铁碳合金相图-结晶分类应用4
4.3_铁碳合金相图及应用
4.过共析钢((0.77%~2.11%C) 过共析钢的结晶过程如图所示。 由示意图分析可知,过共析钢结晶过程的基本反应为 [匀晶反应+二次析出反应+共析反应],室温组织为珠光体+ 二次渗碳体,显微组织如图所示。 过共析钢中Fe3CⅡ的最大相对量为:
2.11 0.77 Fe3CⅡ 100 % 22.6% 6.69 0.7
两者性能与晶粒大小、杂质含量有关
2.奥氏体 奥氏体是碳在γ-Fe中的固溶体,用符号“A”表示。高 温奥氏体的显微组织如图所示。 奥氏体的特点: ① 在1148℃时有最大溶解度2.11%C,727℃时可固溶 0.77%C; ② 其力学性能与含碳量及晶粒大小有关,一般170~ 220HBS、δ=40~50%; ③ 形变能力好,形变抗力小。
⑤ 热处理工艺性能和热处理效果。
“铁碳合金相图及应用”部分结束! 请转入:
“钢的热处理”
3)白口铸铁(2.11~6.67%C),根据室温的不同,分为: ① 亚共晶白口铸铁 ② 共晶白口铸铁(≈4.3 %C)
③ 过共晶白口铸铁(>4.3%C)
2.共析钢(≈0.77%C) 共析钢的结晶过程如图a)所示。
由示意图分析可知,共析钢结晶过程的基本反应为[匀晶 反应+共析反应],室温组织为珠光体显微组织。 P中F和Fe3C的相对量:
三、典型铁碳合金的平衡结晶过程及其组织
1.铁碳合金相图上的各种合金,一般分为三类: 1)工业纯铁(<0.02% C ),室温组织为α固溶体; 2)钢(0.02~2.11%C), 根据室温组织不同,分为: ① 亚共析钢(<0.77%C ) ② 共析钢(≈0.77%C) ③ 过共析钢(>0.77%C)
1.铁碳合金的含碳量对组织的影响 2.含碳量对热轧状态钢的力学性能的影响
铁碳合金相图
F % ≈ 1 – 12 % = 88 %
珠光体
强度较高,塑性、韧性和硬度介于 Fe3C 和 F 之间。
室温组织: 层片状 P ( F + 共析 Fe3C ) 500×
(3)亚共析钢 ( C % = 0.4 % )结晶过程
各组织组成物的相对量:
P % = ( 0.4 – 0.0218 ) / ( 0.77 – 0.0218 ) ≈ 51 % F % ≈ 1 – 51 % = 49 %
白口铸铁 —— 2.11 % < C % < 6.69 % 亚共晶白口铁 < 4.3 % 共晶白口铁 = 4.3 % 过共晶白口铁 > 4.3 % 类型 钢号 碳质量分数/% 亚共析钢 20 45 60 0.20 0.45 0.60 共析钢 T8 0.80 过共析钢 T10 T12 1.00 1.20
(4)各相的质量: QL= 50×2/3 = 33.3(kg) Qα = 50-33.3 = 16.7(kg)
2) 室温下,金属晶粒越细,则强度越高、塑性越低。( No )
3) 晶粒度级数数值越大,晶粒越细。(Yes )
5. 1) 金属结晶时,冷却速度越快,其实际结晶温度将: a. 越高 b. 越低 c. 越接近理论结晶温度
2) 为细化晶粒,可采用: a. 快速浇注 b. 加变质剂
√ √
c. 以砂型代金属型
各相的相对量:
Fe3CII % ≈ 1.2 / 6.69 = 18 % F % ≈ 1 – 18 % = 82 %
室温组织
P + Fe3CII
400×
(5)共晶白口铁 ( C % = 4.3 % )结晶过程
室温组织 (低温)莱氏体 (P + Fe3CII + 共晶 Fe3C) 莱氏体 Le′的性能
第三节 铁碳合金及相图
3) Fe-Fe3C相图相区分析:
包括: (1)液相区: (2)液、固两相区: (3)固相区: 也包括: (1) 单相区:L、F、A、Fe3C (2) 两相区:L+A、L+ Fe3C、A+F、F+ Fe3C (3) 三相区:Le+A+ Fe3C、P+Le’+ Fe3C
简化后的Fe-Fe3C状态图
G Q
S
FP
Fe3 C K
4.3 6.69
P
0.0218 0.77 2.11
