第4章 基本几何体习题答案
《第4章几何图形初步》单元测试含答案解析
《第4章几何图形初步》一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为度.10.一个角的补角等于它的余角的6倍,则这个角的度数为.11.13°30'=°;(2)0.5°='= ″.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画条直线.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?《第4章几何图形初步》参考答案与试题解析一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.【点评】解题时勿忘记圆锥的特征及圆锥展开图的情形.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据余角、补角的定义计算.【解答】解:根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点评】根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°【考点】方向角.【专题】应用题.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:点A位于点O的北偏西65°的方向上.故选B.【点评】结合图形,正确认识方位角是解决此类问题的关键.4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到一个矩形右上角有一条线段,故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线【考点】线段的性质:两点之间线段最短.【分析】根据直线的性质,线段的性质,以及线段的大小比较对各选项分析判断即可得解.【解答】解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项正确;C、利用圆规可以比较两条线段的大小关系,是线段的大小比较,故本选项错误;D、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误.故选B.【点评】本题考查了线段的性质,直线的性质,是基础题,熟记各性质是解题的关键.6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°【考点】钟面角.【专题】计算题.【分析】早上8时,时针指向8,分针指向12.钟表12个数字,每相邻两个数字之间的夹角为30°.分针与时针之间有四个格,可求解.【解答】解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选C.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°【考点】翻折变换(折叠问题).【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等.【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活【考点】专题:正方体相对两个面上的文字.【分析】根据正方形展开图相对的面应相隔一个面作答.【解答】解:和“崇”相隔一个面的面为“低”,故选A.【点评】解决本题的关键是理解正方体侧面展开图相对的面之间应相隔一个面.二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为20 度.【考点】余角和补角.【专题】计算题.【分析】根据余角定义直接解答.【解答】解:∠B=90°﹣70°=20°.【点评】本题比较容易,考查互余角的数量关系.根据余角的定义可得∠B=90°﹣70°=20度.10.一个角的补角等于它的余角的6倍,则这个角的度数为72°.【考点】余角和补角.【分析】利用题中的关系“一个角的补角等于这个角的余角的6倍”作为相等关系列方程求解即可.【解答】解:设这个角为x,则它的补角为(180°﹣x)余角为(90°﹣x),由题意得:180°﹣x=6(90°﹣x),180°﹣x=540°﹣6x,6x﹣x=540°﹣180°,5x=360°,x=72°.答:这个角的度数为72°.故答案为:72°.【点评】主要考查了利用余角和补角的定义和一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角之和为180度.11.13°30'=13.5 °;(2)0.5°=30 '= 1800 ″.【考点】度分秒的换算.【分析】(1)根据度分秒的换算,将30′换算成0.5°即可得出结论;(2)根据度分秒的换算,将0.5°换算成30′,再将30′换算成1800″即可得出结论.【解答】解:(1)13°30'=13°+()°=13.5°;(2)0.5°=(0.5×60)′=30′=(30×60)″=1800″.故答案为:(1)13.5;(2)30;1800.【点评】本题考查了度分秒的换算,熟练的掌握度分秒的进率是解题的关键.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条条直线.【考点】直线、射线、线段.【专题】规律型.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.【考点】度分秒的换算.【专题】计算题.【分析】(1)先进行度、分、秒的除法计算,再算加法.(2)先进行度、分、秒的乘法计算,再算减法.【解答】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=9°33′29″.【点评】此类题是进行度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?【考点】方向角.【分析】分别建立找到图书馆在学校的东北方向,在医院的南偏东60°方向,两直线的交点即是图书馆的位置.【解答】解:在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AO,在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BO,则AO与BO的交点为点O,则点O就是图书馆的位置.【点评】此题考查了方向角的知识,注意东北方向指的是东偏北45°这个知识点,难度一般.15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.【考点】比较线段的长短.【专题】计算题.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.【考点】角的计算.【专题】计算题.【分析】设∠COD=x,则∠AOD可表示为60°﹣x,于是∠AOB=90°+60°﹣x=150°﹣x,再根据∠AOB 是∠DOC的3倍得到150°﹣x=3x,解得x=37.5°,然后计算3x即可.【解答】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【点评】本题考查了角的计算:会利用角的倍、分、差进行角度计算.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?【考点】角平分线的定义.【分析】已知一副三角板的直角顶点O重叠在一起,就是已知图形中的两个三角形各角的度数,这样重叠时存在的角的关系是:∠AOD=∠AOB+∠COD﹣∠COB.【解答】解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.【点评】根据角平分线定义得出所求角与已知角的关系转化求解.注意一副三角板的直角顶点O重叠在一起时角的关系.。
2021-2022学年人教新版七年级上册数学《第4章几何图形初步》单元测试卷(有答案)
2021-2022学年人教新版七年级上册数学《第4章几何图形初步》单元测试卷一.选择题1.下列说法中,不正确的是()A.棱柱的侧面可以是三角形B.直棱柱的侧面展开图是一个长方形C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的2.直棱柱的侧面都是()A.正方形B.长方形C.五边形D.菱形3.从正面观察如图的两个立体图形,得到的平面图形是()A.B.C.D.4.如图,将Rt△ABC绕直角边AB旋转一周,所得的几何体的主视图是()A.B.C.D.5.如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.下列语句准确规范的是()A.直线a、b相交于一点mB.延长直线ABC.反向延长射线AO(O是端点)D.延长线段AB到C,使BC=AB7.平面上有四点,经过其中的两点画直线最多可画出()A.三条B.四条C.五条D.六条8.下列几何体中,是圆锥的为()A.B.C.D.9.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A.两点之间,线段最短B.两点确定一条直线C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离10.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤二.填空题11.若一个六棱柱,则它有条棱,有个面.12.长方体有个顶点,有条棱,个面,这些面的形状都是.13.六棱柱有个顶点,个侧面.14.如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子.15.如图,经过刨平的木板上的A,B两个点,可以弹出一条笔直的墨线,能解释这一实际应用的数学知识是.16.正方体有个顶点,条棱,个面.17.将半圆绕它的直径旋转一周形成的几何体是.18.面与面相交成,线与线相交得到,点动成,线动成,面动成.19.如图,该图中不同的线段共有条.20.一个圆被分成四个扇形,若各个扇形的面积之比为4:2:1:3,则最小的扇形的圆心角的度数为.三.解答题21.在推导圆的面积计算公式时,是将一个圆分成若干(偶数)等份,剪开后,用这些近似等腰三角形的小纸片拼成一个近似的长方形,如图2所示.(注:本题中的π取3.14)(1)若圆的半径为3cm,则拼成的近似长方形的周长比圆的周长多多少厘米?(2)若拼成的近似长方形的周长为33.12cm,则圆的半径为多少?(3)在(2)的条件下,求此圆的面积.22.将下列几何体与它的名称连接起来.23.如图,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).24.将下列几何体分类,并说明理由.25.补画长方体.26.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.27.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.参考答案与试题解析一.选择题1.解:A、棱柱的每一个侧面都是平行四边形,故本选项错误;B、直棱柱的侧面展开图是长方形,故本选项正确;C、一个棱柱的底面是一个5边形,则它的侧面必须有5个长方形组成,故本选项正确;D、棱柱的上下底面是全等的多边形,则棱柱的上下底面是形状、大小相同的多边形.故本选项正确;故选:A.2.解:直棱柱不管从哪个侧面看都是长方形.故选:B.3.解:从正面看左边是一个矩形,右边是一个正方形,故选:A.4.解:将Rt△ABC绕直角边AB旋转一周可得圆锥,圆锥的主视图是等腰三角形.故选:D.5.解:左边的图形绕着给定的直线旋转一周后形成的几何体是空心圆柱,故选:D.6.解:A、交点应该用大写字母,故本选项错误;B、直线是向两方无限延伸的,不能延长,故本选项错误;C、端点应该是A,故本选项错误;D、延长线段AB到C,使BC=AB,正确.故选:D.7.解:如图,最多可画6条直线.,故选:D.8.解:A.属于长方体(四棱柱),不合题意;B.属于三棱锥,不合题意;C.属于圆柱,不合题意;D.属于圆锥,符合题意;故选:D.9.解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是两点确定一条直线,故选:B.10.解:分析原图可得:原图由②⑤两种图案组成.故选:D.二.填空题11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据长方体的特征知,它有8个顶点,12条棱,6个面,这些面的形状都是矩形.故答案为:8,12,6,矩形.13.解:六棱柱有12个顶点,6个侧面.故填12、6.14.解:如图折成3折,有两个拐点,而不是折叠三次,故能得到4条绳子.15.解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故答案为:经过两点有且只有一条直线.16.解:正方体有8个顶点,12条棱,6个面.故答案为:8,12,6.17.解:半圆绕它的直径旋转360度形成球.故答案为:球体.18.解:面面相交得到线,线线相交得到点.点动成线,线动成面,面动成体.故答案为:线;点;线;面;体.19.解:从点C到B,D,E,A有4条线段;同一直线上的B,D,E,A四点之间有×4×3=6条;所以共10条线段.20.解:∵扇形A,B,C,D的面积之比为4:2:1:3,∴其所占扇形比分别为:,∴最小的扇形的圆心角是360°×=36°.故答案为:36°.三.解答题21.解:(1)拼成的近似长方形的周长比圆的周长多3×2=6厘米;(2)设圆的半径为r,由题意得,2πr+2r=33.12,解得:r=4,答:圆的半径为4cm;(3)此圆的面积=3.14×42=50.24(cm2).22.解:如图所示:23.解:埃及金字塔﹣﹣(2)西瓜﹣﹣(3)水杯﹣﹣(1)房屋﹣﹣(5).24.解:答案不唯一,如(1)按平面分:正方体,长方体,三棱锥;(2)按曲面分:圆柱,圆锥,球.理由是:正方体的面是六个正方形组成,长方体的面是六个长方形组成,三棱锥的面是四个三角形组成,都是平面图形;而圆柱和圆锥的侧面都是曲面,球的整个面是曲面.25.解:如图所示:.26.解:如图所示,A旋转后得出图形c,B旋转后得出图形d,C旋转后得出图形a,D旋转后得出图形e,E旋转后得出图形b.27.解:从第一行的平面图形绕某一边旋转可得到第二行的立体图形,从第二行的立体图形的上面看可得到第三行的平面图形.(1)→(三)→(D);(2)→(二)→(C);(3)→(四)→(B);(4)→(一)→(A).。
人教版 七年级数学 第4章 几何图形初步 复习题(含答案)
人教版七年级数学第4章几何图形初步复习题一、选择题(本大题共10道小题)1. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我2. 如图,水平的讲台上放置的是圆柱形笔筒和正方体形粉笔盒,从上面看到的是()3. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4. 如图是一座房子的平面示意图,组成这幅图的平面图形是 ()图A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形5. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB6. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是()7. 如图,图中小于平角的角有()A.10个B.9个C.8个D.4个8. 如果一个棱柱有12个顶点,那么它的面的个数是 ()A.10B.9C.8D.79. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10. 已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°二、填空题(本大题共8道小题)11. (1)将度化为度、分、秒的形式:1.45°=;(2)2700″=°.12. 如图所示的图形中,是棱柱的有______.(填序号)13. 如图,∠1可以用三个大写字母表示为.14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.15. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.17. 如图所示,AF=.(用含a,b,c的式子表示)18. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)19. 请将图中的角用不同的方法表示出来,并填写下表:角的表示方法一∠ABE角的表示方法二∠1 ∠2用量角器量出∠2,∠A,∠ABE的度数,并写出它们之间的数量关系.20. 如图,下列各几何体的表面中包含哪些平面图形?21. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.22. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).人教版七年级数学第4章几何图形初步复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D[解析] 从上面看,左边是一个圆,右边是一个正方形,故选D.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】B[解析] 小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共9个.8. 【答案】C[解析] 一个棱柱有12个顶点,一定是六棱柱,所以它有6个侧面和2个底面,共8个面.9. 【答案】A10. 【答案】D[解析] 当OC在∠AOB内部时,如图①,则∠BOC=∠AOB-∠AOC=60°-×60°=40°,∴∠COD=∠BOC=20°;当OC在∠AOB外部时,如图②,则∠BOC=∠AOB+∠AOC=60°+×60°=80°,∴∠COD=∠BOC=40°.综上,∠COD的度数为20°或40°.故选D.二、填空题(本大题共8道小题)11. 【答案】(1)1°27'(2)0.7512. 【答案】②⑥13. 【答案】∠MCN或∠MCB14. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同15. 【答案】两点确定一条直线16. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.17. 【答案】2a-2b-c18. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)19. 【答案】解:∠ABE还可以表示为∠3,∠1还可以表示为∠ABC或∠ABF,∠2还可以表示为∠ACB或∠ACE(填表略).∠2=40°,∠A=25°,∠ABE=65°,所以∠ABE=∠A+∠2.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.22. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.。
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
人教版七年级上第四章几何图形初步点、线、面、体同步练习题含答案
【分析】利用雨刷可看成线,扇面是面,即可求出答案.
【详解】汽车的雨刷在挡风玻璃上画出一个扇面,这说明线动成面的数学原理.
故答案为:线动成面.
【点睛】本题考查了点,线,面、体,此题较简单,解题时要灵活应用点、线、面、体之间的关系.
12.②
【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看到的图形.
8.由4个面围成;面与面相交形成6条线,直线有5条,曲线有1条.
【分析】由题意直接根据立体图形的基本知识结合图形进行分析即可得出答案.
【详解】解:由图可知,该几何体由4个面围成;
面与面相交形成6条线,直线有5条,曲线有1条.
【点睛】本题考查认识立体图形的知识,比较简单,注意基本知识的掌握.
9.见解析.
12.将图所示的Rt△ABC绕AB旋转一周所得的几何体的主视图是图中的________(只填序号).
参考答案:
1.C
【分析】观察截面形状可发现,长方体内部的圆自上而下由大圆逐渐变成小圆、点,符合圆锥截面的性质.
【详解】解:观察截面形状可知,这个长方体的内部构造是长方体中间有一圆锥状空洞,
故选:C.
【点睛】本题考查了截一个几何体,解答的关键是熟悉常见的几何体的截面,由截面的形状想象复杂几何体的组成.
【详解】解:Rt△ABC绕斜边AB旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图②.
故答案为②.
【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键.
【分析】根据生活中常见的几何体的特征进行求解即可得到答案.
