《飞机空气动力学》PPT课件

合集下载

空气动力学基础ppt课件

空气动力学基础ppt课件
30
2.1.7 连续性定理和伯努利定
理的应用
① 用文邱利管测流量
1 A1, v1 ,P1
2 A2, v2 ,P2

v1
v2
A2 A1
文邱利管测流量
v2 2 P1 P2 / 1 A22 / A12
1 2
v12

P1

1 2
v22

P2
31
无粘流动 沿物面法线方向速度一致
“附面层”
粘性流动 沿物面法线方向速度不一致
55
②附面层的特点
I. 附面层内沿物面法向方向压强不变且等于法线主 流压强。
P1
P2
只要测出附面层边界主流的静压,便可得到物面各点的静 压,它使理想流体的结论有了现实意义。
56
II. 附面层厚度随气流流经物面的距离增长而增厚。
B C’ C
A
75
●影响压差阻力的因素
总的来说,飞机压差阻力与迎风面积、形状和迎角有关。迎风面 积大,压差阻力大。迎角越大,压差阻力也越大。
压差阻力在飞机总阻力构成中所占比例较小。
76
③干扰阻力
飞机的各个部件,如机翼、机身、尾翼的单独阻力之和小于把 它们组合成一个整体所产生的阻力,这种由于各部件气流之间的 相互干扰而产生的额外阻力,称为干扰阻力。
质量守恒定律是连续性定理的基础。
22
●连续性定

1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v1 A1
单位时间内流过截面1的流体质量为1 v1 A1
同理, 2v2A2
则根据质量守恒定律可得:
单位时 间内流
1 v1 A1 2 v2 A2 即 v1 A1 v2 过A截2 面C常数

北京航空航天大学飞行器空气动力学经典课件——绪论

北京航空航天大学飞行器空气动力学经典课件——绪论

第0章 绪 论
0.1 先驱飞行器的贡献 0.2 战斗机和攻击机的发展 0.3 轰炸机的发展 0.4 运输机的发展 0.5 直升机的发展 0.6 特种飞行器的发展 0.7 空气动力学的分类与研究方法
0.1 先驱飞行器的贡献
最初人类向往飞行是从模仿鸟类飞行开始的。但是由于 鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。
要提高飞机的速度,需提高动力(发动机)、 减少阻力(飞机气动布局),解决拉力和阻力的矛 盾,除增大发动机的马力外,还需改善飞机的气动 布局以减少阻力。由于双翼机阻力大(立柱),对 提高速度不利。于是从上世纪二十年代后期,双翼 机逐渐被单翼机取代。
活塞发动机:双翼机最大飞行速度接近300km/h ;单翼机飞行速度范围300-750km/h(最大记录 755.1km/h)。
主要讲授翼型、机翼在低、亚声速、跨声速和 超声速绕流时的空气动力特性的分析和计算方 法以及所需的基本理论。
介绍飞行器空气动力学中的最主要的理论,阐述 飞行器中各主要气动部件相关参数对飞行器气 动特性的影响,并对目前广泛使用的一些空气 动力数值解法作简单的介绍。
基本要求
1、必须按时听课,上课认真听讲 2、坚持考勤制度,有事必须请假 3、按时独立完成作业 4、必须按时参加实验课、完成实验报告
重于空气的航空器
旋翼航空器 直升机 旋翼机
扑翼机
航天器
人造地球卫星(运载火箭发射) 无人航天器 空间探测器
载人飞船 载人航天器 航天站
航天飞机
0.2 战斗机和攻击机的发展
战斗机和攻击机是最重要的军用飞机之一。其主要 任务是歼灭空中和地面的敌机,夺取制空权,也称为歼 击机。其特点是,飞行速度快,机动性好。
0.1 先驱飞行器的贡献

