习题参考解答(图论部分)Word版

合集下载

图论第一章课后习题解答

图论第一章课后习题解答

bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。

图论习题答案

图论习题答案

习题一1. 一个工厂为一结点;若两个工厂之间有业务联系,则此两点之间用边相联;这样就得到一个无向图。

若每点的度数为3,则总度数为27,与图的总度数总是偶数的性质矛盾。

若仅有四个点的度数为偶数,则其余五个点度数均为奇数,从而总度数为奇数,仍与图的总度数总是偶数的性质矛盾。

2. 若存在孤立点,则m 不超过K n-1的边数, 故 m <= (n-1)(n-2)/2, 与题设矛盾。

3.4. 用向量(a 1,a 2,a 3)表示三个量杯中水的量, 其中a i 为第i 杯中水的量, i = 1,2,3.以满足a 1+a 2+a 3 = 8 (a 1,a 2,a 3为非负整数)的所有向量作为各结点, 如果(a 1,a 2,a 3)中某杯的水倒满另一杯得到 ( a ’1, a ’2, a ’3 ) , 则由结点到结点画一条有向边。

这样可得一个有向图。

本题即为在此图中找一条由( 8, 0, 0 )到( 4, 4, 0 )的一条有向路,以下即是这样的一条:5. 可以。

7. 同构。

同构的双射如下:8. 记e 1= (v 1,v 2), e 2= ( v 1,v 4), e 3= (v 3,v 1), e 4= (v 2,v 5), e 5= (v 6,v 3), e 6= (v 6,v 4), e 7= (v 5,v 3), e 8= (v 3,v 4), e 9 = (v 6,v 1), 则邻接矩阵为: 关联矩阵为:∑∑∑∑∑∑∑==+====-=++=-==---=--=ni i n i i n i n i n i ni i i n i i n i i i i a a n n a a a n n n a n a v v 1111121212/)1()1(2)1(])1[(。

, 所以 因为 ,+ 的负度数,则为结点的正度数,为结点记-----22 222 i i C a a ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------100110000001001000010100010011010100000001001100000111, 001101000100000000001001010000001010⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡( 8, 0, 0 ) ( 5, 3, 0 ) ( 5, 0, 3 ) ( 2, 3, 3 ) ( 2, 5, 1 )(7, 0, 1 ) ( 7, 1, 0 ) ( 4, 4, 0 )( 4, 1, 3 )边列表为:A= (1,1,3,2,6,6,5,3,6), B= (2,4,1,5,3,4,3,4,1). 正向表为:A= (1,3,4,6,6,7,10), B= (2,4,5,1,4,3,3,4,1).习题二1. 用数学归纳法。

图论习题答案2

图论习题答案2

第四次作业
四(13).设M是二分图G的最大匹配,则 | M || X | max| S | | N ( S )| ,
SX
证明: | X | max| S | | N ( S )| min(| X | | S |) | N ( S )| ,而(X - S ) N ( S )是G的一个覆盖,则 min(| X | | S |) | N ( S )|是G的最小覆盖,
第七次作业
• 五(28).设sn是满足下列条件的最小整数,把 {1,2,...,sn}任划分成n个子集后,总有一个子集 中含有x+y=z的根,求s1,s2,s3是多少? • 解:n=1,枚举得s1=2; • s2=5 • s3=14
第七次作业
五(34).求证r(k, l) = r(l, k) 证明:若G含有K k 子图,则G c 含有k个顶点的独立集;若G含有 l个顶点的独立集,则G c 含有K l 子图。则命题成立。
五 (13).若 是单图 G 顶的最小次数,证明; 若 1则存在 1边着色, 使与每顶关联的边种有 1种颜色。 反证法:假设在 v1处无 i 0色 设 C (E 1 , E 2 ,..., E 1 )为 G 的( 1) 最佳边着色 第一步:构造点列: v1 , v 2 ,..., v h , v h 1 ,....., vl ,.... v1处无 i 0色, v j v j 1着 i j色,且在 v j点处 i j 色重复出现,可知在 v j1处仅一 个 i j色;证明如下: 用反证法证明,假设在 v j1处 i j色重复出现,将 v j v j 1改成 v j 所关联的边 没有的颜色 im,则可以对图 G 的找色进行改善。与 C 是最佳边着色矛盾, 假设不成立。 又 是单图 G 顶的最小次数,则必存 在最小整数 h使得 i h i l 第二步:着色调整: v j v j 1着 i j-1色 ( j 1,2,..., h ),所得新着色为 C ' 在 C '中, v1处多了个 i 0色, v h 1处少了个 i h 色,其他点的边着色数 不变, 所以 C ' 还是 1最佳边着色

