平行四边形及其性质教案
新人教版八年级数学下册《平行四边形》教案设计(10篇)
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
平行四边形的性质教案
平行四边形的性质教案一、教学目标1. 知识目标:了解平行四边形的定义、判定方法和性质。
2. 技能目标:能够熟练运用平行四边形的性质解决相关问题。
3. 情感目标:培养学生对数学知识的兴趣,提高其学习成绩。
二、教学内容平行四边形的性质三、教学重点和难点1. 教学重点:平行四边形的概念、判定方法和性质。
2. 教学难点:平行四边形的性质运用。
四、教学方法板书讲解法、演示法、讨论法、练习法等。
五、教学过程1. 掌握平行四边形的定义和判定方法向学生介绍平行四边形的图像,即四边形的对边是平行的,并要求学生观察和辨认课桌、书架、地板等日常生活中出现的平行四边形。
讲解平行四边形的判定方法:(1) 两对对边分别相等;(2) 一组对边既相等又平行;(3) 对角线互相平分。
2. 确定平行四边形的性质接着,将平行四边形的每个性质都列举出来,并逐一讲解、证明和举例,包括:(1) 对边相等;(2) 对角线相交于中点;(3) 相邻角互补,对角线上的角互补;(4) 同底角相等;(5) 高相等。
3. 如何运用平行四边形的性质解决问题让学生通过练习来掌握平行四边形的应用方法。
设计一些实际问题,如:(1) 已知平行四边形的底边长和高,求其面积;(2) 在平行四边形中连接一对对角线,若交点到底边的距离为3,求对角线的长度;(3) 在平行四边形中,两条对角线的长度分别为6和12,求平行四边形的周长。
六、教学总结通过本节课的学习,学生掌握了平行四边形的定义、判定方法和性质,并能够熟练运用其性质解决相关问题。
这不仅提高了学生的数学水平,而且激发了他们对数学知识的兴趣。
七、教学反思本节课采用了多种教学方法,如板书、演示、讨论和练习,充分调动了学生的积极性和主动性,使他们更好地理解和掌握了平行四边形的性质。
课堂互动也很活跃,体现了学生的主体性和学习能力。
但仍需注意语言表述、演示效果和练习难度的合理性,保证教学的具体效果。
《平行四边形》教案参考5篇
《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。
平行四边形的性质教案(6篇)
平行四边形的性质教案(6篇)小学四年级数学平行四边形教案篇一教学内容《义务教育课程标准实验教科书数学(四年级上册)》教科书70页例1及相关练习题。
教学目标1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;3、培养学生动手操作能力,发展空间思维能力。
教学重点掌握平行四边形和梯形的特征。
教学难点理解平行四边形、长方形、正方形的关系。
教学准备教具:多媒体课件、七巧板、吹塑纸贴图学具:拼活动四边形的塑料棒四根、点子图、七巧板、平行四边形、梯形剪纸模型各一个。
教学过程一、创设情境,激发兴趣1、问:同学们,老师要考考你们,愿意接受挑战吗出示一些四边形问:上面图形有什么共同特点(学生回答)概括:由四条线段围成的图形是四边形。
2、师:谁能说说你发现了哪些四边形(学生说出:长方形、正方形、平行四边形、梯形)【设计说明】从学生已有的知识出发,引出本节课要学习的图形,体现了数学学习的系统性。
3、师:都记住了这些四边形,并能画下来吗下面我们就来一个画四边形的比赛,看哪些同学画得又快又好。
比赛开始!(学生活动:画四边形)4、学生展示画图的结果。
师:你觉得他们画得怎样师:认识这些图形吗请说说这些图形的名称5、揭示课题。
本节课我们一起来研究平行四边形和梯形。
【设计说明】在脱手画图的过程中,不要求学生画得很准确,只是通过学生的回答对本课要学的内容有一个初步的认识与了解。
二、自主探究,获取新知(一)平行四边形1、自主探究师:请同学们用四根学具,拼一个平行四边形。
[师示范操作]师:请打开书71页,找到平行四边形的图,结合自制平行四边形学具、平行四边形纸片进行研究,看看平行四边形两组对边有什么特点。
学生操作学具探究,同时教师巡视指导。
【设计说明】给学生一些探究的素材,给他们探究的空间,让他们自主探究平行四边形所具有的特点,并适时加以引导,以便学生加以总结。
平行四边形教案(最新6篇)
平行四边形教案(最新6篇)平行四边形篇一第二课时:平行四边形面积的计算练习课教学内容:练习二1 — 5题教学目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。
教学过程:练习二:第1题:使学生画出的平行四边形面积与图中长方形面积相等,平行四边形底与高的乘积为15.所画平行四边形的底和高分别为5和3、3和5或15和1.第2题:学生在测量时一定要注意底和高必须是对应的一组。
第3题:要告诉学生用途中标出的数据计算出来的面积是近似值。
这种近似的测量和计算在实际生活中经常用到。
第5题:可以让同桌两人分别准备一样大小的长方形框架。
操作时,一个长方形不动,另一个长方形拉成平行四边形。
通过观察、比较后要明确两点:1、把长方形拉成平行四边形后,周长没变,面积变了。
2、拉成的平行四边形越是显得扁平,它的高就越短,面积就会越小平行四边形篇二七、教学步骤【复习提问】图11.什么叫平行四边形?我们已经学习了它的哪些性质?2.已知:如图1,,.求证:.3.什么叫做两条平行线间的距离?它有什么性质?【引入新课】在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的。