《空气动力学》课件

《空气动力学》课件

1
喷管内的空气动力学基础
2
探索喷管中的气流加速和压力变化,为喷
气发动机和火箭的设计提供基础。
3
燃烧室内的空气动力学基础
研究燃烧室内的空气流动特性和压力分布, 为燃烧过程的优化提供依据。
空气动力学基本方程
介绍流体力学和空气动力学的基本方程, 包括质量守恒、动量守恒和能量守恒等等。
空气动力学应用
飞机机翼的空气动力 学
《空气动力学》PPT课件
空气动力学是研究物体在气流中运动的科学。探索空气动力学的基本概念、 应用领域以及对飞机和汽车等工业的重要性。
概述
空气动力学概述
了解空气动力学的定义和基本原理,包括流体 力学和空气动力学的关系。
应用领域
探索空气动力学在航空、汽车、火箭和建筑设 计等领域中的应用。
空气动力学基础
2 空气动力学现象的研究方法
探索研究空气动力学现象的实验和数值模拟方法。
3 毒性风险的影响因素
讨论空气动力学现象对毒性风险的影响因素,包括气流速度、颗粒物浓度和颗粒物分布测量
介绍测量汽车表面压力分布的实验方法和仪器。
2
汽车空气阻力的计算
探索计算汽车空气阻力的数值模拟方法和常用公式。
分析机翼的气流分布和升力产 生,探索如何优化飞机的机翼 设计。
空气动力学在航空工 业中的应用
探索空气动力学在飞机设计和 性能提升中的重要性。
空气动力学在汽车工 业中的应用
研究汽车的空气阻力和流线型 设计对燃油效率和驾驶体验的 影响。
空气动力学现象
1 空气动力学现象的分类
介绍不同类型的空气动力学现象,如升力、阻力、卡门涡街等。
3
汽车空气动力学在车身设计中的应用
研究空气动力学在改善汽车操控性、燃油效率和安全性方面的应用。

《飞机空气动力学》PPT课件

《飞机空气动力学》PPT课件
l u
4 Y N cos N q b B 平板升力系数: Y 4 (C y ) qb B
EXIT
垂直于来流的升力为:
B
9.2
线化理论
弯度部分
作用于微元面积dS上的升力为: dYf (C p C p ) f q dS cosq l u
由于: dx dS cos q 所以: dYf (C p C p ) f q dx l u
EXIT
飞机空气动力学
第9章
超声速翼型的气动特性
9.1 9.2 9.3 9.4
引言; 线化理论 布泽曼理论; 激波-膨胀波法
· 重点:线化理论 · 难点:布泽曼理论
EXIT
9.2
线化理论
9.2.1 9.2.2 9.2.3
升 阻
力 力
俯仰力矩
EXIT
第9章 超声速翼型的气动特性
9.2 线化理论
为减小波阻,超音速翼型厚度都比较薄,弯度很小甚至为零
dy 4( ) f b 将弯度载荷代入后积分得:Y dx q dx 4q f 0 B B
EXIT
9.1
引言
超音速薄翼型的绕流特点和流动图画
在运动翼型的上下方某一处,各作一平行于运动方向的控制面, 研究受扰动的气流质点进出此控制面的情况。翼型前、后方受扰 气流质点在控制面处的运动情况分别如图所示:
EXIT
9.1
引言
超音速薄翼型的绕流特点和流动图画
由动量定律,向前流入控制面的气流将给翼型一推力分量。而向 后流入控制面的气流则将给翼型一阻力分量,从控制面垂直进出 的流动不会使翼型承受推力或阻力。这样,在无粘性流体中作亚 声速流动的翼型不承受阻力(推力与阻力相消),而超声速翼型 将承受阻力,这种与马赫波传播有关的阻力称为波阻。

直升机空气动力学基础--课件

直升机空气动力学基础--课件

直升机空气动力学基础
—第八章 直升机空气动力学实验
旋臂式模型旋翼机动飞行试验机
国际首创,获国家技术发明三等奖
直升机涡环边界试验研究 直升机贴地飞行试验 直升机盘旋试验 直升机瞬态操纵响应试验 旋翼/机翼气动干扰试验 倾转机旋翼/机翼气动干扰试验 大机动旋翼非定常气动力试验 ……
旋翼动力学国防科技重点实验室
直升机空气动力学基础
—第八章 直升机空气动力学实验
倾转旋翼试验台
南航 “211”国家重点学科建设 “新概念 倾转旋翼飞行器综合试验系统”项目的重 要组成部分。建成了一套能够进行倾转旋 翼飞行器及未来新一代高速旋翼飞行器技 术研究的综合试验系统,拓展了实验室的 研究能力。2006年完成并通过了国家 “211”建设项目的验收。它的建成将为我 国研制倾转旋翼飞行器提供技术基础,并 为武器装备的发展提供技术支撑。
直升机空气动力学基础
—第八章 直升机空气动力学实验
1.5 Cu
P
1.0 0.5 0.0 -0.5 -1.0 -1.5 0
Experimental Value Calculation Value
3 Cu
P
2 1 0 -1
Experimental Value Calculation Value
=0.05,CT/=0.156, point# 1
863-705项目 国防基础科研课题 重点实验室基金课题
旋翼动力学国防科技重点实验室
直升机空气动力学基础
—第八章 直升机空气动力学实验
直升机飞行特性与动力学综合试验系统 可模拟模型旋翼的六自由度 运动,为研究直升机机动飞 行条件下的旋翼气动和动力 学特性创造了条件。该试验 系统的建成提升了我室在直 升机空气动力学、飞行力学 和动力学方面的综合科研能 力,也为发展和试验新一代 旋翼飞行器提供了先进的试 验手段。 旋翼动力学国防科技重点实验室

