传热学 辐射换热计算
工程热力学与传热学-§11-4 辐射换热的计算方法
X 1, 2
12
A1Eb1
1
A1
A1
A2
cos1 cos2 r2
dA1dA2
1
A2
A1
A2
cos1 cos2 r2
dA1dA2
可以看出,在上述假设条件下,角系数是几何量,只取
决于两个物体表面的几何形状、大小和相对位置。
(2)角系数的性质
1)相对性(互换性)
2)完整性:
2)代数法: 利用角系数的定义及性质, 通过
代数运算确定角系数。
图(a)、(b): X1,2 1
A1 X1,2 A2 X 2,1
X 2,1
图(c)
: X1,2
X1,2a
A2a A1
A1 A2
图(d) :X1,2 X 2,1 1
三个非凹表面构成的封闭空腔
6
§11-4 辐射换热的计算方法
对于黑体表面,=1,表面辐射热阻
为零, J Eb 。
表面辐射热阻网络单元
(2)两个漫灰表面构成的封闭空腔中的辐射换热
若两个漫灰表面1、2构成封闭空腔,
T1>T2,则表面1净损失、表面2净获得的
热量分别为
1
Eb1 J1
1 1
2
J2 Eb2
12
A11
A2 2
11
§11-4 辐射换热的计算方法
A11 A1 X1,2 A2 2
两表面封闭空腔的 辐射网络 :
12
§11-4 辐射换热的计算方法
对于两块平行壁面构成的封闭空腔:
A1 A2 A
X1,2 X 2,1 1
12
《传热学》第9章-辐射换热的计算
J = E + ρG = εEb + (1 − α )G
漫灰表面之间的辐射换热
单位面积的辐射换热量=?
应该等于有效辐射与投入辐射之差
Φ= A
也等于自身辐射力与吸收的投入辐射能之差
J− Φ A
G = εEb
α =ε
− αG
Φ
=
Aε 1−ε
X
1,
2
1 ε1
− 1
+1+
X
2.1
1 ε2
− 1
= ε s A1 X1,2 (Eb1 − Eb2 )
εs
=
X
1,
2
1 ε1
−1 + 1 +
X
2.1
1 ε2
− 1 −1
系统黑度
6
两个漫灰表面构成的封闭空腔中的辐射换热
两块平行壁面构成的封闭空腔
角系数的曲线图
(a)平行的等面积矩形
(c)垂直的两个矩形
2 角系数的性质
(1) 相对性 (2) 完整性
A1 X 1,2 = A2 X 2,1
-互换性
封闭空腔的所有表面的角系数之和等于1
n
∑ X i , j = X i ,1 + X i ,2 +L+ X i ,i +L + X i ,n = 1
j =1
黑体辐射
Lb
=
Eb π
角系数的定义式
∫ ∫ Φ1→2 =
A1
A2
Eb1
cosθ1 cosθ 2 πr 2
传热学 第九章 辐射换热的计算
9-2 两表面之间的辐射换热过程
1. 黑体表面之间的辐射换热
任意位置的两个黑体表面1、2,从表面1发出并直接投射
到表面2上的辐射能为
1 2 A1 X 1,2 E b1
从表面2发出并直接投射到表面1上的辐射能为
21 A2 X 2 ,1 E b 2
两个表面之间的直接辐射换热量为
X 1,2 X 2 ,1 1
A2 a
A1
9-1 角系数
4. 角系数的计算方法
(2) 代数法
由三个垂直于纸面方向无限长的非凹表面构成的封闭空腔,
三个表面的面积分别为A1、A2、A3 。
X i ,i 0
根据角系数的完整性
角系数的相对性
A1 X 1, 2 A1 X 1, 3 A1
A1 X 1,2 A2 X 2 ,1
Eb1 cos 1 cos 2 dA1dA2
1d 1
dd11
2
2 Lb1 dA1 cos
2
r
Eb1
dA2 cos 2
Lb1
d1
r2
9-1 角系数
2. 角系数的定义式
12
cos 1 cos 2
cos 1 cos 2
dA1dA2
E b1
dA1dA2 E b1
2
2
A1 A2
A1 A2
r
r
表面1对表面2的角系数为
X 1,2
12
A1 Eb1
1
A1
cos 1 cos 2
A1 A2 r 2 dA1dA2
1
A2
cos 1 cos 2
辐射传热的计算
Q12
A(Eb1Eb2)A T14T24
1112 1
21
在两块平壁之间加一块大小一样、表面发射率相同的遮热板 (忽略导热热阻)
辐射换热量减少为原来的 1/2,即:
112
1 2
12
A 3X 3,1A 3X 3,2A 3
根据角系数的相对性有:
A1X1,2A2X2,1
A1X1,3A3X3,1 A2X2,3A3X3,2
三个非凹表面组成的封闭辐射系统
X1
2
A1
A2 A3 2A1
X1,3
A1
A3 A2 2A1
X2,3
A2
A3 A1 2A2
黑体间的辐射换热及角系数例题讲解:
[例] 试用代数法确定如图所示
的辐射和吸收是在整个气体容积中进行的,属 于体积辐射。
(4) 气体的反射率为零
气体辐射的特点1:
在工业上常见的温度范围内,单原子气体 及空气、H2、O2、N2等结构对称的双原 子气体,无发射和吸收辐射的能力可认为 是透明体。 CO2、H2O、SO2、CH4和CO等气体都具 有辐射的本领。
例:煤和天然气的燃烧产物中常有一定浓度的CO2和
例:大气中的臭氧层能保护人类免受紫外线的伤害
气体辐射的特点3:
热射线穿过气体层时,辐射能沿途被气体 分子吸收而逐渐减弱。其减弱程度取决于 沿途碰到的气体分子数目,碰到的分子数 目越多,被吸收的辐射能也越多。因此气 体的吸收能力αg与热射线经历的行程长 度L,气体分压力p和气体温度Tg等因素有 关。
9.5 辐射传热的控制(强化与削弱)
遮热板的应用:
在现代隔热保温技术中,遮热板的应用 比较广泛。例如:
传热学重点、题型讲解第九章 辐射换热计算(完整资料).doc
【最新整理,下载后即可编辑】第九章辐射换热计算第一节黑表面间的辐射换热一、任意位置两非凹黑表面间的辐射换热1.黑表面间的辐射换热图9-1 任意位置两非凹黑表面的辐射换热122dA dA b1111d d cos dΦI Aθω-=Eb1=πI b1;2221cosddrAθω=12212dA dA b1122cos cosd d dπΦE A Arθθ-=21212dA dA b2122cos cosd d dπΦE A Arθθ-=12122122212dA,dA dA dA dA dA b1b2122cos cosd d d()d dπΦΦΦE E A Arθθ--=-=-1212122121,2dA,dA b1b2122cos cosd()d dπA A A AΦΦE E A Arθθ==-⎰⎰⎰⎰(9-1)2.