如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题。
【讲解新课】图2(1)平行四边形的性质定理3,平行四边形的对角线互相平分。
先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明。
(2)平行四边形性质,定理的综合应用:同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键。
图3例2 已知:如图3 的对角线、相交于点,过点与、分别相交于点、.求证:.证明比较容易,只须证出△ △△,或△ △△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势。
如这里可直接由定理3得出,而不再重复定理的推导过程证出。
《平行四边形的性质》数学教案
《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。
2. 培养学生的观察力、思维能力和空间想象能力。
3. 通过实践操作,提高学生的动手能力和合作学习的能力。
二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。
2. 教学难点:理解和应用平行四边形的性质。
三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。
2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。
3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。
4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。
5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。
四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。
平行四边形的性质的教案(精选10篇)
平行四边形的性质的教案平行四边形的性质的教案(精选10篇)作为一位不辞辛劳的人民教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
教案应该怎么写呢?下面是小编精心整理的平行四边形的性质的教案,欢迎阅读与收藏。
平行四边形的性质的教案篇1教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件教学过程第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。
)1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。
将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)小组活动3:用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?(1)让学生动手操作、复制、旋转、观察、分析;(2)学生交流、议论;(3)教师利用多媒体展示实践的过程。
第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。
)实践探索内容(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
平行四边形及其性质第二课时数学教案
平行四边形及其性质第二课时数学教案标题:平行四边形及其性质第二课时数学教案一、教学目标:1. 知识与技能:掌握平行四边形的性质和判定定理,能够灵活运用这些知识解决实际问题。
2. 过程与方法:通过观察、实验、猜想、验证等过程,培养学生的探究能力和逻辑推理能力。
3. 情感态度价值观:体验数学学习的乐趣,增强自我学习的信心,形成积极的学习态度。
二、教学重点:1. 平行四边形的性质和判定定理的理解和应用。
2. 培养学生的问题解决能力和创新能力。
三、教学难点:如何将理论知识应用于实际问题的解决。
四、教学过程:(一)导入新课首先复习上节课的内容,提问学生关于平行四边形的基本概念和性质。
然后引入新的主题:“今天我们继续探讨平行四边形的性质和判定”。
(二)讲授新课1. 平行四边形的性质通过实例展示,引导学生发现平行四边形的对边相等、对角相等、对角线互相平分的性质。
并让学生自己动手画图,加深理解。
2. 平行四边形的判定引导学生从已知条件出发,推导出“两组对边分别平行的四边形是平行四边形”、“一组对边平行且相等的四边形是平行四边形”、“两组对角分别相等的四边形是平行四边形”、“对角线互相平分的四边形是平行四边形”的判定定理。
(三)课堂练习设计一些相关的习题,让学生独立完成,然后集体讨论答案,以此来检查学生对所学知识的理解程度。
(四)小结请学生总结本节课的主要内容,教师进行补充和完善。
五、作业布置设计一些难度适中的题目,让学生在课后完成,以便巩固所学知识。
六、教学反思在教学过程中,要注意观察学生的学习情况,及时调整教学策略,以满足不同层次学生的学习需求。
同时,要鼓励学生积极参与,提高他们的学习积极性。
平行四边形及其性质(教案)