图论选择题解析docx

图论选择题解析docx

数据结构——图选择题整理1.设完全图Kn,有n个结点(n≥2),m条边,当()时,K,中存在欧拉回路。

A.m为奇数B.n为偶数C.n为奇数D.m为偶数解析:答案C完全图是一个简单的无向图,其中每对不同的顶点之间都恰连有一条边相连。

n 个端点的完全图有n个端点以及n(n-1)/2条边,因此完全图Kn的每个结点的度都为n-1,所以若存在欧拉回路则n-1必为偶数。

n必为奇数。

选C。

2、若从无向图的任意顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是()A、强连通图B、连通图C、有回路D、一棵树解析:选B对于A,强连通图的概念是在有向图中的。

对于B,连通图证明任意两个顶点之间一定能够相连,因此一定可以到达。

对于C,有环图不一定是连通图不一定任意两个顶点均能到达。

对于D,树是可以,但是不是树也可以,题目中说的太肯定了,不能选,比如下图就不是树,但可以完成题目中要求的功能。

2、对于一个有n个顶点的图:若是连通无向图,其边的个数至少为();若是强连通有向图,其边的个数至少为()A、n-1,nB、n-1,n(n-1)C、n,nD、n,n(n-1)解析:选A对于连通无向图,至少需要n-1条边。

对于强连通有向图,只要能形成一个大环就可以从任意一点到另一点。

3、设有无向图G=(V,E)和G'=(V',E'),若G’是G的生成树,则下列不正确的是()a.G'为G的连通分量b.G'为G的无环子图c.G'为G的极小连通子图且V'=VA、a和bB、只有cC、b和cD、只有a解析:选D极大连通子图简称连通分量,生成树是极小连通子图。

故a不对,c对。

生成树无环,故b对4.带权有向图G用邻接矩阵存储,则vi的入度等于邻接矩阵中()A、第i行非∞的元素个数B、第i列非∞的元素个数C、第i行非∞且非0的元素个数D、第i列非∞且非0的元素个数解析:选D带权有向图的邻接矩阵中,非0和∞的数字表示两点间边的权值。

图论第四章答案

图论第四章答案
n ,n中不同完美匹配的个数 .
推论 4.1
解: (1.)对于K 2 n , 用归纳法 : n 1时完美匹配数为 1, n 2时不同完美匹配数为 3, 满足(2n 1)!! 设当n k时, 不同的完美匹配数为 (2k 1)!!, 则当n k 1时, 即向K 2 n中加入两点u , v, 则多出4k 1条边( K 2 n中有u1 , u 2 , , u 2 k 个点, u , v间有边uv, 而u , v和u1 , u 2 , , u 2 k 都存在边). a. 取K 2 n的一个完美匹配 M 1 , 则只加入边uv有M 1' 为K 2 k 2的一个完美匹配,无妨 设u1u 2 , u 3 u 4 , , u 2 k 1u 2 k 为M 1中的边; b. 则去掉u1u 2 边添加u1u , u 2 v有另一个K 2 k 2 完美匹配M 1'' 或添加u1v, u 2 u有完美匹配M 1''' ; c. 对u 3 u 4 , , u 2 k 1u 2 k同样的操作...(去掉u 3 u 4 , 添加u 3 u和 u 4 v; 去掉u 3 u 4 , 添加u 3 v和u 4 u )则共有2k种设法, 算上M 1' (将原来M中的匹配组合顺次与 uv进行变换重组)共有2k 1种; d . K 2 n的不同完美匹配有 (2k 1)!!每一种(指u1u 2 , u 3 u 4 , 做上述变换)均可增加为2k 1,所以K的不同的完美匹配共有 (2k 1)(2k 1)!! (2k 1)!! 种,得证. (2.)对于K n ,n , 记G ( X , Y , E )中x1 , x 2 , , x n X , y1 , y 2 , , y n Y 对x1 , 选取Y中点共有n种选法使x1与y1的边为完美匹配的一边 ,选定之后,去掉选 中的点和x1 ; 对x 2 有n 1种选法...,一直到x n只有一种,故而不同的 完美匹配有n!种.

图论习题二答案

图论习题二答案

图论习题二答案图论习题二答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。

在图论中,有很多经典的习题可以帮助我们更好地理解和应用图的概念。

本文将探讨一些图论习题二的答案,帮助读者更好地理解和掌握图论的知识。

1. 习题:给定一个无向图G=(V,E),其中V={1,2,3,4,5,6},E={(1,2),(1,3),(2,3),(2,4),(3,4),(4,5),(4,6)},求图G的邻接矩阵和关联矩阵。