《空气动力学》课件

《空气动力学》课件

未来挑战与机遇
环境保护需求
新能源利用
随着环境保护意识的提高,对空气污 染和气候变化的研究需求增加,这为 空气动力学带来了新的挑战和机遇。
新能源的利用涉及到流动、传热和燃 烧等多个方面,需要空气动力学与其 他学科合作,共同解决相关问题。
航空航天发展
航空航天领域的发展对空气动力学提 出了更高的要求,需要不断改进和完 善现有技术,以满足更高性能和安全 性的需求。
04
翼型与机翼空气动力学
翼型空气动力学
翼型概述
翼型分类
翼型是机翼的基本截面形状,具有特定的 弯度和厚度。
根据弯度和厚度的不同,翼型可分为超临 界、亚音速和超音速翼型等。
翼型设计
翼型与升力
翼型设计需考虑气动性能、结构强度和稳 定性等多个因素。
翼型通过产生升力使飞机得以升空。
机翼空气动力学
01
机翼结构
课程目标
掌握空气动力学的基本概 念和原理。
提高分析和解决实际问题 的能力。
了解空气动力学在各领域 的应用和发展趋势。
培养学生对空气动力学的 兴趣和热爱。
02
空气动力学基础
流体特性
01
02
03
04
连续性
流体被视为连续介质,由无数 微小粒子组成,彼此之间存在
相对运动。
可压缩性
流体的密度会随着压力和温度 的变化而变化。
《空气动力学》PPT课件
目 录
• 引言 • 空气动力学基础 • 流体动力学 • 翼型与机翼空气动力学 • 空气动力学应用 • 未来发展与挑战
01
引言
主题介绍
空气动力学:一门研 究空气运动规律和空 气与物体相互作用的 科学。
课件内容涵盖了基础 理论、应用实例和实 验演示等方面。

《空气动力学与飞行原理》空气动力学 ppt课件

《空气动力学与飞行原理》空气动力学  ppt课件

f
g对称翼型,常用于尾翼 h i超音速菱形翼型
j超音速双弧形翼型
ppt课件
17
2.机翼平面形状和参数
机翼平面形状
机翼平面形状是飞机处于 水平状态时,机翼在水平 面上的投影形状
(a)矩形;(b)梯形; (c)椭圆形;
(d)后掠翼; (e)(f)和(g)为三角
形和双三角形。
ppt课件
加大安装角叫“内洗” (Wash in) ,通过调整外撑轩的长 度减小安装角叫“ 外洗” (Wash out) 上反角ψ、下反角-ψ 机翼底面与垂直机体立轴平面之间的夹角
ppt课件
21
纵向上反角 机翼安装角与水平尾翼安装角缘下偏。
ppt课件
22
称为流管。流线间隔缩小,表明流管收缩;反之,表明流管 扩张。
ppt课件
7
体积流量
Q Av
质量流量
qm Av
ppt课件
8
2.2 流体流动的基本规律
2.2.1 连续方程
连续方程是质量守恒定律在流体定常流动中的应用。 连续方程:
1 A1v1 2 A2v2 3 A3v3 ...
当气流流过机翼表面时,由于气流的方向和机翼所采用的翼 型,在机翼表面形成的流管就像图2 - 5 中所示的那样变细或 变粗,流体中的压力能和功能之间发生转变,在机翼表面形 成不同的压力分布,从而产生升力。
ppt课件
13
2.3 机体几何外形和参数
2. 3.1 机翼的几何外形和参数
机翼翼型 机翼平面形状 机翼相对机身的安装位置
定常流
如果流体微团流过时的流动参数——速度、压力、温度、密 度等不随时间变化,这种流动就称为定常流,这种流场被称 为定常流场。