平行四边形及其性质知识要点:1、 两组对边分别平行的四边形是平行四边形(一组对边片平行,另一组对边不平行的四边形是梯形)平行四边形中对边指无公共点的边,对角指不相邻的角,不相邻的两个角顶点的连线叫对角线。
2、 表示方法:平行四边形用“”表示,四边形ABCD 是平行四边形,记作“ABCD ”读作“平行四边形ABCD ” 注意:平行四边形的表示方法一般按一定方向依次表示各点,如图不可以表示为ACBD3、 平行四边形的性质:平行四边形对边相等(邻边不一定相等)平行四边形对角相等(邻角互补)平行四边形对角线相互平分(不一定相等)4、 平行线之间的距离:(非重点)若两直线平行,则其中一条直线上的所有点到另一条直线的距离都相等,这个距离叫做平行线之间的距离。
(两相交直线无距离可言)判别方法运用技巧一、求角度,利用对角相等、邻角互补、四边形内角和为360°1、 出现对角:用对角相等(∠A=∠C )2、 出现邻角:用邻角互补(∠A+∠B=180°)3、 出现不规则四边形可以利用四边形内角和=360°(∠A+∠B+∠C+∠D=360°)任意三个角已知便可求出第四个角。
4、 出现两角关系:(∠A-∠B=已知度数)或(∠A/∠B=已知数)此时可以设其中任意一个为未知数x ,用x 表示另一个角度,在用平行四边形角度存在的性质列方程 如(∠A-∠B=30°)可以设∠A=x ,则∠B=x-30°再找出∠A 、∠B 存在的另一层关系,利用关系列方程若观察∠A 、∠B 为补角,则有∠A+∠B=180°可列出方程x+x-30°=180°解方程求解即可。
如(∠A/∠B=2)可以设∠A=x ,则∠B=x/2再找出∠A 、∠B 存在的另一层关系,利用关系列方程求解即可。
例1 ABCD 中,︒=∠-∠30A B ,则D C B A ∠∠∠∠,,,的度数是( )A .95°,85°,95°,85°B .85°,95°,85°,95°C .105°,75°,105°,75°D .75°,105°,75°,105°例 2 从平行四边形的一个锐角的顶点引另两条边的垂线,两垂线夹角为135°,则此四边形的四个角分别是( )A .45°,135°,45°,135°B .50°,135°,50°,135°C .45°,45°,135°,135°D .都不对例3 如图,ABCD 中,∠DCA=30°比∠DAC 少10°求ABCD 中∠ADC 和∠DAB 分别为多少度?二、求线段取值范围,利用三角形三边性质(任意两边之和大于第三边,两边之差小于第三边)1、 找出以所求线段为边长的所有三角形2、 确定我们所要利用的三角形(一般为已知长度的线段和所求线段围成的三角形)3、 通过已知或推导得到此三角形两边长4、 根据三角形三边性质列不等式(两边之和>第三边>两边之差)若已知两边为a 、b ,所求边长为c 则有a+b>c>|a-b|5、 解不等式,求出第三遍取值范围例 4 如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条边长m 的取值范围是________.例 5 如图,ABCD 中,对角线AC 和BD 交于点O ,若6,8==BD AC ,则边AB 长的取值范围是( )A .71<<AB B .142<<ABC .86<<ABD .43<<AB例 6 已知:如图,在平行四边形ABCD中,O是对角线AC、BD的交点,过O点的直线EF交AD、BC于E、F.求证:OFOE=.例7已知:如图,ABCD中,ACBE⊥⊥,,垂足分别为E、F,ACDF求证:∠ABE=∠CDF四、求线段长度1、已知两边长求周长或已知周长求两边长的⑴只要任意给出两个已知条件即可求出第三个值(利用平行四边形周长等于相邻两边的2倍)周长=(一条边长的长度+这条边长的邻边的长度)×2⑵只给出其中一个已知条件和另两个条件关系的也可求出第三个值(利用设未知数表达平行四边形周长等于相邻两边的2倍列方程)设存在关系的两条件任意一个为X,用含X的表达式表达存在关系的另一条件,根据“周长=(一条边长的长度+这条边长的邻边的长度)×2”列方程。
《平行四边形及其性质》教案
四、结合实际,应用新知
回到本节课开头,现在请同学们再来说说伸缩衣架之所以采用平行四边形结构,而不是三角形结构的原因
我们认识到平行四边形的不稳定性,它和三角形的稳定性一样都有实用价值,请同学们举一些平行四边形不稳定性应用的实际例子
五、回顾新知,自我小结
这节课你学到了什么?
这节课令你影响最深刻的是?
通过这节课,你还有些什么疑惑?
(将三种拼法呈现在投影上)
全等三角形对应角相等,证得两边平行,再证得一对边平行,即为平行四边形,依据平行四边形的定义
猜测:平行四边形对边相等,对角也相等
量得:平行四边形对边相等,对角也相等
已知:四边形ABCD是平行四边形
求证:∠A=∠D,
活动2:观察者三个平行四边形,猜想它们对边与对角的关系
活动3:同桌合作用你手上的刻度尺和量角器,测一测量一量平行四边形对边和对角的关系
活动4:证明平行四边形对边相等,对角相等
(提示用数学方法来证明需要画图,已知,求证的过程)
三、例题教学,巩固新知
例1
已知:如图,E、F分别是平行四边形ABCD的边AD、BC上的点,且AF//CE
例1是对平行四边形性质的运用,规范解题过程,培养说理的条理性.对所学知识进行整合,让学生会综合分析法与综合法两种方法来解决问题
例1其他方法的引入让学生有一题多解的意识,会多方面,多角度思考问题,培养学生创新意识
类比三角形的稳定性,让学生自己通过一节课的学习所获得的对平行四边形的知识来解释课本开头的问题,与课程开头遥相呼应,体验一个发现问题解决问题的过程.