答案:邻接矩阵是一个n×n的矩阵,其中n是图的顶点数。

对于无向图G,邻接矩阵的元素a[i][j]表示顶点i和顶点j之间是否存在边。

如果存在边,则a[i][j]=1,否则a[i][j]=0。

对于给定的图G,邻接矩阵为:0 1 1 0 0 01 0 1 1 0 01 1 0 1 0 00 1 1 0 1 10 0 0 1 0 00 0 0 1 0 0关联矩阵是一个n×m的矩阵,其中n是图的顶点数,m是图的边数。

对于无向图G,关联矩阵的元素b[i][j]表示顶点i和边j之间的关系。

如果顶点i是边j 的起点,则b[i][j]=-1;如果顶点i是边j的终点,则b[i][j]=1;否则b[i][j]=0。

对于给定的图G,关联矩阵为:-1 -1 0 0 0 01 0 -1 -1 0 00 1 1 0 0 00 0 0 1 -1 -10 0 0 0 1 00 0 0 0 0 12. 习题:给定一个有向图G=(V,E),其中V={1,2,3,4,5},E={(1,2),(1,3),(2,3),(2,4),(3,4),(4,1),(5,4)},求图G的邻接表和深度优先搜索遍历结果。

答案:邻接表是一种图的表示方法,用于存储图中每个顶点的邻接顶点。

对于有向图G,邻接表中的每个元素表示该顶点的出边。

对于给定的图G,邻接表为:1: 2, 32: 3, 43: 44: 15: 4深度优先搜索(DFS)是一种图的遍历算法,用于遍历图中的所有顶点。

图论习题参考答案

图论习题参考答案

二、应用题题0:(1996年全国数学联赛)有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。

证明这n个人中必有3个人互相认识。

注:[n/2]表示不超过n/2的最大整数。

证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。

由条件可知,G是具有n个顶点的简单图,并且有(1)对每个顶点x,)N G≥[n/2];(x(2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有两个顶点相邻。

需要证明G中有三个顶点两两相邻。

反证,若G中不存在三个两两相邻的顶点。

在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。

情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。

情况二;n=2r+1: 此时[n/2]=r,由于N G(x1)和N G(y1)不相交,t≥r,k≥r,所以r+1≥t,r+1≥k。

若t=r+1,则k=r,即N G(y1)=r,N G(x1)=V-N G(y1),由(2),N G(x1)或N G(y1)中有相邻的顶点对,矛盾。

故k≠r+1,同理t≠r+1。

所以t=r,k=r。

记w∈V- N G(x1) ∪N G(y1),由(2),w分别与N G(x1)和N G(y1)中一个顶点相邻,设wx i0∈E, wy j0∈E。

若x i0y j0∈E,则w,x i0, y j0两两相邻,矛盾。

若x i0y j0∉E,则与x i0相邻的顶点只能是(N G(x1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G(y1)-{x j0})∪{w}。

图论(张先迪-李正良)课后习题答案(第一章)

图论(张先迪-李正良)课后习题答案(第一章)

习题一作者---寒江独钓1.证明:在n 阶连通图中(1) 至少有n-1条边;(2) 如果边数大于n-1,则至少有一条闭迹;(3) 如果恰有n-1条边,则至少有一个奇度点。

证明: (1) 若G 中没有1度顶点,由握手定理:()2()21v V G m d v n m n m n ∈=≥⇒≥⇒>-∑若G 中有1度顶点u ,对G 的顶点数作数学归纳。

当n=2时,结论显然;设结论对n=k 时成立。

当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k.(2) 考虑G 中途径:121:n n W v v v v -→→→→L若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。

于是:1i i j i v v v v +→→→→L 为G 中一闭途径,于是也就存在闭迹。

(3) 若不然,G 中顶点度数至少为2,于是由握手定理:()2()21v V G m d v n m n m n ∈=≥⇒≥⇒>-∑这与G 中恰有n-1条边矛盾! 2.(1)2n −12n 2−12n −1 (2)2n−2−1(3) 2n−2。

证明:u 1的两个邻接点与v 1的两个邻接点状况不同。

所以,两图不同构。

4.证明下面两图同构。

u 1 v 1证明:作映射f : v i ↔ u i (i=1,2….10)容易证明,对∀v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b))(1≤ i ≤ 10, 1≤j ≤ 10 )由图的同构定义知,图(a)与(b)是同构的。

5.指出4个顶点的非同构的所有简单图。

分析:四个顶点的简单图最少边数为0,最多边数为6,所以可按边数进行枚举。

(a)v 2 v 3u 4u(b)6.证明:1)充分性:当G 是完全图时,每个顶点的度数都是n −1,共有n 个顶点,总的度数为n(n −1),因此总的边数是n(n−1)2=(n 2). 2)必要性:因为G 是简单图,所以当G 是完全图的时候每个顶点的度数才达到最大:n −1.若G 不是完全图,则至少有一个顶点的度数小于n −1,这样的话,总的度数就要小于n (n −1),因此总的边数小于(n 2),矛盾。

图论测试题及答案

图论测试题及答案

图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。

答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。

答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。

答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。

解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。

7. 描述图论中的图着色问题,并说明其在实际生活中的应用。

答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。

在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。

结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。

图论习题参考答案

图论习题参考答案

二、应用题题0:(1996年全国数学联赛)有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。

证明这n个人中必有3个人互相认识。

注:[n/2]表示不超过n/2的最大整数。

证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。

由条件可知,G是具有n个顶点的简单图,并且有(1)对每个顶点x,)(xN G≥[n/2];(2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有两个顶点相邻。

需要证明G中有三个顶点两两相邻。

反证,若G中不存在三个两两相邻的顶点。

在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。

情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。

情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。

若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。

故k ≠r+1,同理t ≠r+1。

所以t=r,k=r 。

记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。

若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。

图论部分练习

图论部分练习

图论部分练习一、填空题1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是.2.设给定图G(如右由图所示),则图G的点割集是.3.设G是一个图,结点集合为V,边集合为E,则G的结点等于边数的两倍.4.无向图G存在欧拉回路,当且仅当G连通且.5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于,则在G中存在一条汉密尔顿路.6.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为.7.设完全图Kn 有n个结点(n≥2),m条边,当时,Kn中存在欧拉回路.8.结点数v与边数e满足关系的无向连通图就是树.9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i = .二、判断说明题(判断下列各题,并说明理由.)1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.2.如下图所示的图G存在一条欧拉回路.3.如下图所示的图G不是欧拉图而是汉密尔顿图.G4.设G是一个有7个结点16条边的连通图,则G为平面图.5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.三、计算题1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示; (2) 写出其邻接矩阵;(3) 求出每个结点的度数; (4) 画出其补图的图形.2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.3.已知带权图G如右图所示.(1) 求图G的最小生成树; (2)计算该生成树的权值.4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.四、证明题1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G中的奇数度顶点个数相等.2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k 条边才能使其成为欧拉图.。

张清华 图论课后题答案

张清华 图论课后题答案

第1章 图论预备知识1.1解:(1) p={φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}(2) p={,{a},{{b,c}},{a,{b,c}}} (3) p={,{}}(4) p={,{},{{}},{,{}}}(5)p={,{{a,b}},{{a,a,b}},{{a,b,a,b}},{{a,b},{a,a,b}},{{a,b},{a,b,a,b}},{{a,b},{a,a,b},{a,b,a,b}}} 1.2 解:(1) 真 (2) 假 (3)假 (4)假 1.3 解:(1) 不成立,A={1} B={1,2} C={2} (2) 不成立,A={1} B={1,2} C={1,3}1.4 证明:设(x,y)∈(A ∩B)X(C ∩D) 说明x ∈A ∩B,y ∈C ∩D 由于 x ∈A,y ∈C 所以 (x,y) ∈A X C 由于x ∈B,y ∈D 所以 (x,y) ∈B X D 所以 (x,y) ∈(A X C )∩(B X D ) 反过来,如果(x,y )∈(A X C) ∩(B X D ) 由于 (x,y) ∈(A X C )所以 x ∈A,y ∈C 由于 (x,y) ∈(B X D )所以x ∈B,y ∈D 所以x ∈(A ∩B) y ∈(C ∩D) 所以 (x,y) ∈(A ∩B)X(C ∩D)所以(A ∩B)X(C ∩D)= (A X C) ∩(B X D ) 1.5 解:Hasse 图φφφφφφφφφ极大元{9,24,10,7} 极小元{3,2,5,7} 最大元{24} 最小元{2}1.6 解(2)关系图为:(3)不存在最大元,最小元为{2}1.7 解:(1)R={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>} (2)略(3)I A ⊆R 故R 是自反的。

图论习题及答案

图论习题及答案

图论习题及答案(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--作业解答练习题2 利用matlab编程FFD算法完成下题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。

解答一:function [num,s] = BinPackingFFD(w,capacity)%一维装箱问题的FFD(降序首次适应)算法求解:先将物体按长度从大到小排序, %然后按FF算法对物体装箱%输入参数w为物品体积,capacity为箱子容量%输出参数num为所用箱子个数,s为元胞数组,表示装箱方案,s{i}为第i个箱子所装%物品体积数组%例w = [60,45,35,20,20,20]; capacity = 100;% num=3,s={[1,3],[2,4,5],6};w = sort(w,'descend');n = length(w);s = cell(1,n);bin = capacity * ones(1,n);num = 1;for i = 1:nfor j = 1:num + 1if w(i) < bin(j)bin(j) = bin(j) - w(i);s{j} = [s{j},i];if j == num + 1num = num + 1;endbreak;endendends = s(1:num);解答二:clear;clc;V=100;v=[60 45 35 20 20 20];n=length(v);v=fliplr(sort(v));box_count=1;x=zeros(n,n);V_Left=100;for i=1:nif v(i)>=max(V_Left)box_count=box_count+1;x(i,box_count)=1;V_Left=[V_Left V-v(i)];elsej=1;while(v(i)>V_Left(j))j=j+1;endx(i,j)=1;V_Left(j)=V_Left(j)-v(i);endtemp=find(x(i,:)==1);fprintf('第%d个物品放在第%d个容器\n',i,temp) endoutput:第1个物品放在第1个容器第2个物品放在第2个容器第3个物品放在第1个容器第4个物品放在第2个容器第5个物品放在第2个容器第6个物品放在第3个容器解答三:function box_count=FFD(x)%降序首次适应算法v=100;x=fliplr(sort(x));%v=input('请输入箱子的容积:');n=length(x);I=ones(n);E=zeros(1,n);box=v*I;box_count=0;for i=1:nj=1;while(j<=box_count)if x(i)>box(j)j=j+1;continue;elsebox(j)=box(j)-x(i);E(i)=j;break;endendif j>box_countbox_count=box_count+1;box(box_count)=box(box_count)-x(i);E(i)=j;endenddisp(E);在命令窗口输入:>> x=[60,45,35,20,20,20];>> FFD(x)1 2 1 2 2 3ans =3练习题5 “超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3, 奖品i占用的空间为w i dm3,价值为v i元, 具体的数据如下:v= { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, i122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}w= {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32,i22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。

图论习题参考答案

图论习题参考答案

二、应用题题0:(1996年全国数学联赛)有n (n ≥6)个人聚会,已知每个人至少认识其中的[n /2]个人,而对任意的[n /2]个人,或者其中有两个人相互认识,或者余下的n -[n /2]个人中有两个人相互认识。

证明这n 个人中必有3个人互相认识。

注:[n /2]表示不超过n /2的最大整数。

证明 将n 个人用n 个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G 。

由条件可知,G 是具有n 个顶点的简单图,并且有(1)对每个顶点x ,)(x N G ≥[n /2];(2)对V 的任一个子集S ,只要S =[n /2],S 中有两个顶点相邻或V-S 中有两个顶点相邻。

需要证明G 中有三个顶点两两相邻。

反证,若G 中不存在三个两两相邻的顶点。

在G 中取两个相邻的顶点x 1和y 1,记N G (x 1)={y 1,y 2,……,y t }和N G (y 1)={x 1,x 2,……,x k },则N G (x 1)和N G (y 1)不相交,并且N G (x 1)(N G (y 1))中没有相邻的顶点对。

情况一;n=2r :此时[n /2]=r ,由(1)和上述假设,t=k=r 且N G (y 1)=V-N G (x 1),但N G (x 1)中没有相邻的顶点对,由(2),N G (y 1)中有相邻的顶点对,矛盾。

情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。

若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。

故k ≠r+1,同理t ≠r+1。

所以t=r,k=r 。

记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。

图论习题答案1

图论习题答案1

图论习题课作业1,3,6,8,10By jgy•作业1:第一章:1,2,4,12,20,29,35•作业3:第二章:14,28,30第三章:1,5,7,8•作业6:第五章:18,33•作业8:第六章:6,12,17•作业10:第七章10 第八章5,6,8作业1|E(G)|,2|E(G)|2G υυ⎛⎫≤ ⎪⎝⎭⎛⎫⎪⎝⎭1.1 举出两个可以化成图论模型的实际问题略1.2 证明其中是单图证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

•1.20证明每顶皆二次的连通图是圈•证明:(思路)易证每顶皆二次的连通图中有圈。

设图中最大圈为H,假设除H外还有其他顶点集U,任取u k,因为连通,u k 与H中任意顶均有一条道路,存在H中一顶h j与u k相邻,则h j为三次。

•1.29 证明二分图的子图是二分图•方法一:•定理1.2 图G是二分图当且仅当G中无奇圈•反证:设二分图为G,子图为S,假设S非二分图,由定理1.2知S中有奇圈,则G中有奇圈,这与G是二分图矛盾。