人教2012版数学第四章几何图形初步第09讲多姿多彩的图形
第09讲多姿多彩的图形考点·方法·破译1.会识常见的几何图形,并了解它们的名称.2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,以根据三视图描述基本几何体或实物原型.3.了解基本几何体与其三视图、展开图之间的关系.经典·考题·赏析【例1】根据下图回答问题(1)请说出①~⑥中几何体的名称,并简要叙述它们的一些特征.(2)将①~⑥中的几何体分类.【解法指导】认识几何体,以直观观察为主,一般特征也以观察者获得的形象加以表述即可.但对几何体尽可能地进行深入观察,全方位发现每个几何体的特征,从而逐步揭示其本质.解:(1) ①圆柱:特征如,两个底面是圆的几何体.②圆锥:特征如,像锥体,且底面是圆.③正方形:特征如,所有面都是正方形.④长方体:特征如,其侧面均为长方形.⑤棱柱:特征如,底面为多边形,侧面为长方形.⑥球:特征如,圆的实体.(2) ①③④⑤为一类,它们都是柱体.②是一类,它是锥体.⑥是一类,它是球体.【变式题组】01.下图四个几何体分别为长方体、圆柱体、球、三棱柱,这四个几何体中有三个从某个角度看到的图形都是一种几何图形,则另一个几何体是( )02.下列物体的形状类似于球体的是( )A.茶杯B.羽毛球C.乒乓球D.白炽灯泡03.用平面去截下列几何体,截面的形状不可能是圆的几何体是( )A.球B.圆锥C.圆锥D.正方体04.如图,立方体各面上的数字是连续的整数,如果相对的两个面上的两个数的和都相等,那么这三对数的总和是( )A.76 B.78 C.80 D.81 151411【例2】如图所示,仔细观察图中的两个物体,则它的俯视图是( )正面A.B.C.D.【解法指导】注意结合立体图形的形状并注意从某一方向看到图形的对应关系,抓住其主要特征,同时要分清不同视图的异同.故选择A.【变式题组】01.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )A.B.C.D.02.如图,这个几何体从上面看到的平面图形是( )03.如图所示,圆柱从上面看到的图形是图中的( )04.如图是由一些完全相同的小立方块搭成的几何体从正面、左面、上面看到的图形,那么搭成这个几何体所用的小立方块的个数是( )A.3个B.6个C.7个D.8个从正面看从左面看从上面看【例3】将如右图所示的Rt△ABC绕直角边BC旋转一周,所得几何体从左面看到的是( )【解法指导】以直角三角形的直角边AC、BC为旋转轴得到的都是圆锥,故选择A.【变式题组】01.将右图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )02.若一个棱柱有12个顶点,则在下列说法正确的为( )A.这个棱柱有5个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是六边形D.这个棱柱的是一个12棱柱03.四棱柱的顶点数、棱数、面数分别为( )A.8,12,6 B.8,10,6 C.6,8,12 D.8,6,12 【例4】观察下列图形,其中不是正方体的展开图的为( )A.B.C.D.【解法指导】学习立体图形的展开图,要养成动手实验的好习惯,动手折一下往往会一目了然,故本题选择D.【变式题组】01.一个无盖的正方体盒子的平面展开图可以是下图中的( )A.只有图①B.图①、图②C.图②、图③D.图①、图③①②③02.如图所示的是一个由白纸拼成的立体图形,但有两面刷上黑色,将该立体图形展开后应该是( )A.B.C.D.03.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体盒的是( )A.B.C.D.04.如图所示是三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )A.B.C.D.【例5】一个画家有14个边长为1米的正方体,他在地面上把它们摆成如右图的形状,然后他把露出的表面涂上颜色,那么被涂上颜色的总面积为( )A.19平方米B.21平方米C.33平方米D.34平方米【解法指导】本题把涂上颜色的面积一块一块加起来计算很麻烦,应从整体角度出发,把立体转化为平面,观察题图所给的几何体,从前、后、左、右四个方向都只能看到6个1×1的正方形,从上面看可以看到一个3×3的大正方形轮廓,所以被涂上颜色的总面积应为4×6×1×1+3×3×1×1=33(平方米),故选C.【变式题组】01.如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视图中面积最小的是( )A.正视图B.左视图C.俯视图D.三种一样02.将一个底面直径为2 cm,高为2 cm的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图的面积为( )A.2πcm2B.3πcm2C.4πcm2D.5πcm203.一个大长方体是由四个完全一样的小长方体拼成的,如果每个小长方体的长、宽、高分别是3, 1,1那么这个大长方体的表面积可能有______种不同的值,其中最小值为______.【例6】李明为好友制作一个(右图)正方形礼品盒,六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )【解法指导】 本例主要考查立方体的展开图中对面、邻面的分布规律,可动手折叠发现答案,故应选择C .【变式题组】 01.已知一个正方体的每一面都填有唯一一个数字,且各相对面上所填的数互为倒数,若这个正方 体的平面展开图如右图所示,则A 、B 的值分别是( )A .13,12B . 13,1C .12,13D .1,1302.在下图中添加一个小正方形,使该图经过折叠后能围成一个四棱柱,不同的添法共有( )A .7种B .4种C .3种D .2种03.将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折后,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()【例7】 设5 cm ×4 cm ×3 cm 长方体的一个表面展开图的周长为n cm ,则n 的最 小值是______.【解法指导】 把展开图的周长用相应的代数式表示.长方体的展开图的周长为8c +4b +2a .故周长最小值为8×3+4×4+2×5=50,故填50 cm .【变式题组】01.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,如图现有一个边长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?BA 312102.如图是几个小立方块所搭成的几何体.从上面看图形,小正方形中的数字表示该位置的小立方块的个数,那么是这个几何体从正面看的图形的是( )2211A.B.C.D.03.如图①是由若干个小正方体所搭成的几何体,②是①从上面看到的图形,则①从左面看到的图形是( )①②A.B.C.D.演练巩固反馈提高01.水平位置的下列几何体,从正面看的图形不是长方形的是( )02.有一个外观为圆柱形的物体,它的内部构造从外部看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时(如图),得到了如图所示的(1)、(2)两组形状不同的截面,则这个物体的内部构造是( )A.空心圆柱B.空心圆锥C.空心球D.空心半球03.将如图所示图形折叠成立方体后,下面四个选项正确的是( )04.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )21231A .B .C .D .05.一个几何体的三视图如图所示,那么这个几何体是()A .B .C .D .06.如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是( )07.如下图所示的某一几何体的三视图,则这个几何体是( )A .圆柱B .圆锥C .正方体D .球 正视图 左视图 俯视图08.如图是一个几何体的三视图,根据图中提供的数据(单位: cm )可求得这个几何体的体积为 ( ) A .2 cm 2 B .4 cm 2 C .6 cm 2 D .8 cm 2 主视图 左视图 俯视图12 121109.如图所示是无盖长方体盒子的表面展开图(重叠部分不计)则盒子的容积为( )A .4B .6C .12D .1510.宜黄素有“华南虎之乡”的美誉,将“华南虎之乡美”六个字填写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“虎”字相对的字是______.11.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图左视图俯视图12.设有一个边长为1的正三角形,记作A1,将A1的每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A2;将A2的每条边三等分,重复上述过程,所得到的图形记作A3,现将A3的每条边三等分,重复上述过程,所得到的图形记作A4,则A4的周长是多少?14.由3个相同的小立方块搭成的几何体如图所示,请画出它的主视图和俯视图.主视方向15.一个五棱柱如图,它的底面边长都是4厘米,侧棱长6厘米,回答下列问题.(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱一共有多少条棱?它们的长度分别是多少?美乡之虎南华培优升级 奥赛检测01.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的图形为( )211423A .B .C .D .02.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(图1);如果将这个纸筒沿线路BMA (图2)剪开铺平,得到的图形是( ) A .平行四边形 B .矩形 C .三角形 D .半圆03.一根单线从纽扣的4个孔中穿过(每个孔只穿过一次),其正面情形如图所示,下面4个图形可能 是其背面情形的是( )04.用M 、N 、P 、Q 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种,下图①至④是由M 、N 、P 、Q 中的两种图形组合而成的(组合用“&”表示).那么下列组合图形表示P &Q 的是 ( )05. 如图是一个立体图形的主视图,左视图(图中单位为厘米),则立体图形的体积为( )立方厘米. A .π B .2π C .3π D .4π06.如下左图是一个正方体的平面展开图,这个正方体是()A.B.C.D.07.把10个相同的小正方形按如图的位置堆放,它的外表会有若干个小正方形,如果将图中标有字母P的一个小正方体搬去,这时外表含有的小正方形的个数与搬运前相比( )A.不增不减B.减少1个C.减少2个D.减少3个08.如图,可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小值是______.09.设5 cm×4 cm×3 cm长方体的一个表面展开图的周长为n cm,则n的最小值是______.10.已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积等于S.(1)当a=2,h=3时,分别求V和S;(2)当V=12,S=32时,求2a+1h的值.P654321。
人教版初中七年级数学上册第四章《几何图形初步》模拟测试(答案解析)(34)
一、选择题1.(0分)[ID:68655]如图,∠AOB=12∠BOD,OC平分∠AOD,下列四个等式中正确的是()①∠BOC=13∠AOB;②∠DOC=2∠BOC;③∠COB=12∠BOA;④∠COD=3∠COB.A.①②B.②③C.③④D.①④2.(0分)[ID:68654]如图所示,已知直线AB上有一点O,射线OD和射线OC在AB同侧,∠AOD=42°,∠BOC=34°,OM是∠AOD的平分线,则∠MOC的度数是()A.125°B.90°C.38°D.以上都不对3.(0分)[ID:68653]如图所示,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB 的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°4.(0分)[ID:68652]已知线段AB、CD,AB CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上5.(0分)[ID:68651]如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4 B.3 C.2 D.16.(0分)[ID:68645]下面四个图形中,能判断∠1>∠2的是()A .B .C .D . 7.(0分)[ID :68639]如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较8.(0分)[ID :68630]如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处9.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°10.(0分)[ID :68616]α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等11.(0分)[ID :68611]如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 12.(0分)[ID :68591]一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 13.(0分)[ID :68583]已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( )A .6cmB .10cmC .4cm 或10cmD .6cm 或10cm 14.(0分)[ID :68576]下列平面图形中不能围成正方体的是( )A .B .C .D .15.(0分)[ID :68571]由A 站到G 站的某次列车,运行途中停靠的车站依次是A 站——B 站—C 站——D 站——E 站——F 站——G 站,那么要为这次列车制作的火车票有( ) A .6种 B .12种 C .21种 D .42种二、填空题16.(0分)[ID :68716]线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.17.(0分)[ID :68725]同一条直线上有三点A ,B ,C ,且线段BC=3AB ,点D 是BC 的中点,CD=3,则线段AC 的长为______.18.(0分)[ID :68706]如图,点C ,M ,N 在线段AB 上,且M 是AC 的中点,CN :NB=1:2,若AC=12,MN=15,则线段AB 的长是_______.19.(0分)[ID :68704](1)比较两条线段的长短,常用的方法有_________,_________. (2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 20.(0分)[ID :68685]用一个平面分别截棱柱、圆锥,都能截出的一个图形是________. 21.(0分)[ID :68682]如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.22.(0分)[ID :68676]按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B 为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.23.(0分)[ID :68674]车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.24.(0分)[ID :68669]如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.25.(0分)[ID :68738]如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.26.(0分)[ID :68736]已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm .27.(0分)[ID :68731]若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.三、解答题28.(0分)[ID :68854]把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?29.(0分)[ID :68847]已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE =50°,求:∠BHF 的度数.30.(0分)[ID :68811]如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点. (1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.A3.B4.A5.C6.D7.B8.A9.A10.D11.B12.D13.D14.C15.C二、填空题16.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系17.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D18.39【分析】根据中点的定义可求出MC的长根据MN=MC+CN可得CN的长根据CN:NB=1:2可求出NB的长根据AB=AC+CN+NB即可得答案【详解】∵M是AC的中点AC=12∴MC=AC=6∵M19.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大20.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故21.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO22.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的23.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直24.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=25.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【26.16【分析】分两种情况:①点P在线段MN上;②点P在线段MN外;然后利用两点之间距离性质结合图形得出即可【详解】①点P在线段MN上MP+NP=MN=16cm②点P 在线段MN外当点P在线段MN的上部时27.【分析】首先根据∠1与∠2互补可得∠1+∠2=180°再表示出∠1的余角90°-(180°-∠2)即可得到结论【详解】∵的余角是∴∵与互补∴故答案为126°【点睛】本题考查了余角和补角关键是掌握余角三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据∠AOB=12∠BOD,OC平分∠AOD,得到∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而得到∠BOC=12∠AOB,∠DOC=3∠BOC从而判断出①②错误,③④正确.【详解】解:因为∠AOB=12∠BOD,所以∠AOB=13∠AOD,因为OC平分∠AOD,所以∠AOC=∠DOC=12∠AOD,所以∠BOC=∠AOC-∠AOB=12∠AOD-13∠AOD=16∠AOD=12∠AOB,故①错误,③正确;因为∠DOC=12∠AOD,∠BOC=16∠AOD,所以∠DOC=3∠BOC 故②错误,④正确.【点睛】本题考查了角的和差倍数关系,根据题意表示∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而根据角的关系即可作出判断.2.A解析:A【分析】由OM是∠AOD的平分线,求得∠AOM=21°,利用∠BOC=34°,根据平角的定义求出答案.【详解】∵OM是∠AOD的平分线,∴∠AOM=21°.又∵∠BOC=34°,∴∠MOC=180°-21°-34°=125°.故选:A.【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.3.B解析:B【分析】先求出∠COB=60°,再根据具体位置确定答案.【详解】如图,∵∠AOB=90°,∠AOC=30°,∴∠COB=60°,∴OB的方位角是北偏西60°,故选:B..【点睛】此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.4.A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选:A.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.5.C解析:C【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=1AC=7cm;2∵M 是AB 的中点,∴AM =12AB =5cm , ∴DM =AD ﹣AM =2cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.6.D解析:D【分析】根据图象,利用排除法求解.【详解】A .∠1与∠2是对顶角,相等,故本选项错误;B .根据图象,∠1<∠2,故本选项错误;C .∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D .∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D .【点睛】本题考查了学生识图能力和三角形的外角性质.7.B解析:B【解析】∵∠AOB=∠COD ,∴∠AOB-∠BOD=∠COD-∠BOD ,∴∠1=∠2;故选B .【点睛】考查了角的大小比较,培养了学生的推理能力.8.A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .9.A解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.10.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.11.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是:故选:B .【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.12.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.13.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.14.C解析:C【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【详解】根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项不能围成正方体.故选C.【点睛】此题考查展开图折叠成几何体,解题关键在于掌握正方体展开图的11种形式即可. 15.C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F 出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C .【点睛】本题从A 站出发,逐站求解即可得到所有可能的情况,不要遗漏.二、填空题16.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系 解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.17.4或8【分析】分点C 在AB 的延长线上与点C 在BA 的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC 和AB 再利用线段的和差计算即可【详解】解:(1)当点C 在AB 的延长线上时如图1∵点D解析:4或8【分析】分点C 在AB 的延长线上与点C 在BA 的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC 和AB ,再利用线段的和差计算即可.【详解】解:(1)当点C 在AB 的延长线上时,如图1,∵点D 是线段BC 的中点,CD =3,∴BC =2CD =6,∵BC =3AB ,∴AB =13BC =13×6=2, ∴AC =AB +BC =2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.18.39【分析】根据中点的定义可求出MC的长根据MN=MC+CN可得CN的长根据CN:NB=1:2可求出NB的长根据AB=AC+CN+NB即可得答案【详解】∵M 是AC的中点AC=12∴MC=AC=6∵M解析:39【分析】根据中点的定义可求出MC的长,根据MN=MC+CN可得CN的长,根据CN:NB=1:2,可求出NB的长,根据AB=AC+CN+NB即可得答案.【详解】∵M是AC的中点,AC=12,∴MC=12AC=6,∵MN=MC+CN,MN=15,∴CN=15-6=9,∵CN:NB=1:2,∴NB=18,∴AB=AC+CN+NB=12+9+18=39.故答案为39【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.19.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.20.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键. 21.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO解析:135°【解析】【分析】先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知∠COE=12∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.【详解】因为OC AB⊥于点O,所以∠AOC=∠BOC=90°,因为OE为COB∠的平分线,所以∠COE=12∠BOC=45°,又因为∠AOE=∠COE+∠AOC,所以∠AOE=90°+45°=135°.故答案为:135°.【点睛】本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.22.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.23.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直解析:线动成面面动成体【解析】【分析】车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.【详解】车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.故答案为线动成面,面动成体.【点睛】此题考查点、线、面、体,解题关键在于掌握其定义.24.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.25.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.26.16【分析】分两种情况:①点P在线段MN上;②点P在线段MN外;然后利用两点之间距离性质结合图形得出即可【详解】①点P在线段MN上MP+NP=MN=16cm②点P在线段MN外当点P在线段MN的上部时解析:16【分析】分两种情况:①点P在线段MN上;②点P在线段MN外;然后利用两点之间距离性质,结合图形得出即可.【详解】①点P在线段MN上,MP+NP=MN=16cm,②点P在线段MN外,当点P在线段MN的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P在线段MN的延长线上时,MP+NP > MN =16.综上所述:线段MP和NP的长度的和的最小值是16,此时点P的位置在线段MN上,故答案为16.【点睛】本题考查的知识点是比较线段的长短,解题的关键是熟练的掌握比较线段的长短. 27.【分析】首先根据∠1与∠2互补可得∠1+∠2=180°再表示出∠1的余角90°-(180°-∠2)即可得到结论【详解】∵的余角是∴∵与互补∴故答案为126°【点睛】本题考查了余角和补角关键是掌握余角解析:126︒【分析】首先根据∠1与∠2互补可得∠1+∠2=180°,再表示出∠1的余角90°-(180°-∠2),即可得到结论.【详解】∵2∠的余角是36︒,∴2903654︒︒︒∠=-=.∵1∠与2∠互补,∴118054126︒︒︒∠=-=.故答案为126°.【点睛】本题考查了余角和补角,关键是掌握余角和补角的定义.三、解答题28.(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.29.∠BHF=115° .【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【详解】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=12∠EFD=65°;∵AB∥CD,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.30.(1)7.5;(2)12a,理由见解析;(3)能,MN=12b,画图和理由见解析【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可.(2)据题意画出图形,利用MN=MC+CN即可得出答案.(3)据题意画出图形,利用MN=MC-NC即可得出答案.【详解】解:(1)点M、N分别是AC、BC的中点,∴CM=12AC=4.5cm,CN=12BC=3cm,∴MN=CM+CN=4.5+3=7.5cm.所以线段MN的长为7.5cm.(2)MN的长度等于12 a,根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC)=12a;(3)MN的长度等于12 b,根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.。
