丙酮碘化反应

合集下载

_丙酮碘化反应速率方程的测定

_丙酮碘化反应速率方程的测定
lg T LC I 2
式中,T 为透光率,L 为比色槽的光径长度, 为 摩尔吸收系数。
以 lg T LC I 式对反应时间t求导,则
2
d lg T dt
L
dC I2 dt
L
式中 L 可通过测定一已知浓度的碘溶液的透光率测出
作 lg T ~ t 关系图,得到一条直线,由直线斜率结合 测定出来的 L 值,可以求得反应体系的反应速率
ln k 2 ln k 1 Ea R ( 1 T1 1 T2 )
仪器试剂
仪器:721型分光光度计 一套 50ml容量瓶各 5个
5ml移液管3支 试剂:0.0200 mol∙dm-3 I¯ 溶液 2.5000 mol∙dm-3 3 丙酮溶液 1.000 mol∙dm-3盐酸溶液。
实验步骤
1、接通721型分光光度计的电源,选择入射光波长为565nm,灵 敏度为“2”或“3”,打开比色皿暗盒盖,调节“0”电位器使电 表指针为“0”,然后关上暗盒盖,比色皿座处于蒸馏水校正位 置,调节“100%”电位器,使刻度盘指针达到满刻度,仪器预 热20min。
丙酮碘化反应速率方程 的测定
广西师范大学化学化工学院
实验目的

掌握用孤立法确定反应级数的原理和方法;
测定酸催化作用下丙酮碘化反应的反应级数、 速率常数及活化能; 初步认识复杂反应机理,了解复杂反应的表观 速率常数的求算方法; 进一步掌握分光光度计的使用方法。
ห้องสมุดไป่ตู้

实验原理
1. 丙酮碘化反应的速率方程



配制样品要准确。
数据记录和处理
按实验讲义上的格式记录和处理。
思考题

动力学实验中,正确计量时间是实验的关键。本实验 中从反应开始到起算反应时间,中间有一段不算很短 的操作时间。这对实验有无影响?为什么? 影响本实验结果的主要因素是什么?

复杂反应——丙酮碘化反应

复杂反应——丙酮碘化反应
- - - -
I 2 +I-
I- 3
(3)
- θ 平衡常数 K = 700 。其中 I 2 在这个吸收带中也吸收可见光。因此 I 3 溶液吸收光的数量不 -
仅取决于 I 3 的浓度,而且也与 I 2 的浓度有关。根据朗伯-比尔定律:
D = εLc
式中:D—光密度(消光度) ; ε —吸收系数; L —比色皿的光径长度; c —溶液的浓度。 含有 I 3 和 I 2 溶液的总光密度 D 可以表示为 I 3 和 I 2 两部分光密度的和,即:
实验结束后上机进行数据检验, 拟合所得的反应速率系数与反应技术还有反应的活化能 和反应的摩尔焓变和摩尔熵变的计算结果记录如下: Table 2 各个反应条件下反应速率系数的拟合结果 反应速率系数 拟合数值(L*mol-1*s-1) 0. 1373*10^-4 0. 1361*10^-4 0. 1314*10^-4 0. 1318*10^-4 0. 374*10^-4
7、 按表中的量,准确移取已恒温的三种溶液于 25ml 容量瓶中(碘溶液最后加) ,用去离子 水稀释至刻度,摇匀,润洗比色皿 3 次,然后将装有 2/3 溶液的比色皿置于样品室光路 通过处,盖好盖子,同时利用计算机或秒表(每隔 1min 或 2min 记录一次数据)开始记 录吸光度值变化(如果分光光度计没有带恒温水浴夹套注意只取反应开始一段时间的数 据) 。 8、 做完 25℃下的全部四个实验后,再升高恒温水浴温度到 35℃进行第五组的实验。 方法要点: (1)测定波长必须为 565nm,否则将影响结果的准确性。 (2)反应物混合顺序为:先加丙酮、盐酸溶液,然后加碘溶液。丙酮和盐酸溶液混合后不 应放置过久,应立即加入碘溶液。 (3)测定光密度 D 应取范围 0.15-0.7。 (4)在调节分光光度计的光路位置时,如果加了恒温套,拉杆的位置与原光路位置有不对 应的地方,需目视确认光路通畅。 (5)带恒温套的分光光度计要注意保持内部循环水路的畅通,并要防止水路阻挡光路。 (6)调准恒温槽的温度,开冷却水,恒温时间要足够长。 (7)配制溶液时,碘溶液一定要最后加。 (8)比色皿装液量不要太满,约 2/3 即可。 (9)使用恒温槽注意升温时间,室温与设定温度相差较大时对测定的影响也较大。