角系数12121122b1122dA dA12dA,dA22dA b11cos cosd dd cos cosπdd dπE A AΦrX AΦE A rθθθθ-===12122121122dA dA2dA A12dA,A22dA dAdd cos cosdd dπAAΦΦX AΦΦrθθ--===⎰⎰12121211122dA dAA A121,2122A A1dcos cos1d dπA AA AΦΦX A AΦΦA rθθ--===⎰⎰⎰⎰(9-2a)212212AAA1,2ddπcoscos121212AArAΦΦXAA⎰⎰==-θθ(9-2b)21,212,1AXAX=(9-3)3.辐射空间热阻图9-2 辐射空间热阻21,2b2b112,1b2b12,1)()(AXEEAXEEΦ-=-=(9-4)b1b21,21,211E EΦX A-=Φ1,2=(E b1-E b2)A = σb(T14- T24)A 二、封闭空腔诸黑表面间的辐射换热图9-3 多个黑表面组成的空腔图9-4 三个黑表面组成空腔的辐射网络图9-5 例9-1附图:,1,2,,1ni i i i n i jj ΦΦΦΦΦ==++⋅⋅⋅⋅⋅⋅=∑ 将上式除以i Φ,按角系数定义,可得,1,2,n ,11ni i i i jj X X X X ==++⋅⋅⋅⋅⋅⋅=∑(9-5)∑∑∑∑====-=-==nj nj i j i nj i j i i j i nj j i i A X E A X E A X E E ΦΦ11,bj 1,bi ,bj bi 1,)(∑=-=nj j i j i i A X E A E Φ1,bj bi(9-6)【例9-1】∑=-=311,b 1b11j j j j A X E A E Φ(a )∑=-=312,b 2b22j jj j A X E A E Φ (b ) 0313,b 3b33=-=∑=j j j j A X E A E Φ(c )02,21,22,11,1====X X X X13,23,1==X X31,313,1A X A X =32,323,2A X A X =213,11,33,223/210.252A r X X X A r ππ==⨯==13,32,31,3=++X X X5.03,3=X 033,3b323,2b213,1b13b3=---A X E A X E A X E A E4b b T E σ=2424143T T T +=T 3=415.6K 或者142.6℃1b11b11,11b22,12b33,1344b11b31,3111344311b 244()()()100100473415.61 5.67()()1801.0W 2100100b ΦE A E X A E X A E X A E A E X A A T T T TA C σπ=---=-=-⎡⎤=-⎢⎥⎣⎦⎡⎤=⨯⨯⨯-=⎢⎥⎣⎦【讨论】π411212121=+=+=∑A A A A A AR4444b1b2121,2()π5.67 4.73 3.13)1801.0W 4/π4b E E T T ΦRσ--===⨯⨯-=∑(第二节 灰表面间的辐射换热一、有效辐射图9-6 有效辐射示意图图9-7 辐射表面热阻1.有效辐射J1=ε1E b1+ρ1G1=ε1E b1+(1-α1)G1W/m2(a)2. 辐射表面热阻11b111111GEGJAΦαε-=-=W/m2(b)1111b11b111111)(1AJEJEAΦεεεε--=--=W(9-7)二、组成封闭腔的两灰表面间的辐射换热图9-8 两个灰表面组成封闭腔的辐射换热网络图9-9 空腔与内包壁面间的辐射换热22212,1111b2b12,1111AAXAEEΦεεεε-++--=W(9-8a))11(1)11()(2212,112b 1b 12,1-++--=εεA A X E E A Φ1,2112()W s b b X A E E ε=-(9-8b ))11()11(1121,212,1s -+-+=εεεX X1.无限大平行灰平壁的辐射换热A 1=A 2=A ,且X 1,2=X 2,1=1,)(111)(4241b s 212b b12,1T T A E E A Φ-=-+-=σεεε W (9-9)111121s -+=εεε2.其中一个表面为平面或凸表面的辐射换热)11(1)(22112b 1b 12,1-+-=εεA A E E A Φ W (9-10)A 2 >>A 1,且ε2的数值较大Φ1,2=ε1 A 1(E b1-E b2)W(9-11)三、封闭空腔中诸灰表面间的辐射换热1.网络法求解图9-10三个灰表面组成封闭腔辐射换热网络图9-11 例9-4附图图9-12 例题9-5附图节点1 011113,11312,1121111b1=-+-+--AXJJAXJJAJEεε(a)节点2 011123,22321,2212222b2=-+-+--AXJJAXJJAJEεε(b)节点3 011132,33231,3313333b3=-+-+--AXJJAXJJAJEεε(c)【例9-4】X 1,2= X 2,1=0.38X 1,3=X 2,3=1-X 1,2=1-0.38=0.62计算网络中的各热阻值:A 1=A 2=π⨯0.32=0.283m 21.14283.02.02.011111=⨯-=-A εε m -23.5283.04.04.011222=⨯=--A εε m -23.9283.038.01112,1=⨯=A X m -27.5283.062.011123,213,1=⨯==A X A Xm -2流入每个节点的电流总和等于零07.53.91.141b3121b1=-+-+-J E J J J E 07.53.93.52b3212b2=-+-+-J E J J J E 202447731067.5484b1=⨯⨯==-T E b σW/m 235445001067.5484b2=⨯⨯==-T E b σW/m 2 4593001067.5484b3=⨯⨯==-T E b σW/m 2J 1=5129 W/m 2 J 2=2760W/m 2b1111112024451291072W 114.1E J ΦA εε--===-b22222235442760148W 1 5.3E J ΦA εε--===- 312()(1072148)1220W ΦΦΦ=-+=-+=-【例9-5】1.1411111=-=A R εεm -23.512222=-=A R εεm -23.9112,12,1==A X R m -2 7.5113,13,23,1===A X R R m-2E b1=20244W/m 2 E b2=3544W/m 2∑++++=23,23,12,11111R R R R RR =14.1+5.243.57.57.513.911=+++m -2b1b21,2202443544682W 24.5E E ΦR --===∑J 1=E b1-Φ1,2⨯R 1=20244-682⨯14.1=10627.8 W/m 2J 2=E b2+Φ1,2⨯R 2=3544+682⨯5.3=7185.6 W/m 2J 3=(J 1+J 2)/2=8893.2 W/m 2J 3=G 3=E b3=σ b T 341/41/4b3388893.2629K5.6710b E T σ-⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⎝⎭2. 