初中数学教案 变量与函数(1)
《变量与函数》教学设计
![《变量与函数》教学设计](https://img.taocdn.com/s3/m/d3b771cd4028915f804dc298.png)
《变量与函数》教学设计一.内容和内容解析本节教学内容源于人教版初中数学义务教育课程标准实验教材八年级上册第十四章《一次函数》的《14.1 变量与函数》.数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,世界永远是处于运动变化之中的,因此无论是数量关系中还是空间形式中都充满了有关运动变化的问题.函数正是研究运动变化的重要数学模型,它来源于客观实际又服务于客观实际,反映的是变量之间的单值对应规律;它在对数量关系和空间形式的研究中发挥了巨大作用,在当今数学的各个领域都是极为重要的角色.函数是数量化地表达变化与对应思想的数学工具,变化规律表现在变量(自变量与函数)之间的对应关系上,函数通过数或形定量地描述这种对应关系.变化与对应思想正是本章内容中蕴涵的基本思想.所谓变化与对应的思想包括两个基本意思:1.世界是变化的,客观事物中存在大量的变量;2.在同一个变化过程中,变量之间不是孤立的,而是相互联系的,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系.函数概念来源于客观实际需要,也来自数学内部发展的需要.它是以变化与对应的思想为基础的数学概念.函数概念的实质就是运动变化与联系对应.基于上述分析,确定本节的教学重点是:以实际问题为学习背景,探索具体问题中的数量关系和变化规律,初步理解函数的概念.函数的概念是数学中极为重要的基本概念,它的抽象性较强,接受并理解它有一定难度,因此,函数概念的形成过程也是本节的难点.二.目标和目标解析1.了解常量、变量的概念,能分清实例中的常量与变量;2.结合实例,理解函数的概念,体会“变化与对应”的思想.世界是变化的,客观事物中存在大量的变量;在同一个变化过程中,变量之间不是孤立的,而是相互联系的,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系,这就是“变化与对应”的思想;3.以探索实际问题中的数量关系和变化规律为背景,正确地理解问题情境,经历“找出常量和变量,建立并表示函数模型”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;三.教学问题诊断就学生而言,在前学段的学习中已经对“用字母表示数”和方程中的未知数的含义都有了较深理解,同时初步具备分析和解决各种简单实际问题的能力,也初步体会到建模的数学思想,但对客观世界中现存的大量的运动变化问题还不甚了解,特别是对同一变化过程中变量之间存在的对应关系更是难以理解,对“函数”这个抽象性强的概念的接受和理解就会有很大难度;教师可能出现的问题:1.对“函数”的含义和“变化与对应”数学思想的理解不够深刻,认识上不到位;2.用以理解“函数”概念和“变化与对应”思想的实际事例没有很好地贴近学生的生活,致使学生不能很好地正确地理解问题情境;3.不能通过设计有效的数学问题,使学生通过有思维含量的数学活动,达到真正理解“函数”概念的目的,过分强调知识的获得,忽略了“变化与对应”数学思想的揭示.本节教学内容遵循“问题情境——建立模型——对比分析——揭示本质”的模式.理解函数的基本概念,其问题的关键是如何从实际问题情境中抽象出数学问题,从而建立数学模型,重点是理解函数的本质.鉴于上述分析,确定本节课的教学难点是:理解函数的概念.四.教学支持条件分析以问题串的方式,通过PPT恰当的呈现形式,帮助学生准确地从实际问题中抽象出数学问题,以问题引导进行分析与研究,更好地揭示函数的本质,理解“变化与对应”的数学思想,形象、直观,提高课堂教学效率.五.教学过程设计(一)创设问题情境,揭示变量与常量的含义问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.先填写下表,再试用含t的式子表示s.设计目的:该问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程,旨在让学生初步体会变化过程中的某些量是按照某种规律变化的,如上例中的时间t、里程s;有些量的数值是始终不变的,如上例中的速度60千米/小时,同时初步体验数学建模的思想.活动方式:学生思考并完成上述问题,小组交流意见,然后回答.学生解答:表中依次填写:60,120,180,240,300;关系式为:s=60t.问题二:1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元,怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,每1kg重物使弹簧伸长0.5cm,设物体质量为m kg,受力后的弹簧长度为l cm,怎样用含有m的式子表示l?设计目的:挖掘和利用实际生活中与变量有关的问题情景,让学生进一步经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.活动方式:独立思考,小组交流,个别回答,教师引导学生通过合理.正确的思维方法探索出变化规律.学生解答:1.早场电影票房收入:150×10=1500(元);日场电影票房收入:205×10=2050(元);晚场电影票房收入:310×10=3100(元);关系式:y=10x 2.挂1kg重物时弹簧长度:1×0.5+10=10.5(cm);挂2kg重物时弹簧长度:2×0.5+10=11(cm);挂3kg重物时弹簧长度:3×0.5+10=11.5(cm);关系式:l=0.5m+10问题三:1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?2.用10m长的绳子围成长方形,试改变长方形长度.观察长方形的面积怎样变化.记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律:设长方形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?设计目的:通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息.出于从具体到抽象地认识事物的考虑而设计了上述5个问题.这些问题的内容有物理问题、销售问题、几何问题等,问题的形式有填表、求值、写解析式等,都含有变量之间的单值对应关系,通过讨论这些问题不仅可以引出常量与变量的概念,而且也为后面引出变量间的单值对应关系进而学习函数的定义作了铺垫.围绕学生比较熟悉其背景的几个例子,系统地认识有关概念,有助于认识相关概念之间的联系和区别.活动方式:独立思考,小组合作,教师引导的方式进行.学生解答:1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S=πr2⇒面积为10cm2的圆半径≈1.78(cm);面积为20cm2的圆半径.52(cm)关系式:r2.因长方形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.若长为1cm,则宽为5-1=4(cm)据长方形面积公式:S=1×4=4(cm2)若长为2cm,则宽为5-2=3(cm)面积S=2×(5-2)=6(cm2)… …若长为xcm,则宽为(5-x)(cm)面积S=x·(5-x)=5x-x2(cm2)教师小结:上述问题反映了不同事物的变化过程,其中有些量(例如时间t,里程s;售出票数x,票房收入y……)的值是按照某种规律变化的.在一个变化过程中,我们称数值发生变化的量为变量(variable).有些量的数值是始终不变的,我们称它们为常量(constant).如上述问题中的速度60千米/时.票价10元,弹簧原长10cm及长方形的长、宽之和5cm……都是常量.随堂练习:请具体指出上述问题中,哪些是变量,哪些是常量?设计目的:在具体的问题情境中认识变量和常量,加深对变量和常量的理解.学生解答:(二)引导总结规律,理解函数概念;问题四:上述各问题中是否各有两个变量?同一个问题中的变量之间有什么关系?也就是说当其中一个变量取定一个值时,另一个变量是否也随之有唯一的对应值呢?设计目的:在教师的引导下,经历从具体到抽象的认识过程,理解变化过程中有两个变量,且变量之间的存在这单值对应关系,为进一步揭示函数的概念奠定基础.活动方式:教师引导,学生归纳,师生小结.教师引导:先观察问题一,观察填出的表格发现:该问题中存在两个变量时间t小时和里程s千米,并且每当行驶时间t取定一个数值,行驶里程s就随之确定一个值,例如t=1,则s=60;t=2,则s=120……t=5,则s=300.再来看问题二中的两个小问题,均满足上述特点:问题(1)中,•经计算可以发现:每当售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1500;•日场x=205,则y=2050;晚场x=310,则y=3100.问题(2)中,通过试验可以看出:每当重物质量m确定一个值时,弹簧长度l•就随之确定一个值.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm.当m=10kg时,则l =15cm,当m=20kg时,则l =20cm.继续验证,观察问题三中的两个问题,看看它们中的变量又怎样呢?问题(1)中,很容易算出,当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r随之确定一个值,它们的关系为2)中,我们可以根据题意,每确定一个长方形的一边长,•即可得出另一边长,再计算出长方形的面积.如:当x=1cm时,则S=1×(5-1)=4cm2,当x=2cm时,则S =2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当长方形长度x取定一个值时,面积S就随之确定一个值.由以上观察,我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有_______________(唯一确定的值与它对应).问题五:思考下列用图表和表格表达的问题中,两个变量之间是否同样存在上述关系?