丙酮碘化反应

丙酮碘化反应
配置不同盐酸和丙酮浓度的溶液(固定碘溶液 为2.0或者2.5mL; 变盐酸时丙酮为5mL;变 丙酮时盐酸为5mL;变化幅度为1mL);
分别测定11组不同浓度溶液反应速率;
注意事项:
两个50毫升容量瓶供轮换用; 碘溶液一般固定为2.0或2.5 mL; 首先将盐酸和碘溶液移入容量瓶,加蒸馏水至
丙酮碘化反应
——The Iodation Reaction of Acetone
基础化学实验中心
目的要求 实验原理 实验方法 实验步骤 数据处理 思考题
实验目的
掌握用孤立法测定丙酮碘化反应的反应级数、 速率常数和活化能;
通过本实验加深对复杂反应特征的理解; 掌握分光光度计的正确使用。
2. 比色皿如果没有完全复位,使I0变为80或者120,会
对实验结果产生什么影响?
3. 响本实验结果的主要因素是什么?
通过测量已知准确浓度的I3-溶液的透光率,可求出k'l ,
从而由测定透光率可跟踪碘浓度c(I2)随时间的变化。
实验表明,在酸度不很高时
r dcA dt
dcI dt
k
cA c (H ) 常数
因此,将c(I2)对时间t作图应为一直线,其斜率负值即为 反应速率r。
本实验采用孤立法测定反应级数
40毫升,置于恒温水浴,丙酮碘量瓶整体放入 水槽恒温;定容的蒸馏水瓶也要恒温; 第一组盐酸、丙酮统一为5mL; 变化浓度时,固 定的一个也为5mL;最大不超过8mL; 不测数据时请将分光光度计的盖子开启。
思考题?
1. 动力学实验中,正确计算时间是很重要的。本实验 中将反应物开始混合到起算反应时间,中间有一段 不算很短的操作时间,这对实验结果有无影响?为 什么?

实验 丙酮碘化反应速率常数的测定

实验 丙酮碘化反应速率常数的测定

实验丙酮碘化反应速率常数的测定实验目的:通过测定丙酮和碘化钾的反应速率及温度的变化,确定丙酮碘化反应的速率常数及反应的活化能。

实验原理:丙酮碘化反应的化学方程式为:CH3COCH3 + I2 → CH3COCH2I + HI在反应中,碘化钾不是反应物,它仅仅是反应的催化剂。

反应过程中,丙酮作为亲核试剂参与反应,碘作为电子受体参与反应。

反应速率服从于速率方程式:v = k[CH3COCH3][I2]式中,v为反应速率,k为反应速率常数,[CH3COCH3]和[I2]为反应物的浓度。

由速率方程式可得到反应的速率常数:实验材料:1. 丙酮2. 纯净碘化钾晶体3. 磷酸铵铵水溶液4. 密闭反应瓶5. 外接冷却器6. 烧杯7. 温度计8. 支架、夹子等实验步骤:1. 在烧杯中称取约1g左右的碘化钾晶体,加入适量的磷酸铵铵水溶液搅拌,使其完全溶解,得到约20mL的碘化钾溶液。

2. 在密闭反应瓶中分别加入1mL的丙酮和8mL的碘化钾溶液,并密闭反应瓶。

3. 快速倒置反应瓶数次,将反应物充分混合,然后立即测量反应开始时的温度,并记录。

4. 在恒定的温度下反应,观察反应中溶液的颜色变化,当反应结束时,停止加热,记录反应结束时的温度。

5. 取出反应瓶,立即倒置,用冷水冷却,直到瓶壁不感觉到热度。

然后打开瓶盖,加入适量的富燃料酒精,用火焰特别小心地加热至反应彻底结束。

6. 用氢氧化钠溶液中和反应液,并加入饱和的淀粉溶液,调节至淀粉混浊,根据样品的淀粉容度,用标准硫酸溶液滴定,记录滴定过程中消耗的硫酸滴定液体积。

7. 重复以上步骤,每次改变温度,取三次数据,以平均值作为实验数据。

并制作温度与反应速率的图表。

实验结果:反应温度 t(℃) 20 30 40 50 60滴定体积 V(ml) 第一次实验 8.0 7.5 5.5 4.4 1.8第二次实验 8.1 7.8 5.7 4.5 1.5第三次实验 8.2 7.9 5.6 4.6 1.6平均值 V(ml) 8.1 7.7 5.6 4.5 1.6在图表上,将反应速率(v)取为纵坐标,温度(T)取为横坐标,消耗的当量用在AB 段上画出热力学曲线,用斜率法求出反应速率常数及反应的活化能。

丙酮碘化反应

丙酮碘化反应

物理化学实验丙酮碘化反应动力学C202 2010-03-29T=286.15K P=85.02kPa一、实验目的1.根据实验原理由同学设计实验方案,包括仪器、药品、实验步骤等2.测定反应常数k、反应级数n、活化能Ea3.通过实验加深对复杂反应的理解二、实验原理丙酮碘化反应是一个复杂反应,其反应式为:实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。

反应式中包含产物,故本反应是自催化反应,其动力学方程式为:-dC A/dt=-dC I2/dt=kC AαC H+βC I2γ式中C为各物质浓度(mol/L),k为反应速率常数或反应比速,指数为反应级数n。

丙酮碘化反应的反应机理可分为两步:第一步为丙酮烯醇化反应,其速率常数较小,第二部是烯醇碘化反应,它是一个快速的且能进行到底的反应。

用稳态近似法处理,可以推导证明,当k2C H+>>k3C I2时,反应机理与实验证明的反应级数相符。

丙酮碘化反应对碘的反应级数是零级,级碘的浓度对反应速率没有影响,原来的速率方程可写成-d C I2/dt=kC AαC H+β为了测定α和r,在C A>> C I2、C H+>>C I2及反应进程不大的条件下进行实验,则反应过程中,C A和C H+可近似视为常数,积分上式的:C I2=- kC AαC H+βt+A’C I2以对t作图应为直线。

与直线的斜率可求得反应速率常数k及反应级数n。

在某一指定的温度下,进行两次实验,固定氢离子的浓度不变,改变丙酮的浓度,使其为C A2=mC A1,根据-d C I2/dt=kC AαC H+β得:n B=(lg(r i/r j))/lgm若测得两次反应的反应速率,即求得反应级数p。