值解法图9-13 例9-6(a )(b )附图及其辐射换热网络∑==ni i j i i j j A X J G A 1,j j εα=∑=-+=n i ij i i j j j j j j A X J A E A J 1,b )1(εε(9-12)∑∑===ni i j i j ni ij i i X J A A X J 1,1,b ,1(1)nj j j j i j i i J E J X εε==+-∑(9-13)4b 1,11j j j jjn i i j i T J X J σεεε⎥⎥⎦⎤⎢⎢⎣⎡-=--∑=(9-14)4111,121,231,31,b 1114212,122,232,32,b 2221,12,231()()111()()11n n n n n n n J X J X J X J X T J X J X J X J X T J X J X J X εσεεεσεε-+++⋅⋅⋅+=--+-++⋅⋅⋅+=--⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅++4,3,b 1()()11n n n n n n n J X T εσεε⎫⎪⎪⎪⎪⎬⎪⎪⎪+⋅⋅⋅+-=⎪--⎭(9-15)i i i i ii A J E Φεε--=1b i =1,2,…n (9-16)【例9-6】1,11,21,31,400.150.540.31X X X X ====、、、; 2,12,22,32,40.2500.500.25X X X X ====、、、;3,13,23,33,40.270.140.320.27X X X X ====、、、; 4,14,24,34,40.310.150.540X X X X ====、、、;4432198.267.5931.054.015.010⨯⨯=---J J J J 4432183.267.5425.05.0525.0⨯⨯=--+-J J J J4432186.267.5427.068.414.027.0⨯⨯=-+--J J J J 4432184.267.55.15.254.015.031.0⨯⨯=+---J J J JJ 1=440.45 W/m 2; J 2=370.28 W/m 2; J 3=382.69 W/m 2 ; J 4=380.80 W/m 2。
传热学第八章辐射换热的计算
02
辐射换热的计算方法
辐射换热的基本公式
斯蒂芬-玻尔兹曼方程
描述了物体在任意温度下的辐射功率,是辐射换热的基本公式。
辐射力方程
表示物体发射和吸收的辐射能与物体表面温度和周围环境温度之间 的关系。
辐射传递方程
表示在给定温度和光谱发射率下,物体表面发射和吸收的辐射能与 物体表面温度之间的关系。
辐射换热的角系数法
表面传热系数的计算方法
通过实验测定或经验公式计算表面传热系数, 需要考虑表面粗糙度和涂层的影响。
表面传热系数的应用
适用于简化模型或近似计算中的辐射换热计算。
辐射换热的积分方程法
积分方程的建立
根据斯蒂芬-玻尔兹曼方程和边界条件建立积分方程。
积分方程的求解方法
采用数值方法求解积分方程,如有限元法、有限差分 法等。
太阳能利用
通过优化太阳能集热器的设计,提高太阳能辐射的吸收和 转换效率,降低太阳能利用成本,有助于减少化石能源的 消耗和碳排放。
05
辐射换热的发展趋势与展 望
新型材料的辐射换热特性研究
总结词
随着科技的发展,新型材料不断涌现,对新型材料的辐射换热特性研究成为当 前热点。
详细描述
新型材料如碳纳米管、石墨烯等具有独特的物理和化学性质,其辐射换热特性 与传统材料有所不同。研究这些新型材料的辐射换热特性有助于发现新的传热 机制,提高传热效率。
感谢观看
THANKS
传热学第八章辐射 换热的计算
目 录
• 辐射换热的基本概念 • 辐射换热的计算方法 • 辐射换热的实际应用 • 辐射换热的优化与控制 • 辐射换热的发展趋势与展望
01
辐射换热的基本概念
定义与特性
定义
传热学V4-第九章-辐射传热的计算1
传热学 Heat Transfer
Shanghai Jiao Tong University
9-1 角系数的定义、性质与计算 角系数的性质 相对性
1
完整性
可加性
角系数的相对性:
两个表面间的角系数 X1,2和X2,1 不是独立存在的。
(推导基于立体角概念和兰贝特定律)
两个有限大小表面
A1 X 1, 2 A2 X 2,1
2
代数分析法
几何分析法、蒙特卡罗法…
代数分析法: 利用角系数的性质,通过求解代数方程组获得角系数的方法。
X1,2
A1 A2 A3 2 A1
以线段长度表示
X1,2
三个非凹表面组成的封闭系统
l1 l2 l3 2l1
SJTU-OYH
(忽略垂直方向两端辐射能的逸出)
传热学 Heat Transfer
三个漫灰面组成的封闭空腔
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
9-3 多表面系统辐射换热的计算 网络法求解辐射换热的步骤: 3. 根据等效网络图,利用电路基尔霍夫定律(所有流向节点J的热流量代数和=0),
列出节点的电流(热流量)方程;
X1, 2 X1, 2 A X1, 2 B
X 2,1 A2 A A X 2 A,1 2 B X 2 B ,1 A2 A2
角系数的直接相加仅适合角系数符号第二角码
SJTU-OYH
表面2到表面1
注意:
X 2,1 X 2 A,1 X 2 B,1
传热学 Heat Transfer
Shanghai Jiao Tong University
传热学课件第六章辐射换热计算
X 1,3
A1 A3 A2 2 A1
X 2,1
A2
A1 A3 2 A2
X 2,3
A2
A3 A1 2 A2
X 3,1
A3 A1 A2 2 A3
X 3,2
A3
A2 2 A3
A1
3.查曲线图法
利用已知几何关系的角系数,确定
其它几何关系的角系数。 例:如图,确定X1,2 由相互垂直且具有公共边的长方形表面
• 若A2和A3的温度相等,则有
J2A2X2,1+J2A3X3,1 =J2 A2+3X(2+3),1 角系数的可加性
即 A2+3X(2+3),1=A2X2,1+A3X3,1
利用角系数的可加性,应注意只有对角系数
符号中第二个角码是可加的。
• 三、角系数的确定方法
角系数的确定方法很多,从角系数的定义直 接求解法、查曲线图法、代数分析法和几何图形 法,这里主要介绍定义直求法和代数分析法。
