件
奥氏体性能:相对于铁素体具有一定的强度和硬度,塑性 和韧性也好。 (σb=400 MPa,170~220HBS),塑性和 韧性也好(δ=40%~50%)。具有顺磁性,可作为无磁钢。5
无磁钢:没有铁磁性从而不能被磁化的稳定奥氏体钢。Fe-MnAl-C系列奥氏体,其电磁性能(磁导率),组织稳定,力学性能 优良,磁导率低而电阻率高,在磁场中的涡流损耗极小。

0.77 c 0.77 0.0218
100%
P

c 0.0218 0.77 0.0218
100%


6.69 c 6.69 0.0218
100%
Fe3C

c 0.0218 6.69 0.0218
100%
30
亚共析钢的组织
所有的亚共析钢室温组织都是由铁素体和珠光体 组成,其差别仅是铁素体与珠光体的相对量不同, Wc越高,珠光体越多,铁素体越少。
无磁钢的用途: (1)石油钻井无线随钻侧斜系统(MWD):是在油田钻井过程
中的专业定向仪器。一般用于定向井,而定向井需要测斜度及 方位的,测斜时仪器在无磁钻具内部可以免受外界磁场的影响 从而保证结果的准确性。 (2)高压电器和大中型变压器油箱内壁、铁芯拉板、线圈夹 件、螺栓、套管、法兰盘等漏磁场中的结构件; (3)起重电磁铁吸盘、磁选设备筒体、选箱以及除铁器、选 矿设备等;
100%
13.4%
35
过共晶白口铸铁(Wc=5%)
Ld

6.69 6.69

5.0 4.3
100%

71%
Fe3C

5.0 4.3 100% 6.69 4.3

29%

工程材料成型与技术基础之铁碳合金相图(ppt 28页)PPT学习课件

工程材料成型与技术基础之铁碳合金相图(ppt 28页)PPT学习课件

第四节 铁碳合金相图
1、相图分析
因此,剩余的液相就发生共晶转变形成莱氏体。 第四节 铁碳合金相图
图2-24 亚共析1钢) 组铁织金碳相合图 金相图中的特征点:
共晶生铁的组织转变如图2-27 (2) Fe-Fe3C相图虽然表示了铁碳合金在不同温度下的组织状态,但这种组织都是从高温,以极其缓慢冷却速度得到的,是一种平衡组织。 共晶白口铁(Fe3CI+L’d) → Fe3C(C=6 . 共晶合金有良好的铸造性能,在铸造生产中获广泛应用。 2到3点间冷却时,奥氏体中同样要析出二次渗碳 2、合金的基本相:固溶体、金属化合物、机械混合物; (2)几种典型铁碳合金结晶过程分析 亚共晶白口铁的室温组织为珠光体、二次渗碳体和低温莱氏体。 第四节 铁碳合金相图 第四节 铁碳合金相图 第四节 铁碳合金相图 白口铁中都存在莱氏体组织,具有很高的硬度和脆性,既难以切削加工,也不能锻造。 77%,因而发生共析反应转变为珠光体,共析反应结束后,合金由珠光体和二次渗碳体组成,4点以下再继续冷却,组织基本上不再变 化。 (Fe—Fe3C)相图,如图2-20所示为简化图。
第四节 铁碳合金相图
2) 铁碳合金相图中的特征线:
图2-20 Fe-Fe3C相图主要由包晶、共晶和共析三个恒温转变组成。 (1)ACD线为液相线,AECF线为固相线。 (2)在ECF水平线(1148℃)发生共晶转变LC↔γE + Fe3C ,其转变产物 是奥氏体和渗碳体的机械混合物,即莱氏体。碳的质量分数为2.11 %~6.69%的铁碳合金都发生这种转变。 (3)在PSK水平线(727℃)发生共析转变γS ↔αP + Fe3C ,其转变产物是 铁素体和渗碳体的机械混合物,即珠光体。所有碳质量分数超过0.02 %的铁碳合金都发生这个转变。共析转变温度常标为A1温度。