(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,•对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表设计目的:通过表格和图象等多种形式深入体会函数中存在两个变量,以及变量之间的单值对应关系,一方面有助于全面地了解变量之间的单值对应关系,进而形成对函数的较全面的认识;另一方面也为后面学习函数的三种表示方法进行了适当的准备.活动方式:思考后由学生个别作答.学生解答:通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y•都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y教师小结:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是自变量(independent variable),y是x的函数(function).如果当x=a时,y=b,那么b•叫做当自变量的值为a时的函数值.据此可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,•年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.(三)深入理解函数概念,提高问题解决能力:[活动一]判断下列问题中的变量之间是否存在函数关系.1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三.四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计目的:通过探究这样的问题可以引导学生以函数的观点重新认识已经学习过的数学内容.活动方式:小组讨论,得出结果.学生解答:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯一的y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.2.从表中两行数据中不难看出第三.四按键是1这两个键,且每个x•的值都有唯一的一个y值与其对应,所以在这两个变量中,x是自变量,y是x 的函数.关系式是:y=2x+1[活动二]例1 一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1 L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?设计目的:本节的例1包括三个小题,它们的要求分别为写函数解析式、指出自变量的取值范围和计算函数值.目的是要加强联系实际,同时也使现在所学的内容与前面所学的不等式内容联系起来,以旧带新.活动方式:独立完成,小组交流,引导解答.学生解答:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x(L)油箱中剩余油量为:(50-0.1x)L所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x L,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤500 3.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=50-0.1x得:y=50-0.1×200=30所以,汽车行驶200km时,油箱中还有30升汽油.六.目标检测设计下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.1.改变正方形的边长x,正方形的面积S随之改变.2.秀水村的耕地面积是106m2,这个村人均占有耕地面积y(m2)随这个村人数n(人)的变化而变化.设计目的:从具体的实际问题中,进一步深入理解变量、常量和函数的含义,体会“变化与对应”的数学思想.学生解答:1.正方形边长x是自变量,正方形面积S是x的函数.函数关系式:S=x22.这个村人口数n是自变量,人均占有耕地面积y是n的函数.106函数关系式:y=n七.教学反思附1:教学设计理念:变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一次飞跃.因此,设计本课时应根据学生的认识基础,创设在一定历史条件下的现实情境,使学生从中感知到变量函数的存在和意义,体会变量之间的相互依存关系和变化规律.遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析概括和抽象等的能力.同时在引导学生探索变量之间的规律、抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,并能从中提出问题、分析问题和解决问题.还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人.附2:教材范围人教版义务课程标准实验教材八年级数学上册P94—P99.二O O八年十一月三日。
19.1.1-变量与函数-教案
![19.1.1-变量与函数-教案](https://img.taocdn.com/s3/m/9e9a57ee0b1c59eef9c7b440.png)
19.1.1 变量与函数八年级科目:数学主备人:范德彪时间:年月日课时安排与说明:1课时一、教学设计1、教学目标(1)理解变量与常量、自变量与函数的含义,能指出具体问题中的常量、变量,并会用含一个变量的代数式表示另一个变量;(2)理解两个变量间的特殊对应关系,能指出由哪一个变量唯一确定另一变量,会判断两个变量是否具有函数关系,并会求自变量的取值范围;(3)通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.引导学生探索实际问题中的数量关系,让学生体会“变化与对应”的数学思想,培养学生提高分析问题和解决问题的能力。
2、内容分析(1)函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”。
方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系。
本节课是函数入门课,要从数学的角度研究变化现象,把握变化规律,首先必须准确认识变量与常量的特征,关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫.(2)基于以上分析,确定本节课的教学重点是能找出一个变化过程中的变量与常量,教学难点是能判断两个变量是否具有函数关系。
3、学情分析(1)学生的认知基础:变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系。
类似于一元一次方程,学生直知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,并没有用运动与变化的观点去体会两个变量之间相互依赖的关系。
另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.(2)学生是年龄心理特点:八年级学生具有很强的感性认知基础,活泼好动,思维敏捷,表现欲强,对一些具体的实践活动十分感兴趣,但思考问题单一,不会延伸运用。
变量与函数说课内容(与课件配套)
![变量与函数说课内容(与课件配套)](https://img.taocdn.com/s3/m/a57649d77f1922791688e879.png)
《变量与函数》说课稿各位评委、老师:大家好!我是来自虎门外语学校的黄耀兵。
今天我说课的内容是新人教版数学八年级下册第十九章第一节的内容——《变量与函数》。
说课内容我将从“教材分析、目标分析、方法分析、过程分析及评价分析”五个方面来说明。
《变量与函数》它是由常量数学转变成变量数学的一个基础概念课,它是整个初中阶段函数知识学习的基础,学生对它的“变化与对应”思想的理解也将直接影响到一次函数、二次函数、反比例函数的学习。
教参建议安排本节分六课时完成,出于考虑变量之间的相互依存关系和变化规律反映了函数的特征,是一个有机的整体,所以我将常量、变量与函数等概念的学习安排在了本节课中。
根据新课标,结合教材的特点和学生的知识现状,确定本节课的三维教学目标:(1)知识目标:①理解常量与变量.能指出具体问题中的常量、变量.②初步理解函数的定义,能判断两个变量是否具有函数关系.(2)能力目标:借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.(3)情感目标:①从学生熟悉、感兴趣的实例引入课题,学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.② 借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.教学重点、难点:重点:借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念难点:引导学生怎样理解“唯一对应”三、教法、学法分析(1)教学方法教法:采用师生互动探究式教学.函数概念具有高度的抽象性,借助学生熟悉的生活实例,引领学生经历从具体实例中抽象出常量、变量与函数的过程,初步理解抽象的函数概念.(2)学习方法利用导学案让学生通过自主探究与合作交流.在有针对性的问题中,明确研究方向,进而能够抽象出概念,抓住函数的本质“唯一对应”.(3)课前准备教师:导学案和课件学生:学习用具四、过程分析本节课我的整体教学思路是:创设情境,铺垫迁移 自主探究、合作交流 应用知识,提升能力课堂小结,分层作业评价分析,教学反思第一环节:创设情境,铺垫迁移。
初中数学变量与函数--精品教学设计
![初中数学变量与函数--精品教学设计](https://img.taocdn.com/s3/m/63f52a133968011ca30091e3.png)
