煤层瓦斯参数测定设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东新河矿业有限公司3煤层瓦斯参数测定现场施工技术方案

山东鼎安检测技术有限公司

二〇一五年一月

山东新河矿业有限公司3煤层瓦斯参数测定现场施工技术方案

编写:

审核:

批准:

山东鼎安检测技术有限公司

二0一五年四月

煤层瓦斯基础参数测定项目一览表

一、概况

新河矿业自2000年9月开工建设,2003年建成开始联合试运转,2005年7月正式生产。原设计生产能力a, 2008年后,在对井底车场、主要水平大巷及主提升、通风等矿井主要生产系统进行了扩容与改造的同时,对新河、唐口矿井井田边界进行了优化调整,经山东省国土资源厅批准,将相邻的唐口矿井630采区划归新河矿井开采,目前-400m生产水平处于收尾阶段,-980m水平正在进行开拓准备。

唐口矿井630采区划归新河矿井后,结合现场开采情况,将采区分为530采区、630采区和730采区,为确定新增加采区煤层的瓦斯参数,在530胶带集中巷及轨道集中巷施工瓦斯钻孔对煤层的瓦斯参数进行测定。

二、地质及水文地质条件

(一)地层产状

工作面穿越永东闸向斜两翼,西部处在永东闸西向斜的西翼,受两向斜构造影响,地层产状变化较大,走向SE~NE~SE,倾向SW~SE~SW,倾角5~29°,平均10°左右。

(二)褶曲

根据矿井延深区三维地震勘探资料,延深区发育有两个褶曲,分别为永东闸向斜、永东闸西向斜,受其影响地层产状变化较大。其特征如下:

1、永东闸西向斜:位于延深区中部,永东闸以西。轴向NW,延展长度约,幅度约40m。该向斜两翼不对称,西翼倾角较陡可达30°,东翼相对较缓为11°。

2、永东闸向斜:位于延深区东部,永东闸北侧,T21-1孔以西。轴向不明显,北部为NNE、南部转为NW,延展长度约,幅度约30m,西翼倾角较缓,在5°左右。

(三)断层

根据延深区三维地震勘探资料分析,工作面掘进过程中将揭露断层1条,落差11m,对巷道掘进影响较大。

该掘进工作面附近各断层特征见下表:

表3: 断层构造情况表

(4)主要含水层

530胶带集中巷掘进工作面沿3煤底板掘进,水文地质条件简单,主要受3煤顶底板砂岩及三灰含水层影响。

1、3煤顶底板砂岩含水层

根据水文补勘DM-203孔资料,3煤顶底板砂岩含水层厚,主要由浅灰色、灰色和深灰色粗、中、细砂岩组成,发育少量高角度裂隙,岩石较破碎。钻孔抽水试验资料表明,单位涌水量为s·m ,富水性弱。另外,从-980m水平二节胶带暗斜井掘进揭露3煤顶板砂岩情况看,掘进过程中仅有少量顶板淋水,水量小。

2、三灰含水层

该区域三灰厚,裂隙发育,充填方解石。水文补勘DM-201孔三灰含水层抽水试验资料表明,单位涌水量 L/s·m,富水性弱。三灰上距3煤层,对掘进无直接影响,但由于本区煤层埋藏深,三灰水压较高,构造复杂区域断层带、裂隙发育地段可能成为导通含水层通道,因此三灰为开采3煤层底板进水型直接充水含水层。