C%
C—共晶点,1148℃ 4.3%C 共晶点—发生共晶反应的点。 共晶反应 — 在一定的温度下,由一定成分的液体同时结 晶出一定成分的两个固相的反应。
共晶反应的产物——共晶体——机械混合物
L(4.3%C)
1148℃
A(2.11%C )+ Fe3C (6.69%C )
纯铁
0.01%C铁素体500×
2)奥氏体(A):碳溶解在γ -Fe中形成的间隙固溶体。 γ -Fe的溶碳能力较高,最大为2.11%(1148℃)。 由于γ -Fe一般存在于727~1394℃之间,所以奥氏体也 只出现在高温区域内。显微镜观察,奥氏体呈现外形不 规则的颗粒状结构,并有明显的界限。 其 δ =40~50%,具有良好的塑性和低的变形抗力。是 绝大多数钢种在高温进行压力加工所需的组织。 3)渗碳体(Fe3C):铁与碳形成的稳定化合物。含碳 量为6.69%。 HB=800,硬度很高,脆性极大,是钢中的强化相。 显微镜下观察,渗碳体呈银白色光泽。
Fe-Fe3C相图中主要特性点含义见表:
2)Fe-Fe3C相图中特性线:
ACD线—液相线 AC—析出A CD—析出 Fe3C AECF线—固相线 AE—A析出终了线
课题四 铁碳合金相图
课题四 铁碳合金相图 ☂铁碳合金相图各特性点表5-1 铁碳合金相图各特性点表5
符号
A点 C点 D点 E点 F点 G点 P点 S点
温度/℃
1538 ℃ 1148 ℃ 1227 ℃ 1148 ℃ 1148 ℃ 912 ℃ 727 ℃ 727 ℃
碳含量(%)
0% 4.30% 6.69% 2.11% 6.69% 0% 0.0218% 0.77%
课题四
铁碳合金相图
☂典型铁碳合金结晶过程及组织
铁碳合金按其含碳量及室温组织分类 纯铁 (wC≤0.0218%) 钢(0.0218%<wC≤2.11%)
亚共析钢(0.0218%<wC <0.77%) 共析钢(wC =0.77%) 过共析钢(0.77%<wC≤2.11%)
白口铸铁 (2.11%<wC <6.69%)
课题四 铁碳合金相图 ☂在选材方面的应用
在铸造方面的应用 在锻造和焊接方面的应用 在热处理方面的应用
含
义
纯铁的熔点 共晶点Lc←→AE+Fe3C Fe3C的熔点 碳在γ-Fe中的最大溶解度 共晶生成Fe3C的成分 α-Fe←→γ-Fe同素异构转变点 碳在α-Fe中的最大溶解度 共析点As→FP+Fe3C
课题四 铁碳合金相图
☂相图中的特性线
ACD线为液相线。此线以上的区域是液相区,液态合金 冷却到此线温度时,便开始结晶 . AECF线为固相线。表示合金冷却到此线温度时将全部 结晶成固态 .液相线和固相线之间所构成的两个区域,是 由液态合金和结晶体组成的两相区。不过这两个区所包含 的结晶体不同,液态合金沿AC线结晶出来的是奥氏体,而 沿CD线结晶出来的是渗碳体。由液态合金直接析出的渗碳 体称为一次渗碳体(Fe3CⅠ).
第四章 铁碳合金相图
表4.3 铁碳合金的分类
第四节铁碳合金的成分、组织、性能间的关系 一、含碳量与平衡组织间的关系
随着含碳量增加时,渗碳体不仅数量增加,形态和分布也发生了很 大变化。(渗碳体分布在P内——网状分布在A晶界上——形成莱氏 体时,渗碳体则成了基体 。)
二、含碳量与力学性能间的关系
( 1 )硬度 WC 增加,硬度增加;
奥氏体的晶胞示意图
奥氏体的显微组织
三、渗碳体
渗碳体(Fe3C)
铁与碳形成的间隙化合物,含碳 量6.69%; 室温相——常作为钢的第二弥散 强化相; 渗碳体具有高硬度、高脆性、低 强度和低塑性; 一次渗碳体 Fe3CI:从液相直接 结晶出来。 二次渗碳体 Fe3CII:从 A 中析出。 三次渗碳体Fe3CIII:从F中析出。
第三节 典型铁碳合金的结晶过程及其组织
一、合金Ⅰ(共析钢)
结晶过程
共析结晶过程
1点以上 L; 1~2点 L+A; 2~3点 A; 3点 共析转变AS
727℃
(FP+Fe3C) ≡ P
QFe3 C
(片层状分布)共析铁素体 共析渗碳体 珠光体团