•方法二:•(思路)定义:V(G) = X U Y, X n Y=空, 且X中任二顶不相邻,且Y中任二顶不相邻。

•证明:•(a)第一个序列考虑度数7,第二个序列考虑6,6,2•(b)将顶点v分成两部分v’和v’’•v’ = {v|v= vi , 1≤ i≤ k},•v’’ = {v|v= vi , k< I ≤ n}•以v’点为顶的原图的导出子图度数之和小于•然后考虑剩下的点贡献给这k个点的度数之和最大可能为•2.14 画出带权0.2 0.17 0.13 0.1 0.1 0.08 0.06 0.06 0.07 0.03的huffman 树•排序:①0.03 0.06 0.06 0.07 0.08 0.1 0.1 0.13 0.17 0.2•②0.06 0.07 0.08 0.090.1 0.1 0.13 0.17 0.2•③0.08 0.090.1 0.1 0.130.13 0.17 0.2•④0.1 0.10.130.13 0.170.17 0.2•⑤0.130.13 0.170.17 0.20.2•⑥0.170.17 0.20.2 0.26•⑦0.20.20.26 0.34•⑧0.26 0.34 0.4•⑨0.4 0.60.030.060.090.030.060.090.060.070.130.030.060.090.060.070.130.170.08①③②0.030.060.090.060.070.130.170.080.10.10.20.130.26Huffman 树为0.170.340.20.40.61•2.28证明T是顶数至少为2的树,则T是二分图•证明1:•定理1.2 图G是二分图当且仅当G中无奇圈•T是树,所以T中无奇圈,由‘图G是二分图当且仅当G中无奇圈’知T是二分图。

《离散数学》图论部分习题

《离散数学》图论部分习题

《离散数学》图论部分习题《离散数学》图论部分习题1.已知⽆向图G有12条边,6个3度顶点,其余顶点的度数均⼩于3,问G⾄少有⼏个顶点?并画出满⾜条件的⼀个图形. (24-3*6)/2 +6=92.是否存在7阶⽆向简单图G,其度序列为1、3、3、4、6、6、7.给出相应证明.不存在;7阶⽆向简单图G中最⼤度≤63.设d1、d2、…、d n为n个互不相同的正整数. 证明:不存在以d1、d2、…、d n为度序列的⽆向简单图.Max{d1,d2,…,dn}≥n,n阶⽆向简单图G中最⼤度≤n-14.求下图的补图.5.1)试画⼀个具有5个顶点的⾃补图2)是否存在具有6个顶点的⾃补图,试说明理由。

对于n阶图,原图与其补图同构,边数应相等,均为(n*(n-1)/2)/2,即n*(n-1)/4且为整数,n=4k或n=4k+1,不存在6阶⾃补图。

6.设图G为n(n>2且为奇数)阶⽆向简单图,证明:G与G的补图中奇度顶点个数相等.n(n>2且为奇数),奇度点成对出现7.⽆向图G中只有2个奇度顶点u和v,u与v是否⼀定连通.给出说明或证明。

只有2个奇度顶点u和v,如果不连通,在u和v在2个连通分⽀上,每个分⽀上仅有⼀个奇度顶点,与握⼿引理相⽭盾。

8.图G如下图所⽰:1)写出上图的⼀个⽣成⼦图.2)δ(G),κ(G),λ(G).δ(G)=2,κ(G)=1,λ(G)=2.说明:δ(G)=min{ d(v) | v V } ;κ(G)=min{ |V’| |V’是图G的点割集} ;λ(G)=min{ |E’| |E’是图G的边割集} 9.在什么条件下⽆向完全图K n为欧拉图?n为奇数时10.证明:有桥的图不是欧拉图.假设是欧拉图:桥的端点是u和v,并且图各顶点度均为偶数;桥为割边,删除桥,图不再连通,u和v应该在2各不同的连通分⽀上;且u和v度数变为奇数;由于其他顶点度数均为偶数,则u和v所在的连通分⽀上只有⼀个奇度顶点,与握⼿引理⽭盾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题十1. 设G 是一个(n ,m)简单图。

证明:,等号成立当且仅当G 是完全图。

证明:(1)先证结论:因为G 是简单图,所以G 的结点度上限 max(d(v)) ≤ n-1, G 图的总点度上限为 max(Σ(d(v)) ≤ n ﹒max(d(v)) ≤ n(n-1) 。

根据握手定理,G 图边的上限为 max(m) ≤ n(n-1)/2,所以。

(2) =〉G 是完全图因为G 具有上限边数,假设有结点的点度小于n-1,那么G 的总度数就小于上限值,边数就小于上限值,与条件矛盾。

所以,G 的每个结点的点度都为n-1,G 为完全图。

G 是完全图 =〉因为G 是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G 的边数 。

■2. 设G 是一个(n ,n +1)的无向图,证明G 中存在顶点u ,d (u )≥3。

证明:反证法,假设,则G 的总点度上限为max(Σ(d(u)) ≤2 n ,根据握手定理,图边的上限为max(m) ≤ 2n/2=n 。

与题设m = n+1,矛盾。

因此,G 中存在顶点u ,d (u )≥3。

■3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来: (1)(3,2,0,1,5); (2)(6,3,3,2,2) (3)(4,4,2,2,4); (4)(7,6,8,3,9,5)解:除序列(1)不是图序列外,其余的都是图序列。

因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。

可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。

最后,将奇数序列对应的点两两一组,添加连线即可。

下面以(2)为例说明:(6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5}每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1)将奇数3,3 对应的结点v 2,v 3一组,画一条连线其他序列可以类式作图,当然大家也可以画图其它不同的图形。

■4.证明:在(n ,m )图中。

证明:图的点度数是一组非负整数{d(v 1),d(v 2)…d(v n )},那么这组数的算术平均值一定大于等于其中的最小值,同时小于等于其中的最大值。

对应到图的术语及为:最大值为,最小值为δ,平均值 = (d(v 1)+d(v 2)…+d(v n ))/n = 2m/n,所以。

■5.证明定理10.2。

【定理10.2】 对于任何(n ,m )有向图G =(V ,E ),证明:有向图中,每条有向边为图贡献一度出度,同时贡献一度出度,所以总出度和总入度相等,并和边数相等。

因此,上述关系等式成立。

■6.设G 是(n ,m )简单二部图,证明:。

证明:本题目,我们是需要说明n 阶的简单二部图的边数的最大值 = 即可。

设n 阶的简单二部图,其两部分结点集合分别为V1,V2,那么|V1| + |V2| = n 。

此种情况下,当G 为完全二部图时,有最多的边数,即max(m) = |V1||V2|,变形为,max(m) =( n-|V2|)|V2|.此函数的最大值及为n 阶二部图的边的上限值,其上限值为当|V2|=n/2 时取得。

及max(max(m)) = ,所以n 阶二部图(n,m), ■7. 无向图G有21条边,12个3度数结点,其余结点的度数均为2,求G的阶数n。

解:根据握手定理有: 21 =( 3Χ12 + 2(n-12))/2, 解此方程得n = 15■8.证明:完全图的点诱导子图也是完全图。

证明:方法1为证明此结论,我们先证两个引论:引论1:设G(V,E)为母图,,则G的任意子图G'(V’,E’)是G关于V’的点诱导子图G''(V’,E’’)的子图。

引论2:引论1中G’’(V’,E’’)的任意点诱导子图,也是G图的点诱导子图。

证明:略,请读者证明。

设有完全图Kn( n≥1),现根据其p阶点诱导子图作归纳证明。

Kn的1阶点诱导子图,显然是完全图,且都是K1图。

当n≥2,Kn的2阶点诱导子图,显然是完全图,且都是K2图假设Kn的p(n>p>2)阶点诱导子图,为Kp图,那么对任意的p+1阶点诱导子图G,根据引理2结论,G的任意p阶点诱导子图G’为Kn的p阶点诱导子图,且为Kp图。

因此,G 必为Kp+1图。

根据以上论证可得原命题成立■方法2因为完全图的任意两个顶点均邻接,所以点导出子图任意两个顶点也邻接,为完全图。

■9.若,称G是自补图。

确定一个图为自补图的最低条件;画出一个自补图来。

解:设G为(n,m)图,为(n,m`)图,根据补图的定义有,至少应该满足m+m`=n(n-1)/2 (1) 根据同构的定义有,至少应该满足m=m` (2)(1),(2)联立求解得:m=n(n-1)/4, 及一个图为自补图,最低条件为结点数为4的倍数或为4的倍数加1。

图示略■10.判断图10.29中的两个图是否同构,并说明理由。

图9-1.15图10.29解:题中两个图不同构,因为左边图的唯一3度点有2个1度点为其邻接点,而右图唯一的3度点只有1个1度点为其邻接点。

因此这两个图不可能同构■11.证明:图10.30中的两个图是同构的。

解:略■12. 求具有4个结点完全图K 4的所有非同构的生成子图。

解:我们可以把生成子图按总度数不同进行分类,不同总度数的子图类决不同构。

总度数相同的子图类中,再去找出不同购的子图。

因此求解如下: Σd(v) = 0: (0,0,0,0) =2: (1,1,0,0)=4: (2,1,1,0) (1,1,1,1)=6: (3,1,1,1) (2,2,1,1)(2,2,2,0) =8: (2,2,2,2) (3,2,2,1) =10: (3,3,2,2) =12: (3,3,3,3) 总共10个不同构生成子图■13. 设有向图D=<V,E>如下图10.31所示。

(1) 在图中找出所有长度分别为1,2,3,4的圈 (至少用一种表示法写出它们,并以子图形式画出它们)。

(2) 在图中找出所有长度分别为3,4,5,6的回路,并以子图形式画出它们。

解:(1)图10.30(2)子图略长度为三的回路:Ae 1Ae 1Ae 1A,Ae 1Ae 3De 2A,Ae 4Be 7Ce 5A,Ae 4Be 8Ce 5A长度为四的回路:AAAAA ,AAADA ,AABe 7CA,AABe 8CA,ABe 7CDA,ABe 8CDA长度为五的回路:AAAAAA,AAAADA,AAABe 7CA,AAABe 8CA,AABe 7CDA,AABe 8CDA, AADADA,AAAe 4Be 7Ce 5A,AAAe 4Be 8Ce 5A, ADAe 4Be 7Ce 5A,ADAe 4Be 8Ce 5A ■14. 试证明在任意6个人的组里,存在3个人相互认识,或者存在3个人相互不认识。