三、工程设计

(一)布置原则

钻孔位置充分考虑施工现场对瓦斯钻孔的影响,将施工瓦斯钻孔前后1个卸压孔均用水泥进行封堵严密,尽量减小卸压钻孔对其的影响,且不影响井下正常生产。

(二)钻孔结构

采用SGZ-3B型煤矿用坑道钻机,钻具组合:φ50×地质钻杆,φ75mm钻头。采用2ZBQ-10/15型注浆泵,浆液搅拌采用自制水泥浆搅拌桶。

钻孔采用一级结构,采用φ75mm钻头开孔钻进50m,其中钻进30米后取芯2米。施工完毕后孔内预留4分测压管(最里段安设一根花管),外段30米用水泥浆注浆封孔。

(三)钻孔位置及参数

为准确测定煤层瓦斯压力,使测出的瓦斯压力值能够代表煤层的原始瓦斯压力,测定煤层瓦斯压力地点要避开断层、褶皱、裂隙带等地质构造带,使钻孔周围煤层处于原始状态。通过察看矿井相关资料及井下实地考察结合煤层揭露情况,共布置3组测点(6个测压钻孔)测定3煤层的原始瓦斯压力测定。瓦斯钻孔位置示意图见图1。

1#测点布置在530胶带集中巷L8右侧50m处与75~80m处,与巷道呈80°夹角,倾角8°开孔,终孔位置在3煤层顶板;

2-1#钻孔布置在530轨道集中巷向里距离3-1#钻孔50m左右,2-2#钻孔布置在2-1#钻孔右侧距其35m左右处,垂直与巷道左帮开孔,终孔位置在3煤层顶板;

3#测点布置在530胶带集中巷运输联络巷与530胶带集中巷交汇处及530胶带集中巷运输联络巷与530轨道集中巷交汇处附近(3-1#钻孔在530胶带集中巷运输联络巷与530胶带集中巷交汇处向内40m处、3-2#钻孔在530胶带集中巷运输联络巷与530轨道集中巷交汇处),两钻孔均垂直所在巷道侧帮,3-1#钻孔倾角8°开孔,3-2#钻孔

倾角7°开孔,终孔位置在3煤层顶板(预计两钻孔孔深均为左右)。

图1 瓦斯压力钻孔布置图

(四)钻孔施工要求:

①测压钻孔应选择在无断层、裂隙等地质构造处,应避开含水层、溶洞,并保证钻孔与其距离不小于50m,钻孔周围煤层应处于原始状态,应避开采动、瓦斯抽采及其他人为卸压影响范围,并保证钻孔与其距离不小于50m;

②同一地点应设置两个测压钻孔,其终孔见煤点或测压气室应在相互影响范围外,其距离除石门测压外应不小于20m;

③选择合适的测压地点后,以8°的仰角从向煤层打钻,钻孔采用φ75mm钻头,钻孔深度保证穿过整个煤层,终孔点为煤层顶板。钻孔施工应保证钻孔平直、孔形完整,如钻孔报废应离开报废钻孔至少20m重新进行施工;钻孔施工过程中应准确记录钻孔方位、倾角、长度、钻孔在煤层中长度、钻孔开钻时间、见煤顶板距离及时间及钻孔完成时间。钻孔施工参数示意图见图2。

(五)封孔

由于煤层瓦斯是粘性很小的气体,其粘度系数μ=×10-6Pa·s,在高压作用下,可以说是无孔不入。钻孔孔壁内存在细微孔道,在高压瓦斯的作用下很可能连通起来,形成瓦斯泄漏的立体交叉通道。在具有煤与瓦斯突出危险的煤层中,一般地应力高,煤层透气系数小;因此测压时微量的漏气,就能导致所测压力值的很大降低。

在松软的煤层中测压时,钻孔周围往往具有卸压圈和裂隙网,发生漏气是显而易见的。页岩、砂质页岩中也往往裂隙发育,所以在页岩、砂质页岩和煤层中测定瓦斯压力要取得可靠的结果较为困难。而煤系地层大多为页岩和砂质页岩,这就是测压结果误差较大的主要原因。实践表明,封堵孔壁裂隙用固体物显然是不行的,只能用粘性液体(或流体),为了抵抗高压瓦斯的排斥,粘性液体压力应始终高于瓦斯压力,这是准确测压的关键。本次压力测定决定采用水泥浆封堵测压钻孔。

测压管均选用Φ16×无缝钢管(普通4分管),为便于安装,取每根钢管长或,根

相关文档
最新文档