空气动力学与飞行原理课件:机翼空气动力学

空气动力学与飞行原理课件:机翼空气动力学

2mg v
S CL
它表明在相同翼型下,翼载荷越大,则定直平飞速度越快。从另一个方面来看
vmin
2mg
S CL max
即,最小平飞速度为机翼接近失速迎角飞行。在翼型失速迎角一定的情况下,翼载荷越 大,最小平飞速度也越大。
5
壹 翼面负载
下面是典型的无人机的翼面负载。
无人机机型 全球鹰 长空-1 捕食者 徘徊者
贰 目录
一、
翼面负载
二、
展弦比
三、
后掠角
四、
根梢比
7
贰 展弦比 展弦比λ定义为翼展L除以平均翼弦b(λ=L/b)。 展弦比对机翼升力的影响为:当机翼产生升力时,下表面压强向上,上表面压强向下,且下表面压强值 大于上表面。则在翼尖处,下表面的高压气流流向上表面,减小了翼尖附近的升力。同时,如上节所述,有 限展长机翼也是诱导阻力产生的重要来源。 因此,展弦比越大,则翼尖效应对机翼升力的影响越小。理想情况是和翼型升阻特性一样。对于低速和 亚声速无人机,机翼展弦比越大,则升力线斜率和升阻比都较大。 展弦比的另外一个特性是翼尖涡减小了翼尖处的有效迎角,增大了翼尖处的失速迎角。因此,在机翼展 向各翼型扭转角相同的情况下,翼根比翼尖较易失速,这也是要设计机翼扭转的作用。一般翼尖剖面翼型与 翼根剖面翼型的扭转角在±3度左右。另外,相同情况下,展弦比越大则机翼滚转方向转动惯量越大,滚转机 动性越差。
这对无人机结构设计产生一定影响。即后掠 翼无人机翼梢处气动力增大,需要适当加强梢部 结构强度。
后掠机翼升力分布
15
肆 目录
第一章
翼面负载
第二章
展弦比
第三章
后掠角
第四章
根梢比
16
肆 根梢比
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1 热力学基础
4、热力学过程
(1)可逆与不可逆过程 在热力学中,如果将变化过程一步一步倒回去,物系的一切热
力学参数都回到初始状态,且外界状态也都复旧,这样的过程则 是可逆过程,否则是不可逆过程。(如高温向低温传热,机械功 通过摩擦生热都是不可逆过程)可逆过程也称为准静态过程,或 连续的平衡态过程。 (2)绝热过程
热力学第一定律
– 流动物系的能量守恒定律:(绝热过程:dq=0)
dq du pd ( 1 ) 1 dp VdV dq dh VdV
rr
与静止物系的能量方程相比,流动物系的能量方程多了两项, 其中一项是 表示流体微团在体积不变的情况下,由于压强 变化引起的功(流体质点克服压差所做的功); 另一项是流体微团的宏观动能变化量。即:
7.1 热力学基础
等容过程、等压过程、等温过程、绝热过程 4)绝热过程在热力学变化过程中,与外界完全没有热量交换。 由能量方程得到:
在由理想气体的状态方程,有:
内能的变化为:
7.1 热力学基础
等容过程、等压过程、等温过程、绝热过程
比热容:物系的温度每升高1℃所需的热量. 气体在定容变化的过程中,体积不变,1/ρ=常数.
这是静止物系的热力学第一定律。其中,dV表示物系的体积 变量,p表示物系的压强。如果用物系的质量去除上式,就 变成单位质量的能量方程。
单位质量流体的能量方程:
其中,密度的倒数是单位质量的体积。表示外界传给单位质 量流体的热量dq等于单位质量流体内能的增量与压强所做的 单位质量流体的膨胀功。
7.1 热力学基础
飞机空气动力学
授课人:飞行器工程学院 史卫成
飞机空气动力学
第7章 高速可压流动基础
7.1 热力学基础
7.2 声速和马赫数
7.3 高速一维定常流 7.4 微弱扰动的传播区,马赫锥
7.5 膨胀波
7.6 激波7.7Fra bibliotek可压流边界层 7.8 激波与边界层的干扰
·重点:激波 ·难点:膨胀波
第7章 高速可压流动基础
7.1 热力学基础
7.1.2 热力学第一定律:内能和焓
1、状态方程与完全气体假设
热力学指出:任何气体的压强、密度、绝对温度不是独立的, 三者之间存在一定的关系。