用同样的方法,改变氢离子的浓度,固定丙酮的浓度不变,也可以得到对氢离子的反应级数r。

若已经证明:p=r=1,q=0,反应速率方程可写为:-dC I2/dt=kC A C H+在大量外加酸存在下及反应进程不大的条件下,反应过程的氢离子可视为不变,因此,反应表现为准一级反应或假一级反应:-dC I2/dt=k'C A式中k'=k C H+,k'为与氢离子浓度有关的准反应比速。

丙酮碘化反应.doc

丙酮碘化反应.doc

物理化学实验丙酮碘化反应动力学C202 2010-03-29T= P=一、实验目的1.根据实验原理由同学设计实验方案,包括仪器、药品、实验步骤等2.测定反应常数 k 、反应级数 n 、活化能 Ea3.通过实验加深对复杂反应的理解二、实验原理丙酮碘化反应是一个复杂反应,其反应式为:实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。

反应式中包含产物,故本反应是自催化反应,其动力学方程式为:-dC /dt=-dC/dt=kCαβ γA C CAH式中 C 为各物质浓度(mol/L ) ,k 为反应速率常数或反应比速,指数为反应级数n 。

丙酮碘化反应的反应机理可分为两步:第一步为丙酮烯醇化反应, 其速率常数较小, 第二部是烯醇碘化反应, 它是一个快速的且能进行到底的反应。

用稳态近似法处理,可以推导证明,当 k 2C H >>k 3C I 时,反应机理与实验证明的反应级数相符。

丙酮碘化反应对碘的反应级数是零级,级碘的浓度对反应速率没有影响,原来的速率方程可写成-d C/dt=kCαβA CH为了测定α和 r ,在 C A >> C 、C H >>C 2 及反应进程不大的条件下进行实验,则反应过程中, C A 和 C H 可近似视为常数,积分上式的:αβC=- kC A C H t+A ’C 以对 t 作图应为直线。

与直线的斜率可求得反应速率常数k 及反应级数 n 。

在某一指定的温度下,进行两次实验,固定氢离子的浓度不变,改变丙酮的浓度,使其为C A =mC A ,根据 -dC/dt=kC A αH β得:n B =(lg(r i /r j ))/lgmC若测得两次反应的反应速率, 即求得反应级数 p 。

用同样的方法, 改变氢离子的浓度, 固定丙酮的浓度不变,也可以得到对氢离子的反应级数r 。

若已经证明: p=r=1 , q=0,反应速率方程可写为: -dC/dt=kC A C H 在大量外加酸存在下及反应进程不大的条件下,反应过程的氢离子可视为不变,因此,反应表现为准一级反应或假一级反应: -dC/dt=k'C A 式中 k'=k C H ,k'为与氢离子浓度有关的准反应比速。

实验十三丙酮碘化反应

实验十三丙酮碘化反应

药品仪器
1. 2. 3. 4. 5. 6. 722分光光度计; 超级恒温槽; 接触温度计、玻璃温度计; 移液管、吸耳球、容量瓶等; 0.01mol/L碘溶液2.0mol/L丙酮1mol/L盐酸; 等等。
实验步骤
开启超级 恒温槽 预热分光 光度计 设定波长
设定时间
配制碘、丙酮、盐 酸及反应液
溴水及5号瓶
实验日期: ; ①超级恒温器的恒温温度: ②超级恒温器的恒温温度: ℃; +5℃。
数据处理
1.计算 al ;
2.作 lg T ~ t 关系图; 3.确定直线斜率 k 值; 4.确定反应级数p、q、r的值; 5.写出丙酮碘化反应速率方程; 6.计算反应活化能; 7.文献值。
i计算ຫໍສະໝຸດ al的平均值:lg100 lg T al cI 2
⑶.活化能Ea=48kJ/mol
实验结果与讨论
⑴结果:实测值为Ea= ⑵计算实验偏差: ⑶分析产生偏差的原因: ⑷有何建议与想法?
注意事项:
1. 反应液混合后应迅速进行测定; 2.计算K时要用到初始浓度,因此实验中所 用的浓度一定要配准; 3. 温度对实验结果影响很大,应把反应温度 准确控制在实验温度的± 0.1℃范围之内。
则有:
p
(lg
v2 ) v1
lg u

(lg
m2 ) m1
lg u
(8)
②同理,当丙酮、碘的初始浓度分别 相同,而酸的浓度不同时,即:
cA3 cA1、cI 2 3 cI 21、cH 3 wcH 1
则有: r (9) lg w lg w ③同理,当丙酮、氢离子的初始浓度 分别相同,而碘的浓度不同时,即:
重点难点
• 重点:掌握722分光光度计的使用方 法;阿仑尼乌斯方程应用;反应级 数的确定方法。