变量与函数(第1课时)教学设计一、内容和内容解析1. 内容人教版《义务教育课程标准实验教科书数学》八年级下册:“19.1.1变量与函数”第1课时.2. 内容解析本节内容为《一次函数》第一课时. 在学生学习了二元一次方程和找规律的基础上,学生对变量和常量已有一些模糊的认识. 通过生活实例的感悟,由具体到抽象,抽象出量的意义,并对量进行分类得出变化的量和不变的量,归纳出变量与常量的概念. 同时在讨论问题过程中,引出变量间的单值对应关系,体会建模思想,为学习函数的定义、函数的表达方式、函数的取值范围及函数的应用做出铺垫,为《一次函数》全章的学习打下基础.根据以上的分析,本节课的教学重点确定为:通过列举生活实例,理解量的意义,逐步形成常量与变量的概念,并能指出实际问题中的常量与变量.二、目标和目标解析1. 目标(1)理解量的意义、常量与变量的概念,并能指出实际问题中的常量与变量;(2)在实际问题的探究过程中,感受生活中变量间的对应关系,学会分辨不同表达方式中的变量与常量,经历从具体到抽象、从感性认识到理性分析的思维过程,体会函数与方程、数形结合和分类讨论的数学思想,提升数学抽象和数学建模的核心素养.2. 目标解析本节内容从学生熟悉的实际问题出发,让学生体会变量间的单值对应关系,感受一个变量随另一个变量的变化而变化,渗透自变量与函数的关系,从具体到抽象,通过表格、关系式及图象让学会生认识运动过程中的变量和常量概念,进而认识相关概念的联系和区别.达成目标(1)的标志:在探究过程中,正确找到变量与常量,并找出变化规律;达成目标(2)的标志:在练习和拓展中,找到图表中隐藏的变量与常量,能读取不同的数量关系和表达方式.三、教学问题诊断分析学生在字母表示数中,接触过当字母取值变化时,代数式的值随之变化,但学生对量的意义较为模糊.学生在生活中具有对两个量之间关联的体验,如气温随时间变化等,学生对变量与常量的定义理解困难不大,但是对变化中的单值对应关系及在变化过程中寻找变量与常量较难把握,特别是函数中的“唯一确定”仅局限于通过公式求出的唯一值,对不能用公式求出值的单值对应关系难以理解.因此教学难点确定为:理解变化过程中的变量与常量,以及变量与常量的相对性.四、教学支持条件分析从学生学过的小学课文《秋天来了》,引导学生观察现实世界和日常生活中的变化现象,让学生会用“变”的眼光观察现实世界,会用数学思维思考现实世界,会用数学语言表达现实世界.以李强的活动情境为主线引出生活中的变化事例,发现生活中变化的量和不变的量,引出变量与常量,在事例中感悟一个量随另一个量的变化现象,为刻画变量间的依赖关系,形成函数概念做出铺垫.以大量生活问题题材引导学生发现生活中变化的量和不变的量,以及变量间的单值对应关系,引导学生分析、分类、归纳出变量与常量的概念,结合式子、表格和图形给学生多种变量对应关系的呈现方式,帮助学生使用变量与常量准确地表述数学的研究对象,学会用数学的语言表达和交流数学问题,积累抽象思维的经验,提升数学抽象素养。
北师版八年级上册数学《4.1函数》教案 (1)
![北师版八年级上册数学《4.1函数》教案 (1)](https://img.taocdn.com/s3/m/b85421eb6529647d272852c4.png)
【课题】北师版八年级上册第四章 一次函数第一节:函数【课程标准陈述】1.结合实例,了解函数的概念和三种表示法,能举出函数的实例.2.能确定简单实际问题中函数自变量的取值范围.【课时学习目标】1.经历从具体实例中抽象出函数概念的过程,知道函数常见的三种表示法;(重点)2.会描述函数、函数值的概念,能判断两个变量间的关系是不是函数关系.(难点)【评价活动方案】1.通过提出三个具体实例引发的问题串,引导学生合作探究自变量与因变量的对应关系,进一步概括实例的相同抽象出函数概念,概括实例的不同归纳函数常见的三种表示法.(以达到目标1)2.通过抽象、归纳、概括、交流等活动描述函数、函数值的概念,例题1及课堂小测中的变式及反例练习强化学生对函数、函数值的概念的理解.(以达到目标2)【教学活动设计】第一环节:创设情境、导入新课展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k 线图等,提醒学生思考问题:在图片中有哪些量?他们是固定不变的吗?第二环节:合作探究探究活动一:经历从具体实例中抽象出函数概念的过程,知道函数常见的三种表示法;问题1:如图是壮壮同学骑自行车上学的路程与时间的关系图像,你能获取什么信息?(目标1) (1)右图反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)10t =时,路程是多少?15t =呢?30t =呢?(3)是否在0-30分钟内,每个时间都对应一个路程? 问题2:壮壮在上学路上的文具店买了一个笔袋花了15元,又买了几只圆珠笔,每只2元,你能提出什么数学问题?(目标1)(1)本题反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)设圆珠笔支数为x ,总费用为y . 1x =时,y 是多少?5x =呢?(3)y 与x 存在什么关系?是否给定一个x ,就有一个y 与之对应?(分钟)问题3:壮壮放学后打了辆出租车回家。
这辆出租车起步价是9元(路程小于或等于3公里),超过3公里每增加1公里加收1.7元。
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版
![八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版](https://img.taocdn.com/s3/m/d63582afdaef5ef7bb0d3c07.png)
例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
初中数学《变量与函数》教案
![初中数学《变量与函数》教案](https://img.taocdn.com/s3/m/2b11665ee97101f69e3143323968011ca300f7ff.png)
初中数学《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够识别常量和变量。
2. 让学生掌握函数的定义,能够判断两个变量之间的函数关系。
3. 培养学生运用函数解决实际问题的能力。
二、教学内容1. 常量与变量的概念。
2. 函数的定义及其相关性质。
3. 函数关系的判断。
三、教学重点与难点1. 教学重点:常量与变量的概念,函数的定义及其性质。
2. 教学难点:函数关系的判断。
四、教学方法1. 采用问题驱动法,引导学生主动探究常量与变量、函数的关系。
2. 利用实例分析,让学生直观理解函数的概念。
3. 运用小组合作学习,培养学生解决实际问题的能力。
五、教学过程1. 导入新课:通过展示生活中常见的变化现象,引导学生认识常量和变量。
2. 自主学习:让学生通过教材自主学习常量与变量的概念,并尝试判断生活中的常量和变量。
3. 课堂讲解:讲解常量与变量的概念,并通过实例让学生理解函数的定义。
4. 课堂练习:设计相关练习题,让学生判断生活中的函数关系。
5. 拓展应用:让学生运用函数解决实际问题,如计算购物时的折扣等。
6. 总结反馈:对本节课的内容进行总结,收集学生反馈,为后续教学做好准备。
六、教学评价1. 课后作业:布置有关常量、变量和函数的练习题,要求学生在课后进行自主复习和巩固。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答以及合作学习的表现,了解学生的学习情况。
3. 实际问题解决:评估学生在解决实际问题时的应用能力,如购物折扣、行程规划等。
七、教学拓展1. 介绍函数在现实生活中的应用,如经济学中的需求函数、物理学中的速度与时间函数等。
2. 引导学生探究函数的图像,如直线、曲线等,并了解它们的特点和应用。
八、教学资源1. 教材:提供《变量与函数》的相关章节内容,供学生自主学习和参考。
2. 实例素材:收集生活中的实例,用于讲解和展示函数的应用。
3. 练习题库:准备不同难度的练习题,用于课堂练习和课后巩固。
八年级数学下册第19章一次函数 函数第1课时变量说课稿新版新人教版
![八年级数学下册第19章一次函数 函数第1课时变量说课稿新版新人教版](https://img.taocdn.com/s3/m/9261bdde900ef12d2af90242a8956bec0875a555.png)
变量各位领导各位老师,你们好!今天我将要为大家说课的内容九义初中数学人教版的第19章第一节第一课时《变量》首先,我对本节教材进行一些分析一、教材结构与内容简析本节内容的地位和作用:《变量》是本章的第一课,本节知识是理解函数概念的前提知识,是学习正比例函数、一次函数、反比例函数、二次函数的基础。
学好本届知识为过渡到学习本章正比例函数、一次函数起着铺垫作用。
本节内容是第一部分,因此,在本章中,占据重要的地位。
二、教学理念及学情分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识;在新的课改理念的指导下如何调动学生的学习激情和让学生自主学习、合作探究成为课堂教学的主流。
考虑到初二学生已有的认知结构心理特征 ,以及本章知识与生活和生产实践联系非常紧密,教师要抓住这一特点让学生感知数学即生活,生活即数学,同时让学生感受数学的有用性,从而更加热爱数学学习。
三、教学目标1、知识与技能:在具体情境中了解变量、自变量、因变量等概念,理解反映变量之间关系的实例;能够从表格中获得有关变量之间关系的信息;2、过程与方法:经历探索具体情境中两个变量之间关系的过程,体验变量之间的辩证关系;3、情感与价值观:在探索的过程中,感知数学即生活,培养学生参与数学活动的积极性和良好的学习态度。
四、重点、难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点重点:能从具体事件中分清什么是变量、自变量与因变量,理解因变量随自变量的变化的规律。
通过让学生自主学习与合作探究的方式突出重点难点:理解两个变量之间的依赖关系。
通过小组交流,课堂展示,和试一试,做一做的习题训练突破难点五、教法数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
我采用了启发式教学法,让学生成为课堂的主人,学生自主学习、合作探究。
从而激活课堂开启学生智慧。
六、学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
6.1函数(1)教学设计
![6.1函数(1)教学设计](https://img.taocdn.com/s3/m/0baf0b7231b765ce050814cc.png)