铁碳合金相图知识汇总.ppt

铁碳合金相图知识汇总.ppt

相相对量:F%=
Fe3C%=
组12织组成物:F 和 Fe3CIII
工业纯铁的机械性能特点是强度低、硬度低、 塑性好。主要机械性能如下: 抗拉强度极限 σb 180MPa~230MPa
抗拉屈服极限 σ0.2 100MPa~170MPa 延伸率 δ 30%~50% 断面收缩率 ψ 70%~80% 冲击韧性 ak 1.6×106J/m2~2×106 J/m2
一些热处理工艺如退火、正火、淬火的加热 温度都是依据Fe- Fe3C相图确定的。因此有重要 的意义。
34
在运用Fe-Fe3C相图时应注意以下两点: ①Fe-Fe3C相图只反映铁碳二元合金中相的平
衡状态, 如含有其它元素, 相图将发生变化。 ②Fe-Fe3C相图反映的是平衡条件下铁碳合金 中相的状态, 若冷却或加热速度较快时, 其组 织转变就不能只用相图来分析了。
23
Fe3C%=
7.过共晶白口铸铁
相组成物:F%=
组织组成物:Le’%=Lc%=
24
Fe3C%= Fe3C%=
小结:标注组织的铁碳相图
25
第ቤተ መጻሕፍቲ ባይዱ节、Fe-C合金的成分-组织-性能关系
含碳量——铁碳合金在室温下的组织都由F和 Fe3C两相组成, 两相的质量分数由杠杆定律确
26 定。随C%↑→F%↓,Fe3C%↑
铁熔点或凝固点为1538℃, 相对密度是7.87g/cm3。 纯铁 从液态结晶为固态后, 继续冷 却到1394℃及912℃时, 先后发 生两次同素异构转变。
11
1.工业纯铁(C%≤0.0218%)
L → L+A → A → A+F → F → F + Fe3CIII
相组成物:F+Fe3C (C%>0.0008%)或 F(C%<0.0008%)

铁碳合金的相图的详细讲解 PPT

铁碳合金的相图的详细讲解 PPT
铁碳合金的相图的详细讲解
一、铁碳合金的基本组织
⒈ 组元:Fe、 Fe3C ⒉相
⑴ 铁素体:
碳在-Fe中的固溶体称铁素 体, 用F 或 表示。
铁素体
是体心立方间隙固溶体。铁素体的溶碳能力很低,在727℃时 最大为0.0218%,室温下仅为0.0008%。
铁素体的组织为多边形晶粒,性能与纯铁相似。
高温莱氏体:727 ℃以上,奥氏体与渗碳体,以Le表示 低温莱氏体:727 ℃以下,珠光体与渗碳体,以L’e表示 为蜂窝状, 以Fe3C为基,性能硬而脆。
莱氏体
莱氏体 ( Ld )
相图的建立
相图的建立
热分析法
温 度




时间 A 90 70 50 30 B


L
a
L + S
S
A
ab : 液相线 ab : 固相线 L : 液相区 S : 固相区 L+S:液固共存区
亚共晶白口铁( hypoeutectoid white iron )
过共晶白口铁( hypereutectoid white iron )
1.工业纯铁 ( Wc < 0.0218% )
工业纯铁组织金相图
2. 共析钢 ( Wc = 0.77% )
共析钢组织金相图
3.亚共析钢 ( Wc = 0.45% )
莱氏体
(二)铁碳合金的组织转变
工业纯铁 ( ingot iron )
共析钢
( eutectoid steel )
亚共析钢 ( hypoeutectoid steel )
过共析钢 ( hypereutectoid steel )
共晶白口铁 ( eutectoid white iron )

铁碳相图简介PPT课件

铁碳相图简介PPT课件
上述Wc=2.11%具有重要的意义,它是钢和铸铁 (生铁)的理论分界线。
2021
30
Wc对铁碳合金机械性能的影响
F为软韧相,Fe3C为硬脆相,故Fe-C合金的力学性能取决于
α和Fe3C两相的相对量及它们的相互分布特征。
硬度(HB) 延伸率δ(塑性、韧性) 强度(Mpa)
铁素体 50-80 30%-50%
2021
28
(2)钢
▪ 钢 ( steel) 是 含 碳 量 在 ( Wc=0.0218~
2.11%)之间的Fe、C合金。其特点是:
▪ 高温组织为单相的γ,具有很好的塑性。因而 可以进行锻造、轧制等压力加工。根据其室温 组织的不同,碳钢(carbon steel)又可分为:
▪ 共析钢(eutectoid steel):Wc=0.77%
2021
36
一、锻造工艺学及其性质
▪ 锻造是利用锻压机械对金属坯料施加压力, 使其产生塑性变形,以获得具有一定机械性 能、一定形状和尺寸的锻件的加工方法。
▪ 锻造和冲压同属塑性加工性质,统称锻压
2021
37
锻造生产的特点及其在国民经济中的作用
▪ 特点 ▪ 地位
2021
38
大型锻件主要应用于以下方面
2021
3
Fe—C合金概述
▪ 在铁碳合金中,Fe与C可以形成一系列化合物:Fe3C、
Fe2C、FeC。 所 以 , Fe-C 相 图 可 以 划 分 Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分
。成由Fe于-F化e3合C,
物是硬脆相,后面三部分相图实际上没有应用价值
(工业上使用的铁碳合金含碳量不超过5%),因此,
③ PQ线: 碳在α中的溶解度 线.。冷却时从α中 开 始 析 出 Fe3CⅢ 或 加 热 时 Fe3CⅢ 全 部 溶入α中的转变线.