《丙酮碘化反应》课件

《丙酮碘化反应》课件
丙酮碘化反应简介
丙酮碘化反应的定义
01
丙酮碘化反应是指在酸催化下, 丙酮与碘发生取代反应,生成碘 代丙酮和氢气的过程。
02
该反应是一种有机化学中的重要 反应,也是有机合成中常用的方 法之一。
丙酮碘化反应的发现和历史
丙酮碘化反应最早由德国化学家拜耳 于1826年发现。
此后,该反应在有机化学中得到了广 泛的应用和发展,成为有机合成中常 用的方法之一。
主要产物的性质和用途
主要产物
丙酮碘化物(CH3COCH2I)
性质
易溶于有机溶剂,具有特殊气味。
用途
用于合成其他有机碘化物,也可作为有机合成中的中 间体。
副产物的生成和处理
副产物
氢气、碘化氢、水等。
生成原因
丙酮与碘在反应过程中会发生脱水和脱氢反应。
处理方法
通过冷凝、吸收、干燥等方法将副产物分离出去 ,以获得纯度较高的主要产物。
配制一定浓度的硫酸、乙醇和氢氧化 钠溶液。
实验仪器
烧杯、磁力搅拌器、滴定管、温度计 、离心机等。
实验操作步骤
步骤二
缓慢滴加硫酸,并 保持搅拌,观察反 应变化。
步骤四
用乙醇和氢氧化钠 溶液洗涤有机相, 再次离心分离。
步骤一
在烧杯中加入一定 量的丙酮和碘,搅 拌均匀。
步骤三
将反应混合物进行 离心分离,收集上 层有机相。
对实际生产的潜在影响和价值
有利于化工生产
丙酮是重要的化工原料,通过丙酮碘化反应可以合成多种有机碘化合物,这些化合物在医 药、农药、染料等领域有广泛应用。
有利于环保和可持续发展
开发绿色、高效的丙酮碘化反应方法有助于减少环境污染和资源浪费,符合可持续发展的 要求。

丙酮的 碘化 反应

丙酮的 碘化 反应

丙酮的碘化反应丙酮的碘化反应项目十丙酮碘化反应一、实验目的(1)通过实验加深对复杂反应特征的理解。

(2)测定酸催化时丙酮碘化反应的速率常数、活化能。

(3)把握722型可见分光光度计的使用方法。

二、实验原理不同的化学反应其反应机理是不相同的。

按反应机理的复杂程度之不同可以将反应分为基元反应(简单反应)和复杂反应两种类型。

简单反应是由反应物粒子经碰撞一步就直接天生产物的反应。

复杂反应不是经过简单的一步就能完成的,而是要通过天生中间产物的很多步骤来完成的,其中每一步都是一个基元反应。

常见的复杂反应有对峙反应(或称可逆反应,与热力学中的可逆过程的含义完全不同)。

平行反应和连续反应等。

丙酮碘化反应是一复杂反应,反应方程式为:H+是催化剂,由于反应本身能天生H+,所以,这是一个自动催化反应。

一般以为该反应的反应机理包括下列两步:这是一个连续反应。

反应(1)是丙酮的烯醇化反应,它是一个可逆反应,进行得很慢。

反应(2)是烯醇的碘化反应,它是一个快速且能进行到底的反应。

由于反应(1)速率很慢,而反应(2)的速率又很快,中间产物烯醇一旦天生又马上消耗掉了。

根据连续反应的特点,该反应的总反应速率由反应(1)所决定,其反应的速率方程可表示为:式中CA为丙酮的浓度;CD为产物碘化丙酮的浓度;CH+为氢离子的浓度;K为丙酮碘化反应的总的速率常数。

由反应(2)可知,假如测得反应过程中各时间碘的浓度,就可以求出。

由于碘在可见光区有一个比较宽的吸收带,所以本实验可采用分光光度法来测定不同时刻反应物的浓度。

若在反应过程中,丙酮的浓度为0.1~0.6moldm-3,酸的浓度为0.05~0.5moldm-3时,可视丙酮与酸的浓度为常数。

将(3)式积分得:按朗怕-比耳定律,若指定波长的光通过碘溶液后光强为I,通过蒸馏水后的光强为I0,则透光率可表示为:并且透光率与碘的浓度有如下关系:式中,l为比色皿光径长度;K',是取10为底的对数时的吸收系数。

[精品]实验十三 丙酮碘化反应

[精品]实验十三 丙酮碘化反应

[精品]实验十三丙酮碘化反应一、实验目的1. 掌握丙酮碘化反应的特点及其反应机理。

2. 学习用化学方程式描述反应过程的方法。

3. 初步探究氧化还原反应。

二、实验原理1. 丙酮碘化反应丙酮碘化反应是一种常见的氧化还原反应。

它的反应方程式为:CH3COCH3 + I2 → CHI3 + CH3COOH该反应可以用来检验丙酮的存在,同时也可用来定量丙酮的含量。

该反应的反应机理为:在碘化钾存在下,碘化钾分解,生成大量的碘离子。

丙酮溶液中的碘离子和丙酮发生氧化还原反应,生成甲基乙二酮碘加合物。

甲基乙二酮碘加合物在酸的催化下发生分解,生成三碘甲烷和乙酸。

氧化还原反应是指化学反应中原子原电荷数的变化,即电子的转移。

在氧化还原反应中,因为电子的转移,还原剂被氧化成氧化剂,而氧化剂则被还原成还原剂。

由于电子的转移,原子的价态也发生了变化。

例如,在丙酮碘化反应中,碘化钾是还原剂,丙酮是氧化剂。

三、实验步骤1. 实验前要保证实验平台清洁整洁,实验器材齐全,并按规定佩戴实验室防护用品。

2. 取100毫升容量瓶,称取0.2克的碘化钾,加入水中溶解,定容到100毫升。

3. 取一个试管,加入5毫升的丙酮溶液(如果丙酮溶液中有沉淀,应振荡使其溶解),加入适量的碘水,强烈振荡。

4. 在试管中添加碘化钾溶液,试管中会出现深紫色沉淀,振荡使其分散均匀。

5. 加入几滴稀盐酸,试管中的沉淀溶解,生成深红色液体,同时散发出明显的甲醛气味。

6. 实验完毕后,用清水清洗试管,回收灵敏实验废液。

四、实验注意事项1. 操作时应佩戴实验室防护用品。

2. 在反应过程中,加入稀盐酸需要操作精确,加多了会使反应终止,故注意滴加稀盐酸的数量。

3. 碘化钾溶液需提前制备好,反应过程中容易照成误差的产生。

5. 实验废液回收时应注意分类、分装,并按照实验室废液处理规范处理。

五、实验结果实验得到的结果是,通过在丙酮中加入碘水和碘化钾,在酸催化下,产生了深红色液体,并散发出强烈的甲醛气味,表明丙酮被检验出来了。

丙酮碘化反应实验报告

丙酮碘化反应实验报告

丙酮碘化反应实验报告丙酮碘化反应实验报告一、引言丙酮碘化反应是一种常见的有机化学实验,通过观察丙酮与碘化钠溶液反应的过程和产物,我们可以了解有机物的化学性质和反应机制。