一、表面辐射热阻
对于任一表面A,其本身辐射为E=ε Eb, 投射辐射为G,吸收的辐射能为α G。向外 界发出的辐射能为
J E G Eb 1 G (a)
因此,表面A的净热流密度为
q = J-G
(b)
对于灰体表面α =ε ,联解(a)和(b),
消去G得
q
Eb J
1
第六章 辐射换热计算
例内 重 基 题容 点 本 赏精 难 要 析粹 点 求
基本要求
1.掌握角系数的意义、性质及确定方法。 2.掌握有效辐射的确定方法。 3.熟练掌握简单几何条件下透热介质漫灰
面间辐射换热的计算方法。 4.掌握遮热板的原理及其应用
传热学重点、题型讲解第九章辐射换热计算
传热学重点、题型讲解第九章辐射换热计算第九章辐射换热计算第⼀节⿊表⾯间的辐射换热⼀、任意位置两⾮凹⿊表⾯间的辐射换热1.⿊表⾯间的辐射换热图9-1 任意位置两⾮凹⿊表⾯的辐射换热122dA dA b1111d d cos d ΦI A θω-= E b1=πI b1;2221cos d d rA θω=12212dA dA b1122cos cos d d d πΦE A A r θθ-=21212dA dA b2122cos cos d d d πΦE A A r θθ-=12122122212dA ,dA dA dA dA dA b1b2122cos cos d d d ()d d πΦΦΦE E A A rθθ--=-=- 1212122121,2dA ,dA b1b2122cos cos d ()d d πA A A A ΦΦE E A A r θθ==- (9-1)2.⾓系数12121122b1122dA dA 12dA ,dA 22dA b11cos cos d d d cos cos πd d d πE A A Φr X A ΦE A r θθθθ-= ==12122121122dA dA 2dA A 12dA ,A 22dA dA d d cos cos d d d πA A ΦΦX A ΦΦr θθ--===12 1212 1112 2dA dA A A12 1,212 2A A1 dcos cos 1d dπA AA AΦΦX A A ΦΦA r θθ--(9-2a)212212AAA1,2ddπcoscos121212AArAΦΦXAA==-θθ(9-2b)21,212,1AXAX=(9-3)3.辐射空间热阻图9-2 辐射空间热阻21,2b2b112,1b2b12,1)(AXEEAXEEΦ-=-=(9-4)b1b21,21,211E EΦX A-=Φ1,2=(E b1-E b2)A = σb(T14- T24)A ⼆、封闭空腔诸⿊表⾯间的辐射换热图9-3 多个⿊表⾯组成的空腔图9-4 三个⿊表⾯组成空腔的辐射⽹络图9-5 例9-1附图:,1,2,,1ni i i i n i j j ΦΦΦΦΦ==++=∑将上式除以i Φ,按⾓系数定义,可得,1,2,n ,11ni i i i j j X X X X ==++=∑(9-5)∑∑∑∑====-=-==nj nj i j i nj i j i i j i nj j i i A X E A X E A X E E ΦΦ11,bj 1,bi ,bj bi 1,)(∑=-=nj j i j i i A X E A E Φ1,bj bi (9-6)【例9-1】∑=-=311,b 1b11j j j j A X E A E Φ(a )∑=-=312,b 2b22j j j j A X E A E Φ(b )0313,b 3b33=-=∑=j j j j A X E A E Φ(c )02,21,22,11,1====X X X X13,23,1==X X31,313,1A X A X =32,323,2A X A X =213,11,33,223/210.252A r X X X A r ππ==?==13,32,31,3=++X X X 5.03,3=X033,3b323,2b213,1b13b3=---A X E A X E A X E A E4b b T E σ=2424143T T T +=T 3=415.6K 或者142.6℃1b11b11,11b22,12b33,1344b11b31,3111344311b 244()()()100100473415.61 5.67()()1801.0W 2100100b ΦE A E X A E X A E X A E A E X A A T T T T AC σπ=---=-=-??=-=???-=????【讨论】π411212121=+=+=∑A A A A A AR 4444b1b2121,2()π5.67 4.73 3.13)1801.0W 4/π4b E E T T ΦRσ--===??-=∑(第⼆节灰表⾯间的辐射换热⼀、有效辐射图9-6 有效辐射⽰意图图9-7 辐射表⾯热阻1.有效辐射J 1=ε1E b1+ρ1G 1=ε1E b1+(1-α1)G 1 W/m 2(a )2.辐射表⾯热阻11b111111G E G J A Φαε-=-= W/m 2 (b ) 1111b11b111111)(1A J E J E A Φεεεε--=--=W (9-7)⼆、组成封闭腔的两灰表⾯间的辐射换热图9-8 两个灰表⾯组成封闭腔的辐射换热⽹络图9-9 空腔与内包壁⾯间的辐射换热22212,1111b2b12,1111A A X A E E Φεεεε-++--=W (9-8a ))11(1)11()(2212,112b 1b 12,1-++--=εεA A X E E A Φ 1,2112()W s b b X A E E ε=- (9-8b ))11()11(1121,212,1s -+-+=εεεX X1.⽆限⼤平⾏灰平壁的辐射换热A 1=A 2=A ,且X 1,2=X 2,1=1,)(111)(4241b s 212b b12,1T T A E E A Φ-=-+-=σεεε W (9-9)1121s -+=εεε2.其中⼀个表⾯为平⾯或凸表⾯的辐射换热)11(1)(22112b 1b 12,1-+-=εεA A E E A Φ W (9-10)A 2 >>A 1,且ε2的数值较⼤Φ1,2=ε1 A 1(E b1-E b2)W (9-11)三、封闭空腔中诸灰表⾯间的辐射换热1.⽹络法求解图9-10三个灰表⾯组成封闭腔辐射换热⽹络图9-11 例9-4附图图9-12 例题9-5附图节点1013,11312,1121111b1=-+-+-A X J J A X J J A J E εε(a )321,2212222b2=-+-+--A X J J A X J J A J E εε(b )节点3 011132,33231,3313333b3=-+-+--A X J J A X J J A J E εε(c )【例9-4】X 1,2= X 2,1=0.38X 1,3=X 2,3=1-X 1,2=1-0.38=0.62计算⽹络中的各热阻值:A 1=A 2=π?0.32=0.283m 21.14283.02.02.011111=?