人教版数学七年级上册第四章复习题带答案
4.1几何图形一.选择题1.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm3,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm2.某正方体每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“厉”字所在面相对的面上的汉字是()A.国B.了C.的D.我3.如图是一个正方体纸盒的表面展开图,折成正方体后,相对面上的两个数互为相反数,则A、B、C表示的数分别为()A.0,﹣5,3B.0,3,﹣5C.3,0,﹣5D.﹣5,3,04.如图,是一个正方体的展开图,把展开图折叠成正方体后有“水”字一面的相对面上的字是()A.共B.山C.绿D.建5.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,与“美”字相对的面上的字是()A.的B.利C.川D.市6.一圆柱形桶内装满了水,已知桶的底面直径和高都为m,另一长方体形容器的长为m,宽为m,若把圆柱形桶中的水倒入长方体形容器中刚好倒满,则长方体形容器的高为()A.2mπB.mπC.mπD.4mπ7.将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m等于()A.16B.18C.26D.328.下列图形中能折叠成棱柱的是()A.B.C.D.9.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.10.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.二.填空题11.将一个直角三角形ABC绕它的一边旋转,旋转后所得的几何体可能是下面图中的哪个.12.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是.13.若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=.14.如图,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体的2号面的对面是号面.15.如图,在长方体ABCD﹣A1B1C1D1中,已知AB=4,AD=3,AA1=2.则三棱锥C1﹣A1DB的体积为.三.解答题16.把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为4cm,宽为3cm的长方形绕它的一条边所在的直线旋转一周后,得到的圆柱体的体积是多少?(结果保留π)17.求下列图形中阴影部分的面积.(用字母表示)18.(1)三棱锥有6条棱,4个面,四棱锥有条棱,个面;(2)棱锥有30条棱;(3)有没有一个多棱锥,其棱数是2006,若有求出有多少个面;若没有,说明理由.19.如图所示,图①~图④都是平面图形(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入表格中.(2)根据(1)中的结论,推断出一个平面图形的顶点数、边数、区域数之间有什么关系.图序顶点数边数区域数①463②③④参考答案与试题解析一.选择题1.【解答】解:设长方体的宽为xcm,则高是xcm,长是2xcm,根据题意,得2x3=54000,x3=27000,x=30,所以这个音箱的长是60cm.故选:B.2.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面;故选:B.3.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A与0是相对面,B与5是相对面,C与﹣3是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A=0,B=﹣5,C=3.故选:A.4.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“水”字一面的相对面上的字是“建”.故选:D.5.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“美”字相对的面上的字是市.故选:D.6.【解答】解:==.所以长方体形容器的高为.故选:B.7.【解答】解:将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m﹣2)2=12×12(m﹣2),解得m1=26,m2=2(舍去),故选:C.8.【解答】解:A、不能折叠成棱柱,缺少一个侧面,故A不符合题意;B、能折叠成四棱柱,故B符合题意;C、不能折叠成四棱柱,有两个面重叠,故C不符合题意;D、不能折叠成六棱柱,底面缺少一条边,故D不符合题意;故选:B.9.【解答】解:三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选:B.10.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.二.填空题(共5小题)11.【解答】解:以AC边所在的直线为轴,旋转一周所形成的图(2)的圆锥体,以BC边所在的直线为轴,旋转一周所形成的图(3)的圆锥体,以AB边所在的直线为轴,旋转一周所形成的图(4)的圆锥体,故答案为:(2)(3)(4).12.【解答】解:长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.13.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“1”相对,面“b”与面“3”相对,“2”与面“﹣2”相对.因为相对面上两个数都互为相反数,所以a=﹣1,b=﹣3,故a+b=﹣4.14.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“1”与面“4”相对,面“3”与面“5”相对,“2”与面“6”相对.故填6.15.【解答】解:在长方体ABCD﹣A1B1C1D1中,三棱锥C1﹣A1DB的体积V=V﹣(V+V+V+V)=V﹣(S△ABD ×AA1+S△CBD×CC1+S×BB1+S×DD1)=S ABCD×AA1﹣(S ABCD×AA1+S×AA1)=S ABCD×AA1=V=×AB×AD×AA1=×4×3×2=8.∴三棱锥C1﹣A1DB的体积为8;故答案为:8.三.解答题(共4小题)16.【解答】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36π(cm3),绕宽所在的直线旋转一周得到圆柱体积为:π×42×3=48π(cm3),答:得到的圆柱体的体积是36πcm3或者48πcm3.17.【解答】解:左图:阴影部分的长为(a﹣x),宽为b,因此S=b(a﹣x)=ab﹣阴影部分bx,=R2﹣=.右图:S阴影部分18.【解答】解:(1)四棱锥有8条棱,5个面;(2)十五棱锥有30条棱;(3)一个多棱锥的棱数是2006,则这个多面体的面数是2006÷2+1=1004.故有1004个面.故答案为:8,5;十五.19.【解答】解:(1)填表如下:图序顶点数边数区域数①463②8125③694④10156(2)由(1)中的结论得:边数﹣顶点数+1=区域数.4.2直线射线线段一、选择题1.下列说法中正确的是A. 延长射线OA到点BB. 线段AB为直线AB的一部分C. 射线OM与射线MO表示同一条射线D. 一条直线由两条射线组成2.如图,在下列说法中,错误的是A. 点P为直线AB外一点B. 直线AB不经过点PC. 直线AB与直线BA是同一条直线D. 点P在直线AB上3.如图,对于直线AB,线段CD,射线EF,其中能相交的是A. B.C. D.4.如图,点B,C,D依次在射线AP上,则下列线段长度错误的是A. B. C. D.5.小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定A. 1根B. 2根C. 3根D. 4根6.如图,C是线段AB的中点,D是线段BC的中点,下列等式不正确的是A. B.C. D.7.有三个点A,B,C,过其中每两个点画直线,可以画出直线A. 1条B. 2条C. 1条或3条D. 无法确定8.如图所示,C是线段AB的中点,D在线段CB上,,,则A. 20B. 12C. 10D. 89.在线段MN的延长线上取一点P,使,再在MN的延长线上截取,那么线段MP的长是线段NQ的长的A. B. C. D.10.将一根绳子对折以后用线段AB表示,现从一点P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP PB,则这条绳子的原长为A. 100cmB. 150cmC. 100cm或150cmD. 120cm或150cm二、填空题(本大题共6小题,共18.0分)11.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.12.如图,A,B,C是直线l上的三个点,图中共有条线段.13.如图,已知C、D是AB上两点,且,,M是AD的中点,N是BC的中点,则线段MN的长为_______________.14.线段,点C在线段AB上,且,M为BC的中点,则AM的长为______cm.15.如图,数轴上A、B两点之间的距离,有一根木棒MN,MN在数轴上移动,当N移动到与A、B其中一个端点重合时,点M所对应的数为9,当N移动到线段AB的中点时,点M所对应的数为.16.线段,是AB的中点,是的中点,是的中点,是的中点,依此类推,线段的长为_____.三、计算题(本大题共2小题,共12.0分)17.如图,已知线段,M为AB的中点,P在MB上,N为PB的中点,且,求MB的长;求PB的长;求PM的长.18.已知:如图,点C、D是线段AB上的两点,线段AC:CD::3:4,点E、F分别是线段AC、DB的中点,且线段,求线段AB的长.四、解答题(本大题共4小题,共32.0分)19.如图,在平面内有A,B,C三点.画直线AC,线段BC,射线AB;在线段BC上任取一点不同于B,,连接线段AD;请直接写出图中的线段条数.20.已知,点C在直线AB上,如果,D是线段AC的中点,求线段BD的长度.下面是马小虎同学的解题过程:解:根据题意可画出如图所示的图形.由图可得.因为D是线段AC的中点,所以.所以.若你是老师,会判马小虎满分吗若会,请说明理由若不会,请将马小虎的错误指出,并给出你认为正确的解法.21.A,B两点在数轴上的位置如图所示,其中点A表示的有理数为,且点P从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为秒.当时,AP的长为,点P表示的有理数为.当时,求t的值.为线段AP的中点,N为线段PB的中点在点P运动的过程中,线段MN 的长度是否发生变化若发生变化,请说明理由若不发生变化,请你画出图形,并求出线段MN的长.22.如图,在射线OM上有三点A、B、C,满足,,如图所示,点P从点O出发,沿OM方向以的速度匀速运动,点Q从点C出发在线段CO上向点O以的速度匀速运动点Q运动到点O时停止运动,两点同时出发.若关于m、n的单项式与的和仍为单项式,请直接写出:_____,_____;当,时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;点E、F分别是线段OA、OC的中点,当AB以的速度向右运动t秒时,是否存在某一时刻恰好点F是线段BE的中点?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】本题主要考查的是直线,射线,线段的有关知识,利用直线、射线、线段的特征判定即可.【解答】解:延长射线OA到点B,射线OA是无限延伸的,故选项错误;B.线段AB为直线AB的一部分是正确的;C.射线OM与射线MO表示两条射线,故选项错误;D.一条直线不一定由两条射线组成,故选项错误.故选B.2.【答案】D【解析】【分析】考查直线、射线和线段的意义.注意图形结合的解题思想结合图形,对选项一一分析,选出正确答案.【解答】解:A、点P为直线AB外一点,符合图形描述,选项正确;B、直线AB不经过点P,符合图形描述,选项正确;C、直线AB与直线BA是同一条直线,符合图形描述,选项正确;D、点P在直线AB上应改为点P在直线AB外一点,选项错误.故选D.3.【答案】B【解析】【分析】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键,根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.4.【答案】C【解析】【分析】本题主要考查的是两点间的距离的有关知识,直接根据数轴结合两点间的距离公式对给出的各个选项进行逐一分析即可.【解答】解:,,故本选项正确;B.,,,故本选项正确;C.由图示可知,,故本选项错误;D.,,,故本选项正确.故选C.5.【答案】B【解析】【分析】本题考查直线的性质.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.根据直线的性质求解,判定正确选项.【解答】解:根据直线的性质,小红至少需要2根钉子使细木条固定.只有B符合.故选B.6.【答案】D【解析】【分析】此题主要考查线段的中点定义及线段和差问题,根据线段的中点定义求解【解答】解:是线段AB的中点,D是线段BC的中点,,故A选项正确,,故B选项正确,故C选项正确,故D选项错误故选D7.【答案】C【解析】【分析】此题考查直线的基本性质:两点确定一条直线,分当三点在同一条直线上时,当三点不在同一条直线上时讨论求解即可.【解答】解:当三点在同一条直线上时,只能画一条;当三点不在同一条直线上时可以画3条;故选C.8.【答案】D【解析】【分析】此题考查的知识点是线段的和差,由已知得,又由C是线段AB的中点可求出,从而求得.【解答】解:,是线段AB的中点,,.故选D.9.【答案】C【解析】【分析】本题主要考查了两点间的距离和线段的和差.根据题意设,则,,,然后得到,进而得到MP:::4,问题得到解决.【解答】解:线段MN的延长线上取一点P,,如图,设,则,,,,,MP :::4,故选C.10.【答案】C【解析】【分析】本题考查了两点间的距离,分类讨论是解题关键.根据绳子对折以后用线段AB表示,可得绳长是AB的2倍,分类讨论,PB的2倍最长,可得PB,AP的2倍最长,可得AP的长,再根据线段间的比例关系,可得答案.【解答】解:当PB的2倍最长时,得,,,这条绳子的原长为;当AP的2倍最长时,得,,,,这条绳子的原长为.故选C.11.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,故答案为:两点之间线段最短.根据线段的性质,可得答案.本题考查了线段的性质,熟记线段的性质是解题关键.12.【答案】3【解析】【分析】本题考查了线段,记住线段是直线上两点及其之间的部分是解题的关键,写出所有的线段,然后再计算条数【解答】解:图中线段有:线段AB、线段AC、线段BC,共三条.故答案为3.13.【答案】7cm【解析】【试题解析】【分析】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.设,则,再用x表示出各线段的长度,再根据即可得出结论.【解答】解:,,,设,则,是AD的中点,N是BC的中点,,,,,.故答案为7cm.14.【答案】【解析】解:如图,点C在线段AB上,,即,即为BC的中点,.故答案为.根据点C在线段AB上,且,可得,再根据M为BC的中点,即可求得AM的长.本题考查了两点间的距离,解决本题的关键是利用线段中点定义.15.【答案】21或【解析】【分析】本题主要考查了数轴与分类讨论思想的综合,关键是要运用分类讨论思想的方法设MN的长度为m,根据点M对应的数据利用分类讨论思想得出结果.【解答】解:设MN的长度为m.当点N与点A重合时,此时点M对应的数为9,则点N对应的数为.当点N到AB中点时,点N此时对应的数为,则点M对应的数为当点N与点B重合时,同理可得点M对应的数为.故答案为21或.16.【答案】【解析】【试题解析】【分析】本题主要考查了线段中点的概念,图形的变化规律,有理数乘方的意义解答本题的关键是发现图形的变化规律首先根据线段中点的概念得出线段的长,然后根据线段AB的长,求出的长,即可求解.【解答】解:,是AB的中点,是的中点,是的中点,是的中点,,,,,,.故答案为.17.【答案】解:是AB的中点,;为PB的中点,且,;,,.【解析】【试题解析】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.根据线段,M为AB的中点可直接得出结论;根据N为PB的中点,且可直接得出PB的长;根据MB与PB的长可直接得出结论.18.【答案】解:设,则线段,,、F分别是线段AC、DB的中点,,,,,.【解析】【试题解析】首先设,则线段,,然后根据E、F分别是线段AC、DB的中点,分别用x表示出EC、DF,根据,求出x的值,即可求出线段AB的长是多少.此题主要考查了两点间的距离的求法,以及线段的中点的特征和应用,要熟练掌握.19.【答案】解:如图,直线AC,线段BC,射线AB即为所求;如图,线段AD即为所求;图中的线段条数为6.【解析】本题主要考查了直线、射线、线段的定义,线段和直线的关系:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段或线段.依据直线、射线、线段的定义,即可得到直线AC,线段BC,射线AB;依据在线段BC上任取一点不同于B,,连接线段AD即可;根据图中的线段为AB,AC,AD,BD,CD,BC,即可得到图中线段的条数.20.【答案】解:不会判马小虎同学满分点C可能在线段AB的延长线上,也可能在线段AB 上,有两种情况,而马小虎只考虑了一种情况.应分两种情况讨论:第一种情况同马小虎同学的解题过程,可求得第二种情况根据题意画图如下:由图可得.因为D是线段AC的中点,所以.所以.综上可得,线段BD的长度为3cm或7cm.【解析】本题主要考查了线段的和差、线段的中点的定义等知识,需要注意的是不要将“点C在直线AB上”与“点C在线段AB上”混为一谈.由于,点C在直线AB上,因此可分点C在线段AB上、点C在线段AB的延长线上两种情况讨论,只需把BD转化为DC 与BC的和或差,就可解决问题.21.【答案】解:,;当点P在点B左侧时,,,,由题意得:,解得:;当点P在点B右侧时,由题意可得,解得:;综上,或6;如图1,当点P在线段AB上时,;如图2,当点P在AB延长线上时,;综上所述,线段MN的长度不发生变化,其值为5.【解析】【分析】本题考查了一元一次方程的应用和数轴,解题关键是根据题目给出的条件,找出合适的等量关系列出方程,再求解.根据题意知,点P表示的有理数为,将代入即可求得;由、知,根据得出关于t的方程,解之即可得;分类讨论:当点P在点A、B两点之间运动时,当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.【解答】解:设运动时间为t秒,则,点P表示的有理数为,当时,,点P表示的有理数为,故答案为:2,;见答案;见答案.22.【答案】;2;以O未原点,以OM方向为正方向,以作单位长度建立数轴,则O:0,A:20,B:80,C:100,设ts时有,Q为AB的三等分点,:2t,,,,由,即,当时,,得舍去,当时,,得,当时,,得,的三等分点为40或60,当时,或,解得:或;当时,或,解得:或;由建立数轴,A:,B:,O:0,,为OC的中点,,即F表示50,为OA的中点,,当t秒时,F为BE的中点,即,解得:.【解析】【试题解析】【分析】本题主要考查了合并同类项的定义,线段的和差,解题的关键是注意分情况讨论.根据同类项的定义进行解答即可;根据,当P在AB上和P在AB延长线上时,求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB的三等分点,这里的三等分点是两个点,分别是时,时,由此就可求出它的速度;需要正确找准点F随AB的移动而移动,得出BE、BF的大小即可解决.【解答】解:单项式与的和仍为单项式,,,故答案为1;2;见答案;见答案.4.3《角》一、选择题:1、下列说法中,正确的是( )A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形2、如图,点O在直线AB上,则在此图中小于平角的角有( )A.4个B.5个C.6个D.7个3、∠ACB的两边是()A.射线AC、BCB.射线CA、CBC.线段AC、BCD.线段CA、CB4、用量角器量∠MON 的度数,下列操作正确的是( )A B C D5、下列各式中,角度互化正确的是( )A.63.5°=63°50″B.23°12′36″=25.48°C.18°18′18″=3.33°D.22.25°=22°15′6、下列说法错误的是()A.角的大小与角的边画出部分的长短无关B.角的大小与它们度数的大小是一致的C.角的平分线是一条线段D.角的和、差、倍、分的度数与它们度数的和、差、倍、分相等7、若∠A+∠B=180°,∠A与∠C互补,则∠B与∠C的关系是()A.相等B.互补C.互余D.不能确定8、如图,∠1=∠2,∠3=∠4,则下列结论正确的有( )①AD平分∠BAE;②AF平分∠EAC;③AE平分∠DAF;④AF平分∠BAC;⑤AE平分∠BAC. A.4个B.3个C.2个D.1个二、填空题:9、如图,∠1,∠2表示的角可分别用大写字母表示为 , ;∠A也可表示为,还可以表示为 .10、把15°30′化成度的形式,则15°30′=度.11、8点整,时针与分针之间的夹角是 .12、如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB的度数为 .13、一个角补角比它的余角的2倍多30°,则这个角的度数为.14、如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB= .三、解答题:15、计算:(1)153°29′42″+26°40′32″(2)110°36′-90°37′32″16、如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).17、如图,∠AOB=124°,OC是∠AOB的平分线,∠1与∠2互余,求∠1和∠BOD的度数.18、如图1所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将等腰的三角尺绕点O旋转到如图2的位置.①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD的以上关系还成立吗?说明理由.参考答案一、选择题:1、C2、B3、 B4、C5、D6、C7、A8、C二、填空题:9、∠ABC,∠BCN ∠BAC ∠MAN.10、15.511、120°12、28°13、30°14、180°三、解答题:15、(1)180°10′14″(2)19°58′32″16、(1)∠B,∠C.(2)∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.17、∠1=28°.∠BOD=34°18、(1)①∠AOD=∠BOC.②∠AOC和∠BOD互补.(2)①∠AOD=∠BOC.②∠AOC和∠BOD互补.4.2直线、射线、线段一.选择题1.如图,点C在线段AB上,点D是AC的中点,如果CD=3,AB=10,那么BC长度为()A.3B.3.5C.4.5D.42.已知线段AB,在AB的延长线上取一点C,使BC=2AB,若AC=9cm,则线段AB的长度为()A.4.5cm B.4cm C.3cm D.2cm3.如图,已知AB=10cm,M是AB中点,N在AB的延长线上,若NB=MB,则MN的长为()A.7.5cm B.10cm C.5cm D.6cm4.已知线段AB=6cm,点C在直线AB上,且线段AC=1cm,则线段BC的长为()A.5cm B.7cm C.5cm或7cm D.以上均不对5.如图,下列说法错误的是()A.直线AC与射线BD相交于点AB.BC是线段C.直线AC经过点AD.点D在直线AB上6.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短7.已知点C在线段AB上,下列各式中:①AC=AB;②AC=CB;③AB=2AC;④AC+CB=AB,能说明点C是线段AB中点的有()A.①B.①②C.①②③D.①②③④8.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间9.判断下列语句,①一根拉紧的细线就是直线;②点A一定在直线AB上;③过三点可以画三条直线;④两点之间,线段最短.正确的有几个()A.1B.2C.3D.410.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.直线比曲线短B.两点之间,线段最短C.两点确定一条直线D.垂线段最短二.填空题11.点M是线段AB上一点,且AM:MB=2:3,MB比AM长2cm,则AB长为.12.把一根木条钉在墙上使其固定,至少需要个钉子,其理由是.13.如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF 长为cm.14.如图,射击运动员在瞄准时,总是用一只眼瞄准准星和目标,这种现象用数学知识解释为.15.已知A、B、C三站在一条东西走向的马路边,小马现在A站,小虎现在B站,两人分别从A、B两站同时出发,约定在C站会面商议事宜.若小马的行驶速度是小虎的行驶速度的,两人同时到达C站,且A、B两站之间的距离为8km,求C站与A、B两站之间的距离之和是.三.解答题16.如图,点C是线段AB上一点,点M、N、P分别是线段AC、BC、AB的中点,AC=3cm,CP=1cm,求:(1)线段AM的长;(2)线段PN的长.17.如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,求线段AB的长;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长.18.已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线AD、直线BC相交于点O;(2)画射线AB.19.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段KB的长.解:设AC=3x,则CD=4x,DB=,∵AB=AC+CD+DB=60∴AB=(用含x的代数式表示)=60.∴x=.∵点K是线段CD的中点.∴KD==.∴KB=KD+DB=.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵点D是AC的中点,∴AC=2CD=2×3=6,∴BC=AB﹣AC=10﹣6=4.故选:D.2.【解答】解:如图,∵BC=2AB、AC=9cm,∴AB=AC=3cm,故选:C.3.【解答】解:∵AB=10cm、M为AB的中点,∴AM=MB=AB=5cm,又∵NB=MB,∴NB=2.5cm,则MN=MB+BN=5+2.5=7.5(cm),故选:A.4.【解答】解:①点C在A、B中间时,BC=AB﹣AC=6﹣1=5(cm).②点C在点A的左边时,BC=AB+AC=6+1=7(cm).∴线段BC的长为5cm或7cm.故选:C.5.【解答】解:A、直线AC与射线BD相交于点A,说法正确,故本选项错误;B、B、C是两个端点,则BC是线段,说法正确,故本选项错误;C、直线AC经过点A,说法正确,故本选项错误;D、如图所示,点D在射线BD上,说法错误,故本选项正确.。
第4章 几何图形初步 整理与复习(教学课件)七年级数学上册(人教版)
目录
一、几何图形 二、直线、射线、线段
三、角
知识点梳理
一、几何图形 1. 立体图形与平面图形
(1) 立体图形的各部分不都在同一平面内,如:
(2) 平面图形的各部分都在同一平面内,如:
A.①
B.②
C.③
D.④
【解答】解:根据题意可得, 从学校A到书店B有①、②、③、④四条路线,其中最短的路线是②. 故选:B.