3~4点 F+ Fe3CIII+ Fe3C ≡ P
0.77 0.0218 11.2% 6.69 0.0218
第一节 铁碳合金的基本相
同素异晶转变——是指金属在结晶成固态以
后继续冷却的过程中晶格类型随温度下降而 发生变化的现象,也称同素异构转变。
Fe的冷却曲线及相应的晶体结构
L-Fe 液相
1538℃
δ-Fe 体心
1394℃
γ-Fe 面心
912℃ α-Fe 体心
同素异构转变(重结晶)的特点
课题四铁碳合金相图课件
市场需求的预测
汽车工业需求
随着电动汽车和智能网联汽车的发展,对高性能、轻量化铁碳合 金材料的需求将不断增加。
航空航天需求
随着航空航天技术的进步,对高强度、耐高温的铁碳合金材料的 需求也将不断增长。
基础设施建设需求
随着全球基础设施建设的不断推进,对高强度、耐腐蚀的铁碳合 金材料的需求也将持续增加。
THANKS
化学成分和组织结构等。
数据处理
对实验数据进行整理、分析和处 理,利用数学方法绘制出相图。
图形绘制
将处理后的数据用图形的方式表 示出来,形成铁碳合金相图。
相图的解读
平衡状态
根据相图可以确定不同成分的铁碳合金在不同温度下的平衡状态 ,如单相区、两相区、固溶体区等。
相变规律
相图描述了铁碳合金在不同温度和成分下的相变规律,包括同素异 晶转变、共晶反应和共析反应等。
感谢观看
生产工艺的改进
高效成形技术
01
采用先进的成形工艺,如精密铸造、粉末冶金等,提高铁碳合
金材料的生产效率和产品质量。
节能减排技术
02
在生产过程中引入节能减排技术,降低铁碳合金生产的能耗和
污染物排放,实现绿色制造。
智能化生产
03
利用物联网、大数据等先进技术,实现铁碳合金生产的智能化
和自动化,提高生产效率和产品质量。
相图中的各个区域代表了不同成分 的铁碳合金在不同温度下的平衡状 态,包括液相区、固相区和两相区 。
特性线
特性线是相图中的一些关键温度线 ,如熔点线、共晶点线、共析点线 等,它们对确定合金的平衡状态和 相变过程具有重要意义。
相图的绘制
实验数据
铁碳合金相图的绘制需要大量的 实验数据,包括不同成分的铁碳 合金在不同温度下的物理性质、
4 铁碳合金相图
一、共析钢
1 C 2
•珠光体中铁素体与渗碳体的
相对量可用杠杆定律求得。
w FP SK 6.69 0.77 100%
PK 6.69 0.0218 88.8%
PS 0.77 - 0.0218
3
w Fe 3 C
PK 6.69 0.0218 11 .2 % (1 - w FP ) 100%
σb
750~900MPa
δ
20%~25%
αk
24~32J/㎝2
第四章 铁碳合金相图
硬度
180~280HBS
共晶转变与共析转变比较
相同点: • 在恒温下,由一相转变成两相混合物
不同点:
• 共晶转变——从液相发生转变;共晶体-莱氏体Ld;
• 共析转变——从固相发生转变;共析体-珠光体P;
• 由于原子在固态下扩散困难,故共析体比共晶体 更细密。
第四章 铁碳合金相图
二、下半部分图形-固态的相变
2.图中各线的分析
• PQ-碳在铁素体中固溶线,碳在铁素体中的最大溶解度是P 点,随着温度降低溶解度减小。从727℃到室温,铁素体中
溶碳量从wC=0.0218%减小到wC=0.0008%。
第四章 铁碳合金相图
三次渗碳体(Fe3CⅢ)——由727℃冷却到室温的过程中,过 剩的碳将以渗碳体形式从铁素体中析出,称为三次渗碳体。 一次渗碳体(Fe3CⅠ)——自液态合金中直接析出的渗碳体。 二次渗碳体(Fe3CⅡ)——自奥氏体中析出的渗碳体。
第四章 铁碳合金相图
三、渗碳体
σb
30MPa
δ
0%
αk
0J/㎝2
硬度
800HBW
• 渗碳体是指晶体点阵为正交点阵,化学式近似于Fe3C的一种 具有复杂晶格的间隙化合物,用符号Fe3C表示。 • 其含碳量为wc=6.69%,熔点为1227℃,不发生同素异构转变, 有磁性转变,在230℃以下具有弱磁性,230℃以上失去铁磁 性。 • 渗碳体中碳原子可被氮等小尺寸原子置换,而铁原子则可被 其他金属原子置换。这种以渗碳体为溶剂的固溶体称为合金 渗碳体。 • Fe3C在钢和铸铁中与其他相共存时呈片状、球状、网状或块 状。在碳钢中起强化相,其形态与分布对钢的性能有很大影 响。在一定条件下会分解成石墨状的自由碳。