求证:DE=BF,∠BAF=∠DCE
问题1:综合法思考,已知平行四边形ABCD,可推出什么?依据是什么?
数学教案-平行四边形及其性质 第二课时
数学教案-平行四边形及其性质第二课时一、教学目标1.理解平行四边形的定义及其性质。
2.掌握平行四边形判定定理的应用。
3.培养学生的逻辑思维能力和空间想象能力。
二、教学重难点1.重点:平行四边形的性质及其判定定理。
2.难点:运用平行四边形的性质和判定定理解决实际问题。
三、教学过程1.导入新课师:同学们,上一节课我们学习了平行四边形的定义和性质,那么如何判定一个四边形是平行四边形呢?这节课我们就来学习平行四边形的判定定理。
2.学习平行四边形的判定定理(1)引导学生回顾平行四边形的定义和性质。
师:请同学们回忆一下,平行四边形有哪些性质?生:平行四边形的对边平行且相等,对角相等,邻角互补。
(2)讲解平行四边形的判定定理。
①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分。
(3)举例说明判定定理的应用。
师:下面我们来看几个例子,运用平行四边形的判定定理来解决问题。
例1:已知四边形ABCD中,AD∥BC,AB=CD,求证:ABCD是平行四边形。
例2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD是平行四边形。
3.练习师:同学们,下面我们来做一些练习题,巩固一下平行四边形的判定定理。
(1)练习题1:已知四边形ABCD中,AB∥CD,AD∥BC,求证:ABCD是平行四边形。
(2)练习题2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD 是平行四边形。
4.课堂小结师:通过这节课的学习,我们掌握了平行四边形的判定定理,可以运用这些定理来解决实际问题。
在今后的学习中,我们要熟练运用这些定理,提高解题能力。
5.作业布置(1)课后作业1:完成教材P页的练习题。
四、教学反思本节课通过讲解平行四边形的判定定理,让学生掌握了判定一个四边形是平行四边形的方法。
在教学过程中,注重引导学生回顾已学的知识,充分发挥学生的主体作用,让学生在练习中巩固所学知识。
但在教学过程中,发现部分学生对判定定理的应用还不够熟练,需要在今后的教学中加强训练。
平行四边形的性质和判定教案
平行四边形的性质和判定教案教学目标知识技能目标1.运用投影的方法,通过学生的合作探究,得出结论平行四边形的认定方法.2.理解平行四边形的这两种判定方法,并学会简单运用.过程与方法目标1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.2 .在运用平行四边形的认定方法解决问题的过程中,进一步培育和发展学生的逻辑思维能力和推理小说论证的表达能力.情感态度价值观目标通过平行四边形辨别条的积极探索,培育学生直面挑战,敢于克服困难的意志,引导学生大胆尝试,从中获得成功的体验,唤起学生的自学热情.教学重点:教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.教学过程第一环节复习引入:( 3分钟,教师明确提出问题1,2,由学生独立思考,并口答得出结论定义正反两方面的促进作用,出来平行四边形的其他几条性质.)问题1(多媒体展示问题)1.平行四边形的定义就是什么?它存有什么促进作用?2.平行四边形还有哪些性质?问题2有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?第二环节积极探索活动(12分钟,学生动手探究,小组合作)活动1:工具:两根长度成正比的笔,两条平行线(可利用横格线).动手:恳请利用两根长度成正比的笔和两条平行线,摆以笔顶端为顶点的平行四边形吗?思考1.1:你能说明你所摆出的四边形是平行四边形吗?思索1.2:以上活动事实,能够用字语言表达吗?目的:得出结论平行四边形的一个性质:一组对边平行且成正比的四边形就是平行四边形.活动2工具:两根相同长度的细纸条.动手:能否用这两根细纸条在平面上思索2.1:你能够表明你们摆的四边形就是平行四边形吗?思考2.2:以上活动事实,能用字语言表达吗?目的:得出平行四边形的性质:对角线互相平分的四边形是平行四边形第三环节稳固练(20分钟,学生思索探讨再各自画图,图画不好后互相交流画法,教师巡回检查.对个别学生稍加指点)随堂练习:1.未知:在平行四边形abcd 中,点e、f在对角线ac上,并且oe=of.(1)oa与oc,ob与od相等吗?(2)四边形bfde就是平行四边形吗?(3)若点e,f在oa,oc的中点上,你能解决上述问题吗?2.再返回前问题:同学们想想看,是不是办法把原的平行四边形再次图画出来?(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨,最后请学生回答画图方法)学生想起的画法存有:(1)分别过a,c作bc,ba的平行线,两平行线相交于d;(2)分别以a,c为圆心,以bc, ba的短为半径画弧,两弧平行于d,相连接ad,cd;(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线ac,取ac的中点o,再连接bo,并延长bo到d,使bo=do,连接ad,cd.第四环节小结:(4分钟,学生提问问题)师生共同小结,主要围绕下列几个问题:(1)认定一个四边形就是平行四边形的方法存有哪几种?这些方法从什么角度回去考量的?(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?(3)投影、观测、积木、实验等都就是自学数学、辨认出结论的常用方法.第五环节布置作业:b、c组与(中等生和后三分之一生)本页习题4.3第1题、第2题a组(优等生):① 对于随堂练习题,若将g,h分别在ob ,od上移动至与b,d重合,e,f分别在oa,oc上移动,使ae=cf(如图),则结论还成立吗?② 对于随堂练习题,若e,f继续移动至oa,oc的延长线上,仍并使ae=cf(例如图),则结论还设立吗?一教学目标:1.在积极探索平行四边形的辨别条件中,认知并掌控用边、对角线去认定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培育用投影、逆向M18x及运动的思维方法去研究问题.