考点分析
例14:如图,是一个三级台阶,A 和 B是这个台阶的两个相对的端 点,A 点上有一只蚂蚁,想到 B 点去吃可口的食物. 若这只蚂蚁从 A 点出发,沿着台阶面爬到B 点,你能画出蚂蚁爬行的最短路线吗?
② 如果两个角的和等于180°(平角),就说这两个角 互为补角 ( 简称为两个角互补 ).
(2) 性质:① 同角 (等角) 的补角相等. ② 同角 (等角) 的余角相等.
知识点梳理
(3) 方位角 ① 定义:物体运动的方向与正北、正南方向之间的夹角称为
方位角,一般以正北、正南为基准,用向东或向西旋转的角 度表示方向.
知识点梳理
3. 角的平分线 应用格式:
OC 是 ∠AOB 的角平分线, ∠AOC =∠BOC = 1 ∠AOB
2 ∠AOB = 2∠BOC = 2∠AOC
B C
O
A
知识点梳理
4. 余角和补角 (1) 定义:① 如果两个角的和等于90°( 直角 ),就说这两个角 互为余角 ( 简称为两个角互余 ).
)
【解答】解:A是圆柱; B是圆锥; C是三棱锥,也叫四面体; D是球体,简称球; 故选:B.
2021秋七年级数学上册第4章直线与角4、1几何图形第1课时认识几何体习题沪科版
15.如图,图中的6个图形虽然形状各异,但是可 以将它们各剪一刀,各自拼成一个正方形,你能 做到吗?请在图中画出这一刀的位置.
解:如图所示. (第3个和第4个 答案不唯一)
6.四棱柱、长方体和正方体之间的包含关系是( A )
*7.下列说法中,正确的有( ) ①柱体的两个底面一样大;②圆柱、圆锥的底面都 是圆;③棱柱的底面是四边形;④长方体一定是柱 体;⑤棱柱的侧面可能是三角形. A.2个 B.3个 C.4个 D.5个
【点拨】柱体包括圆柱、棱柱,所以柱体的两个底 面一样大,①正确; 圆柱、圆锥的底面都是圆,②正确; 棱柱的底面可以为任意多边形,③错误; 长方体符合柱体的条件,一定是柱体,④正确; 棱柱的侧面一定是四边形,⑤错误; 共有3个说法正确,故选B. 【答案】 B
解:相同点:都有两个底面. 不同点:题图a的底面为圆,侧面为一曲面;题图c 的底面为五边形,侧面为五个长方形.
(3)比较图b与图c的异同点.
解:相同点:无. 不同点:题图b有一个底面,且底面为圆,侧面为曲面; 题图c有两个底面,且底面为五边形,侧面为五个长方形.
14.如图,图中的几何图形可看成由哪些简单的图 形组成?
8.下列几何体中,面数相同的是( D ) ①圆柱;②圆锥;③正方体;④四棱柱. A.①② B.①③ C.②③ D.③④
9.下面的几何体中,只由一个面围成的是( C )
A.圆柱 B.圆锥
C.球
Dቤተ መጻሕፍቲ ባይዱ正方体
*10.下列关于棱柱的说法:①棱柱的所有面都是平面; ②棱柱的所有棱长都相等; ③棱柱的所有侧面都是长方形或正方形; ④棱柱的侧面个数与底面边数相等; ⑤棱柱的上、下底面形状相同、大小相等. 其中正确的有( ) A.2个 B.3个 C.4个 D.5个
七年级上册第四章几何图形初步教材分析文字稿及例题解析含答案
七年级上册第四章几何图形初步教材分析文字稿及例题解析含答案第四章《几何图形初步》教材分析一、教材分析1.本章地位和作用本章是初中阶段“图形与几何”领域的第一章,是初中几何的起始章节,在前面两个学段研究的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,初步尝试用数学的眼光观察立体图形与平面图形,分析它们之间的关系.并通过对线段和角等一些简单几何图形的再认识,初步接触由实验几何向推理几何的过渡.本章内容是几何知识的重要基础,对后续几何的研究有很重要的意义和作用.(1)内容上:本章分为两部分,第一部分“几何图形”,从观察现实生活中的各种物体抽象出几何图形或几何概念,体会几何图形的抽象性特点和数学的抽象性.第二部分“线段、角”是平面几何中最基础也是最重要的图形,有关线段和角的概念、公理、性质,相关的画法、计算、推理、几何语言与图形语言之间的转化能力,对今后几何研究将起到导向作用.(2)方法上:三种数学语言(文字语言、符号语言、图形语言)的转化贯穿于研究的始终.要学会用分析法、综合法思考解决几何问题,这也是今后解决几何问题的基本方法.(3)思想上:这一章中所涉及到从具体到抽象的思想、把立体图形转化为平面图形的思想、代数方法解决几何问题的思想、数形结合的思想、运动变换的思想、分类讨论的思想、方程的思想以及应用意识的渗透.2.本章研究目标(1)通过从什物和具体模型的抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.(2)能画出从分歧偏向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简朴组合体获得的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图设想响应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程当中,培养空间看法和空间设想力.(3)进一步认识直线、射线、线段的概念,掌握它们的符号透露表现;掌握基本究竟:“两点确定一条直线”、“两点之间,线段最短”,了解它们在生活和出产中的应用;了解两点间距离的意义,能度量两点间的距离;了解平面上两条直线具有相交和不相交两种位置关系;会比较线段的大小;了解线段的和、差及线段中点的概念,会画一条线段等于已知线段.(4)了解角的概念,掌握角的符号透露表现;会比较角的大小;认识度、分、秒,并会举行简朴的换算,会计较角的和与差.了解角的平分线、余角、补角的概念,知道余角和补角的性质.(5)初步认识几何图形是描述现实天下的紧张工具,初步应用几何图形的知识解决一些简朴的实际题目,培养研究图形和几何知识的乐趣,通过交换活动,初步形成积极介入数学活动、自动与他人合作交换的意识.3.本章知识结构图几何图形4.重点、难点重点:(1)几何与图形的基本概念,线段、角的基本知识,图形与几何的知识与客观实际的联系.(2)熟悉一些基本的几何语言,养成优秀的几何作图的气,体会和模仿几何计较的较为规范的书写方式.(3)结合立体图形与平面图形的互相转化的研究,来发展空间观念以及一些重要的概念、性质.难点:(1)概念的抽象性:能由什物形状设想(抽象)出几何图形,由几何图形设想出什物形状.(2)对图形的透露表现方法,对几何语言的认识与运用.(3)根据文字作图的训练,注意到其中可能蕴含的分类讨论等情形.5.本章共16课时,具体分配如下(仅供参考):4.1几何图形4.3角小结点、线、面、体从不同方向看立体图形立体图形展开立体图形线段大小的比较直线、射线、线段两点确定一条直线两点之间、线段最短角的度量角角的大小比较与运算角的平分线平面图形平面图形余角和补角等角的补角相等等角的余角相等4课时3课时5课时2课时2课时4.2直线、射线、线段4.4课题研究二、教学发起1.总体教学建议(1)教学中要注意与小学知识内容的衔接,要在已有的知识基础上教学,避免不适当的重复.【小学要求】:对于一些简朴几何体和平面图形有一些感性的了解,能联合实例了解线段、射线和直线,了解一些几何体和平面图形的基本特征,知道周角、平角,了解周角、平角、钝角、直角、锐角之间的大小关系,能辨认从分歧偏向(前面、侧面、上面)看到的物体的形状图,能认识最简朴的几何体(长方体、正方体和圆柱)的展开图.(2)要善于利用模型、生活什物、图片、多媒体工具演示等要学生充分去体验激发学生乐趣.多从生活中的实物出发,让学生感受到图形普遍存在于我们的周围,运用信息技术工具的展现丰富多彩的图形,进行动态演示.在实践中培养学生研究的兴趣.对于一些抽象的概念、性质等,也可借助实物或多媒体,让学生在探索中逐步理解这些知识.(3)要重视画图技能的培养.应注意要求学生养成良好的惯,画图要认真,图应该画得清楚、干净,并能很好地表现图形之间的位置关系.在画图的过程中,一方面培养学生的绘图技能,同时也培养学生严谨、认真的研究态度,形成良好的个性品质.在这方面老师也应起到良好的示范作用.(4)要重视几何语言的教学.几何图形是“空间与图形”的研究工具,对它的一般描述透露表现是按“几何模型→图形→文字→符号”这类程序举行的.其中,图形是将几何模型第一次抽象后的产品,也是形象、直观的语言;文字语言是对图形的描述、解释与讨论;符号语言则是对文字语言的简化和再次抽象.明显,首先建立的是图形语言,其次是文字语言,再次是符号语言,最后形成的是对于研究工具的三种数学语言的综合描述,有了这类团体认识,三种语言达到融汇贯通的程度,就能基本掌控工具了.要留意概念的定义和性质的表述,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.准确的几何语言应当贯穿课堂、作业、课外题等各个环节,逐步训练学生的几何推理表达.这些不仅是研究好本章的关键,同时对于学好以后各章也是很重要的.(5)在研究中通过对比(如直线、射线、线段)和类比(线段和角)加深理解.(6)注意训练几何推理书写方式,纠正用算术式进行几何计算的惯:【“旧”气】90245【“新”写法】COB11AOB904522【为什么惯要“改”?】体现了图形语言和符号语言的对应;体现了推理的过程;从算术思维到代数思维.(7)要通过立体图形的三视图与展开图发展空间概念(不要过于总结规律).(8)要注重基本概念与性质的教学.例如:①在研究直线、线段、射线的有关概念时,容易出现延长直线或延长射线之类的错误,在用两个大写字母表示射线时,忽视第一个字母表示的是这条射线的顶点.②直线有这样一个紧张性质:经过两点有一条直线,并且只要一条直线.即两点确定一条直线.线段有这样一条紧张性质:两点的所有连线中,线段最短.XXX说成:两点之间,线段最短.这两个性质是研究几何图形的根蒂根基,复时应抓住性质中的枢纽性字眼,不能出现似是而非的错误.③注意线段的中点是指把线段分成相等的两条线段的点;而连结两点间的线段的长度,叫做这两点的距离.这里应特别注意线段与距离的区别,即距离是线段的长度,是一个量;线段则是一种图形,它们之间是不能等同的.④在复角的概念时,应留意了解两种方式来描述,即一种是从一些实际题目中抽象地概括出来,即有公共端点的两条射线组成的图形,叫做角;另一种是用旋转的观点来定义,即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.角的两种定义都告诉我们这样一些究竟:(1)角有两个特征:一是角有两条射线,二是角的两条射线必需有公共端点,两者缺一不可;(2)由于射线是向一方无限延长的,所以角的双方无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦确定,它的大小就不因图形的位置、图形的放大或缩小而改动.如一个37°的角放在放大或缩小多少倍的放大镜下它仍然是37°不能误以为角的大小也放大或缩小多少倍.另外对角的透露表现方法中,当用三个大写字母来透露表现时,顶点的字母必需写在中央,在角的双方上各取一点,将透露表现这两个点的字母划分写在顶点字母的两旁,两旁的字母不分前后.⑤在研究互为余角和互为补角时,容易混淆这两个概念.常常误以为互为余角的两个角的和等于180°,互为补角的两个角的和等于90°.(9)要准确把握好教学要求总体上说,起始章的教学要求不宜过高,要充分保护学生研究积极性,避免产生畏难情绪,但是基础知识要落实扎实,养成规范的表达分析惯,为后续研究打好基础,因此要注意根据学生具体情况来把握教学要求.①立体图形和平面图形、点线面体的概念要求学生在实际背景中认识、理解这些概念,体会抽象的过程,而不是通过形式化的描述让学生接受概念.②视图的知识对于三视图大部分内容是安排在第29章“视图与投影”中的.在这一章,没有给出严格的三视图的概念,是要求能从一组图形中辨认出是从什么方向看得到的图形,能说出从不同方向看一些最基本的几何体(长方体、正方体、圆柱、圆锥、球)以及它们的简单组合所能得到的图形(对于语言难以表达的,可画出示意图,基本形状正确即可,不做尺寸要求).③展开图的要求教材从展开和折叠两个方面都有要求,且教材中的题中出现正方体表面有图案的情况,这也是中考的一个热点.圆锥的侧面展开图在背面的章节还要再研究,其余的多面体的展开图很少涉及,所以尽可能多做一些练,尽可能在本章中过关.在教学中,能够从看图阐发图形特点举行设想或先动手做再阐发图形,两方面同时举行.正方体的11种展开图,在操作中理解展开和折叠的过程,从不同的分类角度认识展开图.④推理能力的要求教科书是按照“简单说理”“说理”“推理”“用符号表示推理”不同层次分阶段逐步加深安排的.在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要“简单说理”.直线和线段性质的应用、余角和补角的性质的得出等都有简单说理的成分.教学中要注意利用这里“简单说理”的因素,为后面逐步让学生养成言之有据的惯作准备.规范的推理形式,学生虽然一开始接受有些困难,随着教学的深入不断地纠正、强化,学生是可以掌握的,为以后的几何研究起到示范作用.本章中线段的中点、角平分线、互余、互补、同角的余角(补角)相等,等角的余角(补角)相等,要从文、图、式三方面加深理解,并加以应用,要配上适当的练,巩固学生的说理.(10)关于本章作图的要求:①作一条线段等于已知线段②作已知线段的中点③作一个角等于已知角④作一个角的平分线2.各小节教学建议4.1.1立体图形与平面图形知识点1:在实际背景中了解立体图形和平面图形的概念,体会抽象的过程,能举出实例.教学建议:1.理解从模型→图形,就是数学化的过程.2.能够认清N棱柱和N棱锥,圆柱和圆锥,留意“棱”字和“锥”字的写法;能区分棱柱(锥)与圆柱(锥),能区分圆形和球体,不要求但也能够认识棱台或圆台.知识点2:从分歧角度看立体图形获得平面图形.教学建议:简单几何体要求会画图;复杂几何体能想象、辨认、说明即可.知识点3:立体图形的展开图.教学建议:1.对于立体图形展开图,学生首先要分析认清立体图形的空间结构,可以把每个面都标上它的位置名称,在展开后方便分清每个面所达到的位置.正方体的11种展开图,不要肄业生记忆,紧张的是展开和折叠的过程.鼓励学生自己动手尝试.圆锥的侧面展开图在背面圆一章中还能够再研究,其余的多面体的展开图很少涉及,所以尽可能多做一些练,尽可能在本章中过关.2.通过“展开”和“围成”两种途径认识常见几何体的展开图.尽量提供学生动手操作的机会.4.1.2点、线、面、体知识点:能从几何实体中抽象出点、线、面、体;知道“…动成…”.教学建议:这局部学生在小学阶段就有了响应的体验,枢纽是学生能进一步抽象了解这些概念,如对点的认识,它只透露表现一个位置,没有大小,甚至于无法画出来.这里还要说明线分直线和曲线,面分平面和曲面.4.2直线、射线、线段知识点1:三种基本几何图形的概念、表示、作图、性质教学建议:联系:射线、线段是直线的一部分,反向延长射线得到直线,两方延长线段得到直线.区别:名称直线图像透露表现1.直线AB(或直线BA)直线l2.射线线段1.射线AB2.射线l1.线段AB(或线段BA)2.线段a延伸向两端无限延长向一端无限延伸不可延长2可度量1不可度量端点度量不可度量知识点2:几何语言和作图;点和直线教学发起:1.该当学会“过某点”、“点在线上/外”、“相交于某点”、“延长(到某点)”、“在某线上截取”、“连接AB”、“作直线/射线/线段AB”、“有且只要”等说法,并能画出响应的图形.2.学生在书写时可能会出现用小写字母表示点的问题.知识点3:尺规作图:作一条线段等于已知线段;叠合法比较两条线段的长度大小教学发起:要让学生了解为什么在“射线”上截取,在直线或线段上截取行不行.知识点4:线段的中点、N等分点的概念教学建议:1.夸大中点必需在线段上,能够提出探讨性题目“MA=MB,能否断言M就是线段AB的中点?”,能够要学生利用尺规作图举行探讨.2.合理利用中点举行推理.知识点5:线段的和差倍分教学建议:1.注意规范符号语言的书写,要求学生模仿,从现在起必须变算术式为几何语言.2.发起此时不上难题、综合题,目的是先解决“三种语言”的题目,也为后续研究角的计较打好根蒂根基,分散难点.4.3.1角知识点1:角的两种定义方法教学发起:1.通常情况下角的范围是(0,180].2.明确角的分类.3.在第二种定义下,说明角的范围可以进一步扩展到和大于180的角.知识点2:角的三种表示方法教学建议:1.角的表达规范题目.2.书写时尽可能写成简洁的表达形式.知识点3:角的大小、单位制、方位角教学发起:1.度分秒的转换、计算是难点,学生对于60进制的换算还是不太适应.2.一般方位,都统一用“北偏X”或“南偏X”表示;在图中标记角度.4.3.2角的比较与运算知识点1:叠合法比较角度大小;角分线的概念;角度和差倍分的计算教学建议:1.类比“线段”的研究来研究“角”.可以从以下方面作类比:①定义、图形、符号表示②测量:测量工具、测量方法、度量单位③比较大小:两条线段/两个角的大小关系的方法④特殊位置:线段的等分点、角等分线⑤和差倍分运算:感受运算中的推理和方程思想⑥角的作图:感受作图中的方案设计2.典型题:线段同一直线上有n个点,求线段的条数.已知:点C是直线AB上一点,满足已知:平面内有AOB,射线OC满足BOC角平面内有共端点的n条射线,求角的个数.AC1BC2BC1AB,2BC2则点C有两个可能位置:已知:如图,点C在线段AB上,1AOB,O2AC1则射线OC有两个可能位置:已知:如图,射线OC在AOB内部,M,N划分是线段AC,BC中点,OM,ON划分是AOC,BOC平分线,A总有MON1总有XXX.21AOB.2OXXX4.3.3余角和补角知识点:余角和补角的概念和计算教学建议:1.明确这两个概念仅透露表现数量关系、不涉及位置关系;但反过来,特殊的位置关系(垂直、邻补角)则每每会出现两个角互为余角/补角,能够用来计较角的大小.2.可以考虑将性质写成“已知-求证-证明”的形式,让学生初步感受几何中的推理和证明.4.4课题研究制作长方体形状的包装纸盒通过这一研究体会长方体(立体图形)与其侧面展开图(平面图形)之间的关系.教学建议:能够安排与立体图形展开图教学联合举行.第四章几何图形初步小结复1.建立完善的认知结构,体会一些数学思想方法的应用.2.注重渗透数学思想方法:分类讨论思想、方程思想、数形联合思想等等.分类讨论思想例1.两条相交直线与另外一条直线在同一平面内,求它们的交点个数?分析由于题设条件中并没有明确这三条直线的具体位置,所以应分情况讨论.前两条的关系很确定,当画第三条时,会出现分类,或平行于某一条,或相交于同一个点,或相交不在同一个点等三种情况.说明:在过平面上若干点可以画多少条直线,应注意这些点的分情况讨论;或在画其它的图形时,应注意图形的各种可能性.例 2.点A,B,C在统一条直线上,AB=3 cm,BC=1 cm.求AC的长.方程思想在处理有关角的大小,线段大小的计较经常需要通过列方程来解决.例.如果一个角的补角是150°,求这个角的余角.分析若设这个角的大小为x°,则这个角的余角是90°-x,于是由这个角的补角是150°可列出方程求解.数形联合思想例.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF半数,点B落在直线EF 上的点B'处,得折痕EM;将∠AEF半数,点A落在直线EF上的点A'处,得折痕EN,求∠XXX的度数.说明:对于几何中的一些概念、性质及关系,应把几何意义与数量关系结合起来加以认识,达到形与数的统一.三、几个主要知识点1.从分歧偏向看例1.将两个大小完全不异的杯子(如图1-甲)叠放在一起(如图1-乙),则从上往下看图乙,获得的平面图形是()第图1解析:从上面往下看,能够看到上面杯子的底和两杯子的口都是圆形,应用实线透露表现,故选C.例2.图2是一个几何体的什物图,从正面看这个几何体,获得的平面图形是()图2ABCD解析:此几何体由上下两部分组成,从正面看上面的几何体,看到的是一个等腰梯形,从正面看下面的几何体,看到的是一个长方形,再根据上面的几何体放置的位置特征,应选C.2.展开与折叠例3.如图3所示的平面图形中,不可能围成圆锥的是()图3解析:圆锥的展开图是一个圆和一个扇形,D选项中是一个圆和一个三角形,不能围成圆锥,故选D.例4.图4是正方体的展开图,原正方体相对两个面上的数字之和的最小值是图4________.解析:将正方体的展开图折成正方体,能够获得2与6两个面相对,3与4两个面相对,1与5两个面相对,所以相对两个面上的数字之和的最小值是:1+5=6.故填6.3 .线段的性质与计算例5.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是___________.解析:本题是线段性质的实际应用,根据线段的性质直接获得谜底.应填“两点之间,线段最短.”例6.如图5,点C是线段AB上的点,点D是线段BC 的中点,若AB=12,AC=8,则CD=______.解析:由图可知,CB=AB-AC=12-8=4.又因为D是BC的中点,所以CD=BC=2.故填2.4.角度的计算例7.如图6所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A. 20°B. 25°C. 30°D. 70°CA1OD2图512解析:由∠1=40°及平角定义,可求出∠BOC的度数,由角平分线的定义,通过∠BOC=2∠2可求出∠2的度数.因为∠1=40°,所以∠BOC=180°-∠AOC=140°.又由于OD是∠BOC的平分线,所以∠2=B图61XXX∠BOC=70°.故选D.2例8.如图7,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是()A. 125°B. 135°C. 145°D. 155°解析:因为OE⊥AB,所以∠BOE=90°.由于∠BOD=45°,所以∠DOE=45°.所以∠COE=180°-∠DOE=135°.故选B.5.余角与补角例9.(1)已知∠α=20°,则∠α的余角等于度.(2)一个角的补角是36°35′,这个角是.ACO图7EDB解析:(1)由余角定义,∠α的余角为:90°-20°=70°.故填70.。
沪科版七年级上册数学第4章 直线与角 点、线、面、体
8.【中考·南充】如图是一个几何体的表面展开图, 这个几何体是( ) C
*9.下列说法: ①平面上的线都是直线; ②曲面上的线都是曲线; ③平面和平面相交形成的线都是直线; ④曲面和曲面相交形成的线都是曲线. 其中正确的说法有( ) A.4个B.3个C.2个D.1个
D
【点拨】平面上既有直线又有曲线,曲面和曲面相交 形成的线既有直线又有曲线,只有③正确.