函数称为状态方程。该方程的具体表达形式与介质种类、 温度、压强的不同有关。
一个物系的压强、密度、温度都是点的函数,彼此之间存在 一定的函数关系,但和变化过程无关,代表一个热力学状态。 p,T,r,u,h代表热力学状态参数,两个热力学参数可以确定 一个热力状态,如果取自变量为T,r,其它状态变量关系为:
1 热力学体系:用热力学去处理的客体是和周围环境的 其他物体划分开的一个任意形态的物理体系(物系).
这个体系的尺寸是宏观的.
2 物系与外界关系: ① 隔热体系:无物质交换,无能量交换; ② 封闭体系:无物质交换,有能量交换; ③ 开放体系:有物质交换,有能量交换.
高速流中遇到的情况,绝大多数属于隔绝体系和封闭体系。
由于 表示单位质量流体所具有的压能,故焓h表示单位质量 流体所具有的内能和压能之和。
焓的微分: dh du pd( 1 ) 1 dp
rr
表示气体焓的增量等于内能增量、气体膨胀功与压强差所做 的功之和。
7.1 热力学基础
7.1.2 热力学第一定律:内能和焓
3、热力学第一定律
热力学第一定律是能量守恒定律在热力学上的具体应用。其 物理意义是:外界传给一个封闭物质系统的热量等于该封闭 系统内能的增量与系统对外界所做机械功之和。对于一个微 小变化过程,有
高速飞行的特点
❖ 低速、亚音速和超音速流动的区别 ❖ 激波阻力(波阻) ❖ 声障(音障)
7.1 热力学基础知识
7.1.1 热力学的物系 7.1.2 热力学第一定律:内能和焓 7.1.3 热力学第二定律:熵 7.1.4 气体的状态方程,完全气体和真实气体
第7章 高速可压流动基础
7.1.1 热力学的物系
与外界完全没有热量交换,即dq=0,称为绝热过程。 (3)等容过程、等压过程、等温过程、绝热过程
在热力学中,内能u是状态的函数,而q不是状态函数。 因为其中的压力膨胀功不仅决定于过程的起点和终点,与变化过 程有关。
7.1 热力学基础
等容过程、等压过程、等温过程、绝热过程
1)等容过程
如果在变化过程中,单位质量气体的容积保持不变的过程称为 等容过程。此时气体的膨胀功为零。
定容过程的比定容热容cv:
cv
dq dT
du dT
, cv
(
u T
)
r
内能的改变量为:du=cvdT 气体作等压变化时,p=常数,dp=0:
dq dh
h
cv
dT
dT
, cv
( T
)r
焓的变化量:
dh cpdT
7.1 热力学基础
7.1.3 热力学第二定律,熵
通过引入熵状态参数,在不可逆过程中的变化来描述热力学 第二定律。熵是一个热能可利用部分的指标。其定义如下:
外界加入的热量全部用来增加介质的内能,即:
比热定义:单位质量介质温度每升高一度所需要的热量。 比热(比热容)数值的大小与具体热力学过程有关。
在等容过程中,比热称为等容比热, 用Cv表示。
7.1 热力学基础
等容过程、等压过程、等温过程、绝热过程
2)等压过程
如果在变化过程中,气体的压强保持不变的过程称为等压过程。 此时气体的膨胀功不等于零。外界加入的热量一部分用来增加介 质的内能,另一部分用于气体的膨胀功。 在等压过程中,单位质量介质的温度每升高一度,所需要的热量, 称为定压比热,用Cp表示:
定压比热与定容比热的比值,称为气体的比热比。即:
在空气动力学中,在温度小于300C,压强 不高的情况下,一般Cp,Cv,g等于常数。
对于水
7.1 热力学基础
等容过程、等压过程、等温过程、绝热过程
3)等温过程
在变化过程中,气体的温度保持不变的过程称为等温过程。 在等温过程中,内能不变,热量与膨胀功相等。 单位质量气体所做的功为
7.1 热力学基础
7.1.2 热力学第一定律:内能和焓
2、内能、焓
气体内能是指分子微观热运动(与温度有关)所包含的动能与 分子之间存在作用力而形成分子相互作用的内部位能之和。 对于完全气体而言,分子之间无作用力,单位质量气体的内 能u仅仅是温度的函数。 在热力学中,常常引入另外一个代表热含量的参数h(焓):
相关文档
最新文档