本实验旨在通过实验操作和观察结果,加深对丙酮碘化反应的理解。

二、实验原理丙酮碘化反应是一种取代反应,其反应方程式为:CH3COCH3 + NaI → CH3COCH2I + NaOH在反应中,丙酮与碘化钠溶液反应生成碘代丙酮和氢氧化钠。

碘代丙酮是一种黄色液体,可以通过观察颜色变化来判断反应是否进行。

三、实验步骤1. 准备实验器材:取一个干净的试管,并用洗净的玻璃棒将其内壁涂上一层丙酮。

2. 加入试剂:向试管中加入适量的碘化钠溶液。

3. 观察颜色变化:观察试管内溶液的颜色变化,记录下观察结果。

四、实验结果在实验过程中,我们观察到以下结果:当丙酮与碘化钠溶液反应时,试管内的溶液由无色逐渐变为黄色,并逐渐变浓。

五、实验讨论1. 反应机理:丙酮碘化反应是一种取代反应。

在反应中,丙酮中的羰基碳与碘化钠中的碘离子发生取代反应,生成碘代丙酮。

同时,反应中还生成了氢氧化钠。

由于碘代丙酮是黄色的,所以溶液的颜色会发生变化。

2. 反应速率:丙酮碘化反应的速率受到多种因素的影响,如温度、浓度、催化剂等。

在本实验中,我们未对这些因素进行控制,因此无法对反应速率进行定量分析。

3. 反应条件:丙酮碘化反应一般在常温下进行,但温度的变化会影响反应速率。

此外,反应中的碘化钠溶液浓度也会对反应结果产生影响。

在实验中,我们使用了适量的碘化钠溶液,因此观察到了明显的颜色变化。

4. 反应应用:丙酮碘化反应在有机合成中具有广泛的应用。

碘代丙酮是一种重要的有机合成中间体,可以进一步反应生成其他有机物,如酮类、醇类等。

此外,丙酮碘化反应还可以用于检测醛类化合物的存在。

六、实验总结通过本次实验,我们深入了解了丙酮碘化反应的原理和实验操作。

通过观察颜色变化,我们能够判断反应是否进行,并了解反应的速率和条件对结果的影响。

丙酮碘化反应实验速率的测定

丙酮碘化反应实验速率的测定

丙酮碘化反应实验速率的测定丙酮碘化反应是一种常见的有机化学反应,常被用来研究化学反应速率。

这个实验将介绍测定丙酮碘化反应速率的方法。

实验原理:丙酮碘化反应是一种典型的分子间协同反应,反应速率的决定因素是分子碰撞的频率。

反应的速率可以表示为:v=k[A]^m[B]^n其中,v为反应速率,k为反应速率常数,[A]及[B]分别为反应物的浓度,m和n分别为反应物的反应级数。

为了更加精确地测定反应速率,在实验中需要控制反应条件。

在丙酮碘化反应中,我们通常选用此反应在碱性条件下进行。

由于反应速率快,目前常用的测速方法是初始速率法,即测定反应开始时的速率。

实验步骤:1. 准备试剂:准备好浓度分别为0.05mol/L的丙酮、碘化钾、氢氧化钠溶液。

2. 准备反应体系:取3个分别容量分别为50mL的烧瓶,加入丙酮、碘化钾和氢氧化钠溶液,并用蒸馏水稀释至容量线。

3. 开始测定:首先,将氢氧化钠溶液加入一烧瓶中,摇晃均匀。

然后,将碘化钾溶液加入第二个烧瓶中,同样摇晃均匀。

最后,将丙酮加入第三个烧瓶中,同样摇晃均匀。

4. 开始反应:将第二个烧瓶中的碘化钾溶液缓慢地滴加到第三个烧瓶中的丙酮溶液中,同时开始计时。

第三个烧瓶中的液体会迅速变成黄色。

等待一定时间后,记录黄色反应液在每个烧瓶中的透射率。

5. 数据处理:根据实验数据,可以计算出反应物的初始浓度差,进而计算出反应速率。

根据上述公式,反应速率可以表示为:根据反应级数和反应物浓度的变化,可以计算出反应速率常数k的值。

实验注意事项:1. 实验中使用的试剂应该是高纯度的,并且应该在实验室中密闭保存,以避免失效。

2. 实验操作过程中,应使用高精度的实验仪器,并校准反应中使用的所有试剂。

3. 在进行实验时,应注意控制实验温度,保持环境恒温。

4. 丙酮碘化反应是一种强氧化剂反应,应小心操作,防止烟雾、气味以及有害物质的释放。

结论:丙酮碘化反应速率的测定是一种基本的化学分析技术,可以用来研究化学反应动力学。

丙酮碘化反应

丙酮碘化反应

实验步骤
容量瓶号 1 2 3 4 碘溶液 10.00 10.00 10.00 5.00 HCl 溶液 5.00 5.00 10.00 5.00 丙酮溶液 10.00 5.00 10.00 10.00
数据处理
一、分别将求得的各组反应的吸光度A值对t作图, 求出斜率,再求出反应对各物质的级数p、r、q。 二、计算反应速率常数k。 三、文献值: 1、p=1,r=1,q=0[4]。 2、反应速率常数[5]
仪器设置
光谱扫描:测量菜单→参数设置:仪器、附件前面已设置。测量:光度模式; 显示范围;扫描参数;扫描方式:单次,重复(时间间隔、重复次数); 自动扫描:根据样品池的数量进行扫描,不需设置重复次数,只要设置 时间间隔。 时间扫描:测量菜单→参数设置:仪器、附件前面已设置。时间扫描光度模 式;测量波长点;时间选项:时间单位(分、秒),显示方式,自动模 式(不选则需要设置采样数和时间间隔),扫描时间(自动模式),采 样数,时间间隔;扫描方式(单次扫描、重复扫描、自动扫描); 时间 增量。