甲同学:它有4个面是三角形; 乙同学:它有8条棱. 该模型的形状对应的立体图形可能是( ) A.三棱柱B.四棱柱
D C.三棱锥D.四棱锥
【点拨】四棱锥的4个面都是三角形,共有8条棱.
14.观察如下图形,回答下列问题: (1)图①是由几个面组成的?这些面有什么特征?
解:题图①是由6个面组成的,这些面都是平的.
(1)根据上面的多面体模型,将表格补充完整.
12 30
(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的 关系式是__V_+__F__-__E_=__2____;
(3)一个多面体的顶点数为12,棱数比面数的2倍少 10,求这个多面体的棱数.
解:设这个多面体的面数是f,棱数为e,则棱数e=2f-10. 由(2)得12+f-(2f-10)=2,解得f=20.所以e=2×20-10 =30.答:这个多面体的棱数是30.
15.如图,第一排中的图形绕虚线旋转一周,能形 成第二排的某个几何体,请你把第一排与第二排 中相应的图形用线连起来.
解:如图所示.
16.观察图中的几何体,并按要求填空.
(1)若把上面7个几何体分成两类:把①③⑥⑦分为一类,是 因为组成这些几何体的面是__平__面____;而把②④⑤分为 另一类,是因为组成这些几何体的面中有________. 曲面
人教版数学七年级上册第四章《几何图形初步》 综合复习题
第四章几何图形初步综合复习题一、单选题1.(2022·福建三明·七年级期末)如图,下列图形全部属于柱体的是()A.B.C.D.2.(2022·福建龙岩·七年级期末)下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.3.(2022·福建泉州·七年级期末)在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.(2022·福建宁德·七年级期末)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是()①作射线AM;①在射线AM 上截取2AB a =;①在线段AB 上截取BC b =.A .a b +B .b a -C .2a b +D .2a b -5.(2022·福建莆田·七年级期末)如图,点,C D 在线段AB 上.则下列表述或结论错误的是( )A .若AC BD =,则AD BC =B .AC AD DB BC =+- C .AD AB CD BC =+- D .图中共有线段12条6.(2022·福建南平·七年级期末)如图,线段6,4AB BC ==,点D 是AB 的中点,则线段CD 的长为( )A .3B .5C .7D .87.(2022·福建福州·七年级期末)在同一条直线上按顺序从左到右有P 、Q 、M 、N 四个点,若MN QM PQ -=,则下列结论正确是( )A .Q 是线段PM 的中点B .Q 是线段PN 的中点C .M 是线段QN 的中点D .M 是线段PN 的中点8.(2022·福建泉州·七年级期末)如图,下列说法中错误的是( )A .OA 方向是北偏东30°B .OB 方向是北偏西15°C .OC 方向是南偏西25°D .OD 方向是东南方向9.(2022·福建莆田·七年级期末)如图,按照上北下南,左西右东的规定画出方向十字线,①AOE =m °,①EOF =90°,OM ,ON 分别平分①AOE 和①BOF ,下面说法:①点E 位于点O 北偏西m °的方向上;①点F 位于点O 北偏东m °的方向上;①①MON =135°,其中正确的有( )A.3个B.2个C.1个D.0个∠的余角的度数为()10.(2022·福建泉州·七年级期末)如果52a∠=︒,则aA.38︒B.48︒C.52︒D.128︒二、填空题11.(2022·福建漳州·七年级期末)如图,是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x-y=_____.12.(2022·福建泉州·七年级期末)如图,是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面上,与“祝”相对的面上的汉字是______.13.(2022·福建福州·七年级期末)木工师傅用两根钉子就能将一根细木条固定在墙上了,这其中含有的数学知识是___.14.(2022·福建南平·七年级期末)植树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,这是根据___.(应用所学过的数学知识填空)15.(2022·福建漳州·七年级期末)已知,线段AB=6,点C在直线AB上,AB=3BC,则AC= ___.16.(2022·福建三明·七年级期末)如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分①COD,则①AOD的度数是____度.∠三等分,若图中所有小于平角的角的度17.(2022·福建龙岩·七年级期末)如图,射线OA,OB把POQ∠的度数为_____.数之和是300,则POQ18.(2022·福建泉州·七年级期末)把两块三角板按如图所示那样拼在一起,则①ABC等于___°.三、解答题19.(2022·福建宁德·七年级期末)在如图所示的正方形网格中,每个小正方形中都标有1个有理数,其中4个已经涂上阴影.现要在网格中选择2个空白的小正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体的表面展开图.(1)图1是小明涂成的一个正方体表面展开图,求该表面展开图上6个有理数的和;(2)你能涂出一种与小明涂法不一样的正方体表面展开图吗?请在图2中涂出;(3)若要使涂成的正方体表面展开图上的6个有理数之和最大,应该如何选择?请在图3中涂出.20.(2022·福建龙岩·七年级期末)如图,已知四点A、B、C、D,用圆规和无刻度的直尺,按下列要求与步骤画出图形;(1)画直线AB;(2)画射线CB;(3)延长线段DA 至点E ,使AE=AD (保留作图痕迹).21.(2022·福建泉州·七年级期末)已知A ,B ,C ,D 四点在同一条直线上,点C 是线段AB 的中点.(1)点D 在线段AB 上,且AB =6,13BD BC =,求线段CD 的长度; (2)若点E 是线段AB 上一点,且AE =2BE ,当:2:3AD BD =时,线段CD 与CE 具有怎样的数量关系,请说明理由.22.(2022·福建福州·七年级期末)如图,已知线段10AB =,点C 是AB 的中点,点D 是线段上一点,3AD =.求线段CD 的长.23.(2022·福建厦门·七年级期末)如图,,B C 两点在射线AM 上,AC BC >,在射线BM 上作一点D 使得BD AC BC =-.(1)请用圆规作出点D 的位置;(2)若6cm AD =,求线段AC 的长.24.(2022·福建泉州·七年级期末)如图,在数轴上有A 、B 两点(点B 在点A 的右边),点C 是数轴上不与A 、B 两 点重合的一个动点,点M 、N 分别是线段AC 、BC 的中点.(1)如果点A 表示4-,点B 表示8,则线段AB = ;(2)如果点A 表示数a ,点B 表示数b ,①点C 在线段AB 上运动时,求线段MN 的长度(用含a 和b 的代数式表示);①点C 在点B 右侧运动时,请直接写出线段MN 的长度:___________________(用含a 和b 的代数式表示). 25.(2022·福建福州·七年级期末)如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.26.(2022·福建厦门·七年级期末)如图,对于线段AB 和A OB ''∠,点C 是线段AB 上的任意一点,射线OC '在A OB ''∠内部,如果AC A OC AB A OB ∠=∠'''',则称线段AC 是A OC ''∠的伴随线段,A OC ''∠是线段AC 的伴随角.例如:10,100AB A OB '='=∠︒,若3AC =,则线段AC 的伴随角30A OC ∠=''︒.(1)当8,130AB A OB '='=∠︒时,若65A OC ∠=''︒,试求A OC ''∠的伴随线段AC 的长;(2)如图,对于线段AB 和,6,120A OB AB A OB ''''∠=∠=︒.若点C 是线段AB 上任一点,E ,F 分别是线段,AC BC 的中点,,,A OE A OC A OF ''∠∠'∠'''分别是线段,,AE AC AF 的伴随角,则在点C 从A 运动到B 的过程中(不与A ,B 重合),E OF ''∠的大小是否会发生变化?如果会,请说明理由;如果不会,请求出E OF ''∠的大小.(3)如图,已知AOC ∠是任意锐角,点M ,N 分别是射线,OA OC 上的任意一点,连接MN ,AOC ∠的平分线OD 与线段MN 相交于点Q .对于线段MN 和AOC ∠,线段MP 是AOD ∠的伴随线段,点P 和点Q 能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.27.(2022·福建三明·七年级期末)已知,O 为直线AB 上一点,①DOE =90°.(1)如图1,若①AOC =128°,OD 平分①AOC .①求的①BOD 度数;①请通过计算说明OE 是否平分①BOC .(2)如图2,若①AOD :①DOB =4:5,求①BOE 的度数.28.(2022·福建泉州·七年级期末)时钟上的分针和时针像两个运动员,绕着它们的跑道昼夜不停地运转.以下请你解答有关时钟的问题:(1)分针每分钟转了几度?(2)中午12时整后再经过几分钟,分针与时针所成的钝角会第一次等于121︒?(3)在(2)中所述分针与时针所成的钝角等于121︒后,再经过几分钟两针所成的钝角会第二次等于121︒?参考答案:1.C【解析】解:A 、有一个是三棱锥,故不符合题意;B 、有一个是不规则的多面体,故不符合题意;C 、分别是一个圆柱体、两个四棱柱;D 、有一个是圆台,故不符合题意.故选:C .2.A【解析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.解:A 、是直角梯形绕高旋转形成的圆台,故A 正确;B 、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B 错误;C 、绕直径旋转形成球,故C 错误;D 、绕直角边旋转形成圆锥,故D 错误.故选A.本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.B由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线 故选B .4.D【解析】根据题意作出图形,根据线段的和差进行求解即可解:如图,根据作图可知,AC AB BC =-2a b =-故选D本题考查了尺规作图作线段,线段和差的计算,数形结合是解题的关键.5.D【解析】根据两点间的距离的含义和求法,以及直线、射线和线段的认识,逐项判断即可. 解: A. 因为AD=AC+CD,BC=CD+DB,若AC=BD ,所以可得AC=BD ,此选项说法正确;B. AC AD DB BC =+-,此选项说法正确;C. AD AB CD BC =+-,此选项说法正确;D.由图形可得图中共有线段6条所以,此选项说法错误,故选D.此题主要考查了两点间的距离的含义和求法,以及直线、射线和线段的认识,要熟练掌握.6.C【解析】根据点D是AB的中点,可得BD=3,再由CD=BD+BC,即可求解.解:①AB=6,点D是AB的中点,①BD=3,①BC=4,①CD=BD+BC=3+4=7.故选:C本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系是解题的关键.7.D-=,得出线段之间的关系,逐项进行判断即【解析】根据题意画出图形,根据MN QM PQ可.①PQ不一定等于QM,①Q不一定是线段PM的中点,故A错误;-=,①MN QM PQ=+=,①MN PQ QM PM①PM MN PN+=,①M是线段PN的中点,故B错误,D正确;-=,①MN QM PQ>,①MN QM①M不是线段QN的中点,故C错误.故选:D.本题主要考查了线段之间的关系,根据题意画出图形是解题的关键.8.A试题分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.根据定义就可以解决.解:A、OA方向是北偏东60°,此选项错误;B、OB方向是北偏西15°,此选项正确;C、OC方向是南偏西25°,此选项正确;D、OD方向是东南方向,此选项正确.错误的只有A.故选A.9.B【解析】观察方向图形,根据方向角解答即可.解:①点E位于点O北偏西(90﹣m)°的方向上,原结论错误;①①①AOE+①EOD=90°,①DOF+①EOD=90°,∴①DOF=①AOE=m°,∴点F位于点O北偏东m°的方向上,原结论正确;①①①AOE+①BOF=90°,OM,ON分别平分①AOE和①BOF,①①MOE+①NOF=45°,①∠MON=135°,原结论正确;其中正确的有2个.故选:B.此题考查的知识点是方向角,角平分线的性质,解题关键是明确方向角的意义,熟练运用角平分线和余角的性质推导角的关系.10.A【解析】根据余角的定义,利用90°减去52°即可.a∠的余角=90°-52°=38°.故选A.本题考查求一个数的余角,关键在于牢记余角的定义.11.5【解析】由正方体的表面展开图中的相对面中间一定隔着一个面的特点出发,确定相对面,再求解,x y的值,从而可得答案.解:由正方体的表面展开图可得:3和y相对,2-与x相对,而相对面上所标的两个数互为相反数,3,2,y xx y23235,故答案为:5本题考查的是正方体展开图中相对面上的数字,掌握正方体是立体图形,从相对面的特点进行分析是解本题的关键.12.功【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,即可作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,① “你”与“试”相对,“考”与“成”相对,“祝”与“功”相对,①与“迎祝”相对的面上的汉字是“功”.故答案为:功本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题是解题的关键.13.两点确定一条直线【解析】细木条为一条线段,两根钉子相当于两个点,即可求解.解:细木条代表一条直线,两根钉子相当于两个点,两个点确定,细木条代表的直线就确定了,故答案为:两点确定一条直线此题考查了两点确定一条直线的应用,解题的关键是理解题意,掌握并运用两点确定一条直线的性质.14.两点确定一条直线【解析】根据两点确定一条直线,即可求解.解:根据题意得的:这是根据两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.15.4或8【解析】先求出BC的长,根据点C的位置分别计算可得答案.解:①AB=6,AB=3BC,①BC=2,当点C在线段AB上时,AC=AB-BC=6-2=4;当点C在线段AB延长线上时,AC=AB+BC=6+2=8;故答案为:4或8.此题考查了线段的和差计算,掌握分类思想解决问题是解题的关键,避免漏解的现象.16.135°【解析】本题是有公共定点的两个直角三角形问题,通过图形可知①AOC+①BOC=90°,①BOD+①BOC=90°,同时①AOC+①BOC+①BOD+①BOC=180°,可以通过角平分线性质求解.①OB平分①COD,①①COB=①BOD=45°,①①AOB=90°,①①AOC=45°,①①AOD=135°.故答案为135.本题考查的知识点是角的平分线与对顶角的性质,解题关键是熟记角平分线的性质是将两个角分成相等的两个角.17.90°【解析】先找出所用的角,分别用含字母x的代数式将每个角的度数表示出来,再列方程即可求出x的值,进一步求出①POQ的度数.设①QOB=x,则①BOA=①AOP=x,则①QOA=①BOP=2x,①QOP=3x,①①QOB+①BOA+①AOP+①QOA+①BOP+①QOP=10x=300°,解得:x=30°,①①POQ=3x=90°.故答案为:90°.本题考查了确定角的个数及角的度数的计算,解答本题的关键是根据题意列出方程.18.120解:由图可知①ABC=30°+90°=120°.故答案为:12019.(1)-6(2)见解析(3)见解析【解析】(1)根据有理数加法法则计算即可得答案;(2)根据正方体表面展开图添加即可;(3)根据正方体表面展开图,选择两个数字的和最大的添加即可.(1)-4+2+6+1+(-3)+(-8)=-6,答:该表面展开图上6个有理数的和是-6.(2)根据正方体表面展开图添加如下:(3)根据正方体表面展开图可添加数字如下:-4+4=0,-6+(-8)=-14,-6+4=-2,-6+3=-3,-6+(-1)=-7,3+(-1)=2,①涂成的正方体表面展开图上的6个有理数之和最大,①添加3和-1,如图所示:本题考查有理数加法运算及正方体表面展开图,熟练掌握正方体11种展开图是解题关键.20.(1)见解析(2)见解析(3)见解析【解析】(1)画直线AB,直线向两方无限延伸;(2)画射线CB,C为端点,再沿CB方向延长;(3)画线段DA,延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD.(1)画出直线AB;(2)画出射线CB;(3)延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD(要求保留作图圆弧的痕迹,弧线和点E各画直线),所以,AE为所求作的线段(或表述E为所求作的点),如图所示:本题主要考查了直线、射线、线段,关键是掌握直线向两方无限延伸,射线向一方无限延伸,线段不能向两方无限延伸.21.(1)线段CD的长度为2;(2)5CD=3CE或CD=15CE.理由见解析【解析】(1)根据线段中点的性质求出BC,根据题意计算即可;(2)分两种情况讨论,当点D在线段AB上和点D在BA延长线上时,利用设元的方法,分别表示出AB以及CD、CE的长,即可得到CD与CE的数量关系.(1)解:如图1,①点C是线段AB的中点,AB=6,①BC=12AB=3,①BD=13 BC,①BD=1,①CD=BC-BD=2;(2)解:5CD=3CE或CD=15CE.理由如下:当点D在线段AB上,如图2,设AD =2x ,则BD =3x ,①AB =AD +BD =5x ,①点C 是线段AB 的中点,①AC =12AB =52x , ①CD =AC -AD =12x , ①AE =2BE ,①AE =23AB =103x , CE =AE -AC =56x , ①CD CE =1256x x ,即5CD =3CE ; 当点D 在BA 延长线上时,如图3,设AD =2a ,则BD =3a ,①AB =BD -AD =a ,①点C 是线段AB 的中点,①AC =12AB =12a , ①CD =AC +AD =52a , ①AE =2BE ,①AE =23AB =23a , CE =AE -AC =16a , ①CD CE =5216a a ,即CD =15CE . 综上,5CD =3CE 或CD =15CE .本题考查的是两点间的距离,正确理解线段中点的概念和性质是解题的关键.解第2问注意分类讨论.22.2CD =【解析】根据中点的性质可得AC 的长,再根据线段的和差计算出CD 的长即可. ①10AB =,点C 是AB 的中点 ①1110522AC AB ==⨯= ①5AC =,3AD =①532CD AC AD =-=-=本题考查了中点的定义和线段的和差,熟练掌握相关知识是解题的关键.23.(1)见解析(2)3cm【解析】(1)以C 为圆心,以AC 的长为半径画弧与射线CM 交于点D ,点D 即为所求; (2)根据BD AC BC =-,BD CD BC =-,得到AC CD =,由此即可得到答案.(1)解:如图所示,点D 即为所求;(2)解:①BD AC BC =-,BD CD BC =-,①AC CD =, ①13cm 2AC AD ==. 本题主要考查了尺规作图—作线段,线段的和差计算,熟知相关知识是解题的关键.24.(1)12 (2)①1()2b a -;①1()2MN b a =-【解析】(1)结合数轴根据两点距离求解即可;(2)①由点M 、N 分别是线段AC 、BC 的中点,得AC BC AB b a +==-,进而根据12MN CM CN AB =+=求解即可; ①同理可得12MN CM CN AB =-=. (1) 点A 表示4-,点B 表示8,()8412AB ∴=--=故答案为:12(2)如果点A 表示数a ,点B 表示数b , ①点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,AC BC AB b a +==-, 11()22MN CM CN AB b a ∴=+==-; ①点C 在点B 右侧运动时,设C 点表示的数为c ,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,()()AC BC c a c b b a -=---=-, ()11()22MN AC BC b a ∴=-=- 故答案为:1()2MN b a =-. 本题考查了数轴上两点距离,线段段中点的性质,线段和差的计算,数形结合是解题的关键. 25.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【解析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则①COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可;(3)分别用①COE 及①AOD 的式子表达①COD ,进行列式即可.