第五章 铁碳合金相图及应用
第五章 铁碳合金相图及应用4学时
铁碳合金基本相→铁碳相图重要点、线、区分析→铁碳合金 分类→工业纯铁、亚共析钢、共析钢、过共析钢凝固结晶分析→ 合金成分与组织性能关系及应用
3.分析一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体和共析渗碳体的异同之处。
答:相同点:都是渗碳体,晶体结构、成分、性能相同。 不同点:一次渗碳体从液相析出,二次渗碳体从奥氏体析出,三次渗碳体从铁素体析出,共晶渗碳体共晶反应
时形成,共析渗碳体共析反应时形成。
7.根据铁碳相图解释下列现象:1)进行热轧和锻造时,通常将钢材加热到1000-1250℃;2)钢铆钉一般用低碳钢制造; 3)绑扎物件铁丝一般为镀锌低碳钢丝,而起重机吊重物时用钢丝绳用含碳0.60%、0.65%、0.70%的钢等制成;4)在 1100℃时,Wc=0.4%的碳钢能进行锻造,而Wc=4%的铸铁不能进行锻造;5)室温下Wc=0.8%的碳钢比Wc=1.2% 的碳钢强度高;6)亚共析钢适于压力加工成形,而铸铁适于铸造成形。
渗碳体Fe3C:含碳6.69%,是硬而脆的间隙相,硬度为950-1050Hv,塑性和韧
性几乎为零。
思考题:什么是铁素体和奥氏体?铁素体和奥氏体分别具有何种晶体结构?
铁碳相图分析 第二节 铁碳合金相图分析 P73 ➢重要点:共析成分点S(0.77%C);共晶成分点C(4.3%C)。 ➢重要线:A1线(PSK),A3线(GS),Acm线(ES)。 ➢相区:单相区、两相区和三相区。 ➢渗碳体:从液相、奥氏体、铁素体中析出的一次、二次、三次渗碳体。 ➢共析反应和共晶反应:A=F+Fe3C,L=A+Fe3C。 ➢珠光体P和莱氏体Ld:共析反应形成的铁素体和渗碳体的机械混合 物;共晶反应形成的A与Fe3C的机械混合物。
第四章铁碳合金状态图
第四章铁碳相图与碳钢钢铁材料都属于铁碳合金,学习本章有助于了解铁碳合金的成分、组织和性能之间的关系,以便在生产中合理地使用。
本章包括以下内容:铁碳相图碳含量对合金组织性能的影响铁碳相图的应用与局限性碳钢4.1 铁碳相图4.1.1铁碳合金中的基本相不同温度时Fe 具有不同的晶体结构α-Fe γ-Fe δ-Fe C 可以溶解到Fe 的晶格中形成固溶体α:C 在α-Fe 中的间隙固溶体;铁素体,Fγ: C 在γ-Fe 中的间隙固溶体;奥氏体,A δ:C 在δ-Fe 中的间隙固溶体; 高温铁素体 当C 含量超过溶解度时,多余的C 形成化合物Fe 3C 或石墨1394o C 912o C4.1.2 Fe-FeC相图分析3简化铁碳相图4.1.3 铁碳合金的分类按照含碳量铁碳合金可以分为三大类(一)工业纯铁: C%≤0.0218%(二)钢: 含C%为0.0218%~2.11%1. 共析钢C%=0.77%2. 亚共析钢0.0218%< C%< 0.77%3.过共析钢0.77%< C%≤2.11%(三) 白口铸铁: 2.11%< C%< 6.69%1.共晶白口铁C%=4.3%2.亚共晶白口铁2.11%< C%< 4.3%3.