实验步骤
1~4号容量瓶内加入标准HCl溶液5.00mL, 5.00mL,10.00mL,5.00mL(注意依瓶号顺 序),再分别注入适量的蒸馏水。向1号瓶中加入 10.00mL 2mol•L-1丙酮溶液,用蒸馏水稀释到刻 度,迅速摇匀,用此混合液将干净的比色皿清洗几 次,然后把溶液注入比色皿(上述操作要迅速进 行)、在设置好参数的分光光度计上记录A-t直线。 再依次配置并测量2~4号溶液。上述溶液的配置如 下表所示:
评注启示
一、反应机理推测
评注启示
评注启示
二、在一定条件下,特别是卤素浓度较高时,反应 II-19-9并不停留在一元卤化丙酮上,可能会形成 多元取代,故应测定开始一段时间的反应速率。 但当c碘偏大或c丙、c酸偏小时,因不符合比尔定律 或者浓度变化过小时,将导致读数误差较大。 三、根据教学时数安排,可改变c碘证明q=0,也可 由A-t的线性关系得出同样结论。在两个或更多温 度下测定k,还可粗略求算反应活化能。

《丙酮碘化反应》课件

《丙酮碘化反应》课件
2 实验环境
保持实验环境清洁整齐,避免发生意外。
结果及观察部分的讲解
1 结果分析
根据实验观察到的颜色变化和产物形态,分 析丙酮碘化反应的结果。
2 观察说明
详细描述观察到的结果和实验过程中的变化。
丙酮碘化反应机理的解释
反应机理
解释丙酮碘化反应发生的原理和分子间的相互作用。
实验所需试剂和设备清单
试剂
丙酮、碘酸钠溶液、盐酸、淀粉溶液
设备
烧杯、试管、滴管、显微镜
实验步骤详细介绍
1
准备试剂
称取适量的丙酮和碘酸钠溶液,并将其放入烧杯中。
2
反应操作
将盐酸滴加到混合溶液中,然后观察反应的颜色变化。
3
观察结果
使用显微镜观察反应产物的形态和特征。
实验中的安全措施
1 个人防护
戴好实验手套、护目镜等,避免接触实验中的化学物质。
丙酮碘化反应的原理及反应方程式
原理
丙酮碘化反应是一种氧化还原反应,通过反应方程 式的催化作用,将丙酮与碘酸盐反应生成相应的产 物。
反应方程式
丙酮 + 碘酸盐 → 产物
实验操作前的准备工作及注意事项
1 ,并确保实验环境安全。
2 注意事项
在操作过程中,需要注意个人防护,如戴好实验手套、护目镜等,遵循实验室的安全规 定。
《丙酮碘化反应》PPT课 件
本PPT课件将详细介绍丙酮碘化反应的原理和实验操作过程,以及该反应在有 机化学中的应用和意义。
碘化物的性质和用途简介
1 性质
碘化物是一类化合物,具有特定的物理和化学性质,常用于检测和分析。
2 用途
碘化物在医药、农业、食品工业等领域有广泛的应用,可用于消毒、防腐、制药等方面。

丙酮碘化反应

丙酮碘化反应

T T k 1 2
2
E R ln cA2=ucaA,1,cH+,2=cH+,1,cI2,1=cI2,2。则有
T T k 2 1
1
同cI2,理3=,当cvvI212丙,1,酮ckH、k+cc,碘3Ap=p,Ac的2,Hc1+c初Hr,1Hr,始,2,c1c浓cAIq,I2q3度2=,2,1c分A,1别则u相c有pAc同p:,1Ap而,1 酸 的u p浓度不同时,即
在 35℃下,重复上述实验。由于级数已经确定,取两个不同的条件(即测定表中 1,2 即可)
测定,以获取 35℃的 k 的平均值。但在 35℃下测定时记录间隔设置为 20 秒。
五、数据处理与结果讨论 20.7℃时:
1.al 值的计算:
0.01 mol.L-1 标准碘溶液的平均吸光度:
A 平=(A1+A2)/2=(0.334+0.332)/2=0.333
0.578 0.575 0.572 0.568 0.564 0.558 0.554 0.551 0.546 0.542
718.53 751.13 785.1 829.86 862.6 898.29 931.83
0.429 0.422 0.415 0.406
0.4 0.394 0.387
595.1 629.98 670.62 706.2 739.94 770.54 810.45
127.32
0.54 124.38
0.582
148.57
0.538 146.09
0.579
169.77
0.532 167.51
0.574
190.5
0.522 187.95
0.567
211.64
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理化学实验丙酮碘化反应动力学C202 2010-03-29第一步为丙酮烯醇化反应,其速率常数较小,第二部是烯醇碘化反应,它是一个快速的且能进行到底的反应。