二重点、难点2.难点:平行四边形的认定定理与性质定理的有效率应用领域.3.难点的突破方法:平行四边形的辨别方法就是本节课的核心内容.同时它又就是后面进一步研究矩形、菱形、正方形辨别的基础,更是发展学生合情推理小说及用笔的较好素材.本节课的教学重点为平行四边形的辨别方法.在本课中,可以积极探索活动为载体,并将论证做为积极探索活动的自然沿袭与必要发展,从而将直观操作方式与直观推理小说有机融合,达至突出重点、集中难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形存有四种认定方法,与性质相似,可以从边、对角线两方面展开记忆.必须特别注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只了解前两个认定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、悖论、检验、积极探索形成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节已经开始,就应当使学生轻易运用平行四边形的性质和认定回去解决问题,凡是可以用平行四边形科学知识证明的问题,不要再返回用三角形全系列等证明.必须对学生明确提出这个建议.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、认定都就是非常关键的基础知识,这些科学知识就是本章的重点内容,必须并使学生熟练地掌控这些科学知识.三例题的意图分析本节课精心安排了3个例题,基准1就是教材p96的基准3,它就是平行四边形的性质与认定的综合运用,此题最出色先使学生讲出证明的思路,然后老师总结并表示其最佳方法.基准2与基准3都就是补足的题目,其目的就是使学生能够有效率和综合地运用平行四边形的认定方法和性质去解决问题.基准3就是一道积木题,教学时,可以使学生动起来,边积木边表明道理,即为可以提升学生的动手能力和学生的思维能力,又可以提升学生的自学兴趣.例如使学生再用四个不等边三角形比拼一个例如图的大三角形,使学生表示图中所有的平行四边形,并表明理由.四课堂引入1.观赏图片、明确提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中存有一些木条,他想要通过适度的测量、割剪,钉制一个平行四边形框架,你能够帮忙他编出一些办法去吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能够适度挑选手中的硬纸板条构建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能够讲出你的作法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能够找到其他方法吗?从探究中得到:平行四边形认定方法1 两组对边分别成正比的四边形就是平行四边形。
平行四边形的定义及性质教案
平行四边形的定义及性质教案。
一、平行四边形的定义平行四边形是四边形的一种,它的四边分别两两平行。
一个平行四边形有两对对边,而对边具有相等的长度,两对对边之间的夹角相等。
如下图所示,AB || CD,AD || BC,AB = CD,AD = BC。
二、平行四边形的性质1.对角线互相平分对于任何一个平行四边形,其两条对角线长度相等,且互相平分。
换句话说,平行四边形的两条对角线长相等。
2.属于平行四边形的四个角的和为360度对于任何一个平行四边形,其四个角的和等于360度。
也就是说,平行四边形的每个角是平行四边形对角的补角。
3.面积计算对于任何一个平行四边形,它的面积等于底边长乘以高。
即S=ah,其中a为底边长,h为高。
三、平行四边形的应用平行四边形在我们的生活中也有很多应用,比如:1.电视壁挂在家里装修的时候,很多人都选择将电视挂在墙上,这时就需要使用到平行四边形的应用。
因为墙面是一个平面,所以一般把电视外框的四个角固定在墙上的时候,会以四个角固定点为顶点,构成一个平行四边形,从而保证电视安装的平衡、稳定。
2.计算草坪的面积当我们需要规划草坪面积的时候,可以利用平行四边形的面积计算公式进行计算,这样可以更方便地得到草坪的实际面积,从而进行科学合理的规划和种植。
3.斜面的计算在工程建设中,有可能会遇到一些斜面的计算问题。
这时我们可以利用平行四边形相邻边的关系,将斜面转换成平行四边形进行计算,从而得到更精确的计算结果。
四、例题讲解例1:已知平行四边形ABCD中,AB=10cm,AD=8cm,AC=6cm,求BC的长度。
解:首先根据性质1,对角线互相平分,我们可以得到BD的长度为10cm。
然后根据勾股定理,可得BD^2=AD^2+(AB-BC)^210^2=8^2+(10-BC)^210^2-8^2=100-20BC+BC^256=BC^2-20BC+100BC^2-20BC+44=0根据一元二次方程的求根公式,可得到BC=2或22。
数学教案-平行四边形的判定
数学教案-平行四边形的判定一、教学目标1.让学生掌握平行四边形的定义及性质。
2.让学生学会运用平行四边形的判定方法解决问题。
3.培养学生的空间想象能力和逻辑思维能力。
二、教学重难点重点:平行四边形的判定方法。
难点:运用平行四边形的性质和判定方法解决实际问题。
三、教学过程(一)导入1.引导学生回顾已学的平行线的性质。
2.提问:平行线与平行四边形有什么关系?(二)探究平行四边形的性质1.学生分组讨论,探索平行四边形的性质。
(三)平行四边形的判定方法1.教师讲解平行四边形的判定方法。
2.学生举例说明平行四边形的判定方法。
(四)案例分析1.教师给出一个平行四边形的实际问题,让学生运用所学知识解决。
2.学生展示解题过程,教师点评。
(五)课堂练习1.教师给出几个平行四边形的练习题,让学生独立完成。
2.教师批改练习题,讲解错误原因。
2.学生分享学习心得,反思学习过程中的不足。
四、课后作业1.学生完成课后作业,巩固所学知识。
2.教师批改作业,了解学生学习情况。
五、教学反思1.教师反思本节课的教学效果,查找不足。