过共晶白口铁4.3%< C%< 6.69%4.1.4 典型合金结晶过程1 工业纯铁室温组织为:α+Fe3C III2-1 共析钢室温组织为:珠光体P(F+Fe 3C)室温组织中组织组成物相对重量:W F = ×100% = 88% W Fe3C 共析= ×100%=12%0.026.690.776.69−−0.02-6.690.020.77−2-2 亚共析钢30钢的室温组织40钢的室温组织室温组织:F 初+P (F +Fe 3C )W P = ×100% = 51%W F 初= 1 -51% = 49%0.020.770.020.4−−2-3 过共析钢室温组织:Fe 3C Ⅱ+P (F +Fe 3C )1.2%C 钢的室温组织组成物相对重量为:Fe 3C Ⅱ%=×100%=7%,P %=1-7%=93%0.776.690.771.2−−3-1 共晶白口铸铁3-2 亚共晶白口铸铁3-3 过共晶白口铸铁Fe-Fe 3C组织组成物相图4.2 碳含量对组织性能的影响4.2.1 组织相:随着C %↑F ↓Fe 3C ↑组织:主要涉及碳化物的数量与形态: 少量Fe 3C III ,P ,二次Fe 3C II ,莱氏体基体4.2.2 含碳量对力学性能的影响F 为软相,Fe 3C 为硬脆相。
铁碳合金相图及应用
相图的应用——热锻、热轧工艺方面的 应用
钢处于奥氏体状态时 强度较低, 塑性较好, 因 此锻造或轧制选在单相奥 氏体区进行。一般始锻、 始轧温度控制在固相线以 下100℃~200℃范围内。 一般始锻温度为1150℃~ 1250℃, 终锻温度为 750℃~850℃。
相图的应用——在热处理工艺方面的应用
硬度 50HB~80HB
2.共析钢 C%=0.77%
2.共析钢 C%=0.77%
相组成物:F和Fe3C 相相对量:F%= 组织组成物 :P
Fe3C%=
3.亚共析钢 0.0218%<C%<0.77%
3.亚共析钢 0.0218%<C%<0.77%
L → L+A → A → A+F → A+P+F → P+F
相相对量:F%=
Fe3C%=
组织组成物:F பைடு நூலகம் Fe3CIII
工业纯铁的机械性能特点是强度低、硬度低、 塑性好。主要机械性能如下:
抗拉强度极限 σb 180MPa~230MPa
抗拉屈服极限 σ0.2 100MPa~170MPa 延伸率 δ 30%~50% 断面收缩率 ψ 70%~80% 冲击韧性 ak 1.6×106J/m2~2×106 J/m2
三、渗碳体 Fe3C相,由Fe与C组成一种复杂结构的间隙化合 物,渗碳体的熔点高,性能:硬而脆,塑性、韧性几乎为 零。按不同生成条件形状有:条状、网状、片状、粒状等 形态, 对铁碳合金的机械性能有很大影响。
第二节 Fe-Fe3C相图分析
一、相图中的点、线、面:三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。
本章结束
3.亚共析钢 0.0218%<C%<0.77%
4铁碳合金相图及碳素钢
1.3.4 铁碳合金的结晶
• ㈤ 共晶白口铁的结晶过程 • 合金冷却到C点发生共晶反应全部转变为莱氏体(Le),莱氏体是
共晶 与共晶Fe3C的机械混合物, 呈蜂窝状。
Fe3C
1.3.4 铁碳合金的结晶
• 共晶转变结束时,两相的相对重量百分比为:
C点以下, 成分沿ES线变化,共晶 将析出Fe3CⅡ。 Fe3CⅡ与 共晶Fe3C 结合,不易分辨。
• 组织组成物与相组 成物标注区别主要 在+ Fe3C和
+Fe3C两个相区.
+ Fe3C相区中有
四个组织组成物区,
+ Fe3C
+ Fe3C
+Fe3C相区中有七
个组织组成物区。
A
L+
H
温N 度
J
A
B
1.3.4 铁碳合金的结晶
L
A+
L+A
D E S
P A+ Fe3CⅡ
C A+ Fe3C
3
共晶白口铁组织金相图
1.3.4 铁碳合金的结晶
• ㈥ 亚共晶白口铁的结晶过程 • 合金在1~2点间析出 。到2点,液相成分变到C点,并转变为
Le。2~3点间从 中析出Fe3CⅡ,一次的 Fe3CⅡ被共晶 衬
托出来。到3点, 转变为P。
1.3.4 铁碳合金的结晶
• 亚共晶白口铁室温组织为
+Fe3C
⇄
1.3.4 铁碳合金的结晶
• (2)特征线 • a、 液相线—ABCD, • 固相线—AHJECF
• b、 三条水平线: • HJB:包晶线LB+δH⇄ J • ECF:共晶线LC⇄ E+Fe3C
铁碳合金相图及结晶组织变化