解:(1)①90DOE ∠=︒,70AOC ∠=︒①907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)①OC 平分AOE ∠,70AOC ∠=︒,①70COE AOC ∠=∠=︒,①90DOE ∠=︒,①907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)①90COD DOE COE COE =∠-∠=︒-∠∠, 70COD AOC AOD AOD =∠-∠=︒-∠∠ ①9070COE AOD ︒-∠=︒-∠①20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.26.(1)AC =4;(2)不会,①E ′OF ′=60°.理由见解析(3)能,理由见解析【解析】(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF =12AB ,再利用伴随角和伴随线段的定义列出等式,可得出结论; (3)由伴随角和伴随线段的定义可得,点P 和点Q 重合时,是MN 的中点,画出图形,测量即可.(1) 解:由伴随角和伴随线段的定义可知,AC A OC AB A OB ∠=∠'''',, ①65181302AC ︒==︒, ①AC =4;(2)解:不会,①E ′OF ′=60°.理由如下:①点E ,F 分别是线段AC ,BC 的中点,①EC =12AC ,CF =12BC , ①EF =12AB =3. ①①A ′OE ′,①A ′OC ′,①A ′OF ′分别是线段AE ,AC ,AF 的伴随角, ①AE A OE AB A OB ∠=∠'''',AC A OC AB A OB ∠=∠'''',AF A OF AB A OB ∠=∠'''', ①EF =AF -AE , ①12EF AF AE A OF A OE E OF AB AB AB A OB A OB A OB ∠∠'''''''''''∠'=-=-==∠∠∠, ①①A ′OB ′=120°,①①E ′OF ′=60°;(3)解:能,理由如下:①OD 是①AOC 的平分线,①①AOD =12①AOC ,①线段MP是①AOD的伴随线段,①12MP AODMN AOC∠==∠.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.本题属于线段和角度中新定义类问题,涉及中点的定义和角平分线的定义,关键是理解伴随角和伴随线段的定义.27.(1)①①BOD=116°;①OE平分①BOC,见解析(2)①BOE=10°.【解析】(1)①根据角平分线的定义求出①AOD的度数,再根据平角的定义求出①BOD的度数;①根据角的和差求出①COE=①DOE-①DOC=90°-64°=26°,①BOE=①BOD-①DOE=116°-90°=26°,根据角平分线的定义即可求解;(2)设①AOD=4x,则①DOB=5x,根据平角的定义列出方程求出x,进一步求出①BOE的度数.(1)解:①①OD平分①AOC,①AOC=128°,①①AOD=①DOC=12①AOC=12×128°=64°,①①BOD=180°-①AOD=180°-64°=116°;①①①DOE=90°,又①①DOC=64°,①①COE=①DOE-①DOC=90°-64°=26°,①①BOD=116°,①DOE=90°,①①BOE=①BOD-①DOE=115°-90°=26°,①①COE=①BOE,即OE平分①BOC;(2)解:若①AOD :①DOB =4:5,设①AOD =4x ,则①DOB =5x ,又①①AOD +①DOB =180°,①4x +5x =180°,①x =20°,①①AOD =4x =80°,①①DOE =90°,①①BOE =180°-80°-90°=10°.本题主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系是解题的关键. 28.(1)6︒(2)22 (3)23611【解析】(1)根据分针一小时转一圈即360°,用360°除以60计算即得;(2)根据分针每分钟转6°,时针每分钟转0.5°,时针与分针转过的角度差是121︒,列方程解答即可;(3)相对于12时整第二次所成的钝角第二次等于121︒时,时针与分针转过的角度差超过180°,这个差与121︒之和是360°.(1)解:①分针一小时转一圈即360°,①分针每分钟转过的角度是:360606︒÷=︒ ,答:分针每分钟转了6度;(2)设中午12时整后再经过x 分钟,分针与时针所成的钝角会第一次等于121°,①时针一小时转动角度为: 3601230︒÷=︒,时分针每分钟转过的角度是:30600.5÷︒=︒ ;①分针与时针所成的钝角会第一次等于121︒,①时针与分针转过的角度差是121︒,①60.5121x x -=,解得:22x =,答:中午12时整后再经过22分钟,分针与时针所成的钝角会第一次等于121°;(3)设经过y 分钟两针所成的钝角会第二次等于121︒,则从12时算起经过(y +22)分钟两针所成的钝角会第二次等于121︒,因为时针与分针转过的角度差超过180°,这个差与121︒之和是360°,故列得方程:6(22)0.5(22)121360y y +-++=,解得:6(22)0.5(22)121360y y +-++=, 解得:23611y =, 答:经过23611分钟两针所成的钝角会第二次等于121︒. 本题通过钟面角考查一元一次方程,掌握时针分针的转动情况,会根据已知条件列方程是解题的关键.选择合适的初始时刻会简化理解和运算难度,起到事半功倍的效果.。
人教版数学七年级上册 第4单元4.1---4.4复习题含答案
人教版数学七年级上册第4章 4.1---4.4复习题含答案4.1几何图形一.选择题1.用一个平面去截一个圆柱体,截面图形不可能是()A.长方形B.梯形C.圆形D.椭圆形2.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8 B.7 C.6 D.43.如图,是一个五棱柱形的几何体,下列关于该几何体的叙述正确的是()A.有4条侧棱B.有5个面C.有10条棱D.有10个顶点4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图的正方体纸巾盒,它的平面展开图是()A.B.C.D.6.下列叙述,其中正确的个数有()①最小的正整数是0;②若x+2是一个负数,则x一定是负数;③用一个平面去裁正方体,截面不可能是六边形;④三角形是多边形;⑤绝对值等于本身的数是正整数.A.1 B.2 C.3 D.47.如图所示的纸片折成一个长方体纸盒,折得的纸盒是()A.B.C.D.8.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a的值是()A.1 B.﹣2 C.3 D.﹣b9.如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.10.下列图形中,可能是右面正方体的展开图的是()A.B.C.D.二.填空题11.如果一个棱柱共有15条棱,那么它一定是棱柱.12.设三棱柱有a个面,b条棱,c个顶点,则a﹣b﹣c=.13.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,现在在某体育馆前的草坪上要修剪出此图案.已知,每个圆环的内、外半径分别为4米和5米,图中重叠部分的每个小曲边四边形的面积都为1平方米,若修剪每平方米的人工费用为10元,则修剪此图案所花费的人工费为元(π取3).14.如图,阴影部分的面积为cm2.(π取3.14)15.如图,两个长方形重叠部分的面积相当于大长方形面积的,相当于小长方形面积的,则大长方形和小长方形的面积的比值是.三.解答题16.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)17.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.18.随着城市的发展,住宅小区的建设也越来越人性化.为响应国家“加强全民健身设施建设,发展全民体育”的号召.哈市某小区在一片足够大的空地中,改建出一个休闲广场,规划设计如图所示.求塑胶地面休闲区的面积;(2)求广场中种植花卉的面积与种植草坪的面积的比值.19.如图①所示,从大正方体中截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为a,图②中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图①中大正方体的棱长之和为m,图②中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图③是图②几何体的表面展开图吗?如有错误,请予修正.参考答案与试题解析一.选择题1.【解答】解:用一个平面去截一个圆柱体,截面图形可能是:长方形、正方形,圆形,椭圆形,但不可能是梯形.故选:B.2.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的两个面,所以原正方体相对两个面上的数字和最小的是6,故选:C.3.【解答】解:图中几何体是正五棱柱,五棱柱有7个面,10个顶点,5条侧棱,15条棱.故选:D.4.【解答】解:A、不能折叠成正方体,故选项错误;B、不能折成圆锥,故选项错误;C、能折成圆柱,故选项正确;D、不能折成三棱柱,故选项错误.故选:C.5.【解答】解:观察图形可知,正方体纸巾盒的平面展开图是:故选:C.6.【解答】解:①最小的正整数是1,此结论错误;②若x+2是一个负数,则x一定是负数是正确的;③用一个平面去截正方体,截面与六个面均相交即可得六边形,此结论错误;④三角形是多边形是正确的;⑤绝对值等于本身的数是正数和0,此结论错误.故正确的个数有2个.故选:B.7.【解答】解:如图所示:根据题意可知,A的对面是A′,B的对面是B′,C的对面是C′,A的短边阴影与C 的阴影重合.故用形如图所示的纸片折成一个长方体纸盒,折得的纸盒是C.故选:C.8.【解答】解:“a”与“﹣1”相对,∵相对面上的两个数都互为相反数,∴a=1.故选:A.9.【解答】解:因圆柱的展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A.10.【解答】解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符合,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.二.填空题(共5小题)11.【解答】解:15÷3=5,所以是五棱柱,故答案为:五.12.【解答】解:三棱柱有5个面,9条棱,6个顶点,因此a=5,b=9,c=6,所以a﹣b﹣c=5﹣9﹣6=﹣10,故答案为:﹣10.13.【解答】解:修剪草坪的面积为:(π×52﹣π×42)×5﹣1×8=45π﹣8≈127(平方米),因此所用的人工费为10×127=1270(元),故答案为:1270.14.【解答】解:S 阴影=S 圆形﹣S 正方形=π×()2﹣×2×2=π﹣2≈1.14(cm 2), 故答案为:1.14.15.【解答】解:设阴影部分的面积为k ,∵阴影部分的面积相当于大长方形面积的,相当于小长方形面积的,∴大长方形的面积为6k ,小长方形的面积为4k ,∴大长方形和小长方形的面积的比值为=,故答案为:.三.解答题(共4小题)16.【解答】解:(1)50×4+20×4+18=298(cm ),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm 2), (3)π×()2×50=5000π≈15700(cm 3), 答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.17.【解答】解:(1)(1×3+2×3+1×2)×2=22(m 2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm ,2cm ,1cm ,因此体积为:1×2×3=6(m 3),18.【解答】解:(1)S 塑胶地面=S 长方形+S 半圆=10×20+π×()2=200+50π≈350(平方米),答:塑胶地面休闲区的面积为350平方米;(2)S 种花卉=S 长方形﹣S 半圆=200﹣150=50(平方米),S 种草坪=S 半圆=50π≈150(平方米),所以,广场中种植花卉的面积与种植草坪的面积的比值为=. 19.【解答】解:(1)根据“切去三个小面”但又“新增三个小面”,因此与原来的表面积相等,即a =b ,故答案为:C;(2)如图②红颜色的棱是多出来的,共6条,如果截去的小正方体的棱长为大正方体的棱长的一半时,n比m正好多出大正方体的3条棱的长度,如果截去的小正方体的棱长不是大正方体的棱长的一半,n比m就不是多出大正方体的4.2直线、射线、线段一.选择题1.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条2.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线3.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.如图,在公路MN两侧分别有A1,A2…A7,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关;④车站的位置设在BC段公路的最中间处要好于设在点B及点C处.A.①③B.③④C.②③D.②5.图中共有线段()A.4条B.6条C.8条D.10条6.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离7.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④8.下列四个说法中,正确的有()个(1)﹣24=(﹣2)4;(2)﹣|﹣1|=﹣(﹣1)3(3)若a+1与b﹣1互为相反数,则2a+2b=0;(4)若线段AB=BC,则点B是线段AC的中点.A.1 B.2 C.3 D.49.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A.用两颗钉子就可以把木条固定在墙上B.当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下C.把弯曲的公路改直,就能缩短路程D.在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定的直线上,就能射中目标10.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.线段的定义D.圆弧的定义二.填空题11.西成高铁是中国首条穿越秦岭的高速铁路,大大减少了人们从西安到四川成都的时间,实现了人们“早上游大雁塔,晚上逛宽窄巷”的美好愿望.建造直隧道的目的可以用数学知识解释为.12.如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=.13.海南环岛高铁是世界首创,其中某趟列车在东段的三亚站、陵水站、万宁站、琼海站、文昌站和海口东站6个站之间运行,那么该趟列车需要安排不同的车票种,票价种.14.如图,把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是.15.如图,C为射线AB上一点,AB=30,AC比BC的多5,P、Q两点分别从A、B两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB上沿AB方向运动,当点P运动到点B时,两点同时停止运动,运动时间为t(s),M为BP的中点,N为MQ 的中点,以下结论:①BC=2AC;②AB=4NQ;③当BP=BQ时,t=12;④M,N 两点之间的距离是定值.其中正确的结论(填写序号)三.解答题16.已知:点M是直线AB上的点,线段AB=12,AM=2,点N是线段MB的中点,画出图形并求线段MN的长.17.如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.18.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.19.如图,已知线段AB=4,延长AB到点C,使得AB=2BC,反向延长AB到点D,使AC=2AD.(1)求线段CD的长;(2)若Q为AB的中点,P为线段CD上一点,且BP=BC,求线段PQ的长.参考答案与试题解析一.选择题1.【解答】解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.2.【解答】解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.3.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.4.【解答】解:①通过测量发现车站的位置设在C点好于B点,故原来的结论正确;②车站设在B点与C点之间公路上,车站朝M方向始终有4个工厂,车站朝N方向始终有3个工厂,所以在这一段任何一点,效果一样,故原来的结论错误;③工厂到车站的距离是线段的长,和各段的弯曲的小公路无关,故原来的结论正确;④车站的位置设在BC段公路的最中间处与设在点B及点C处一样好,故原来的结论错误.故选:A.5.【解答】解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.6.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.7.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.8.【解答】解:(1)﹣24=﹣16,(﹣2)4=16所以(1)错误;(2)﹣|﹣1|=﹣1﹣(﹣1)3=1所以(2)错误;(3)∵a+1与b﹣1互为相反数,∴a+1+b﹣1=0∴a+b=0则2a+2b=0所以(3)正确;(4)线段AB=BC,如果点A、B、C三个点不在同一条直线上,则点B不是线段AC的中点.所以(4)错误.所以正确的有1个.故选:A.9.【解答】解:A、用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释,故本选项不符合题意.B、当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下,可以用基本事实“两点确定一条直线”来解释,故本选项不符合题意.C、把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间,线段最短”来解释,不能用基本事实“两点确定一条直线”来解释,故本选项符合题意.D、在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定的直线上,就能射中目标可以用基本事实“两点确定一条直线”来解释,故本选项不符合题意.故选:C.10.【解答】解:剩下的银杏叶的周长比原银杏叶的周长要小根据是两点之间线段最短,故选:A.二.填空题(共5小题)11.【解答】解:建造直隧道的目的可以用数学知识解释为:两点之间,线段最短.故答案为:两点之间,线段最短.12.【解答】解:对C点的位置分情况讨论如下:①C点在A点的左边,∵AC:CB=1:2,BD:AB=2:3,假设AC=3k,则AB=3k,BD=2k,∴CD=3k+3k+2k=8k,∵CD=12,∴k=1.5,∴AB=4.5;②C点在线段AB上,∵AC:CB=1:2,BD:AB=2:3,假设AC=k,则CB=2k,BD=2k,∴CD=CB+BD=4k,∵CD=12,∴k=3,∴AB=AC+CB=3k=9;③C点在B点后,不符合题意,舍去;∴综上所述,AB=4.5或9.13.【解答】解:令6个站分别为A、B、C、D、E、F,则可得所组成的线段有15条,即需要安排15×2=30种不同的车票.故答案为:30、15.14.【解答】解:把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是两点之间线段最短.故答案为:两点之间线段最短.15.【解答】解:∵AB=30,AC比BC的多5,∴BC=20,AC=10,∴BC=2AC;故①正确;∵P,Q两点分别从A,B两点同时出发,分别以2个单位/秒和1个单位/秒的速度,∴BP=30﹣2t,BQ=t,∵M为BP的中点,N为MQ的中点,∴PM=BP=15﹣t,NQ=MB+BQ=15,NQ=MQ=7.5,∴AB=4NQ;故②正确;∵,∴,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15,∴MN=MQ=,∴MN的值与t无关是定值,故答案为:①②③④.三.解答题(共4小题)16.【解答】解:由于点M的位置不确定,所以需要分类讨论:①点M在点A左侧,如图1:∵AB=12,AM=2,∴MB=AB+AM=12+2=14,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=14,∴MN=×14=7;②点M在点A右侧,如图2:∵AB=12,AM=2,∴MB=AB﹣AM=12﹣2=10,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=10,∴MN=×10=5,综上所述,MN的长度为5或7.17.【解答】解:(1)如图,AC=9,BC=6,则AB=AC=BC=9+6=15,∵AM=2MC,BN=2NC.∴MC=AC,NC=BC,∴MN=MC+NC=(AC+BC)=AB=×15=5,答:MN的长为5;(2)由(1)得,MN═AB,若MN=5时,AB=15,答:AB的长为15.18.【解答】解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.19.