2.教师针对不足,调整教学方法,提高教学效果。
一、导入1.引导学生回顾已学的平行线的性质:平行线的定义、性质及判定方法。
2.提问:平行线与平行四边形有什么关系?二、探究平行四边形的性质1.学生分组讨论,探索平行四边形的性质。
如:对边平行、对角相等、邻角互补等。
三、平行四边形的判定方法1.教师讲解平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
2.学生举例说明平行四边形的判定方法。
四、案例分析1.教师给出一个平行四边形的实际问题,让学生运用所学知识解决。
如:已知一个四边形ABCD,其中AB//CD,AD//BC,求证:ABCD 是平行四边形。
2.学生展示解题过程,教师点评。
五、课堂练习1.教师给出几个平行四边形的练习题,让学生独立完成。
数学教案-平行四边形及其性质【8篇】
数学教案-平行四边形及其性质【8篇】平行四边形教案篇一教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.2、能力目标(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.教学重点、难点重点:平行四边形的概念及其性质.难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用教学方法:讲解、分析、转化教学过程设计一、利用分类、特殊化的方法引出平行四边形的概念1.复习四边形的知识.(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.(2)将四边形的边角按位置关系分为两类:教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.2.教师提问:四边形中的两组对边按位置关系分为几种情况?引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.3.对比引出平行四边形的概念.(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.①∵ABCD,∵AD∵BC,AB∵CD.(平行四边形的定义)②∵AD∵BC,AB∵CD,∵四边形ABCD是平行四边形.(平行四边形的定义)练习1(投影)如图4-13,DC∵EF∵AB,DA∵GH∵CB,图中的平行四边形共有__个,它们是__.二、探索平行四边形的性质并证明1.探索性质.启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:(3)对角线⑤对角线互相平分(性质定理3)教师注意解释并强调对角线互相平分的含义及表示方法.2.利用化归的方法对性质逐一进行证明.(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.(3)写出证明过程.3.关于“两条平行线间的平行线段和距离”的教学.(1)利用性质定理2导出推论:夹在两条平行线间的平行线段相等.①提问:在图4-14中,l1∵l2,AB∵CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.练习2(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.练习3在图4-15(d)中,①点A与点C的距离是线段__的长;②点A到直线l2的距离是线段__的长;③两条平行线l1与l2的`距离是线段__或__的长;④由推论可得:两条平行线间的距离__.三、平行四边形的定义及性质的应用1.计算.例1填空.(1)在ABCD中,AB=a,BC=b,∵A=50°,则ABCD的周长为__,∵B=__,∵C=__,∵D=__;(2)在ABCD中:①∵A∵∵B=5∵4,则∵A=__;②∵A+∵C=200°,则∵A=___,∵B=__;(3)已知平行四边形周长为54,两邻边之比为4∵5,则这两边长度分别为__;(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则∵OBC 周长为__;②若AB∵AC,则∵OBC比∵OAB的周长大___;(5)在ABCD中,AB=8cm,BC=10cm,∵B=30°,SABCD=__;说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.2.证明.例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∵CF.求证(1)BE =DF;(2)EF过BD的中点.分析:(1)尽量利用平行四边形的定义和性质,避免证三角形全等.(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE∵BC于E,CF∵AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.例3已知:如图4-17,A′B′∵BA,B′C′∵CB,C′A′∵AC.求证:(1)∵ABC=∵B′,∵CAB=∵A′,∵BCA=∵C′;(2)∵ABC的顶点分别是∵B′C′A′各边的中点.着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.分析:(1)引导学生证明以OE,OF为边的两个三角形全等,如证∵AOE∵∵COF或证∵BOE∵∵DOF.(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.3.供选用例题.(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?(2)如图4-19,在∵ABC中,AD平分∵BAC,过D作DE∵AC交AB于E,过E作EF∵DC 交AC于F.求证:AE=FC.(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC∵FD.四、师生共同小结1.平行四边形与四边形的关系.2.学习了平行四边形哪些方面的性质?3.两条平行线的距离是怎样定义的?有什么性质?五、作业课本第143页第2,3,4,5,6题.课堂教学设计说明本教学设计需2课时完成.这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.平行四边形及其性质教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