铁碳合金相图及结晶组织变化铁碳合金的组元和相一、基本概念铁碳合金:碳钢和铸铁的统称,都是以铁和碳为基本组元的合金碳钢:含碳量为0.0218%〜2.11%的铁碳合金铸铁:含碳量大于2.11%的铁碳合金铁碳合金相图:研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。
注:由于含碳量大于Fe3C的含碳量(6.69% )时,合金太脆,无实用价值,因此所讨论的铁碳合金相图实际上是F e-Fe3C二、组元1. 纯铁纯铁指的是室温下的a-Fe,强度、硬度低,塑性、韧性好。
2. 碳碳是非金属元素,自然界存在的游离的碳有金刚石和石墨,它们是同素异构体。
3. 碳在铁碳合金中的存在形式有三种:C与Fe形成金属化合物,即渗碳体;C以游离态的石墨存在于合金中。
C溶于Fe的不同晶格中形成固溶体;A. 铁素体:C溶于a-Fe中所形成的间隙固溶体,体心立方晶格,用符号“F或“a表示,铁素体是一种强度和硬度低,而塑性和韧性好的相,铁素体在室温下可稳定存在。
B. 奥氏体:C溶于Y-Fe中所形成的间隙固溶体,面心立方晶格,用符号“A”“表示,奥氏体强度低、塑性好,钢材的热加工都在奥氏体相区进行,奥氏体在高温下可稳定存在。
C. C与Fe形成金属化合物:即渗碳体Fe3C , Fe与C组成的金属化合物,Fe与C组成的金属化合物,含碳量为6.69 %。
以“Fe3C或“ Cm符号表示,渗碳体的熔点为1227 C,硬度很高(HB = 800)而脆,塑性几乎等于零。
渗碳体在钢和铸铁中,一般呈片状、网状或球状存在。
它的形状和分布对钢的性能影响很大,是铁碳合金的重要强化相。
碳在a-Fe中溶解度很低,所以常温下碳以渗碳体或石墨的形式存在。
铁碳合金相图的分析1. 铁碳合金相图由三个相图组成:包晶相图、共晶相图和共析相图;2. 相图中有五个单相区:液相L、高温铁素体3、铁素体a奥氏体Y渗碳体Fe3C ;3. 相图中有三条水平线:HJB水平线(1495 C):包晶线,发生包晶反应,反应产物为奥氏体。
机械工程材料第四章铁碳合金相图
第四章铁碳合金相图教学目的及其要求通过本章学习,使学生们掌握铁碳合金的基本知识,学懂铁碳相图的特征点、线及其意义,了解铁碳相图的应用。
主要内容1.铁碳合金的相组成2.铁碳合金相图及其应用3.碳钢的分类、编号及应用学时安排讲课4学时教学重点1.铁碳合金相图及应用2.典型合金的结晶过程分析教学难点铁碳合金相图的分析和应用。
教学过程第一节纯铁、铁碳合金中的相一、铁碳合金的组元铁:熔点1538℃,塑性好,强度硬度极低,在结晶过程中存在着同素异晶转变。
不同结构的铁与碳可以形成不同的固溶体。
由于纯铁具有同素异构转变,在生产上可以通过热处理对钢和铸铁改变其组织和性能。
碳:在Fe-Fe3C相图中,碳有两种存在形式:一是以化合物Fe3C形式存在;二是以间隙固溶体形式存在。
二、铁碳合金中的基本相相:指系统中具有同一聚集状态、同一化学成分、同一结构并以界面隔开的均匀组成部分。
铁碳合金系统中,铁和碳相互作用形成的相有两种:固溶体和金属化合物。
固溶体是铁素体和奥氏体;金属化合物是渗碳体。
这也是碳在合金中的两种存在形式。
1.铁素体碳溶于α-Fe中形成的间隙固溶体称为铁素体,用α或者F表示,为体心立方晶格结构。
塑性好,强度硬度低。
2.奥氏体碳溶于γ-Fe中形成的间隙固溶体称为奥氏体,用γ或者A表示,为面心立方晶格结构。
塑性好,强度硬度略高于铁素体,无磁性。
3.渗碳体Fe3C:晶体结构复杂,含碳量6.69%,熔点高,硬而脆,几乎没有塑性。
渗碳体对合金性能的影响:(1)渗碳体的存在能提高合金的硬度、耐磨性,使合金的塑性和韧性降低。
(2)对强度的影响与渗碳体的形态和分布有关:以层片状或粒状均匀分布在组织中,能提高合金的强度;以连续网状、粗大的片状或作为基体出现时,急剧降低合金的强度、塑性韧性。
二、两相机械混合物珠光体:铁素体与渗碳体的两相混合物,强度、硬度及塑性适中。
莱氏体:奥氏体与渗碳体的混合物;室温下为珠光体与渗碳体的混合物,又硬又脆。
4铁碳合金相图
工程材料及其热处理-2 8