-=-A εε m -23.5283.04.04.011222=?=--A εε m -23.9283.038.01112,1=?=A X m -27.5283.062.011123,213,1=?==A X A X m -2流⼊每个节点的电流总和等于零07.53.91.141b3121b1=-+-+-J E J J J E 07.53.93.52b3212b2=-+-+-J E J J J E 202447731067.5484b1=??==-T E b σW/m 2 35445001067.5484b2=??==-T E b σW/m24593001067.5484b3=??==-T E b σW/m 2J 1=5129W/m 2J 2=2760W/m 2b1111112024451291072W 114.1E J ΦA εε--===- b22222235442760148W 1 5.3E J ΦA εε--===-312()(1072148)1220W ΦΦΦ=-+=-+=-【例9-5】1.1411111=-=A R εεm -23.512222=-=A R εεm -23.9112,12,1==A X R m -27.5113,13,23,1===A X R R m -2E b1=20244W/m 2E b2=3544W/m 2∑++++=23,23,12,11111R R R R R R =14.1+5.243.57.57.513.911=+++m -2b1b21,2202443544682W 24.5E E ΦR --===∑J 1=E b1-Φ1,2?R 1=20244-682?14.1=10627.8W/m 2J 2=E b2+Φ1,2?R 2=3544+682?5.3=7185.6 W/m 2J 3=(J 1+J 2)/2=8893.2 W/m 2J 3=G 3=E b3=σb T 341/41/45.6710b E T σ-=== ?2. 值解法图9-13 例9-6(a )(b )附图及其辐射换热⽹络∑==ni i j i i j j A X J G A 1,j j εα=∑=-+=ni i j i i j j j j j j A X J A E A J 1,b )1(εε(9-12)∑∑===ni i j i j ni i ji i X J A A XJ 1,1,b ,1(1)nj j j j i j i i J E J X εε==+-∑(9-13)4b 1,11j j j j jni i j i T J X J σεεε-=--∑= (9-14)4111,121,231,31,b 1114212,122,232,32,b 2221,12,231()()111()()11n n n n n n n J X J X J X J X T J X J X J X J X T J X J X J X εσεεεσεε-++++=--+-+++=--?++4,3,b 1()()11n n n n n n n J X T εσεε?++-=?--? (9-15)ii i i i i A J E Φεε--=1b i =1,2,…n (9-16)【例9-6】1,11,21,31,400.150.540.31X X X X ====、、、;2,12,22,32,40.2500.500.25X X X X ====、、、;3,13,23,33,40.270.140.320.27X X X X ====、、、;4,14,24,34,40.310.150.540X X X X ====、、、;4432198.267.5931.054.015.010??=---J J J J 4432183.267.5425.05.0525.0??=--+-J J J J4432186.267.5427.068.414.027.0??=-+--J J J J 4432184.267.55.15.254.015.031.0??=+---J J J JJ 1=440.45 W/m 2; J 2=370.28W/m 2; J 3=382.69W/m 2 ; J 4=380.80W/m 2。
传热学第八章-辐射换热的计算-3
(4)每个表面的温度、辐射特性及投入辐射分布均匀。
(一)封闭空腔中诸灰表面间的辐射换热
对于多个表面组成的封闭空腔,采用网络法计算不方 便,可以从能量平衡法入手进行分析。
考察如图所示的封闭空腔内诸表面间的换热:
(a)从包括i在内的所有表面
第八章 辐射换热计算
本节内容:
(1)封闭空腔中诸灰表面间的辐射换热; (2)辐射换热的强化与削弱; (3)气体辐射; (4) 火焰辐射
假设:
(1)把参与辐射换热的有关表面视作一个封闭腔,表面 间的开口设想为具有黑表面的假想面;
(2)进行辐射换热的物体表面之间是不参与辐射的透明 介质(如单原子或具有对称分子结构的双原子气体、空 气)或真空;
f (T , P, S)
3-2:气体吸收定律 设x=0处的单色辐射强度为I, 在经过x距离后,发生在 厚度为 dx的无限小薄层的衰减量为
dI (x) K I,xdx
分离变量并在整个辐射(吸收)层内积分,有
即,
dI I,s ,x
I I ,0 ,x
s
K dx
I,S
I eKS ,0
此为Beer定律,为描述气体吸收的基本定律,反 映气体穿透辐射的指数衰减规律。
tw t3
d t1 s
(三)气体辐射
3-1:气体辐射的特点 (a) 固体表面的辐射和吸收光谱具有连续性,但气体的 辐射和吸收具有明显选择性;只能辐射和吸收某一定 波长范围内的能量。利用这一性质可制成谱带分析仪 ,分析物质的成份; (b) 对于某一投射辐射,只存在吸收和透射;+=1 (c) 气体的吸收和辐射在整个气体空间中进行,而固体 的辐射和吸收则仅在很薄的表面层中进行。气体对辐 射的吸收与气体的温度、气体分压和辐射层厚度S有关
《传热学》第九章 辐射换热计算
微面积dA1对表面积A2的角系数:
表面积A1对表面积A2的角系数:
仅和几何因素有关,与是否黑体无关,因而可适用于非黑体
同理可得,表面积A2对表面积A1的角系数:
由两式得出:
——角系数的互换性
3.辐射空间热阻:
任意两黑表面间的辐射换热计算式:
将上式改写为:
辐射空间热阻——
或
二、封闭空腔诸黑表面间的辐射换热
一、有效辐射
1.有效辐射:
有效辐射J ——单位时间离开单位面积表面的总辐射能
表面1本身辐射
表面1投射辐射的反射
2. 辐射表面热阻:
表面1向外界的净传热量平衡关系式:
有效辐射与投射辐射之差