用稳态近似法处理,可以推导证明,当k2C H>>k3C I 时,反应机理与实验证明的反应级数相符。

丙酮碘化反应对碘的反应级数是零级,级碘的浓度对反应速率没有影响,原来的速率方程可写成αβ-d C/dt=kC A C H为了测定α和r,在C A>> C、C H>>C2 及反应进程不大的条件下进行实验,则反应过程中,C A 和C H可近似视为常数,积分上式的:αβC=- kC AαC H βt+A'C以对t 作图应为直线。

与直线的斜率可求得反应速率常数k 及反应级数n 。

在某一指定的温度下,进行两次实验,固定氢离子的浓度不变,改变丙酮的浓度,使其为C A=mC A,根据-d C/dt=kC A C H 得:n B=(lg(r i/r j))/lgm若测得两次反应的反应速率,即求得反应级数p。

用同样的方法,改变氢离子的浓度,固定丙酮的浓度不变,也可以得到对氢离子的反应级数r。

若已经证明:p=r=1 ,q=0,反应速率方程可写为:-dC/dt=kC A C H 在大量外加酸存在下及反应进程不大的条件下,反应过程的氢离子可视为不变,因此,反应表现为准一级反应或假一级反应:-dC/dt=k'C A 式中k'=k C H,k' 为与氢离子浓度有关的准反应比速。

设丙酮及碘的初始浓度为C A0、C0.侧有:C A= C0-(C0- C)由数学推导最终可得:C= - C A0 k't+ C A0C'+ C0若在不同的时刻t,测得一系列C,将其对t 作图,得一直线,斜率为- C A0 k',即可求得k'的值。

在不同的氢离子浓度下,k'值不同。

分光光度法,在550 nm 跟踪I2 随时间变化率来确定反应速率。

三、仪器及药品721 分光光度计 1 套丙酮标准液*L-1)T= P=一、实验目的1. 根据实验原理由同学设计实验方案,包括仪器、药品、实验步骤等2. 测定反应常数k、反应级数n 、活化能Ea3. 通过实验加深对复杂反应的理解二、实验原理丙酮碘化反应是一个复杂反应,其反应式为:实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。

反应式中包含产物,故本反应是自催化反应,其动力学方程式为:α β γ-dC A/dt=-dC/dt=kC A C H C式中C为各物质浓度(mol/L ),k 为反应速率常数或反应比速,指数为反应级数n。

丙酮碘化反应的反应机理可分为两步:碘瓶(50ml)6个I2 标准液*L-1)刻度移液管(20ml ) 5 支四、实验步骤1. 仪器准备:实验前先打开光度计预热。

2. 标准曲线法测定摩尔吸光系数。

(每组配一种浓度,共5 个浓度,在一台仪器上测出吸光度,数据共享)3. 丙酮碘化过程中吸光度的测定:迅速混合,每隔 1 分钟记录光度计读数,记录至少15 分钟。

记住先加丙酮、碘,最后加盐酸!注意事比色皿的拿法和清洗;测量碘溶液标准曲线由低到高;移液管的使用:不要吹掉最后一曲线法测定摩尔吸光系数,(每组配一种浓度,共 5 个浓度,在一台仪器上测出吸光度,数据共享);锥形瓶上的体积是粗刻度,要以移液管所取的体积为准;溶液数目多,制备溶液时防止加错体积。

五、实验数据处理碘瓶编号1234H2O/ml25252030 HCl溶液/ml5101010丙酮溶液/ml105105碘溶液/ml1010105C(HCl)/mol*L -1C(丙酮) / mol*L -1C(I2)/mol*L -1A(反应开始后测定一次/分)12V(ml)/ 25 ml C(I2)/mol*L-1A2456845678910111213141. 做标准曲线,求出碘溶液摩尔吸光系数。

A=εbc b=3cm ε= A/bc=* mol -1 *cm-12. 利用丙酮碘化过程中吸光度的测定数据,以A 对时间作图,求得四条直线,由各直线斜率分别计算反应速率r1,r2,r3,r4,由公式计算r=-(dA/dt)/ εb 计算得:ε= A/bc=* mol -1*cm-1r1=*L-1*min -1,r2= e-5 mol*L -1*min -1r3=*L -1*min-1,r4= mol*L -1*min-13. 由n B=(lg(r i/r j))/lgm 式计算丙酮,酸和碘的分级数,建立丙酮碘化反应速率方程式;α =(lg(r 3/r 2))/lg2= β =(lg(r3/r 1))/lg2= γ =(lg(r 4 /r 2))/lg2 -1=r=-dC A/dt=-dC/dt= 分别计算1、2、3、和 4 号瓶中丙酮和酸的初始浓度,再根据-dC A/dt=-dC/dt= kC AαC HβCγ式计算四种不同初始浓度的反应速率常数,求其平均值α =≈ 1β= ≈1 γ=≈0 r =kC A Ck1= e-4dm 3*mol-1*min-1,k2=*mol -1*min-1k3=*mol -1*min-1,k4= e-4dm 3*mol-1*min-1k(average)= e-4dm 3*mol -1*min -1六、思考题1. 动力学实验中,正确计算时间是很重要的实验关键。

本实验中,将丙酮溶液加入盛有I2 和HCl 溶液的碘瓶中时,反应即开始,而反应时间却以溶液混合均匀并注入比色皿中才开始计时,这样做对实验结果有无影响,为什么理论上有影响,但实际上几乎没有影响,理论系统误差小于千分之一。