数学教学设计教材:义务教育教科书·数学(八年级上册)6.1 函数(1)教学目标1.通过简单实例,了解常量与变量的意义.2.通过实例,让学生多角度、多层面地认识和理解函数的意义,感受函数的多种表示形式.3.能说出一些函数的实例,并能判断两个变量间的关系是否是函数关系.教学重点1.函数概念的建立.2.判断两个变量间的关系是否是函数关系.教学难点函数概念中的常量、变量的理解及其对应关系探索.教学过程(教师)学生活动设计设大家还是个蹦蹦跳跳的孩子,随着年龄的增长,大家越高.我们生活在一个四季明显的地理位置上,随着,气温也随之变化……”让我们的生活多姿多彩,“变化”也时常给我们带来“变”引领我们去探索新知,这节课开始让我们在变感悟新知识——函数.感受变量,及变量之间内在的联系.由“变的量”实现的自然过习们先来看一个有关行程的问题.到乙地,有一辆匀速行驶的列车.地到乙地的行驶过程中,有哪些量?在这些量中有哪变化的?哪些量是不断变化的?的过程中,列车行驶的速度数值不变,甲地到乙地的变,这样的量我们称之为常量.行驶的时间,列车距起点、终点的路程不断变化,这称之为变量.我们得到两个新的概念:常量与变量的概念.变化过程中,数值保持不变的量叫做常量.变化过程中,可以取不同数值的量叫做变量.列车行驶的时间在不断变化;列车距离起点和终点的路程也在不断变化;列车行驶的速度不变;从甲地到乙地的路程不变.通过——寻找——对量——归纳生亲身经的全过程念形成的理性,加深的理解.注意举出生活中的某些变化过程,并说明其中的常量和变例如:在升旗过程中,旗杆的高度不变是常量,国旗的高度是变量.是相对于化过程而量在某一是常量,而过程中也(如当列后,速度的问题中我们看到:随着年龄的增长,大家的个子越乘车时间的增加距离目的地越来越近;随音乐播放时旗的高度越来越高……在各种变化过程中往往存在着系的变量.变化过程中探索变量与变量之间的关系.看一个波纹问题.起千层浪,水滴泛起层层波.变化中的波纹可以看作向外扩展的圆.语言描述变化中圆的面积与其半径大小之间的关系看一个水库蓄水问题.库的水位变化与蓄水量变化情况如下表所示:06 120 133 135 ……×1077.09×1071.18×1081.23×108 ……表格里获得哪些信息?低与蓄水量有什么关系?变量:波纹圆面积和半径.圆的面积随着半径的变化而变化,随着半径的确定而确定.从表中可以看出,水位为106 m时,蓄水量为2.30×107m3;水位为120 m时,蓄水量为7.09×107m3.……变量:水位和蓄水量.在水库蓄水过程中,蓄水量随着水位的升高而增大,随着水位的下降而减少,当水位稳定不利用表格,工作人员能根据观察的水位,及时报告水看搭小鱼问题.搭一条小鱼需要8根火柴,每多搭一条小鱼就要增加说出搭小鱼过程中的常量和变量.们重点讨论这两个变量间的关系:出搭n条小鱼所需的火柴根数s与小鱼条数n之间的说说你从关系式中获得的信息.变时,蓄水量也稳定不变.变量:总共需要的火柴数和所搭小鱼的条数.S=8+6(n-1),由上面的关系式可知,在搭小鱼的过程中,火柴数s随小鱼条数n的增加而增加,随小鱼条数n的减少而减少,当小鱼条数n一定时,火柴数s也保持一定.结个实际问题的共性为:每个变化过程都有两个变量,且当其中一个变量变化变量也随着发生变化;当其中一个变量确定时,另一着确定.,如果在一个变化的过程中有两个变量x和y,并且对每一个值,变量y都有唯一的值与它对应,那么我们函数,x是自变量.前面的实例(回放图片),现在可以用函数的思想来理变量间的关系了.蓄水过程中,蓄水量随着水位的升高而增大,蓄水量数;鱼的过程中,总共需要的火柴数随所搭小鱼的条数的,所用火柴根数s是小鱼条数n的函数;逐渐变化的过程中,圆的面积随着半径的变化而变化,学生在情景中感受和体会函数概念.由于触函数概习中重在概念:通过实例,让学事物的变索在这个变量之间提升认识念.半径的函数.我们可以用多种方式表示变化过程中的函数关系.举出一些类似的实例吗?固根2m长的铁丝围成一个长方形.长方形的宽为0.1 m时,长为多少?长方形的宽为0.2 m时,长为多少?个长方形的长是宽的函数吗?为什么?漏”是我国古代一种计量时间的仪器,它根据一个容漏到另一个容器中的数量来计算时间.请说出该变化几个变量,自变量是什么?示的运算程序:输入x→+2→×5→-4→输出y数x,便可输出一个相应的实数y,y 是x 的函数吗?相互交流,共同解答.解:(1)宽为0.1m时,长为1(220.1)2-⨯0.9m=;(2)宽为0.2m时,长为1(220.2)2-⨯0.8m=;(3)在这个变化过程中有两个变量“长”和“宽”,“长”随着“宽”的变化而变化;且对于“宽”的每一个值,“长”都有唯一确定的值与之对应,所以长方形的长是宽的函数.解:该变化过程中有两个变量,漏到另一容器中细沙的数量和经过的时间.其中自变量是漏到另一容器中细沙的数量.解:y是x的函数.当x变化时,变量y总有唯一值与之对应.在学生中强调“用来思考”.定义去,是种思考的最后生深入理义,可根据用.代表左边的数字,用y代表右边的数字,那么变量y 的函数?为什么?各变量之间的关系,不能构成函数关系的是( ).周长与半径;形的宽一定,它的面积与长;形的面积与周长;三角形的面积与底边长.先分析变化过程中变量间的关系(可先列出关系式),概念加以识别.A、B、C均符合;D中底边上的高也不止两个变量,所以不是函数关系.解:D.64 81结节课的学习,对自己说,你有哪些收获?一起回顾一下今天我们这节课的内容.我们首先感受了生活中反映变化过程的几个事例,并常量和变量的概念;们关注了一些只含有两个变量,并且当一个变量确定量也随之唯一确定的实际的变化过程,由此引入了函们学会用函数的思想认识事物运动变化的过程.尝试对知识方法进行归纳、提炼、总结,形成理性的认识,内化数学的方法和经验.小结助学生梳脉络,而且提升认识构的作用自己三方行知识梳惑,很好的的主观能培养学生问题意识初学者,由概念缺乏统、深刻握,所以小脱离教师纳.置身边函数的例子,并思考它们可以用怎样的形式进行总结本节课的内容,提出新的思考.。
变量与函数说课稿5篇
![变量与函数说课稿5篇](https://img.taocdn.com/s3/m/4f218a3aae1ffc4ffe4733687e21af45b307fe3a.png)
变量与函数说课稿5篇变量与函数说课稿【篇1】新课标指出:数学课程要面对全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。
函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。
又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。
函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。
二、说学情接下来谈谈学生的实际情况。
新课标指出学生是教学的主体,所以要成为符合新课标要求的老师,深化了解所面对的学生可以说是必修课。
本阶段的学生已经具备了肯定的分析能力,以及逻辑推理能力。
所以,学生对本节课的学习是相对比较简单的。
三、说教学目标依据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)学问与技能理解函数的概念,能对详细函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法通过实例,进一步体会函数是描述变量之间的依靠关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
(三)情感态度价值观在自主探究中感受到胜利的喜悦,激发学习数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说肯定要突出重点、突破难点。
而教学重点的确立与我本节课的内容确定是密不可分的。
那么依据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。
本节课的教学难点是:符号“y=f(x)”的`含义,函数定义域、值域的区间表示,从详细实例中抽象出函数概念。
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册
![19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册](https://img.taocdn.com/s3/m/91acf78d77eeaeaad1f34693daef5ef7ba0d12fe.png)
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
初中数学人教版《变量与函数》优质公开课1
![初中数学人教版《变量与函数》优质公开课1](https://img.taocdn.com/s3/m/dd1615deaaea998fcd220ec3.png)
(1)请写出弹簧的总长y(cm)与所挂物体的质量x(kg)之间的函数关系式; (2)当所挂物体的质量是10 kg时,弹簧的总长是多少? 解:(1)y=x+12 (2)当x=10时,y=17,故弹簧的总长是17 cm
17.某学校组织学生到离校6 km的光明科技馆去参观,学生小明因事没能
乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的
17.某学校组织学生到离校6 km的光明科技馆去参观,学生小明因事没能乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下表:
A.s=120-30t(0≤t≤4)
13.小亮利用计算机设计了计算程序,输入和输出的数据如下:
那么当输入的数据是 8 时,输出的数据是( C )
A.681
18.木材加工厂堆放木料的方式按如图所示堆放,随着层数的增加,物体
总数也会变化. (1)根据变化规律填写下表: (2)求出y与n的函数关系式;
层数n 物体总数y
1234… …
(3)当物体堆放的层数为10时,物体总数为多少?
解:(1)1,3,6,10 (2)y=n(n2+1) (3)55
合作探究
新知 函数的概念
1.函数 一般地,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值 与其对应,那么我们就说x是自变量,y是x的函数.