证明:设A 为6人中的任一人,那么A 要么至少与3人认识,要么至少与3人不认识,二者必居其一。

假设A 与B ,C ,D 三人认识,如果B ,C ,D 三人互不认识,结论成立如果B ,C ,D 三人中,至少有两人相互认识,则它们和A 一起,构成相互认识的3人,结论成立。

同理,A 至少与3人不认识,结论也成立。

因此,题设结论成立■15. 若u 和v 是图G 中仅有的两个奇数度结点,证明u 和v 必是连通的。

证明:反证法,假设u 和v 不连通,那么他们必然分布于此图的两个连通分支中。

那么它们将分别是各连通分支中唯一的奇数度结点。

根据握手定理,一个图中奇度点的个数为偶数。

而两个连通分支中,奇度点的个数为奇数。

矛盾。

矛盾的产生,是由于假设不连通导致的,因此,题设结论成立■16. 证明:G 是二部图当且仅当G 的回路都是偶长回路。

证明:设二部图G ,顶点分为两个集合V1 ,V2 充分性:先证明在二部图中,奇长路的道路的两个端节点一定分别在两个顶点集合中,对道路长度使用归纳法,(1) 当道路长度为1是,根据二部图的定义,每条边的两个顶点分别在两个点集合中,结论成立(2) 假设道路长度为2n-1 ( n ≥2)时结论成立(3) 当道路长度为2n+1时,设P=v 1v 2…v 2n-1v 2n v 2n+1,在此路径上删除最后两个结点,那么道路P将变为长度为2n-1的奇长道路,根据假设,v1,v2n-1分别在两个顶点集合中,那么v2n和v1在同一顶点集合中,而v2n+1和v1在不同顶点集合,结论成立因为G中的任何回路,写成道路的形式,起点和终点时一个结点,当然在同一个顶点集合中,因此长度必为偶数;必要性:(仅对连通分支证明)在图中任意取一点着色为白色,将和此点最短距离为奇数的点着色为黑点,为偶数的着色为白点,那么将结点分为白色和黑色连个点集,任何同色点之间没有边相连。

否则将形成奇数长度的回路,例如同色结点v1,v2 相邻,那么从初始着色点v开始通过最短路径可以形成如下回路v…v1v2…v,因为v…v1,v2…v长度和为偶数,那么回路v…v1v2…v长度为奇数,与题设矛盾。

所以是二部图17.设(n, m)简单图G满足,证明G必是连通图。

构造一个的非连通简单图。

证明:假设G不连通,分支G1,G2..Gk,那么他们的边数的最大值max(m)=Σ(ni-1)ni/2≤Σ(ni-1)(n-1)/2=(n-1)/2Σ(ni-1)=(n-1)(n-k)/2,所以,只有当k=1时,才能满足题设要求,G是连通图。

如果将顶点集合分成两个点集,|V1|=1,|V2|=n-1,构成如下的有两个分支的非连通简单图,G1=(1,0),G2=Kn-1,满足题设条件■18. 设G是阶数不小于3的连通图。

证明下面四条命题相互等价:(1)G无割边;(2) G中任何两个结点位于同一回路中;(3) G中任何一结点和任何一边都位于同一回路中;(4) G中任何两边都在同一回路中。

证明:(1)=〉(2)因为G连通,且G无割边,所以任意两个结点u,v,都存在简单道路p=u…wv.又因为G无割边,所以,删除边wv后,子图依然连通,即w,v存在简单道路p’,以此类推,可以找到一条核p每条边都不相同的p’’=v…u,这样p和p’’就构成了一条回路。

(2)=〉(3)因为G中任意两个结点都位于同一回路中,所以任意结点u,和任意边e的两个端点v1,v2都分别在两个回路C1,C2中,如果C1=C2=u…v1…v2…u,那么将回路中v1…v2,用v1v2=e 替换,就得到新的新的回路,并满足要求。

如果C1≠C2,C1=u…v1…u,C2=u…v2…u,那么构成新的道路P=u…v1…u…v2…u,在其中将重复边剔出掉,得到新的回路C3,其中包含v1,v2结点,可以将回路中v1…v2用v1v2=e替换,就得到新的新的回路,并满足要求.(3)=〉(4)对任意两条边e1,e2其端点分别为u1,u2,v1,v2。

相关文档
最新文档