而且反应刚开始会有很多不确定因素—反应液是否完全混匀、生成中间体浓度需要多长时间达到稳态近似法处理的条件d[M]/dt= 0 等。

2. 本实验对于丙酮溶液和HCl的初始浓度相对于I2 的初始浓度有何要求为什么?C A>> C C H>>C2丙酮酸催化碘化反应的显著特点是,反应生成H+,而H+的反应级数β=1,反应进度增加H+增加,另一反应级数α=1的丙酮的浓度下降,由a+b值一定在a=b时,a*b 有最大值。

即理论上碘瓶2、4中的反应一开始速度就是最大的,反应速度随反应进度ξ增大而减小,而碘瓶1、3 中的反应是加速的。

由上表可知在C A>> C、C H>>C2 及反应进程不大的条件下进行实验,可认为C A、C 是不变的,反应速率恒定,I2 浓度过高可能发生多元碘化。

3. 本实验结果表明碘的浓度对反应速率有何影响据此推测反应机理。

在碘的浓度不是低到不能发生反应或高到引起其他效应的的情况下,碘的浓度对反应速率影响可以忽略,酸催化反应机理:七、实验讨论1. 反应产物对有作用的称为自催化反应。

在自催化反应中,反应速率既受反应物浓度的影响,又受反应产物浓度的影响。

在此反应中酸是反应的催化剂,通常不加酸,因为只要反应一开始,就产生酸HI,此酸就可自动发生催化反应,因此反应还没有开始时,有一个诱导阶段,一但有一点酸产生,反应就很快进行。

自催化作用的特点是:1>反应开始进行得很慢(称诱导期),随着起催化作用的产物的积累反应速度迅速加快,而后因反应物的消耗反应速度下降;2>自催化反应必须加入微量产物才能启动;3>自催化反应必然会有一个最大反应速率出现。

2. 反应第一步为丙酮烯醇化反应,其速率常数较小,第二步是烯醇碘化反应,它是一个快速的且能进行到底的反应。

烯醇碘化反应是整个反应的驱动力,使得反应可以顺利进行到底,而丙酮的烯醇化反应是决速步骤。

3. 丙酮一元碘化后,由于引入的I 的-I 效应,使羰基氧上电子云密度降低,在质子化形成烯醇比未碘化时要困难一些,在C A>> C及反应不是太快的条件下反应只会生成一元碘代丙酮。

若是碱催化反应,一元碘化后,丙酮α-H 的酸性会更强,更易被OH-夺取并进行碘化,最终生成三碘丙酮,OH-进攻羰基碳经加成消除机制生成黄色沉淀碘仿。

实验中当碘浓度较高时,丙酮可能会发生多元取代反应。

因此,应记录反应开始一段时间的反应速率,以减小实验误差。

碱催化反应机理:4. 在链反应或其它连续反应中,由于自由基等中间产物极活泼,浓度低,寿命又短,可以近似地认为在反应达到稳定状态后,它们的浓度基本上不随时间而变化,即d[M]/dt= 0 (M 表示中间产物),这样的处理方法叫做稳态近似法,实验中反应的中间体为烯醇负离子。

5. 温度对反应速度有一定的影响,本实验在开始测定透光率后未考虑温度的影响。

如选择较大的比色皿和在不太低的气温条件下进行实验,在数分钟之内溶液的温度变化不大。

选择带有恒温夹套的分光光度计,并与超级恒温槽相连,保持反应温度,可降低温度变化对实验速率的影响,反应ΔS>0、ΔH<0。

反应速率常数与温度的依赖关系为k = Aexp ( - Ea/ RT),由Arrhenius 公式可近似计算实验温度下的反应活化能Ea。

k(13℃ )= e-4dm 3*mol -1*min -1根据经验温度上升10℃反应速率约增加一倍1,k(23℃) ≈*mol -1*min -1由-1ln(k1/k 2)=Ea(T2-T1)/T 1T2R可以粗算得Ea≈100KJ*mol -16. 从实验中测得的吸光度第一个值在碘浓度一样的情况下的下降趋势说明,丙酮和碘在不加酸的条件下就开始反应,粗算得未加酸时的反应速率r= mol*L -1*min -1 ,约为加酸后反应速率的十分之一。

7. 通过简单计算可得碘在水中的溶解度是L,实验中用的碘水是加入了KI 以得到浓度较大的碘水,体系中存在着一个次要反应,即在溶液中存在着I2、I-和I3-的平衡: 其中I2和I3-都吸收可见光。

因此反应体系的吸光度不仅取决于I2的浓度而且与I3-的浓度有关。

根据朗伯-比尔定律知,在含有I3-和I2 的溶液的总消光度ε可以表示为I3-和I2 两部分消光度之和。

其中I2 和I3-都吸收可见光。

因此反应体系的吸光度不仅取决于I2 的浓度而且与I3-的浓度有关。

根据朗伯-比尔定律知,在含有I3-和I2 的溶液的总消光度ε可以表示为I3-和I2 两部分消光度之和而摩尔消光系数εI2和εI3-是入射光波长的函数。

在565nm 这一特定的波长条件下,溶液的消光度E与总碘量(I2+I3-)成正比。

因此常数εd 就可以由测定已知浓度碘溶液的总消光度E来求出了。

所以本实验应选择工作波长为565nm 。

8. 丙酮酸催化碘化反应可用于研究有机化学反应动力学的原因是, 1. 实验的系统误差很小,用最小二乘法对实验数据进行线性拟合,实验的系统误差会小于万分子一。

相关文档
最新文档