铁碳相图ppt课件

铁碳相图ppt课件
Fe3C
Fe3C + α
Fe3CⅡ P
Fe3CⅡ Fe3C共析 α共析 P
组织构成图
F+Fe3CⅢ Ld′
P
F
F先+P
解释工业纯铁、钢、白口铸铁组织上的主要差别
L+δ
A
δ
HN
1495℃ JB
T G
γ
α+γ
P
0.S77
α 0.0218
铁碳相图
2L.1E1+γ
L L +Fe3C D
4.3 C
1148℃ F
L→γ
γ1.0 →γ0.77 +Fe3CⅡ
γ
P +Fe3CⅡ
Fe3CⅡ
P
合金⑤ 共晶白口铁
1148℃发生共晶转变 1148 LC γE+ Fe3C
萊氏体 —— Ld
727
室温组织:
变态萊氏体—Ld′(P+ Fe3C +Fe3CⅡ)
合金⑥ 亚共晶白口铁
组织构成: P + Ld′
1148
0.77
解度曲线 K GS: 先共析α 6.69 相析出线
0.0008Q
Fe
C%
Fe3C
L+δ
J点―包晶点
A 1495℃
δ
B
L
HN J
L+γ
L +Fe3C D
1495℃ 0.17% C
T
γ
2.1 1E
4.3 C
1148℃ F
C点―共晶点
G α+γ 0.77 PS
α 0.0218
γ +Fe3C
A1 727 ℃
亚共析钢硬度与相构成或碳含量关系: HB≈80×w(F) % + 800×w(Fe3C) %
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁碳元素在地壳中占41.2%,储量集中, 易于开采,而且易于从矿石中还原成金属;
铁碳合金的强韧性配合得好;
2
铁碳合金可形成两个同素异构体,多种组织, 性能变化范围宽;
776℃以下,具有铁磁性; 熔点为1538 ℃,热激活过程可以在不太高的温
度下进行。 可以有意无意地加入其它元素,得到各种各样
0 0.53 4.30 6.69 2.14 6.69
0 0.09
纯铁的熔点 包晶转变时液态合金的成分
共晶点 渗碳体的熔点 碳在γ-Fe中的最大溶解度 共晶反应生成的渗碳体 α-Fe向γ-Fe转变温度(A3) 碳在δ-Fe中的最大溶解度
12
J 1493℃ 0.16
包晶点
K
727℃ 6.Βιβλιοθήκη 9共析反应生成的渗碳体铁端部分,其中C含量的范围是0~6.69%
7.
Ⅱ 液体、固溶体和石墨之间的稳定平衡,其中C
含量的范围是0~100%。
8.
通常,相图中有虚实两线,实线表示Ⅰ类,虚线
表示Ⅱ类,无虚线部分表示两者共有,此称为双线铁碳相
图。
10
7.4 Fe-Fe3C相图
1. Fe-Fe3C相图
A
1538℃
H
B1493℃
J
L
N 1394℃ γ+ L
1154℃
C
γ
E 1148℃
D
L+Cm F
G 910℃
γ+Cm
M O770℃
αP S
738℃ 727℃
K
α +Cm
Q
230℃
Fe
1
2
3
4
5
6
Fe3C 11
符 号 温 度/℃ ω(C)/%
说明
A 1538℃ B 1493℃ C 1147℃ D 1227℃ E 1147℃ F 1147℃ G 912℃ H 1493℃
第七章 铁 碳 合 金
7.1 概 述 7.2 纯 铁 7.3 碳与铁碳合金中的相 7.4 Fe-Fe3C相图 7.5 Fe-C相图 7.6 铁碳合金成分、组织与性能间的关系 7.7 钢中的杂质
1
7.1 概 述
钢铁是铁与碳的合金,各种合金钢也是 在铁与碳的基础上,为了具有某种特殊的性能 而添加一些合金元素。钢铁是目前人类社会中 最重要的金属材料。因此,铁与碳的合金是最 重要的合金。
其中: δ-Fe为体心立方晶体结构。 γ-Fe为面心立方晶体结构,此时发生第一次同素异形 转变; γ-Fe面心立方的边长为0.36563nm,最近原子间距为 0.25850nm,原子半径 0.12925nm,四面体间隙的边 长为0.02908nm,八面体间隙边长为 0.05350nm。 α-Fe为体心立方晶体结构,此时发生第二次同素异形 转变; α-Fe体心立方的边长为0.28663nm,最近原子间距为 0.24821nm,原子半径 0.12410nm,四面体间隙的边 长为0.03596nm,八面体间隙边长为 0.01862mm。