2.判断一个关系是否是函数关系的方法
①看是否在一个变化过程中;
②看是否存在两个变量;
③看每当变量确定一个值时,另外一个变量是否都有唯一
B.683
C.685
D.687
输入 1
2
3
4
5
…
输出
人教版八年级数学下册 第19章 19.1.1 变量与函数(第1课时)说课稿
![人教版八年级数学下册 第19章 19.1.1 变量与函数(第1课时)说课稿](https://img.taocdn.com/s3/m/f772c13b650e52ea5518985d.png)
变量与函数(第1课时)说课尊敬的各位领导和同仁们:大家好,今天我说课的内容是《变量与函数》第二课时。
下面我从教材分析、教法学法、学情分析、教学流程、板书设计、课后反思六个方面进行设计说明。
第一部分:教材分析(一)说教材地位和作用本节课是义务教育课程标准人教版数学八年级下册第十九章一次函数《变量与函数》中第二节课的内容。
变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一次飞跃。
遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则这一部分对于初中生来说是一块新的领域,但涉及的内容又与生活的实际联系非常密切,可以补充大量的实例来充实本课,进而吸引学生的学习兴趣,让学生感受数学在生活中可以广泛的应用到。
所举的实例也都能在认识函数的时候用到,有助于教师帮助学生在现实情境中,感受函数作为刻画现实世界的模型的意义,为下一节课奠定重要基础。
(二)说教学目标综上分析,本课时教学目标制定如下:教学目标:1.了解函数的概念。
2.能结合具体实例概括函数概念。
3.在函数概念形成的过程中体会运动变化与对应的思想。
(三)教学重点和难点【学习重点】概括并理解函数概念中的单值对应关系。
【学习难点】用含有一个变量的式子表示另一个变量.以及结合实际问题表示自变量的取值范围。
第二部分:教法与学法分析:1.说教法方法与手段:本节课从学生熟悉的实际问题开始,将实际问题“数学化”,有利于学生体会与实验,思考与探索。
在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
采用教师引导,学生自主探索、合作交流的教学方式,让学生充分发挥聪明才智,去发现问题,提出问题,进而分析、解决问题,充分调动学生的积极性,培养学生的应用意识。
2.说学法根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考问题、发现问题,充分发挥学生的主体作用,让学生成为学习的主人。
人教版数学八年级下册19.1.1《变量与函数》说课稿
![人教版数学八年级下册19.1.1《变量与函数》说课稿](https://img.taocdn.com/s3/m/7198e61db207e87101f69e3143323968001cf440.png)
人教版数学八年级下册19.1.1《变量与函数》说课稿一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,属于初中数学的函数单元。
本节内容主要介绍了变量的概念,函数的定义及其表示方法,旨在让学生理解变量之间的关系,掌握函数的基本概念和表示方法。
二. 学情分析学生在学习本节内容前,已经学习了代数基础知识,对代数表达式有一定的理解,但对于变量的概念和函数的定义可能还比较陌生。
因此,在教学过程中需要引导学生理解变量之间的关系,逐步引入函数的概念,并通过实例让学生掌握函数的表示方法。
三. 说教学目标1.知识与技能目标:让学生理解变量之间的关系,掌握函数的定义及其表示方法,能够识别和表示简单的函数关系。
2.过程与方法目标:通过观察、分析实例,培养学生的抽象思维能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.教学重点:函数的定义及其表示方法。
2.教学难点:理解变量之间的关系,掌握函数的表示方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究,积极参与课堂活动。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的实例,引导学生观察和分析变量之间的关系,引出函数的概念。
2.探究新知:让学生通过小组合作,探讨函数的定义及其表示方法,教师进行引导和讲解。
3.巩固新知:通过练习题让学生巩固函数的概念和表示方法,教师进行点评和指导。
4.应用拓展:让学生运用函数的知识解决实际问题,提高学生解决问题的能力。
5.课堂小结:对本节课的内容进行总结,强调函数的概念和表示方法。
七. 说板书设计板书设计要清晰、简洁,能够突出函数的概念和表示方法。
主要包括以下几个部分:1.变量与函数的定义2.函数的表示方法3.函数的性质八. 说教学评价教学评价主要包括学生的学习效果评价和教师的教学评价两个方面。
变量与函数第一课时教案doc初中数学
![变量与函数第一课时教案doc初中数学](https://img.taocdn.com/s3/m/a37c3d4d53d380eb6294dd88d0d233d4b14e3f24.png)
变量与函数第一课时教案doc初中数学教师学科数学年级八年级课题§17.1.1 变量与函数〔1〕时间2005年3月17日三维目标知识与技能(1) 把握常量和变量、自变量和因变量〔函数〕差不多概念;(2)了解表示函数关系的三种方法:解析法、列表法、图象法, 并会用解析法表示数量关系.(2)了解表示函数关系的三种方法: 解析法、列表法、图象法,并会用解析法表示数量关系.(2)了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.过程与方法(1) 通过实际咨询题, 引导学生直观感知, 领会函数差不多概念的意义;(2.引导学生联系代数式和方程的相关知识,连续探究数量关系,增强数学建模意识,列出函数关系式.(2) 引导学生联系代数式和方程的相关知识, 连续探究数量关系, 增强数学建模意识, 列出函数关系式.(2) 引导学生联系代数式和方程的相关知识,连续探究数量关系,增强数学建模意识,列出函数关系式.情感、态度与价值观经历对有关的图形进行观看、分析、观赏、交流等活动, 进展初步的审美能力, 增强对图形观赏的意识。
教学重点函数的定义以及运用方程的方法列出具体实例中的两个变量间的关系.教学难点对函数概念的明白得, 讲出生活实际中有函数关系的量的实例.关键点函数差不多概念教具学具课件、刻度尺等教学环节知识内容教师活动学生活动设计意图一、回忆与探究在学习与生活中, 经常要研究一些数量关系, 先看下面的咨询题. 〔让B层的学生回答以下咨询题,并适当加以鼓舞〕学生回答以下咨询题,并让学生互相补充创设咨询题情形引导学生回忆,并巩固所咨询题1 如图是某地一天内的气温变化图.学知识教学环节知识内容教师活动学生活动设计意图看图回答:(1)这天的6时、10时和14时的气温分不为多少?任意给出这天中的某一时刻, 讲出这一时刻的气温.(2)这一天中, 最高气温是多少?最低气温是多少?(3)这一天中, 什么时段的气温在逐步升高?什么时段的气温在逐步降低?解(1)这天的6时、10时和14时的气温分不为-1℃、2℃、5℃;(2)这一天中, 最高气温是5℃. 最低气温是-4℃;(3)这一天中, 3时~14时的气温在逐步升高. 0时~3时和14时~24时的气温在逐步降低. 从图中我们能够看到, 随着时刻t〔时〕的变化, 相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳咨询题2 银行对各种不同的存款方式都规定了相应的利率, 下表是2002年7月中国工商银行为〝整存整取〞的存款方式规定的年利率: (让A层学生举出生活中实例并适当的加以鼓舞)观看上表, 讲讲随着存期x的增长, 相应的年利率y是如何变化的.观看上表,讲讲随着存期x的增长,相应的年利率y是如何变化的.观看上表,讲讲随着存期x的增长,相应的年利率y是如何变化的.让学生充分摸索,互相交流,并让学生代表回答以下咨询题解随着存期x的增长,相应的年利率y也随着增长.学生在教师引导下主动学习并积极思考相关咨询题咨询题3 收音机刻度盘的波长和频率分不是用教师巡视全班,对有困难的学生加以点拨指导,对学生摸索,探究交流,并尝试解题探究新知2米(m)和千赫兹(kHz)为单位标刻的. 下面是一些对应的数值: 学生交流及反馈情形加以总结并引导学生得出结论观看上表回答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大, 频率f就________.(1) l 与 f 的乘积是一个定值, 即lf=300 000,或者讲.(2)波长l越大, 频率f就越小.学生在教师引导下主动学习并积极思考相关咨询题,并作出概括。
初中数学初二数学上册《函数》教案、教学设计
![初中数学初二数学上册《函数》教案、教学设计](https://img.taocdn.com/s3/m/42b7de56bb1aa8114431b90d6c85ec3a87c28bec.png)
3.多元化教学方法,提高教学效果:
a.采用问题驱动法,引导学生自主探究,发现函数的性质。
b.利用信息技术,如几何画板、Excel等软件,辅助教学,让学生ቤተ መጻሕፍቲ ባይዱ观地观察函数图像的变化。
1.什么是函数?它与我们之前学过的数学概念有什么联系和区别?
2.函数在现实生活中有哪些应用?它有什么作用和价值?
3.我们如何表示和描述函数?有哪些方法可以表示函数?