【解答】解:(1)∵AB=4,AB=2BC,∴BC=2,∴AC=AB+BC=6,∵AC=2AD,∴AD=3,∴CD=AC+AD=6+3=9;(2)∵Q为AB中点,∴BQ=AB=2,∵BP=BC4.4角同步一.选择题1.上午10:00时,钟表的时针与分针的夹角为()A.30°B.60°C.90°D.120°2.下列说法:①一个角的补角大于这个角;②小于平角的角是钝角;③同角或等角的余角相等;④若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角,其中正确的说法有()A.4个B.3个C.2个D.1个3.已知∠A=115°,∠B是∠A的补角,则∠B的余角的度数是()A.65°B.115°C.15°D.25°4.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=160°,则∠BOC等于()A.20°B.30°C.40°D.50°5.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个6.如图用一副三角板可以画出15°的角,用它们还可以画出其它一些特殊角,不能利用这副三角板直接画出的角度是()A.55°B.75°C.105°D.135°7.下面图形中,射线OP是表示北偏东30°方向的是()A.B.C.D.8.下列说法错误的是()A.如果两个角是同一个角的余角,那么这两个角相等B.任何有理数都可以用数轴上的点表示C.绝对值等于它的相反数的数都是负数D.若a=b,则9.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25°B.35°C.45°D.55°10.岛A和岛B处于东西方向的一条直线上,由岛A、岛B分别测得船C位于北偏东40°和北偏西50°方向上,下列符合条件的示意图是()A.B.C.D.二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.计算:已知∠α=20°20′,则∠α的余角为.13.如图,点A在点B的北偏西30°方向,点C在点B的南偏东60°方向.则∠ABC的度数是.14.如图,将长方形纸片进行折叠,ED,EF为折痕,A与A'、B与B'、C与C'重合,若∠AED=25°,则∠BEF的度数为.15.如图,射线OA的方向是北偏东20度,射线OB的方向是北偏西40度,OD是OB的反向延长线.若OC是∠AOD的平分线,则射线OC的方向是北偏东度.三.解答题16.如图,已知∠ABP与∠CBP互余,∠CBD=32°,BP平分∠ABD.求∠ABP的度数.17.如图,点O是直线AB上的一点,∠COD是一个直角,OE平分∠BOC.(1)如图1,当∠AOC=30°,求∠DOE的度数;(2)如图2,若∠AOC=x°,求∠DOE的度数.(用含有x的代数式表示)18.如图,已知∠AOC:∠AOB=2:7,OD是∠AOB的平分线,若∠COD=15°,求∠AOC的度数.19.探究题:如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=100°,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB 的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?说明理由;(2)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果)参考答案与试题解析一.选择题1.【解答】解:∵10点整,时针指向10,分针指向12,中间相差两大格,钟表12个数字,每相邻两个数字之间的夹角为30°,∴10点整分针与时针的夹角是2×30°=60度.故选:B.2.【解答】解:①已知∠A=140°,则∠A的补角=40°,原来的说法错误;②大于直角小于平角的角是钝角,原来的说法错误;③同角或等角的余角相等是正确的;④和为180度的两个角互为补角,原来的说法错误.故其中正确的说法有1个.故选:D.3.【解答】解:∠A的补角∠B的度数是:180°﹣115°=65°,则余角是90°﹣65°=25°.故选:D.4.【解答】解:∵∠AOB=∠COD=90°,∠AOD=160°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣160°=20°.故选:A.5.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD=90°,∴∠AOB=∠COD;②∠AOB+∠COD=90°不一定和是90°;③若OB平分∠AOC,则∠AOB=∠BOC=45°,∴∠COD=45°,∴OC平分∠BOD;④∵∠AOB=∠COD,∴∠BOE=∠COE,∴∠AOE=∠DOE,∴∠AOD的平分线与∠BOC的平分线是同一条射线.∴①③④正确,故选:B.6.【解答】解:因为一副三角板有30°、45°、60°、90°的角,又∵45°﹣30°=15°,45°+30°=75°,45°+60°=105°,45°+90°=135°.所以用一副三角板可以画出75°、105°、135°等特殊的角.故选:A.7.【解答】解:∵方向角是以正北,正南方向为基准,来描述物体所处的方向,∴射线OP是表示北偏东30°方向可表示为如图.故选:D.8.【解答】解:A.如果两个角是同一个角的余角,那么这两个角相等,说法正确;B.任何有理数都可以用数轴上的点表示,说法正确;C.绝对值等于它的相反数的数都是负数和0,故原说法错误;D.若a=b,则,说法正确;故选:C.9.【解答】解:如图所示:食指和中指所夹锐角α的度数为:35°.故选:B.10.【解答】解:符合题意的示意图为:.故选:D.二.填空题(共5小题)11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∠α的余角=90°﹣20°20′=69°40′.故答案为:69°40′.13.【解答】解:如图:由题意,得∠ABD=30°,∠EBC=60°.∴∠FBC=90°﹣∠EBC=90°﹣60°=30°.∵∠DBF=90°,∴∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为:150°.14.【解答】解:根据翻折的性质可知,∠AED=∠A′ED,∠BEF=∠FEB′,∵∠AED+∠A′ED+∠BEF+∠FEB′=180°,∴∠AED+∠BEF=90°,又∵∠AED=25°,∴∠BEF=65°.故答案为:65°.15.【解答】解:∵OB的方向是北偏西40°,OA的方向是北偏东20°,∴∠AOB=40°+20°=60°,∴∠AOD=180°﹣60°=120°,∵OC是∠AOD的平分线,∴∠AOC=60°,∵20°+60°=80°,∴射线OC的方向是北偏东80°;故答案为:80.三.解答题(共4小题)16.【解答】解:∵∠ABP与∠CBP互余,∴∠ABP+∠CBP90°,即:∠ABC=90°,∵∠CBD=32°,∴∠ABD=90°+32°=122°,∵BP平分∠ABD.∴∠ABP=∠DBP=∠ABD=×122°=61°.17.【解答】解:(1)∵∠AOC=30°,∴∠BOC=180°﹣∠AOC=150°,又∵OE平分∠BOC,∴∠BOE=∠COE=∠BOC=75°,又∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=15°;(2)∵∠AOC=x°,∴∠BOC=180°﹣∠AOC=(180﹣x)°,又∵OE平分∠BOC∴∠BOE=∠COE=∠BOC=(180﹣x)°,又∵∠COD=90°∴∠DOE=∠COD﹣∠COE=90°﹣(180﹣x)°=x°18.【解答】解:∵∠AOC:∠AOB=2:7,∴设∠AOC=2x°,∠AOB=7x°,∵OD是∠AOB的平分线,∴∠AOD=∠AOB=3.5x°,∵∠DOC=15°,∴3.5x﹣2x=15,∴x=10,即∠AOC=2x°=20°.19.【解答】解:(1)平分,理由:延长NO,在延长线上取一点D,∵∠MON=90°∴∠MOD=90°∴∠MOB+∠NOB=90°,∠MOC+∠COD=90°,∵∠MOB=∠MOC,∴∠NOB=∠COD,∵∠NOB=∠AOD,∴∠COD=∠AOD,∴直线NO平分∠AOC;(2)分两种情况:①如图2,∵∠BOC=100°∴∠AOC=80°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=40°,∴∠BON=40°,∠BOM=50°,即逆时针旋转的角度为50°,由题意得,5°t=50°解得t=10(s);②如图3,当NO平分∠AOC时,∠NOA=40°,∴∠AOM=50°,即逆时针旋转的角度为:180°+50°=230°4.4课题学习设计制作长方体形状的包装纸盒一、选择题1.下列四个平面图形中,不能折叠成无盖的长方体盒子的是()2.图是正方体的一种展开图,如果将其折叠成原来的正方体,那么与边a重合的边是()A.dB.eC.fD.i二、非选择题3.图是某些几何体的展开图,请填出这些几何体的名称.4.图是一个无盖的长方体纸盒展开图,纸盒的底面积为600 cm2.求:(1)纸盒的高为多少厘米;(2)展开图的周长为多少厘米.图5.图是一个食品包装盒的展开图.请根据图中所标的尺寸,计算这个食品包装盒的表面积和体积.6.图是一个食品包装盒的展开图(其中的六边形的六条边相等).(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积.7.一个正方体的展开图已有一部分(如图),还有一个正方形未画出,现有10个位置可供选择,则放在哪些位置能围成正方体,放在哪些位置不能围成正方体?仔细观察图4-4-7,或许你还要动手做做呢!放在可围成正方体,放在不可以围成正方体(填序号).参考答案一、选择题1.A2.A二、非选择题3.圆锥三棱柱长方体4.解:(1)设底面长为3x cm,宽为2x cm.根据题意,得2x·3x=600,即x2=100,解得x=10(负值已舍去).故纸盒的高为10 cm.(2)展开图的周长为2×(5×10+4×10)=180(cm).5.解:这个食品包装盒的表面积为2×b2+4×ab=2b2+4ab.体积为b2×a=ab2.6.解:(1)这个多面体是六棱柱.(2)这个多面体的侧面积为6ab.7.①⑦⑧⑨②③④⑤⑥⑩。
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)
人教版七年级数学上册第四章《几何图形初步》测试卷(含答案)一、选择题1.如图所示的四种物体中,哪种物体最接近于圆柱 ( )2.一个几何体从前面、左面、上面看到的图形如图所示,则该几何体是( )A.棱柱B.圆柱C.圆锥D.球3.如图所示的几何体是由右边哪个图形绕虚线旋转一周得到( )A. B. C. D.4.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B. C. D.5.下列图形中的线段和射线能够相交的是( )6.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为( )A.0B.﹣1C.﹣2D.17.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A.用两个钉子就可以把木条固定在墙上B.利用圆规可以比较两条线段的大小关系C.把弯曲的公路改直,就能缩短路程D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线9.下列语句正确的是( ).A.由两条射线组成的图形叫做角B.如图,∠A就是∠BACC.在∠BAC的边AB延长线上取一点D;D.对一个角的表示没有要求,可任意书定10.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ关系式为( )A.∠β﹣∠γ=90°B.∠β+∠γ=90°C.∠β+∠γ=80°D.∠β﹣∠γ=180°11.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定12.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°,可以画出大于0°且小于等于150°的不同角度的角共有( )种.A.8B.9C.10D.11二、填空题13.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因14.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.15.用“度分秒”来表示:8.31度=度分秒.16.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.17.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)18.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形的内部点E处.若FH平分∠BFE,则∠GFH的度数是__________.三、作图题19.按要求画出图形,并回答问题:(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连结AP;(2)在(1)中所画图中,共有几条直线,几条射线,几条线段?请把所有直线和线段用图中的字母表示出来.四、解答题20.如图(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图(2),(3),(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)21.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.23.如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?24.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.25.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?答案1.A.2.B.3.C.4.A.5.D6.B7.A8.C9.B10.A11.C12.C13.答案为:两点之间,线段最短14.答案为:1;3;1.15.答案为:8,18,36.16.答案为:35°,60°,85°.17.答案为:>.18.答案为:90°19.解:(1)如图所示;(2)2条直线,12条射线,6条线段,直线l,直线BP,线段AC,BC,AB,AP,CP,BP.20.解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5= 9.6π.21.解:因为AB=4 cm,BC=2AB,所以BC=8 cm,所以AC=AB+BC=12 cm,因为M是线段AC中点,所以MC=AM=12AC=6 cm,所以BM=AM-AB=2 cm22.解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.23.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.24.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.25.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC. ∴∠EOF=∠EOC﹣∠FOC=12∠AOC﹣12∠BOC=12(∠AOB+∠BOC)﹣12∠BOC=12∠AOB.即y=12x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=12x.联立解得y=52°. 即∠EOF是52°.。
汽车机械设计基础第4章基本几何形体的三视图一二节
俯视图反映了正六边形 顶面和底面的实形,其中每 条边又都是侧面的积聚投影;
主视图反映了前、后侧 面的实形;
主视图和左视图反映了 四个铅垂面的类似形,其中 上、下两条直线分别是六棱 柱的顶面和底面的积聚性投 影,其余则是棱线的投影 (反映实长)。
3
➢
画棱柱三视图的步骤如下:
1)画顶面和底面的各面 投影,从反映顶面和底 面实形的视图画起。
2)画侧棱线的各面投影, 不可见轮廓的投影画成 虚线。
直棱柱三视图的特性:
一个视图反映棱 柱的顶面和底面的实形, 另两个视图都是由实线 或虚线组成的矩形线框。
4
2. 棱柱表面上的点的投影 当点在形体的表面上时,点的投影必在它所从属的表面的同
面投影范围内。若该表面为可见,则表面上的点的同面投影也可 见;反之,为不可见。
第4章基本几何体的三视图
4.1.1 棱柱 4.1.2棱锥及棱锥台
曲面立体的投影及其表面取点
4.2.1 圆柱 4.2.2 圆锥及圆锥台 4.2.3 圆球 4.2.4 圆环
1
4.1.1 棱柱
➢ 棱柱的顶面和底面是两个形状相同且互相平行的多边
形,各侧面都是矩形(称直棱柱)或平行四边形(称斜棱柱), 顶面和底面为正多边形的直棱柱则称为正棱柱。 1. 棱柱的三视图
面的辅助圆的方法求点。
过m作辅助圆的H面投影,
作出圆的V面投影,按点的
m
投影规律作出m和m"。
20
4.2.4 圆环
➢ 1. 圆环面的形成
➢ 圆环面可看成是由一个圆作母线,以其同 平面但位于圆周之外的直线为轴线回转而 成。圆环外面的一半表面称为外环面,里 面的一半表面称为内环面。
21
➢ 2. 圆环的视图及分析
初中数学 第4章 几何图形初步 教案及试题
第四章几何图形初步基础知识通关4.1几何图形1.几何图形:长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形.2.立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在内,它们是立体图形.3.平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在内,它们是平面图形.4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成 .这样的平面图形称为相应立体图形的展开图.5.点、线、面、体:(1)体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥几何体.几何体也简称体;(2)面:包围着体的是面;(3)线:面和面相交的地方形成线;(4)点:线和线相交的地方是点.4.2直线、射线、线段6.两点确定一条直线:经过两点有一条直线,并且只有一条直线.简单说成:................7.交点:当两条不同的直线有一个公共点时,我们就称这两条直线,这个叫做它们的交点.8.尺规作图:在数学中,我们常限定用和作图,这就是尺规作图.9.中点:点 M 把线段 AB 分成的两条线段AM 与MB,点 M 叫做线段 AB 的中点.10.两点的所有连线中,最短.简单说成:两点之间,线段最短.11.距离:连接两点间的,叫做这两点的距离.4.3角12.角:角也是一种基本的几何图形.13.度、分、秒:(1)把一个周角 360 等分,每一份就是 1 度的角,记作;(2)把一度的角 60 等分,每一份叫做 1 分的角,记作;(3)把1 分的角60 等分,每一份叫做1 秒的角,记作 ..14.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个的角的射线,叫做这个角的平分线.15.余角:一般地,如果两个角的和等于(直角),就说这两个角互为余角.16.补角:类似地,如果两个角的和等于(平角),就说这两个角互为补角.17.余角的性质:同角(等角)的余角 ....18.补角的性质:同角(等角)的补角 ....19.角的运算:如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差.4.4课题学习-设计制作长方体形状的包装纸盒单元检测一.选择题(共 10 小题)1.某正方体的每个面上都有一个汉字,如图所示的是它的展开图,那么在原正方体中,与“神“字所在面相对的面上的汉字是()A.认B.眼C.确D.过2.下列几何体中,其侧面展开图为扇形的是()A.B.C.D.3.下列说法错误的个数为()①57.18°=57°10′48″②三条直线两两相交,有三个交点③x=0 是一元一次方程④若线段 PA=PB,则点 P 是线段 AB 的中点⑤连接两点间的线段,叫做两点间的距离.A.1 个B.2 个C.3 个D.4 个4.在平面内有A、B、C、D 四点,过其中任意两点画直线,则最多可以画()A.4 条B.6 条C.8 条D.无数条5.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′6.已知互为补角的两个角的差为 35°,则较大的角是()A.107.5°B.108.5°C.97.5°D.72.5°7.如图,在A、B 两处观测到 C 处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东 35°,北偏西 50°8.如图,∠AOB=130°,射线 OC 是∠AOB 内部任意一条射线,OD、OE 分别是∠AOC、∠BOC 的角平分线,下列叙述正确的是()A.∠DOE 的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD9.将长方形纸片按如图所示的方式折叠,BC、BD 为折痕,若∠ABC=35°,则∠DBE 的度数为()A.55°B.50°C.45°D.60°10.在图所示的4×4 的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ二.填空题(共 10 小题)11.下面的几何体中,属于柱体的有个.12.已知角A 的余角比它的补角的还少10°,则∠A=.13.已知:∠A 的余角是 52°38',则∠A 的补角是.14.计算:48°59′+67°31′﹣21°12′=.15.