2. 碳在铁中的固溶体
3.
碳与铁通过相互作用可形成铁素体和奥氏体
两种间隙固溶体以及化合物渗碳体。
4.
铁素体是碳原子作为间隙式溶质溶入到体
心立方晶体铁α-Fe的间隙中形成的间隙式固溶体。
C在α-Fe的溶解度是:G(wt%)=2.55exp(-
9700/RT),碳在体心立方中的溶解度十分有限,
727℃时,C在α-Fe中的溶解度是0.022%。
渗碳体是铁与碳组成的化合物Fe3C。 渗碳体具有复杂的斜方晶格,其中a=0.4524nm, b=0.5089nm,c=0.6743nm。单胞中有12个Fe原子, 4个碳原子,Fe:C=3:1。晶胞中每个碳原子周围 有6个铁原子,组成一个三角棱柱,碳原子位于三角 棱柱的中心。含碳为6.69%。
渗碳体具有很高的硬度,HV=950~1050,而塑 性几乎为零,常温下具有铁磁性,居里点是230℃, 熔点计算值为1227℃。
是2.25g/cm3。
3.
碳的原子半径为0.34nm。碳有两种存在
形式:石墨和金刚石,石墨较为广泛。
4.
石墨是由碳原子层组成,层内原子呈正六
边形。层内原子由共价键结合,原子间距为
0.142nm。层间原子由弱金属键结合,间距为
0.34nm。
5.
石墨的晶体结构属于六方晶系,其中a=
0.46nm,c=0.670nm,每个晶胞含有四个原子。 7
5.
铁素体有与纯铁相同的性能,居里点是
770℃。常用符号:F或α
6.
奥氏体是碳原子作为间隙式溶质溶入到γ-
Fe中的间隙形成的间隙式固溶体。
8
由于面心立方的八面体间隙较大,因此γ-Fe的溶碳能 力较高,1147℃时碳在γ-Fe中有最大溶解度,2.14%。
奥氏体有较好的塑性,具有顺磁性。常用A或γ表 示。
5
3. 纯铁的性能与应用
4. 力学性能:σb=176~274MPa
5.
σ0.2=98~166MPa
6.
δ=30~50%,ψ=70~80%
7.
HB=50~80
8.
aK=1.5~2MNm/m2
9. 应 用:主要应用于电子材料,作为铁芯。
6
7.3 碳与铁碳合金中的相
1. 碳的物理化学特性
2.
碳的原子序数是6,原子量是12.01,密度
M 770℃
0
纯铁的磁性转变点
N 1394℃
0
γ-Fe向δ-Fe的转变温度(A4)
O
770℃ ~0.5 ω(C)≈0.5%合金的磁性转变温度
P
727℃ 0.022
碳在α-Fe中的最大溶解度
S
727℃ 0.76
共析点(A1)
Q
600℃ 0.0057
600℃时碳在α-Fe中的溶解度
13
由上可知,Fe-Fe3C相图中有以下组成部分: 液相线:ABCD 固相线:AHJECF 五个单相区:L,δ,γ,α和Fe3C 七个两相区:L+ δ,L+ γ,L+ Fe3C, δ+ γ ,
的性能。
3
7.2 纯 铁
1. 铁元素的化学特性
化学元素铁的原子序数是26,在第四周期, 属于过渡族,原子量是55.85,原子轨道是- 3d64s2。
铁的熔点是1538℃,汽化温度是2738℃, 密度为7.87g/cm3。
2. 纯铁的多形性
从高温到低温,纯铁由液相依次发生了三种 多形性变化:
4
液相(L) 1538℃ δ-Fe 1394℃ γ-Fe 912℃α-Fe
9
3. 铁碳合金相图
4.
渗碳体在热力学中上是个亚稳定的相,石墨才是
稳定的相。但在实际中,石墨的表面能很大,形核需要很
高的能垒,一般条件下,碳大多和铁结合成渗碳体,只有
在极缓慢冷却或加入某些合金元素使石墨的表面能降低,
碳才能以石墨的形式存在。
5.
因此,铁碳相图有两类:
6.
Ⅰ 液体、固溶体和渗碳体之间亚稳平衡,是紧靠
相关文档
最新文档