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.给出函数的定义,解释函数的概念,让学生理解函数是一种特殊的关系,描述两个变量之间的依赖关系。
3.学生在数形结合方面的能力。函数的学习涉及图像和解析式的结合,部分学生可能在这方面的能力较弱,需要加强训练。
4.学生的合作交流能力。在教学过程中,教师应注重培养学生的合作交流能力,提高学生的小组合作效率。
针对以上学情,教师应结合学生的实际情况,采用多样化的教学策略,帮助学生克服学习难点,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.函数概念的理解:函数是描述两个变量之间依赖关系的数学模型,对于初二学生来说,理解函数的定义及其内涵是本章学习的重点和难点。如何让学生从具体的例子中抽象出函数的一般规律,形成对函数的准确理解,是教学中的关键。
2.函数图像的识别与分析:掌握不同类型函数的图像特点,能够通过图像分析函数的性质,是本章学习的另一个重点。特别是一次函数、二次函数的图像及其变化规律,需要学生通过观察、思考、实践来深入理解。
初中数学_变量与函数教学设计学情分析教材分析课后反思
![初中数学_变量与函数教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/22c0338c76eeaeaad1f33098.png)
19.1【变量与函数】学习目标:知识与技能:1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;2、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;3、会根据函数解析式和实际意义确定自变量的取值范围。
情感态度价值观:通过学习函数概念,向学生渗透由特殊到一般、由具体到抽象、数形结合的思想方法,感受现实生活中函数的普遍性。
重点:了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。
难点:函数概念的理解;函数关系式的确定。
教学过程:一、欣赏图片,感知事物变化二、新课探究过程(一)<问题库>问题1:(行程问题)汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.(1)请根据题意填表:(2)你能用含t的式子表示s吗?(3)在这个问题中有哪些量?独立思考合作探究问题2:(销售问题)《齐鲁晚报》每份售价是0.5元,小明用10元钱如果购买了报纸x份,所剩钱数为y元.你能用含x的式子表示y吗?问题3:(面积问题)“一石激起千层浪.”在圆形水波慢慢扩大的过程中,若圆的半径为r,面积为s.怎样用含r 的式子表示s?思考:①填写下表,在问题2,3中又有哪些量?②观察问题2、3,它们又有哪些量? ③你能给它们分类吗?依据是什么? (二)充分感知 形成概念 归纳:知识运用 巩固新知(一)1.一辆汽车从A 地开往相距100公里的B 地,若用v 表示速度,t 表示时间,在这个过程中,用含t 的式子表示v 应为___,常量是 ,变量是 。
变式题:若从A 地到B 地的距离s 一定,若用v 表示速度,t 表示时间,在这个过程中,常量是 ,变量是 。
2.你能列举一些生活中变化的实例吗?并指出其中的变量或常量. (三)问题引申 深入探究回顾前三个问题,观察 探究:这三个式子有什么共同特征: ①每个问题中都出现了__个变量。
②如问题2:y=10-0.5x 中当x=2时,y 有没有值和它对应,有几个?当x=3,4…时呢?③用同样的方法分析问题3,在同一个问题中的变量之间有什么联系? 归纳总结 形成概念:知识运用 巩固新知(二)指出前面三个问题中的自变量与函数.1.“行驶问题”中s=60t,对于t 的每一个值,s 都有 的值与其对应,所以 是自变量,_是_的函数.当t=5时,函数值为__.2.“销售问题”中y=10-0.5x ,对于x 的每一个值,y 都有 的值与其对应,所以 是自变量, 是 的函数.当t=10时,函数值为_.3.“面积问题”中 s= π r ² ,对于r 的每一个值,s 都有 的值与其对应,所以 是自变量, 是 的函数.当r=7时,函数值为__.(四)例题分析:例. 汽车油箱中油汽油50L.如果不再加油,那么油箱中所剩下的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km. (1)写出y 与x 的函数关系式.(2)汽车行驶200km 时,油箱中还剩多少汽油?思考:在这个函数关系式中,自变量x 的取值有限制吗?(五)快乐套餐(当堂检测) 1.小王计划用100元钱买乒乓球,所购买的个数w(个)与单价 n(元)的关系式中( ).A.100是常量,W 、n 是变量B.100、W 是常量,n 是变量C.100、n 是常量,W 是变量D.无法确定变式题:某型号的汽车在路面上的制动距离其中变量是( ).A. S ,vB. S ,C. SD. v2.下列函数中,当x=2时,函数值等于4的是( ).n W 100=2562v S =2v 1.+=x y A 2.-=x y B 22.-=x y C y D 8.=3. 下列关系式中,y 不是x 的函数的是( ).4.小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.设x 个月后小张的存款数为y,试写出小张的存款数与从现在开始的月份数之间的函数关系式 ,其中常量是 ,变量是 ,自变量是 , 是 的函数.(六)回顾总结 归纳提升回顾这节课的学习历程,你想和大家说点什么…… “知识树” (七)布置作业 1.课本P81习题19.1第1,2,4,5,7题 2.拓展作业:自己编一道有关函数关系的题目,让同桌写出函数关系式,并指出自变量、函数.【学情分析】本章是在前面学习了利用方程知识来解决实际问题的基础上,进一步学习变量之间的关系,让学生初步体会函数的概念。
人教版初二数学下册19.1变量与函数的导学案
![人教版初二数学下册19.1变量与函数的导学案](https://img.taocdn.com/s3/m/af5f8ea8c5da50e2524d7fc5.png)
19.1变量与函数第一课时导学案值?上面的三个问题中,有什么共同特点?(1) 有两个变量:①时间 t 、相应的高度 h ;②层数n 、物体 总数y ;③汽车速度v 、滑行距离s .(2) 如果给定其中一个变量 (自变量)的值,相应地就确定了另 一个变量(因变量)的值(唯一的).(3) 为了符合实际,两个变量都有相应的变化范围.1.函数的概念:一般地,在某个变化过程中,有两个变量 x和y ,如果给定一个 x 值,相应地就确定了一个 y 值,那么我 们称y是x 的函数(function),其中x 是自变量,y 是因变量.2•函数三种表达方式:(1) 用数学式子表示函数的方法叫做解析法. (2) 用图象来表示函数的方法是图象法.(3) 把自变量x 的一系列值和函数 y 的对应值列成一个表来 表示函数的方法叫做列表法.3 .理解函数的概念应抓住以下两点:(1) 函数不是某个具体数,它是指某一变化过程中两个变量 之间的关系.(2) 判断两个变量是否有函数关系不是看它们之间是否有关 系式存在,更重要地看对于 x 的每一个确定的值, y 是否有唯一确定的值和它对应.考考你•判断:下列各变量之间的关系,能不能构成函数关系?(1). 圆的周长与半径;( )⑵. 正方形的面积与边长; ( ) ⑶. 长方形的面积与长方形的长;( ) ⑷.关系式y= x 中,y 是x 的函数;() 问题三、瓶子或罐头盒等圆柱形的物体,常常如下图那样堆 探索 新知 放。
随着层数的增加,物体的总数是如何变化的?层数 n12345物体总数 y• •其中对于给定的每一个层数 n ,物体总数 y 对应有几个现不同的特 点给予肯定, 能发现越多 越好,给学生 一个充分自 由思考的空 间教师提问, 学生独立思考 再合作交流得 岀函数定义老师解释函数 的定义并强调 函数概念应注 意的地方,然后 介绍函数的表 示方法。
学生理解记忆⑸.关系式y = ±x中,y是x的函数。
沪科初中数学八年级上册《12.1 函数》精品教案 (1)
![沪科初中数学八年级上册《12.1 函数》精品教案 (1)](https://img.taocdn.com/s3/m/a017bf74852458fb770b56f8.png)
12.1 函数第1课时函数(一)教学目标【知识与技能】1.掌握常量、变量的概念.2.能辨别一个关系中的常量和变量、自变量和因变量.3.能识别一个关系式是不是函数.【过程与方法】1.经历观察、分析、思考、总结的过程,发展观察推理能力和清晰地表达自己观点的能力.2.感知变量对数学问题的描述、研究的作用.3.理解一个简单的实际应用问题的数学表达方式,使学生将实际问题和数学相联系.【情感、态度与价值观】1.通过让学生共同思考实际生活中的例子让学生参与到教学活动中来,培养学生的集体意识.2.让学生自己思考贴近生活的例子,激发学生的学习兴趣.3.让学生感受数学与生活息息相关.4.通过变量、常量概念的引入,让学生意识到数学是在不断发展的,意识到事物是不断发展变化的.重点难点【重点】理解常量、变量的概念,判断一个数量关系是否是函数.【难点】理解函数的概念.教学过程一、创设情境,导入新知师:你还记得汽车在匀速行驶时,路程和速度、时间之间的关系吗?生:记得,路程=速度×时间.师:好.我们现在来看这样一个问题.教师多媒体出示(问题1):汽车以50千米/时的速度匀速行驶,它行驶的路程用s表示,时间用t表示,根据刚才那个公式,你能得到s和t的什么数量关系?生:s=50t.师:对.这里面有哪些量?生:路程、速度和时间.师:这道题中,速度是具体的一个量,是多少呢?生:50.师:对.这里面有三个量:路程、50和时间.二、合作探究,获取新知教师多媒体出示(问题2):时间t/min 0 1 2 3 4 5 6 7 …海拔高度1800 1830 1860 1890 1920 1950 1980 2010 …h/m同学们看这个图和相应的表格,上面反映的有几个量?学生思考后回答:两个.师:哪两个?生甲:时间.生乙:气球上升到达的海拔高度.师:同学们回答得很好!你们再观察一下,热气球在这个上升过程中,平均每分钟上升了多少米?