平行四边形教案【优秀8篇】
平行四边形教案【优秀8篇】八年级数学教案:《平行四边形》篇一教学目标1、使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高。
2、通过观察。
动手操作,培养学生抽象概括能力和初步的空间观念。
教学重点掌握平行四边形的意义及特征。
教学难点理解平行四边形与长方形。
正方形的关系。
教学过程一、复习准备。
我们已经学过一些几何图形,观察一下这些图形有什么共同特点?在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形。
教师提问:我们学过哪些四边形呢?学生举例。
说说哪些物体表面是平行四边形?教师出示下图,让学生初步感知平行四边形。
二、学习新课。
1、理解平行四边形的意义。
首先出示一组图形。
教师提问:这些图形是什么形?它们有什么特征?(1)看到这个名称你能想到什么?(板书:平行。
四边形)教师提问:你认为什么是四边形?你学过的什么图形是四边形的?(2)动手测量。
指名到黑板上用三角板检验一下,每个图形的对边怎样。
(3)抽象概括。
根据你测量的结果,能说说什么叫平行四边形吗?小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义。
(板书:两组对边分别平行的四边形叫做平行四边形。
)教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”。
(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】2、平行四边形的特征和特性。
(1)教师演示。
教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉。
引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角。
(2)动手操作。
学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行。
(3)归纳平行四边形特性。
根据刚才的实验。
测量,引导学生概括出:平行四边形具有不稳定性。
平行四边形的性质教学案例(人教版四年级下册)
平行四边形的性质教学案例(人教版四年级下册)《平行四边形及其性质》教学设计一、学习目标1、掌握平行四边形的性质,能利用平行四边形的性质进行简单的推理和计算。
2、经历“实验-猜想-证明”的过程,发展学生的思维水平和良好的思维品质。
3、体验数学与生活的联系,激发学生学习的兴趣。
二、重点、难点1.重点:平行四边形的性质.2.难点:运用平行四边形的性质进行有关的论证和计算.三、教学方法与手段采用“创设情境—大胆猜想—实验探究—反思评价”的课堂活动模式,努力营造自主、合作、探究的学习氛围,利用多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验。
四、教学过程(一)课前延伸1、利用故事导入新课出示此图片,让学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到合适的解决办法。
教师乘机引出课题,明确学习任务。
此处创设生动有趣的故事情境,力求更好地激发学生的学习兴趣。
(二)课内探究1、课内探究一(探究平行四边形的边角关系)观察与思考:在小学中,我们已经认识了平行四边形及其特征。
思考并回答下列问题:(1)观察下列图形,你看到了哪些平行四边形的形象?你还能举出平行四边形在生活中应用的例子吗?(2)平行四边形的对边具有怎样的位置关系?(3)探究平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?教师活动及对学生要求:1、要求学生动手画图,教师参与各学习小组进行指导;2、学生在小组中交流结果;3、各小组得出猜想,并证明:平行四边形的对边相等、对角相等.小组选出代表展示2逻辑推理论证(注重说理能力)分析:如何证明线段或角相等?(引导学生将四边形进行转化)作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.小组选出代表展示解题过程:证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA(ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.学生总结性质并巩固:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.知识运用,例题精讲:例1在 ABCD中,∠A=360。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形及其性质》
教学过程
一、 情境创设 同学们,我们今天的新课就从用两个全等三角形拼图开始。
二、探究新知 1.探索平行四边形的概念
(1)动手操作:拼四边形 用两张全等的三角形纸片拼出多少种不同的四边形? (学生展示拼图结果,并说出拼图思路.)把相等的边重合在一起作为对角线拼出一个四边形,交换重合边的位置又拼出一个四边形,这样一共可以拼出六个不同的四边形. (编号)
(2)探索:平行四边形的特征
在拼出的四边形中,哪些是我们熟悉的?这是什么四边形?(平行四边形)本节课我们就一起来探究平行四边形。
(课题)
我们就从这些四边形入手(拆掉非平行四边形,回顾对边对角的概念
对边是指四边形中不相邻的边,也就是没有公共顶点的边。
(区分三角形的对边,三角形中的对边是指角对的边)
观察:平行四边形的对边具有什么位置关系?你认为它们是平行的,有没有根据? (因为两个三角形是全等的,所以对应角相等,所以AD ∥BC ,同理可得另一组对边也平行.) (教师板书平行四边形定义,再课件展示)
(3)归纳定义: 两组对边分别平行的四边形叫做平行四边形.