如图所示,在一条笔直公路 l 的两侧,分别有 A、B 两个小区,为了方便居民出行,现要在公路 l 上建一个公共自行车存放点,使存放点到A、B 小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.16.已知,在直线 AB 上有一点 C,BC=3cm,AB=8cm,M 为线段 AB 的中点,N 为线段 BC 的中点,则 MN=.17.如图,∠AOB=140°,如果点 A 在点O 的北偏东 20°,那么点 B 在点O 的南偏西°.第 17 题图第 18 题图18.如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=.19.正方体切去一个块,可得到如图几何体,这个几何体有条棱.20.已知 A、B、C 三点都在直线 l 上,AC 与BC 的长度之比为 2:3,D 是AB 的中点.若 AC=4cm,则 CD 的长为cm.三.解答题(共 5 小题)21.如图,B、C 两点把线段 MN 分成三部分,其比为 MB:BC:CN=2:3:4,点 P 是MN 的中点,PC =2cm,求 MN 的长.22.如图,已知OD 平分∠AOB,OE 在∠BOC 内,且∠BOE=∠EOC,∠AOC=170°.(1)若知∠AOB=70°,求∠EOC 的度数;(2)若知∠DOE=70°,求∠EOC 的度数.23.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线 AB;(2)画射线 AC;(3)连接 BC 并延长 BC 到E,使得 CE=AB+BC;(4)在线段 BD 上取点 P,使 PA+PC 的值最小.24.已知线段AB=m(m 为常数),点C 为直线AB 上一点,点P、Q 分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C 恰好在线段AB 中点时,则PQ=(用含m 的代数式表示);(2)若点 C 为直线 AB 上任一点,则 PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ﹣2PQ 与1 的大小关系,并说明理由.25.如图 1,将一副直角三角尺的顶点叠一起放在点 A 处,∠BAC=60°,∠DAE=45°,保持三角尺ABC 不动,三角尺 AED 绕点A 顺时针旋转,旋转角度小于 180°.(1)如图 2,AD 是∠EAC 的角平分线,直接写出∠DAB 的度数;(2)在旋转的过程中,当∠EAB 和∠DAC 互余时,求∠BAD 的值.四、附加题26.如果两个锐角的和等于 90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于 90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1 和∠2 互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,O 为直线 AB 上一点,OC 丄 AB 于点 O,OE⊥OD 于点 O,请写出图中所有互为垂角的角有;(2)如果有一个角的垂角等于这个角的补角的,求这个角的度数.27.P 是线段 AB 上一点,AB=12cm,C,D 两点分别从 P,B 同时向 A 点运动,且 C 点的运动速度为2cm/s,D 点的运动速度为 3cm/s,运动的时间为 ts.(1)如图若 AP=8cm,①运动 1s 后,求 CD 的长;②当 D 在线段 PB 上运动时,试说明线段 AC 和线段 CD 的数量关系;(2)如果t=2 时,CD=1.5cm,试探索 AP 的值.2.同一平面3.同一平面4.平面图形6.两点确定一条直线7.相交,公共点8.无刻度的直尺,圆规9.相等10.线段11.线段的长度13.1°,1′,1″14.相等15.90°16.180°17.相等18.相等一.选择题(共 10 小题)基础知识通关答案单元检测答案1.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“确”是相对面.故选:C.【知识点】2,42.【分析】根据特殊几何体的展开图,可得答案.【解答】解:A、圆柱的侧面展开图是矩形,故 A 错误;B、三棱柱的侧面展开图是矩形,故 B 错误;C、圆锥的侧面展开图是扇形,故 C 正确;D、三棱锥的侧面展开图是三角形,故 D 错误.故选:C.【知识点】2,43.【分析】依据度分秒的换算,相交线,一元一次方程的定义,线段的中点的定义、两点间的距离的概念进行判断即可.【解答】解:①57.18°=57°10′48″,正确;②三条直线两两相交,有一个或三个交点,错误;③x=0 是一元一次方程,正确;④若线段 PA=PB,则点 P 不一定是线段 AB 的中点,错误;⑤连接两点间的线段的长度,叫做两点间的距离,错误.故选:C.【知识点】7,9,11,134.【分析】没有明确平面上四点是否在同一直线上,需要运用分类讨论思想.分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:1、四点在同一直线上时,只可画 1 条;2、当三点在同一直线上,另一点不在这条直线上,可画 4 条;3、当没有三点共线时,可画 6 条.所以最多可以画 6 条.故选:B.【知识点】6,75.【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【知识点】136.【分析】设较大的角为 x,根据互为补角的两个角的和等于 180°表示出较小的角,然后列出方程求解即可.【解答】解:设较大的角为 x,则较小的角为 180°﹣x根据题意得,x﹣(180°﹣x)=35°解得 x=107.5°故选:A.【知识点】167.【分析】根据方向角的定义即可判断.【解答】解:A 处观测到的 C 处的方向角是:北偏东 65°B 处观测到的C 处的方向角是:北偏西 50°.故选:B.【知识点】12,138.【分析】依据 OD、OE 分别是∠AOC、∠BOC 的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE 分别是∠AOC、∠BOC 的平分线∴∠AOD=∠COD,∠EOC=∠BOE又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°故选:C.【知识点】149.【分析】将一张长方形纸片按如图所示的方式折叠,BC,BD 为折痕,则∠CBD 的度数为 90°,然后根据平角的定义即可得到结论.【解答】解:∵一张长方形纸片沿 BC、BD 折叠∴∠ABC=∠A′BC,∠EBD=∠E′BD而∠ABC+∠A′BC+∠EBD+∠E′BD=180°∴∠A′BC+∠E′BD=180°×=90°即∠ABC+∠DBE=90°∵∠ABC=35°∴∠DBE=55°【知识点】1610.【分析】根据题意和图得出:∠DGC=∠DCG=45°,∠HGF=∠GHF=45°,再根据∠DGC+∠HGF+γ=180°,从而得出γ=90°,然后结合图观察出α>90°,β<90°,最后比较大小即可.【解答】解:由题意知:∠DGC=∠DCG=45°同理∠HGF=∠GHF∠=45°又∵∠DGC+∠HGF+γ=180°∴γ=90°由图可知α>90°,β<90°∴β<γ<α故选:B.【知识点】16二.填空题(共 10 小题)1.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有第一个图形正方体、第三个图形圆柱、第五个图形六棱柱,第六个图形三棱柱共 4 个.故答案为:4.【知识点】212.【分析】根据题意和余角、补角的概念列出方程,解方程即可.【解答】解:设∠A=a由题意得90°﹣a=(180°﹣a)﹣10°,解得a=60°.故答案为:60°.【知识点】15,1613.【分析】根据一个角的补角比它的余角多 90°求解即可.【解答】解:∠A 的余角为:90°﹣∠A,∠α的补角为:180°﹣∠A∴∠A 的补角比∠A 的余角大 90°∴∠A 的补角为:52°38′+90°=142°38′故答案为:142°38′【知识点】15,1614.【分析】根据度分秒加减法计算法则进行解答.【解答】解:48°59′+67°31′﹣21°12′=116°30′﹣21°12′=95°18′.故答案为:95°18′【知识点】1315.【分析】根据两点之间线段最短可得公共自行车存放点的位置是 E 处.【解答】解:公共自行车存放点应该建在 B 处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.【知识点】1016.【分析】根据中点的定义,可分别求出 AM、BN 的长度,点C 存在两种情况,一种在线段 AB 上,一种在线段 AB 外,分类讨论,即可得出结论.【解答】解:依题意可知,C 点存在两种情况,一种在线段 AB 上,一种在线段 AB 外.①C 点在线段 AB 上,如图 1:∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点,∴AM==4cm,BN==1.5cm, MN=AB﹣AM﹣BN=4﹣1.5=2.5cm;②C 点在线段 AB 外,如图 2::∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点∴AM==4cm,BN==1.5cmMN=AB﹣AM+BN=8﹣4+1.5=5.5cm综上得 MN 得长为 2.5cm 或 5.5cm故答案为:2.5cm 或5.5cm【知识点】917.【分析】结合图形,然后求出 OB 与西方的夹角的度数,即可得解.【解答】解:如图,根据题意得,∠AOC=20°,∠COD=90°∴∠BOD=∠AOB﹣∠AOC﹣∠COD=30°∴点 B 在点O 的南偏西 60°故答案为:60【知识点】15,1918.【分析】根据图中角与角之间的关系即可求出答案.【解答】解:∵∠AOD=135°,∠DOB=105°∴∠AOB=∠AOD﹣∠DOB=135°﹣105°=30°∵∠AOC=75°∴∠BOC=∠AOC﹣∠AOB=75°﹣30°=45°故答案为:45°.【知识点】1919.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有 12 条棱.故答案为:12.【知识点】2,520.【分析】抓住 A、B、C 三点都在直线 l 上,没有给顺序也没有给图,基本确定题目多解;确定两条线段:AC=4,BC=6,画出图,根据题中的中点条件和和差关系即可解决问题【解答】解:∵AC 与BC 的长度之比为 2:3,AC=4 ∴BC=6如图,C 在AB 之间时,AB=AC+BC=10D 是AB 的中点,AD=DB=5CD=AD﹣AC=5﹣4=1如图,C 在AB 外面时,AB=BC﹣AC=2D 是AB 的中点,AD=DB=1CD=AD+AC=1+4=5故答案:1 或 5【知识点】9三.解答题(共 5 小题)21.【分析】根据比例设 MB=2x,BC=3x,CN=4x,然后表示出 MN,再根据线段中点的定义表示出PN,再根据 PC=PN﹣CN 列方程求出 x,从而得解.【解答】解:∵MB:BC:CN=2:3:4∴设 MB=2xcm,BC=3xcm,CN=4xcm∴MN=MB+BC+CN=2x+3x+4x=9xcm∵点 P 是MN 的中点∴PN=MN=xcm∴PC=PN﹣CN即x﹣4x=2解得 x=4所以,MN=9×4=36cm.【知识点】9,112.【分析】(1)可以设∠BOE 为x,根据条件列方程解决,求出∠BOE;(2)设∠BOE=a,则∠ECO=3a,根据条件列方程解决,求出∠BOE.【解答】解:∵∠AOC=170°,∠AOB=70°∴∠BOC=100°设∠BOE=x,则∠ECO=3x∴∠BOC=∠BOE+∠EOC=x+3x=100°∴x=25°∴∠EOC=25°(2)设∠BOE=a,则∠ECO=3a∵∠DOE=70°,OD 平分∠AOB∴∠AOD=∠BOD=∠DOE-∠BOE=70°﹣a∴∠AOC=2∠AOD+∠BOE+∠EOC=2(70°﹣a)+a+3a=170°∴a=15°∴∠EOC=3a=45°【知识点】14,1923.【分析】根据直线、射线、线段的概念、两点之间,线段最短画图即可.【解答】解:如图所画:【知识点】8,1024.【分析】(1)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得 2AP+CQ﹣2PQ=0,即可得出 2AP+CQ﹣2PQ 与1 的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵点 C 恰好在线段 AB 中点∴AC=BC=AB∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×AB+ × AB= AB= m;故答案为:m;(2)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×(AC+BC)=AB= m;故PQ 是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0∴2AP+CQ﹣2PQ<1.【知识点】9,1125.【分析】(1)依据 AD 是∠EAC 的角平分线,即可得出∠DAE=∠CAD=45°,再根据∠BAC=60°,即可得到∠DAB 的度数;(2)分两种情况讨论,设∠BAD=α,依据∠EAB 和∠DAC 互余,列方程求解即可.【解答】解:(1)如图2,∵AD 是∠EAC 的角平分线∴∠DAE=∠CAD=45°∵∠BAC=60°∴∠DAB=60°﹣45°=15°;(2)分两种情况讨论:①如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=45°﹣α,∠CAD=60°﹣α∴45°﹣α+60°﹣α=90°解得α=7.5°;②如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=α﹣45°,∠CAD=α﹣60°∴α﹣45°+α﹣60°=90°解得α=97.5°;综上所述,当∠EAB 和∠DAC 互余时,∠BAD 的值为 7.5°或 97.5°.【知识点】14,15,19四、附加题26.【分析】(1)根据互为垂角的定义即可求解;(2)利用题中的“一个角的垂角等于这个角的补角的”作为相等关系列方程求解.【解答】解:(1)互为垂角的角有 4 对:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE;(2)设这个角的度数为x 度,则①当 0<x<90 时,它的垂角是(90+x)度,依题意有90+x=(180﹣x),解得x=30;②当 90<x<180 时,它的垂角是(x﹣90)度,依题意有x﹣90=(180﹣x),解得x=130.故这个角为 30 度或130 度.故答案为:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE.【知识点】15,18,1927.【分析】(1)①先求出 PB、CP 与DB 的长度,然后利用 CD=CP+PB﹣DB 即可求出答案.②用t表示出 AC、DP、CD 的长度即可证明 AC=2CD;(2)当 t=2 时,求出 CP、DB 的长度,由于没有说明 D 点在 C 点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm)∵AP=8 cm,AB=12 cm∴PB=AB﹣AP=4 cm∴CD=CP+PB﹣DB=2+4﹣3=3(cm)②∴AP=8 cm,AB=12 cm∴BP=4 cm,AC=(8﹣2t)cm∴DP=(4﹣3t)cm∴CD=CP+DP=2t+4﹣3t=(4﹣t)cm.∴线段 AC 是线段 CD 的二倍.(2)当t=2 时,CP=2×2=4(cm),DB=3×2=6(cm)当点 D 在点C 的右边时,如图所示:∵CD=1.5 cm∴CB=CD+DB=7.5 cm∴AC=AB﹣CB=4.5 cm∴AP=AC+CP=8.5 cm.当点 D 在点 C 的左边时,如图所示:∴AD=AB﹣DB=6 cm∴AP=AD+CD+CP=11.5 cm综上所述:AP=8.5cm 或 AP=11.5cm【知识点】11。
第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)
第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。
4.几何图形的结构:点、线、面、体组成几何图形。
点是构成图形的基本元素。
4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。
2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。
(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。
简述为,两点确定一条直线。
(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。
(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。
(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。
(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。
(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
4.线段:直线上两点和它们之间的部分叫做线段。
(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。
(3)线段的基本性质:两点的所有连线中,线段最短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
2016年1月12日星 期二8时34分51秒
4-4 按给定的条件画出基本几何体的三面投影图。 (3) 左、右底面半径分别为10 mm、5 mm,轴向长为20 mm的正圆锥台。
17
2016年1月12日星 期二8时34分51秒
4-4 按给定的条件画出基本几何体的三面投影图。 (4) 半径为10 mm的半球。
4
2016年1月12日星 期二8时34分51秒
4-1 按已知条件画出平面立体的三面投影图。 (3) 正三棱锥长为20 mm,右端面为正三角形。
5
2016年1月12日星 期二8时34分51秒
4-1 按已知条件画出平面立体的三面投影图。 (4) 高为20 mm,上下端面为8x8 mm、18x18 mm的正四棱台。
(4)
11
2016年1月12日星 期二8时34分51秒
4-2 补画第三面投影图,并求出立体表面上点、线的另外两面投影。
(5)
12
2016年1月12日星 期二8时34分51秒
4-2 补画第三面投影图,并求出立体表面上点、线的另外两面投影。 (6)
13
2016年1月12日星 期二8时34分51秒
4-3 补画第三个投影图,并说明两立体组合成何种基本体。
18
2016年1月12日星 期二8时34分51秒
4-5 补画第三面投影图,并求出立体表面上点、线的另外两面投影。 (1)
19
2016年1月12日星 期二8时34分51秒
4-5 补画第三面投影图,并求出立体表面上点、线的另外两面投影。
(2)
20
2016年1月12日星 期二8时34分51秒
4-5 补画第三面投影图,并求出立体表面上点、线的另外两面投影。
(1)
(2)
正面投射方向
正面投射方向
两题组合后 是三棱柱。
14
2016年1月12日星 期二8时34分51秒
4-4 按给定的条件画出基本几何体的三面投影图。 (1) 半径为10 mm,轴向长为20 mm的正圆柱。
15
2016年1月12日星 期二8时34分51秒
4-4 按给定的条件画出基本几何体的三面投影图。 (2) 半径为10 mm,轴向长为20 mm的正圆锥。
2016年1月12日星 期二8时34分51秒
1
2016年1月12日星 期二8时34分51秒
2
2016年1月12日星 期二8时34分51秒
4-1 按已知条件画出平面立体的三面投影图。 (1) 高为20 mm,端面内切圆半径为10 mm的正六棱柱。
3
2016年1月12日星 期二8时34分51秒
4-1 按已知条件画出平面立体的三面投影图。 (2) 长为20 mm,端面外接圆半径为12 mm的正五棱柱。
4-2 补画第三面投影图,并求出立体表面上点、线的另外两面投影。
(2)
9
2016年1月12日星 期二8时34分51秒
4-2 补画第三面投影图,并求出立体表面上点、线的另外两面投影。
(3)
10
2016年1月12日星 期二8时34分51秒
4-2 补画第三面投影图,并求出立体表面上点、线的另外两面投影。
4-5 补画第三面投影图,并求出立体表面上点、线的另外两面投影。 (6)
24
2016年1月12日星 期二8时34分51秒
4-5 补画第三面投影图,并求出立体表面上点、线的另外两面投影。 (7)
25
2016年1月12日星 期二8时34分51秒
4-5 补画第三面投影图,并求出立体表面上点、线的另外两面投影。 (8)
26
(3)
21
2016年1月12日星 期二8时34分51秒
4-5 补画第三面投影图,并求出立体表面上点、线的另外两面投影。 (4)
22
2016年1月12日星 期二8时34分51秒
4-5 补画第三面投影图,并求出立体表面上点、线的另外两面投影。 (5)
23
2016年1月12日星 期二8时34分51秒
6
2016年1月12日星 期二8时34分51秒
4-1 按已知条件画出平面立体的三面投影图。 (5) 按立体图上给定的尺寸(单位:mm)画出其三面投影图。
7
2016年1月12日星 期二8时34分51秒
4-2 补画第三面投影图,并求出立体表面上点、线的另外两面投影。
(1)
8
2016年1月12日星 期二8时34分51秒