生:30米.师:你能计算出当t=3min和t=6min时热气球到达的海拔高度吗?生:能,3分钟时为1 890米,6分钟时为1 980米.师:很好.教师多媒体出示(问题3):师:在这个问题中,有哪几个量?生:两个,时间和负荷.师:你能说出这一天中任意一个时刻的负荷是多少吗?如果能的话,4.5h时和20h时的负荷分别是多少?学生测量后回答:能.4.5h时是10×103兆瓦,20h时是17×103兆瓦.师:用科学记数法怎样表示?生:4.5h时是1.0×104兆瓦,20h时是1.7×104兆瓦.师:同学们回答得很好!你们是怎么找到对应的数据的呢?生:根据时间对应的负荷得到的.师:很好!这一天的用电高峰和用电低谷时的负荷分别是多少?它们各是在什么时刻达到的?学生测量后回答:用电高峰时的负荷是1.8×104兆瓦,在13.5h时达到;用电低谷时的负荷是1.0×104兆瓦,在4.5h时达到.师:我们再来看这样一个例子.教师多媒体出示(问题4):汽车在行驶过程中由于惯性的作用刹车后仍将滑行一段距离才能停住.某型号的汽车在路面上的刹车距离sm与车速vkm/h之间有下列经验公式:s=这个式子中涉及了哪几个量?生甲:刹车距离、车速.生乙:256.师:当车速为60km/h时的刹车距离是多少呢?结果保留一位小数.学生计算后回答:14.1km.师:在第一个问题中,速度一直是50千米/时,我们把不变的50称为常量;变化的s和t称为变量,其中t是自变量,s是随着时间t的变化而变化的,s是因变量.下面我们看看其他三个问题中,哪些是常量,哪些是自变量,哪些是因变量?生甲:第二个问题中,30是常量,时间是自变量,海拔高度是因变量.生乙:第三个问题中,没有常量,时间是自变量,负荷是因变量.生丙:第四个问题中,256是常量,车速是自变量,刹车距离是因变量.师:很好!自变量和因变量之间有没有对应的关系呢?生:有.师:由前面的探究,我们能得出自变量和因变量在数量上有怎样的对应关系?生:自变量取一个值,根据它们之间的关系,因变量就有相应的一个值.师:很好!教师板书并口述定义:一般地,设在一个变化过程中有两个变量x、y,如果对于x在它允许的取值范围内的每一个值,y 都有唯一确定的值与它对应,那么就称x是自变量,y是x函数.师:在这个定义中,我们要注意“唯一确定”这四个字,“唯一”要求只有一个,“确定”要求它们的关系是确定的,不能是未明确的、模糊的.根据函数的定义,你能说出以上四个问题中哪一个量是哪一个量的函数吗?生甲;问题1中行驶路程s是行驶时间t的函数.生乙:问题2中热气球到达的海拔高度h是时间t的函数.生丙:问题3中负荷y是时间t的函数.生丁:问题4中刹车距离s是车速v的函数.师:大家回答得很好!三、练习新知师:我们现在来看这样一个例子.教师多媒体出示并口述:下列等式中,y是x的函数的有.①x+y=0;②y=;③y=x2;④x=y2;⑤y=|x|;⑥ x=|y|;⑦y=;⑧y2=4x.学生思考后回答,然后集体订正.y是x的函数的有①②③⑤⑦.四、课堂小结师:你今天学习了哪些新知识?有什么收获?生:学习了常量、变量、自变量、因变量、函数.教师补充完善.教学反思课程改革的关键是教师观念的改变,重视学生的主体作用,强调让学生经历学习的过程,让学生真正成为学习的主人.教师不应该仅仅是课程的实施者,而且应该成为课程的创造者和开发者.通过让学生回顾小学学过的一个公式,引入本节课,同时带领学生更深入地认识两个量之间的关系,并引入常量、变量、自变量、因变量等概念.而函数是两个变量之间的关系,它们之间是怎样的一种关系呢?对自变量取的一个值,因变量有唯一确定的值与之对应.这点要向学生讲清楚,学生理解了就能判断一个变量是不是另一个变量的函数.第2课时函数(二)教学目标【知识与技能】1.会用列表法表示函数.2.会将一个简单的实际应用问题抽象成函数.3.会求函数自变量的取值范围.4.给定自变量,能求出函数值.【过程与方法】1.经历用列表法和解析法表示函数的过程.2.通过将一个简单的实际应用问题抽象成数学问题使学生将理论和实际相联系.【情感、态度与价值观】1.通过让学生选用合适的方法表示两个变量之间的关系,让学生发挥主观能动性,独立思考.2.让学生参与到教学活动中来,激发学生的参与感和集体意识.3.让学生观察、描述发现的问题,培养学生表述自己思想和归纳概括、收集信息的能力.4.让学生思考贴近生活的例子,激发学生的学习兴趣.重点难点【重点】用解析法表示函数,求函数自变量的取值范围.【难点】建立一个实际问题的数学模型.教学过程一、创设情境,导入新知师:上节课,我们学习了一个重要的概念——函数,同学们还记得它的内容吗?学生回答.师:大家说得很好,函数是一个重要的数学概念,这节课我们将更深入地研究它.二、合作探究,获取新知教师多媒体出示上节课的问题2:上节课我们在问题2中用表格表示热气球上升到的海拔高度与时间数值之间存在的关系,这种通过列出自变量的值与对应的函数值的表格来表示函数关系的方法叫做列表法.学生熟记.教师多媒体出示上节课的问题4.这是另一种表示函数的方法,是用s和v之间的函数关系式来表示的,这种用数学式子表示函数关系的方法叫做解析法.你从中读出了什么信息?你能把问题2中表格反映的情况用语言叙述一下吗?学生思考后回答:能.热气球的初始海拔高度是1 800米,每分钟上升30米.师:很好!它是匀速上升的吗?生:是.教师多媒体出示上节课中的问题1.你能仿照这个匀速运动的例子写出热气球到达的海拔高度h和时间t之间的关系吗?注意:这里h 是初始高度和上升高度的和,上升高度相当于热气球上升的路程.学生思考后回答:能.h=1 800+30t.师:很好!一般地,我们按自变量的降幂排列,就是写成h=30t+1 800.这说明同样一个问题,它的描述方式可以不止一种,我们可以选用适当的方式来表示,也可以把一种表示方式描述的问题用另一种表示方式来写.教师多媒体出示上节课介绍的函数的定义:一般地,设在一个变化过程中有两个变量x、y,如果对于x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数.师:同学们,这里要求在自变量的允许范围内,就是说自变量是有范围的,在哪些情况下自变量不是所有实数都可以取呢?谁能说说我们学习过的式子中哪些式子的取值有限制?生:分母不能为零,开平方时被开方数应该大于等于零.师:对.所以我们在用解析法表示时,要考虑自变量的取值范围.在实际应用中,除了要保证这个式子有意义,还要求它有实际意义.三、练习新知教师多媒体出示:【例1】求下列函数中自变量x的取值范围:(1)y=2x+4; (2)y=-2x2;(3)y=; (4)y=.解:(1)x为全实体实数.(2)x为全实体实数.(3)x≠2.(4)x≥3.【例2】当x=3时,求下列函数的函数值:(1)y=2x+4; (2)y=-2x2;(3)y=; (4)y=.解:(1)当x=3时,y=2x+4=2×3+4=10.(2)当x=3时,y=-2x2=-2×32=-18.(3)当x=3时,y===1.(4)当x=3时,y===0.【例3】一个游泳池内有水300m3,现打开排水管以每小时25m3的排出量排水.(1)写出游泳池内剩余水量Qm3与排水时间th间的函数关系式;(2)写出自变量t的取值范围;(3)开始排水后的第5h末,游泳池中还有多少水?(4)当游泳池中还剩150m3时,已经排水多少小时?解:(1)排水后的剩水量Q是排水时间t的函数,有Q=300-25t=-25t+300.(2)由于池中共有300m3水,每小时排25m3,全部排完只需300÷25=12(h),故自变量t的取值范围是0≤t≤12.(3)当t=5时,代入上式,得Q=-5×25+300=175(m3),即第5h末,池中还有水175m3.(4)当Q=150时,由150=-25t+300,得t=6(h),池中还剩水150m3时,已经排水6小时.四、课堂小结师:今天你学习了什么新的内容?生:学习了函数的两种表示方法、自变量的取值范围、求函数值.教师补充完善.教学反思本节课通过让学生回顾上节课的两个例子,向学生介绍函数的两种表示方法:列表法和解析法.在解析法中强调了不是所有函数的自变量都可以取全体实数,特别是在应用题中,要考虑自变量的取值范围.还学习了已知自变量的一个值求相应的函数值.需要注意的是自变量取值范围的限制主要有分母不能为零和开平方时被开方数不能为负两种情况,有时两种情况会同时出现,这两个条件都要满足.教学设计中,始终把对知识的学习与师生的共同活动、交流相结合,把对知识的理解放置在具体情景中,采用了多种形式的学习活动,给学生提供足够的、自主的空间和活动机会,让学生动手、动脑进行探索.第3课时函数(三)教学目标【知识与技能】1.会用图象法表示函数.2.知道画函数象的步骤,即列表、描点、连线.【过程与方法】经历用图象法表示函数的过程,提高作图能力.【情感、态度与价值观】1.通过将函数用图象表示出来,将数和形结合起来,使本章内容和上一章的内容也结合起来,让学生体会到数形结合思想和上一章知识的关联及数学知识环环相扣的特点.2.将函数用图象表示出来,使函数显得更生动形象,使学生易于接受.重点难点【重点】用图象法表示函数.【难点】理解几个点的连接与函数图象之间的关系.教学过程一、创设情境,导入新知师:我们上一节课学习了函数的两种表示法,你们还记得是什么吗?生:记得,是列表法、解析法.师:对.但有些函数关系很难写出它们的函数关系式,而数据又多,用列表法显得繁琐又不够形象,因此我们用图象来表示.本节课我们就来探究一种表示函数的方法——图象法.二、合作探究,获取新知师:我们用图象法除了可以表示列表法和解析法不能表示的函数关系外,还能表示出它们能表示的、不太复杂的函数关系.比如这样一个解析式y=2x,我们现在用图象把它表示出来.请大家先填写下表.教师多媒体出示:x -3 -2 -1 0 1 2 3 y学生填表.师:我们在上一章讲过,有序实数对(x,y)与平面直角坐标系中的点是一一对应的,且学习了已知点的坐标以及怎样把它在坐标平面上描出来,现在请大家在方格纸上描出这些点.学生描点.师:请同学们观察这些点,它们是怎样分布的呢?生:大致在一条直线上.师:很好,大家的观察能力很强!我们现在把它们连接起来,用直线还是线段呢?生:直线.师:为什么?学生思考.师:我提示一下,从自变量的取值范围去考虑.生:自变量x的取值范围是全体实数,直线两端是无限延伸的,代表没有表示出来的还有很多点.师:大家非常棒!教师边操作边讲:我现在用一条直线把这些点连接起来.教师板书作图的过程:师:现在我们画出了函数y=2x的图象.大家注意到没有?我们用几步完成了这个过程?生:三步.师:哪三步?同学们能不能把每步用两个字概括一下?生:列表、描点、连线.师:大家说得很好!描出的点越多,图象越精确,但一般我们只选取一部分点.现在我们作的图自变量取值范围是全体实数时,一般在原点左右各选取两三个点,加上原点,用这几个点来画图.三、例题讲解【例1】画出函数s=的图象.(1)列表:因为这里v≥0,我们分别取v=0、10、20、30、40,求出它们对应的s值,列成表格:v/(km·h-1) 0 10 20 30 40 …s/m 0 0.4 1.6 3.5 6.3 …(2)描点:在坐标平面内描出(0,0),(10,0.4),(20,1.6),(30,3.5),(40,6.3)等点.(3)连线:将以上各点按照自变量由小到大的顺序用平滑曲线连接,就得到了s=的图象,如图所示.【例2】已知某弹簧的自然长度为5cm,已知它所挂物体的质量每增加1kg,弹簧就伸长0.25cm,设所挂重物的质量为xkg,弹簧的长度为ycm,允许挂重物不超过10kg,求y关于x的函数表达式,并画出图象.教师找一名学生板演,其余同学在下面做,然后集体订正.教师多媒体出示:y关于x的函数为:y=0.25x+5,0≤x≤10.图象为:四、练习新知如图,下列各曲线中哪些能够表示y是x的函数?你能说出其中的道理吗?学生思考,讨论.生甲:(1)不是.生乙:(1)是.师问生甲:(1)为什么不是函数?生甲:(1)在x>0时没有图象.师:没有图象表示此函数在x>0的范围内没有定义.而y是x的函数要求对于x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,就是说我们只看它有定义的部分.生甲:哦,那么(1)是函数.师:(2)是函数吗?生:是.师:(3)呢?生:……师:从函数的定义出发考虑.生:不是.师:为什么?生:除了x轴上的两点,自变量取值范围内的其他的每一个x值都有两个y与它对应.师:你回答得很好!(4)呢?这个图象对应的是不是函数?生:不是.师:为什么?生:有一些x值有2个甚至更多个y值与它对应.师:你回答得很好!五、课堂小结师:今天你学习了什么新的内容?生:学习了函数表示法中的图象法、函数图象的画法.师:画函数图象的步骤是什么?生:列表、描点、连线.教学反思本节课通过让学生回顾本章第一节表示函数的另一种方法——图象法,还向学生介绍了这种表示方法的优点,并示范了作函数图象的过程,指出了图象法的三个步骤:列表、描点、连线,让学生掌握了表示函数关系的又一工具.在列表时要考虑到自变量的取值范围,在刻度的选取时要具体问题具体分析,有的起始值较大且变化量小时,前面一部分用折线表示;当x、y只取正值时就不画x轴及y 轴的负半轴.第4课时函数(四)教学目标【知识与技能】能读出函数图象里的信息,会分析图象信息.【过程与方法】1.经历观察函数图象,读出图中信息,提高阅读和提取信息的能力.2.体会和学习数形结合的数学思想.【情感、态度与价值观】1.通过让学生读出函数图象的信息,把数和形结合起来,将图象“说出来”,让学生体会到了数形结合思想.2.通过“翻译”图象的过程,让学生体验了坐标系的用途和数学的重要性,提高学生学习的主动性.重点难点【重点】读出图象里的信息【难点】分析函数图象中的信息.教学过程一、创设情境,导入新知师:在上节课中,我们学习了函数图象的画法,你还记得有哪几个步骤吗?生:记得.列表、描点、连线.师:很好!如果给出了函数的图象,我们也要能读出其中的信息.二、合作探究,获取新知教师多媒体出示教材思考题中的图:师:图中有哪两个变量?生:时间和体温.师:哪个是自变量?哪个是因变量?生:时间是自变量,体温是因变量.师:在这一天中此人的最高体温是多少?最低体温是多少?分别是在什么时刻达到的?学生用刻度尺测量后回答.生甲:最高体温是36.8℃,在18h时达到.生乙:最低体温是35.9℃,在4h时达到.教师多媒体课件出示课本上的几个练习题并找学生回答,共同纠正.三、举例探讨,深化理解教师多媒体出示:一艘轮船在甲港与乙港之间往返运输,只行驶一个来回,中间停靠丙港,下图是这艘轮船离开甲港的距离随时间的变化而变化的曲线.学生观察图象.师:轮船从甲港(O点)出发到达丙港(A点)用了多长时间?生:1个小时.师:从丙港(A点)到达乙港(C点)用了多长时间?生:2个小时.师:你们还能读出其他的信息吗?生甲:轮船在乙港停留了1个小时.生乙:轮船从乙港到丙港用了4个小时.生丙:轮船从丙港到甲港用了2个小时.师:很好!教师多媒体出示:(1)你知道轮船从甲港前往乙港的平均行驶速度快,还是轮船返回时的平均速度快吗?(2)如果轮船往返的速度是一样的,那么从甲港到乙港是顺水还是逆水?师:你是怎样做第一个小题的?生:因为往返轮船行驶的路程相同,所以只要比较去和返回时用的时间长短就行了.师:往返的时间哪个长哪个短呢?生:从甲港到乙港用了3个小时,从乙港到甲港用了6个小时,去时用的时间短,回来时用的时间长.师:很好!由此你能得到什么结论?生:说明去的时候速度快.师:很好!现在请同学们看第二个问题.学生看思考.生:从甲港到乙港是顺水.师:你怎么得到的呢?生:因为由上题知从甲港到乙港时速度更快.四、课堂小结师:今天我们学习了什么知识?你有哪些收获?学生回答.师:你还有哪些疑问?学生提问,教师解答.最新初中数学精品课件设计最新初中数学精品课件设计 11 教学反思在这个信息充斥的时代,我们身边有很多信息载体,例如文字和图象.本节课我带领学生去读信息,获取、分析图象上的信息.在第一个例题的讲解中,我向学生提出问题,引导他们去看图;在第二个问题中,我在提出两个问题后,让学生自己去说说看到了什么,让学生自己去想问题和答案,调动学生的积极性,锻炼他们的分析能力和语言表达能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。
动手实验
1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,
观察并记录弹簧长度的变化,填入下表:
悬挂重物的质量m(kg)
弹簧长度l(cm)
如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?
2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)。设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?
科目
数学
年级
八·下
编写人
修订人
教学内容
19.1.1变量与函数(1)
教学目标
知识与技能
运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。能分清实例中的常量与变量,了解自变量与函数的意义
过程与方法
通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力
情感态度
与价值观
引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦
教学重点
函数概念的形成过程。
教学难点
正确理解函数的概念
教学方法
导学法讲授法
媒体设计
多媒体
师生活动
备注
教学过程
提出问题:
1.汽车以60千米/时的速度匀速行驶。行驶里程为s千米,行驶时间为t小时。先填写下面的表,再试着用含t的式子表示s:
t(小时)
1
2
3
4
5
s(千米)
2.已知每张电影票的售价为10元。如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?
3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?
2.请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量。
3.举出一些变化的实例,指出其中的变量和常量。
注:分组活动.先独立思考,然后组内交流并作记录,最后各组选派代表汇报。
培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力。
(二)函数的概念
1.在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?
注:分组进行实验活动,然后各组选派代表汇报。
通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息。
探究新知
(一)变量与常量的概念
1.在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程。其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的。在一个变化过程中,数值发生变化的量,我们称之为变量。也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量。
总结归纳
1.常量与变量的概念
2.函数的定义
3.函数的三种表示方式
注:通过总结归纳,完善学生已有的知识结构。
布置作业
P.81习题1 P71,练习
练习与思考
P.81习题1 P71,练习
课后反思
同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52。
巩固新知
下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?
1.右图是北京某日温度变化图
2.如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x
师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有惟一确定的值。
2.分组讨论教科书P.71问题。
注:使学生加深对各种表示函数关系的表达方式的印象。
3.一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值。例如在问题1中,时间t是自变量,里程s是t的函数。t=1时,其函数值s为60,t=2时,其函数值s为120。