3、单相的基本组织
在铁碳合金中,各个独立存在的相,也可以看成是单 相的基本组织。例如:铁素体组织,渗碳体组织。
4
3、渗碳体
Fe和C形成的间隙化合物。
具有固定的熔点1227℃,固定的化学成分,碳的
质量分数ωc=6.69%, 分子式Fe3C。 Fe3C在铁碳合金中是一种独立的相。性能特点硬而 脆, 相对固溶体,Fe3C属于强化相。渗碳体的数量、 形态、分布对钢的性能影响很大。
工程材料及其热处理-2
5
说明: 高温相:A 室温相主要是:F、Fe3C
3、相区
工程材料及其热处理-2 17
三、铁-渗碳体相图中各点、线含义的小结
根据上述分析结果,把铁-渗碳体相图中主要特 性点和线分别列表归纳总结。见表4-1和表4-2。
工程材料及其热处理-2
18
四、铁碳合金的分类 按含碳量不同,铁碳合金分为:工业纯铁、钢 和铸铁三大类。
工程材料及其热处理-2
19
工程材料及其热处理-2
13
2、图中各线的分析
ACD线—液相相
线—固相线
ECF线为共晶线,液相合金冷却到共晶线时, 将发生共晶转变。 ES线为C在A中的溶解度曲线。最大溶解度是E 点,随着温度下降,溶解度减小,直到S点为最小 溶解度点。 3、相区
工程材料及其热处理-2 14
二、下半部分图 形——固态下的结 晶
工程材料及其热处理-2
工程材料及其热处理-2
金属材料与热处理第4章铁碳合金课件.ppt
4.2 二元合金相图
4.2.1 二元合金相图的表示方法 4.2.2 二元合金匀晶相图分析 4.2.3 二元合金共晶相图分析
4.2.1 二元合金相图的表示方法
合金相图是用图解的方法表示合金系中合金状态、温 度和成分之间的关系,简称相图或状态图。
它是了解合金中各种组织的形成与变化规律的有效工 具,是合金在极缓慢冷却、接近平衡条件下测绘的,又 称平衡图。
a)间隙固溶体 b)置换固溶体 溶质原子对晶格畸变影响示意图
4.1.3 金属化合物
合金组元间发生相互作用而形成一种具有金属特性的物质 称为金属化合物。
金属化合物可用化学分子式来表示。金属化合物的晶格类 型不同于任一组元,一般具有复杂的晶格结构,其性能具有 “三高一稳定”的特点,即高熔点、高硬度、高脆性和良好 的化学稳定性。
相:合金中化学成分、结构相同的组成部分称为相,相与 相之间具有明显的界限。
合金的组织是指合金中不同相之间相互组合而成的综合 体 。各相的数量、形状、大小及分布方式的不同形成了 合金组织。
4.1.2 固溶体
固溶体:一种组元的原子溶入另一组元的
晶格中所形成的均匀固相,称为固溶体。溶入
的元素称为溶质,而基体元素称为溶剂。固溶
1点以上
1~2点
2~3点
共析钢结晶示意图
3点以下
珠光体显微组织
2. 亚共析钢的结晶过程分析
亚共析钢(含碳量0.0218%<C<0.77%)的冷却过程如 图4-15结晶出奥氏体,到2点时结晶完毕。在2点到3点之 间,奥氏体组织不发生转变;冷却到与GS线相交的3点时, 从奥氏体中开始析出铁素体。当温度降至与PSK线相交的 4点时,剩余奥氏体的含碳量达到0.77%,此时奥氏体发 生共析转变,转变为珠光体。亚共析钢室温组织由珠光体 P和铁素体F组成。
铁碳合金的相图解读
D1227
L+ Fe3CⅠ F
912 G
A
Ld
A+Ld+Fe3CⅡ P+Ld’+Fe3CⅡ Ld’ ( P+Fe3C )
Ld+Fe3CⅠ
727℃ K Ld’+Fe3CⅠ
S A+ Fe3CⅡ A+F F P ( F+ Fe3C )
P
O 0.0218%C 0.77%C Fe
Q P+F
P+Fe3CⅡ
2.11%C
在1148℃时最大,为2.11%。727 ℃时为0.77%
奥氏体强度硬度不高但具 有良好塑性,钢材热加工 都在 区进行。
一般情况奥氏体不存在于
室温中。
奥氏体
⑶ 渗碳体Fe3C: 渗碳体是一种具有复杂斜方晶格的金属化合物。含碳量为 6.69%,熔点为1227℃。 Fe3C具有硬度高、强度低(b35MPa), 脆性大, 塑性几乎为 零
谢谢!