对于漫射灰表面,根据基尔霍夫定律: 代入上式消去G1,得:
本身辐射与吸收辐射之差
辐射表面热阻——
二、组成封闭腔的两灰表面间的辐射换热
三表面系统的两个特例
表面3为黑体 表面3为重辐射面
表面3无表面热阻, 直接连接外源
表面3不连接外源, 成为浮动节点
四、遮热板——削弱两表面间辐射换热的方法
未加遮热板时:
加遮热板时:
遮热板辐射 网络图
进一步削弱辐射换热的措施——
1 3 1 3 , 增加总辐射热阻中 两项,即减小遮热板两侧的发射率 A3 3 A3 3
谢谢观看
常用材料:铝箔(管道外保温),镀银(保温瓶胆)
遮热板的例子
水幕墙
遮热罩式热电偶
第三节 角系数的确定方法
一、积分法确定角系数
以微表面积dA1向与之平行的直径为D的圆A2辐射的 角系数为例,对角系数进行推导:
环形微元体面积: 两微面积法向与连线夹角:
两微面积距离:
传热学第九章辐射换热的计算
遮热罩的热平衡表达式
4 4 2 h T T TT f 3 3 3 2
联立求解以上两式可求得测温误差 Tf T ,结果为 44 K。可见,加 1 遮热罩后,相对测温误差由未加遮热罩的14.4%降低到4.4% 。
i 1 n
图9-2 角系数的完 整性
上式称为角系数的完整性。若表面1为非凹表面时,X1,1 = 0。
(3) 可加性
3 角系数的计算方法
4 求解角系数的方法通常有直接积分法、代数分析法。
(1) 直接积分法 dA1对A2角系数为:
X d 1 , 2
A 2
d 1 , d 2
d 1
9.3
辐射换热应用举例
1、控制表面热阻强化或削弱辐射换热:比如涂层(不同辐射 表面涂层的效果不同,为什么?举例说明); 2、控制空间热阻强化或削弱辐射换热:比如遮热板; 3、遮热板的原理。
遮热板的主要作用就是削弱辐射换热。下面以两块靠得很近
的大平壁间的辐射换热为例来说明遮热板的工作原理。 没有遮热板时,两块平 壁间的辐射换热有 2 个 表面辐射热阻、 1 个空 间辐射热阻。 在两块平壁之间加一块大 小一样、表面发射率相同 的遮热板3 如果忽略遮热板的导热热阻,则总辐射热阻增加了1倍, 辐射换热量减少为原来的1/2,即 12
d 1 , d 2 d 1
A 2
d 1 , d 2 X
A 2
A1对A2角系数为:
1 cos cos d A d A 1 2 1 2 1 X X d A 1 , 2 d 1 , d 2 1 2 A A A A A A r 1 1
1 2 1 2
传热学第十章辐射换热计算
概念汇总:
1.角系数:表面1发出的辐射能落到表面2上的份额 称为表面1对表面2的角系数。记为:X1,2。 2.空间辐射热阻:
1 A1 X 1, 2
3.对于性质均匀且服从兰贝特定律的表面,其角系 数是纯几何因子。 4.角系数的相对性: A1X1,2=A2X2,1 5.角系数的完整性: X i , j
表面辐射热阻
13
2)灰体辐射换热网络
以上分析表明:物体间的辐射换热量与辐射力之差成正比, 与辐射热阻成反比。辐射热阻分为两大类:一类是辐射角 系数起主要作用的空间辐射热阻,一类是表面黑度起主要 作用的表面辐射热阻。因此,各种形式的辐射换热都可以 用类似于电路网络的相应辐射换热网络描述和计算。 辐射换热等效网络的特点:表面辐射热阻是各表面同温
L dA 1 cos d
A2
dA 1 E 1 cos dA 2 cos
( E 1 / ) cos d
j 1 n
1 (对于封闭系统的n个表面)
6.角系数的可加性:
X1,2+3=X1,2+X1,3 ;
X 1 2,3 A1 A1 2 X 1,3 A2 A1 2 X 2,3
23
思考题和典型习题分析 :
1.试述角系数的定义。“角系数是一个纯几何因子”的结论是 在什么前提下得出的? 答:表面1发出的辐射能落到表面2上的份额称为表面1对表面2的 角系数。“角系数是一个纯几何因子”的结论是在物体表面性质 及表面温度均匀、物体辐射服从兰贝特定律的前提下得出的。 2.角系数有哪些特性?这些特性的物理背景是什么? 答:角系数有相对性,完整性和可加性。相对性是在两物体处于 热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一 个由几个表面组成的封闭系统中,任一表面所发生的辐射能必全 部落到封闭系统的各个表面上;可加性是说明从表面1发出而落 到表面2上的总能量等于落到表面2上各部份的辐射能之和。
传热学第六章辐射换热计算
2021/10/20
第六章 辐射换热计算
13
一、两个黑体表面之间的辐射换热计算 二、三个黑体表面之间的辐射换热计算
2021/10/20
第六章 辐射换热计算
14
一、两个黑体表面之间的辐射换热计算
2021/10/20
第六章 辐射换热计算
4
角系数Xi,j:对于两个任意位置的表面i、 j,离开表面i的总辐射能中直接投射到表面j 上的份额,称为表面i对表面j的角系数。
Xi,j中角标i、j表示表面i是发射辐射的 表面,表面j是接受辐射的表面。
如X1,2表示表面1对表面2的角系数 离开表面i的总能量包含本身辐射与对 外来投入辐射的反射辐射。
2021/10/20
第六章 辐射换热计算
11
X
1,
2
X 1,3
1
X 2,1 X 2,3 1
X
3,1
X 3,2
1
A1
X
1,2
A2 X 2,1
A2 X 2,3 A3 X 3,2
A1
X
1,3
A3 X 3,1
由六个方程,即能解出六个待定的角系数
X 1,2
A1
A2 2 A1
A3
X 1,3
2021/10/20
第六章 辐射换热计算
32
一、遮热板原理
在两个表面积A1
= A2 = A 的 平 行 平 板
ε3,T3 ,ε3′
之 间 插 入 一 面 积 A3=A
的遮热板3,板3很薄,T1,ε1
T2,ε2
热导率大,认为两侧
第8章-辐射换热的计算
d
dAc dA2 cos 2 2 r r2
dA2 cos 1 cos 2 X dA1 ,dA2 r 2
1
两微元面间的辐射
dA2 cos 1 cos 2 X dA1 ,dA2 r 2
同理:
整理得:
dA1 cos 1 cos 2 X dA2 ,dA1 r2
同理 X 2,4 X 2, 34) X 2,3 (
A(12) X (12), 34) A(34) X 34) 2) ( ( ,(1
A(12) X (12),3 A3 X 3,(12)
A2 X 2,(34) A(34) X (34),2
A2 X 2,3 A3 X 3,2
上述方法又被称为交叉线法。注意:这里所 谓的交叉线和不交叉线都是指虚拟面断面的线, 或者说是辅助线。
【例】求下列图形中的角系数
解:
A1 X1, A2 X 2, 2 1
A2 X1, X 2, 2 1 A1
X1, 2
X 2, 1 1
X1,2 4 1 3 3 2 R 4 2R
8.1.2.
角系数的性质
1、角系数的相对性
一个微元表面到另一个微元表面的角系数
由dA1发出的落到dA2上的辐射能 Ib1 d A1 cos 1 d X dA1 ,dA2 由dA1发出的辐射能 Eb1 d A1
E b1 I b1 Eb1 : 辐射力 I b1:定向辐射强度
(2)任意两个非凹表面间的角系数 如图所示表面和假定在垂直于纸面的方向上表面的长 度是无限延伸的,只有封闭系统才能应用角系数的完整性, 为此作辅助线ac和bd,与ab、cd一起构成封闭腔。
A1 两个非凹表面及假想面组 成的封闭系统
工学传热学辐射传热的计算
3. 交叉线法
分析 确定表面A1,A2的角系数。
解:封闭空腔 abcd 中 :
c
X1,2 1 X1,1 X1,ac X1,bd
封闭空腔 abc ,abd中 :
X 1,ac
ab ac bc 2ab
a
X 1,bd
ab bd ad 2ab
因此:
X 1, 2
(bc
ad) (ac bd) 2ab
由 X1,2 1, A2 A1, A1 A2 0 得: 1,2 A11(Eb1 Eb2 )
A1
A2
1,2
(1
A1(Eb1 Eb2 ) 1) 1 A1 (
1
1)
1
X1,2 A2 2
9.3 多表面系统的辐射换热
辐射换热网络求解法:
应用有效辐射的概念,将辐射换热系统模拟 成相应的电路系统,借助于电学中基尔霍夫电流 定律求解该系统的辐射换热问题。
9.3.1 两漫灰表面间的辐射换热网络图
1, 2
1 1
Eb1
1
Eb 2
12
A11 A1 X1,2 A2 2
Φ 1,2
Eb1
1 1 A1 1
J1 1 A1 X 1,2
J2 1 2 A2 2
Eb2
9.3.2 多表面封闭系统网络法求解的实施步骤
1. 画出等效的网络图。 三个漫灰表面构成的封闭空腔中的辐射换热
传热学
第9章 辐射传热的计算
第9章 辐射传热的计算
内容要求
掌握辐射传热的角系数; 两表面封闭系统的辐射传热; 多表面系统的辐射传热; 辐射传热的控制; 综合传热问题分析。
传热学-辐射传热的计算
X1,2
=
A1 + A2 − 2A1
A3
X1,3
=
A1 + A3 − 2A1
A2
X 2,3
=
A2
+ A3 − 2A2
A1
相对性
A1 X1,2 = A2 X 2,1 A1 X1,3 = A3 X 3,1 A2 X 2,3 = A3 X 3,2
三个非凹表面组成的封闭系统
由于垂直纸面方向的长度相同,则有:
从表面内部观察,该表面与外界的辐射
换热量应为: q = E1 − α1G1
J1
=
q
+
E1 − α1
q
=
E1 α1
−
⎛ ⎜ ⎝
1 α1
−
1
⎞ ⎟
q
⎠
注意:式中的各个量均是对
J
=
E α
−1−α α
q
=
Eb
−
(1 ε
−1)q
同一表面而言的,而且以向 外界的净放热量为正值。
9.2.3 两漫灰表面组成的封闭腔的辐射传热
n
∑ Φ1 = Φ1− j j =1
∑ ∑ Φ n 1− j
Φ j =1
1
=
n
x1− j = 1
j =1
X1,1 + X1,2 + X1,3 + + X1,n = 1
9.1.2 角系数的性质
1.角系数的相对性
两个有限大小表面之间角系数的相对性 Φ1,2 = A1 Eb1 X 1,2 − A2 Eb2 X 2,1
E b1 − +1
Eb2 + 1− ε2
ε 1 A1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A2
表面1对表面2的角系数,
记为X1,2。
1. 与物体温度无关,对于表面性 质均匀的漫射表面,它是一个 纯几何因子。
A1
角系数定义
② 两黑体表面的辐射换热:(不存在重复反射)
1,2E b1A 1X 1,2E b2A 2X 2,1
3
热平衡时: T 1 T 2 1 ,2 0 A 1 X 1 ,2 A 2 X 2 ,1
1 X 1 , 2 A 1
1 2 2 A 2
辐射换热量:
1,211Eb1 1Eb2 11 2 A111Eb1 1 EbA 2112
A AX A X A 1 1
1 1,2 X 21 , 2 2A 1 1
1,2 2 2
1 A 11 s Eb1Eb2 1 A 1 1
1 2
12 A 2
解:由几何关系:cos1 cos2 s / l
l2 s2 r2
dA2 2 r dr 根据角系数定义式:
Xd1,2
Ld1Acosd
A2 d1AE1
(E1/)cosd
A2
E1
A2cosdA 2lc2osA2co2l2sdA 2
代入几何关系整理得:
dA 1
s
l
r
R0 A2
X R0 d1,2 0
2.角系数有哪些特性?这些特性的物理背景是什么?
答:角系数有相对性,完整性和可加性。相对性是在两物体处于 热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一 个由几个表面组成的封闭系统中,任一表面所发生的辐射能必全 部落到封闭系统的各个表面上;可加性是说明从表面1发出而落 到表面2上的总能量等于落到表面2上各部份的辐射能之和。
能力,而在光带之外为热辐射的透明体,如图927。(气体不是灰体 ) ② 在整个容积中进行。
22
概念汇总:
1.角系数:表面1发出的辐射能落到表面2上的份额
称为表面1对表面2的角系数。记为:X1,2。
2.空间辐射热阻:
1 A1 X 1,2
3.对于性质均匀且服从兰贝特定律的表面,其角系
数是纯几何因子。
4.角系数的相对性: A1X1,2=A2X2,1
7
3)角系数的性质
① 相对性: AiXi,j AjXj,i
② 完整性:对封闭系统的n个表面,
n
X i,j 1
j 1
注:对于凹形辐射面,Xi,i≠0 ③ 可加性 :
X1,23 X1,2X1,3
8
4)代数分析法求角系数示例 ① 对于三个非凹面组成的封闭空间,在垂直纸面方向足
够长,可忽略端部辐射,角系数之间存在如下关系:
s22 sr222rd rs2R 0 2R0 2
28
3.试用简捷方法确定右图中的角系数X1,2。
解:(1) 因为: X 2,1 1
X 1 ,2A 2/A 12 R /2 (R 3/4 )0 .4244
(2) 因为: X 2,1 1 X1,2 A2/A1R2/2R2
0.5
(3)参考(2),具有对称性:
10
2、灰体间的辐射换热
灰体表面净换热计算 灰体辐射换热网络
11
2、灰体间的辐射换热
1)灰体表面净换热计算 投入辐射:单位时间投射到表面 单位面积上的辐射能,记为G。
有效辐射:单位时间、单位面积
离开表面的辐射能,记为J,其值
为本身辐射和反射辐射之和 。
J1E111G1 1Eb111G1
灰体表面的辐射热流
辐射换热等效网络的特点:表面辐射热阻是各表面同温 度下黑体辐射力与有效辐射间的热阻,反映物体表面特 性对传热的影响,空间辐射热阻是各有效辐射之间的热 阻,反映各表面间空间关系对传热的影响。
14
① 两个灰体间的辐射换热(不存在第三个表面): 等效网络:
E b 1 J 1
J 2
E b 2
1 1 1 A 1
12
由灰体表面特性可得投入辐射表达式:
11G1J1111 Eb1
灰体表面净换热:
A1J1
G1
Eb1 J1
11
1A1
表面辐射热阻
13
2)灰体辐射换热网络
以上分析表明:物体间的辐射换热量与辐射力之差成正比, 与辐射热阻成反比。辐射热阻分为两大类:一类是辐射角 系数起主要作用的空间辐射热阻,一类是表面黑度起主要 作用的表面辐射热阻。因此,各种形式的辐射换热都可以 用类似于电路网络的相应辐射换热网络描述和计算。
结果只与几何因素有关,所以对于非黑体和非热 平衡也是适用的。
1,2
Eb1Eb2
A1X1,2
Eb1Eb2 1
空间辐射热阻
A1X1,2
黑体间辐射换热计算关键参数——角系数
4
2)角系数的一般表达式和线算图 假设:物体为漫射(漫辐射,漫反射)表面——服从兰 贝特定律;表面性质(温度、黑度、吸收比)均匀 。
31
(2)由角系数性质可列出下列关系: A1X1,2=A2X2,1=A2(X2,1+A-X2,A) X1,2=(A2/A1)(X2,1+A-X2,A) 由图中尺寸查参考文献[1]图8-8得:
8.什么是遮热板?试根据自己的切身经历举出几个应用遮热板 的例子。 答:所谓遮热板是指插入两个辐射表面之间以削弱换热的薄板。 如屋顶隔热板、遮阳伞都是我们生活中应用遮热板的例子。
27
2.已知一微元圆盘dA1与有限大圆盘A2(半径为R0)相平行,两圆 盘中心的连线垂直与两圆盘,且长度为s。试计算Xd1,2。
30
由图中尺寸查参考文献[1]图8-8得:
X1+A,2+B
X1+A,B
XA,2+B
Z/X
1.67
1.0
1.67
Y/X
1.33
1.33
0.667
角系数 0.19
0.165
0.275
XA,B 1.0 0.667 0.255
代入原式: X1,2=(3/1.5)(0.19-0.165)-(1.5/1.5)(0.275-0.255)=0.03
X 1,2 X 1,3 1
X 2 ,1
X 2,3 1
,
X 3 ,1 A 1 X 1,2
X
3 ,2
A2
X
1
2 ,1
A1X
1,3
A 3 X 3 ,1
A 2 X 2 , 3 A 3 X 3 , 2
X1,2
A1A2 A3 2A1
其它类推
三个非凹面组成的封闭空间
9
② 两个不相交的凸面ab和cd之间的角系数
X1,2 0.5/40.125
(4)假设在球的顶面有 另一块无限大平板存
在,由对称性:X1,2 0.5
29
4.试确定图中几何结构的角系数X1,2 解:(1)由角系数性质可列出下列关系: A1X1,2=A2X2,1
=A2(X2,1+A-X2,A) =A1+AX1+A,2-AAXA,2 X1,2=(A1+A/A1)(X1+A,2+B-X1+A,B) -(AA/A1)(XA,2+B-XA,B)
第十章 辐射换热的计算
1、黑体间的辐射换热及角系数 2、灰体间的辐射换热 3、气体辐射简介
1
1、黑体间的辐射换热及角系数
任意放置的两黑体间的辐射换热 角系数的一般表达式和线算图 角系数的性质 代数分析法求角系数示例
2
1)任意放置的两黑体间的辐射换热
① 角系数:表面1发出的辐射
能落到表面2上的份额称为
25
5.什么是一个表面的自身辐射、投入辐射及有效辐射?有效辐 射的引入对于灰体表面系统辐射换热的计算有什么作用? 答:由物体内能转变成的辐射能叫做自身辐射,投向辐射表面 的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有 效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收 和反射的复杂性。
6
表面1发出的辐射能落到表面2上的能量为:
A 1 ,A 2E b 1A 1A 2co1 rc 2 so2d s1d A2A
角系数:
X 1 ,2 E b A 1 1 ,A A 1 2A 1 1A 1A 2co1 rc 2 so2d s1d A2A
这就是角系数计算的一般表达式,对于规则形状和位置,可 借助于线算图(教材图9-7,8,9)进行计算。部分二维和三 维结构角系数计算式见教材表9-1,2。
6.对于温度已知的多表面系统,试总结求解每一表面净辐射换 热量的基本步骤。
答:(1)画出辐射网络图,写出端点辐射力,表面热阻和空间 热阻。(2)写出由中间节点方程组成的方程组。(3)解方程 组得到各点有效辐射。(4)由端点辐射力,有效辐射和表面热 阻计算各表面净辐射换热量。
26
7.什么是辐射表面热阻、什么是辐射空间热阻?网络法的实际 作用你是怎样认识的? 答:由辐射表面特性引起的热阻称为辐射表面热阻,由辐射表 面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实 际作用是为实际物体表面之间的辐射换热描述了清晰的物理概 念和提供了简洁的解题方法。
1 X 1,3 A1
12 1 2 A2 X 2,3 A2
J3
13 3 A3
Eb3
其它类推。
19
④ 具有重辐射面的封闭腔辐射换热(与串并联电路 解法类似)
Eb1
1 1 1 A1
J1
1 X1,3 A1
1
X1,2 A1
J2
Eb2
1 X2,3 A2
12 2 A2
J3 Eb3
20
思考:某办公室由中央空调系统维持室内恒温,人 们注意到尽管冬夏两季室内都是20℃,但感觉却 不同。(东南大学2000年考研题)
对于假想的abc空间,应用上述 角系数公式:
Xab,acab2aacbbc