理解平行四边形的定义关键在哪里?(①四边形 ②两组对边分别平行)
为了表述的方便,我们把平行四边形ABCD
记作:“□ABCD ”,读作:平行四边形ABCD
根据定义完成下面填空-------
这就是定义的双重性,既表示平行四边形的一个性质,又是判定一个四边形是否是平行四边形的依据。
(4)练习议论:(口答)下面我们依据平行四边形的定义来解决问题
① 下列图形中哪些是平行四边形,为什么?
②如图(4),已知四边形ABCD 是平行四边形,直线EF ∥BC ,分别交AB ,CD 于点E 、F ,问EF 平行于AD 吗?为什么?
2.探究平行四边形的性质
(1)动手操作 将 □ABCD 绕它的两条对角线的交点O 旋转180°
请将两张完全重合的胶片平行四边形,(红的在上面,蓝的在下面)放在桌上用笔尖按在点O 处,这时蓝平行四边形仅仅代表红平行四边形原来的位置.固定蓝平行四边形,将红平行四边形绕着点O 旋转180°,这时两个平行四边形还重合吗?(重合)刚才我们从整体上看到了重合,请把红平行四边形回到原来的位置.同学们再次操作旋转过程,注意观察平行四边形中的四个顶点,四条边,四个角有什么变化?还有线段之间,平行四边形的角之间有何数量关系,为什么?将你的发现在小组内交流.
(2)探索:平行四边形边、角、对角线的性质
(4)(3)(2)(1)F E B D C A B C D
A E A B
D C A C
D B (4)(3)F
E B D C A B C D A E D 108° 72° 120° 120° 60°
A '
B '
C 'C B A
D C B A O ①学生操作、观察、思考后在组内讨论,然后集体交流,教师板书学生发现的结论. ②学生发现后,教师课件演示并借助图形说明.
(3)归纳结论:①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分.
(4)推理论证 利用三角形全等可以证明平行四边形的性质。
刚才我们是动手操作观察发现得出结论的,我们能不能运用前面学过的知识来说明它们是成立的?
①连结一条对角线,把平行四边形分成两个三角形,这两个三角形有什么关系?(全等)由全等三角形的性质就可以得出平行四边形的对边相等,对角相等.
②能不能利用全等三角形的性质得到对角线互相平分的性质呢?(再连结一条对角线,学生说出思路,最后教师小结)
解决平行四边形问题的一般思路是:把平行四边形转化成三角形.
在以后遇见了题目给出已知平行四边形,我们就可以直接运用它的几个性质---。
3. 平行四边形的概念和性质的应用
(1)简单应用 (填空,并说明理由)
1、下列性质中,平行四边形不一定具备的是( )
(A)对角相等 (B)对边相等 (C )对角互补 (D)对角线互相平分
2、在□ABCD 中,若AB =8,周长等于36,则DC = ,BC = .
3、如图,在□ABCD 中,若∠B =50°,则∠A = °,∠D = °. 好了,性质研究完了,我们继续来拼图
(2)动手操作:同桌合作,用四个全等的三角形拼出一个大三角形.
学生黑板上展示拼大三角形的过程。
老师根据刚才的拼图给出例题
(3)例题讲解 例1如图,已知AB ∥''A B ,BC ∥''B C ,
CA ∥''C A 图中有几个平行四边形?
将它们表示出来,并说明理由.(课件展示) 教师先引导学生找出平行四边形,并说明理由,然后带领学生规范地写出解题过程. 问题讨论:
① 点A 、B 、C 分别为△'''A B C 各边中点吗?为什么?(学生说,我板书)
② △ABC 的三个角与△'''A B C 的三个角之间有怎样的数量关系?为什么?(学生写) (学生独立思考后,在组内讨论,然后集体交流,最后教师进行例题小结.)
例1是来巩固平行四边形的定义和对边相等,对角相等的性质,下面我们来看例2,这里有用到了什么性质呢?
(4)巩固练习
如图,□ABCD 的对角线相交于点O , BC =7cm,
BD =10cm , AC =6cm,求△AOD 的周长.
(学生说出解题思路,课件展示解题过程。
)
(5)课堂小结
1、这节课我们学习了哪些知识?为了获得这些知识,我们用了哪些方法?
2、你有哪些收获?还有哪些困惑?
(6)作业布置
必做题:课本第84页习题第1、2、3题,课本第86页习题第1、2题 选做题:如图,在△ABC 中,AB=AC ,点P 、 E 、F 分别在BC 、AB 、AC 上,
且PE ∥AC ,PF ∥AB ,PE+PF
与AB 相等吗?为什么?
F E P C B A。