铁碳合金相图
•一、纯铁的同素异构转变 •二、铁碳合金的基本相及组织 •三、铁碳合金相图
•四、铁碳合金相图的应用
一、纯铁的同素异构转变
纯铁在 结晶为固态 后继续冷却 至室温的过 程中,还会 发生两次晶 格结构的转 变。
二、铁碳合金的基本相及组织
⑴ 铁素体F:
铁素体是碳固溶于-Fe中形 成的间隙固溶体, 用F 表示。
4.3%C
6.69%C Fe3C
特征线 ⑴ 液相线—ACD, 固相线—AECF
⑵ 水平线:
ECF:共晶线LC⇄ A+Fe3C 共晶产物是A与Fe3C的机械混合 物,称作莱氏体, 用Ld表示。为 蜂窝状, 以Fe3C为基,性能硬而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、典型合金的平衡结晶过程 铁碳相图上的合金,按成分可分为三类:
⑴ 工业纯铁(<0.0218% C) 组织为单相铁素体。
⑵ 钢(0.0218~2.11%C) ① 亚共析钢(0.0218~0.77%C)
② 共析钢(0.77%C)
③ 过共析钢(0.77~2.11%C)
⑶ 白口铸铁(2.11~6.69%C)
性能: 强度硬度较高、塑性韧性很好。所以生产中 多把钢加热到高温A进行压力加工。
3、渗碳体(Fe3C)
定义:碳与铁相互化合形成的金属 化合物。 结构:复杂晶格 组织:以片、粒、网或带状等形态存
在于铁碳合金中。
成分: wc = 6.69%
性能: 硬度很高、塑性韧性很差。
4、珠光体(P)
定义:由F和Fe3C组成的机械混合物。 结构:机械混合物 成分: wc = 0.77% 组织: F与Fe3C层片状相间分布 性能: 强度硬度较高、具有一定的塑 性和韧性。
① 切削性能: 中碳钢合适
② 可锻性能: 低碳钢好
铣 车 刨 钻
③ 焊接性能: 低碳钢好
④ 铸造性能: 共晶合金好
⑤ 热处理性能:
铸 造
磨
切削加工的基本形式
模锻
ቤተ መጻሕፍቲ ባይዱ
焊 缝 组 织
小结:标注组织的铁碳相图
小结:铁碳合金的基本相和组织 铁素体 奥氏体 渗碳体 珠光体 莱氏体
钢 铁 分 类
钢 工 业 共析钢 纯 铁 亚共析钢 过共析钢 0.77 2.11
二次渗碳体
白 口 铸 铁
共晶白口铸铁 亚共晶白口铸铁 过共晶白口铸铁
含碳量% 0 0.0218
4.3
6.69
一次渗碳体
组织组 成物相 对量% 相组成 物相对 量%
100
铁素体 珠光体
莱氏体
0
三次渗碳体
100
Fe3C
0
1、铁素体(F)
碳溶于-Fe中形成的间隙固溶体。 定义: 结构: 体心立方 组织: 晶界平缓、均匀明亮的多边形晶粒。 成分: wc 0.0218% 性能: 强度硬度低、塑性韧性好。
2、奥氏体(A)
定义: 碳溶于 -Fe中形成的间隙固溶体。 结构: 面心立方 组织: 晶界较平直的多边形晶粒 成分:wc 2.11%
熟练绘制铁碳相图,认清各组织的定义(来 源,成分,形貌,性能) 重要性:本讲内容是是后面内容的理论依据; 是要熟练掌握的要点。
5、莱氏体(Ld)
定义:由A(或P)和Fe3C 组成的机
械混合物,分别称为高温莱
氏体和低温莱氏体( L´d )。 结构:机械混合物 组织:以鱼骨状Fe3C为基体。 成分: wc = 4.30%
性能: 硬、脆。
小结
材料的宏观力学性能取决于材料的微观组织 结构;(三种晶体结构,三种实际缺陷,合 金的二种相结构和两相混合物)
⒉ 含碳量对力学性能的影响 亚共析钢随含碳量增加,P 量增加,钢的强度、硬度 升高,塑性、韧性下降。
0.77%C时,组织为100% P, 钢的性能即P的性能。
>0.9%C,Fe3CⅡ为晶界
连续网状,强度下降, 但
硬度仍上升。
>2.11%C,组织中有以
Fe3C为基的Le’,合金太脆.
⒊ 含碳量对工艺性能的影响
§4 典型铁碳合金的结晶过程分析
工业纯铁 ( ingot iron ) 共析钢 ( eutectoid steel ) 亚共析钢 ( hypoeutectoid steel ) 过共析钢 ( hypereutectoid steel ) 共晶白口铁 ( eutectoid white iron ) 亚共晶白口铁( hypoeutectoid white iron ) 过共晶白口铁( hypereutectoid white iron )
铸造性能好,硬而脆 ① 亚共晶白口铸铁 (2.11~4.3%C) ② 共晶白口铸铁(4.3%C)
③ 过共晶白口铸铁
(4.3~6.69%C)
共析钢的结晶过程
亚共析钢的结晶过程
亚共晶白口铁的结晶过程
铁碳合金组织和性能
⒈ 含碳量对室温平衡组织的影响 含碳量与缓冷后相及组织组成物之间的定量关系为: