考研概率全程笔记
考研数学备考:概率论各章节知识点梳理
考研数学备考:概率论各章节知识点梳理1500字概率论作为考研数学中的一部分,是考生备考的重点之一。
下面将对概率论的各章节知识点进行梳理,帮助考生进行复习备考。
1. 随机事件与概率概率论的基本概念是随机事件和概率。
随机事件是随机现象的结果,概率是事件发生的可能性大小。
在这一章节中,主要涉及到随机事件的定义、事件的性质、事件间的关系等内容。
2. 随机变量及其分布随机变量是随机现象的数值描述,它分为离散随机变量和连续随机变量。
这一章节主要涉及随机变量的定义、分布函数、概率密度函数等内容。
同时还包括常见的离散随机变量和连续随机变量的概率分布,如二项分布、泊松分布、正态分布等。
3. 随机事件的数学描述随机事件可以用随机变量的取值区间来表示,也可以用事件的概率来描述。
这一章节主要包括随机事件的和、差、积等概念,以及离散随机变量和连续随机变量的概率函数之间的关系。
4. 多维随机变量及其分布多维随机变量是指由多个随机变量组成的向量。
这一章节主要包括多维随机变量的定义、联合分布、边缘分布等内容。
同时还包括多维随机变量的独立性、相关性等概念。
5. 随机变量的数字特征随机变量的数字特征包括数学期望、方差、协方差等。
这一章节主要涉及到随机变量的数学期望、方差和协方差的定义、性质以及计算方法。
6. 大数定律和中心极限定理大数定律是指随着试验次数的增加,随机事件的频率趋向于事件的概率。
中心极限定理是指当随机事件的样本量足够大时,其均值的分布接近于正态分布。
这一章节主要涉及到大数定律和中心极限定理的数学表达和推导。
7. 参数估计与假设检验参数估计是根据样本数据对总体参数进行估计,假设检验是根据样本数据对总体参数是否符合某个假设进行检验。
这一章节主要包括点估计、区间估计和假设检验的概念、方法和步骤。
8. 有序与无序排列的计数问题有序排列是指考虑元素的排列顺序,无序排列是指不考虑元素的排列顺序。
这一章节主要涉及到有序与无序排列的计数问题,如排列、组合、多重集合等。
(完整word版)考研数学一概率论知识点概要
本人考研整理的数学概率论知识点,word 版,可编辑、添加、打印。
祝大家学有所得。
第一章随机事件概率随机试验:满足以下三个条件的试验:(1)可重复;(2)知道所有可能;(3)结果不可预知。
样本点:每一个可能的结果叫做一个样本点。
样本空间:全体样本点的集合,记为Ω。
随机事件:随机试验中每一个可能出现的结果,叫做随机事件。
基本事件:试验中不可再分的事件。
不可能事件:不可能发生的事件。
必然事件:必定要发生的事件。
复合事件:由两个或两个以上的事件构成的事件。
事件的关系与运算:事件的关系定义文氏图A B⊂:包含关系:事件B发生必然导致事件A发生,则称事件A包含事件B。
事件相等:A=B 事件A,B 相互包含,就称事件A,B相等。
互斥事件:AB=∅不可能同时发生的事件对立事件:若AB=∅且=0A B,称事件A,B对立事件。
两者之一必然发生,但又不可能同时发生的事件。
事件的并:A B事件A,B中至少有一个发生,称事件A B发生。
事件的差:A-B 事件A发生且B不发生,事件的交:A B AB=事件A,B同时发生,称事件AB发生。
概率:事件发生可能性大小的描述。
条件概率:设A,B 是两个基本事件,且P(A)>0,则:()()()P AB P B A P A =称为事件A 发生的条件下事件B 发生的条件概率。
事件的独立性:如果两事件A,B 满足:()()()P AB P A P B =,则称A 与B 独立。
A,B 独立 ⇔ ()()P A B P A =⇔()()P B A P B A =独立和互斥的关系:()0,()0P A P B >>时,独立一定不互斥,互斥一定不独立。
对于三个以上的事件:相互独立 ⇒ 两两独立, 两两独立退不出相互独立。
取反运算不改变事件的独立性:,A B 相互独立⇔,A B 相互独立⇔,A B 相互独立。
概率的基本性质: 非零性:0()1P A ≤≤ 归一性:()1iP A =∑:()1()1()P A B P A B P AB =-=-古典概率满足: (1),试验的样本空间的元素只有有限个; (2),每个样本点出现的可能性相等: 古典概型事件A 的计算公式:()k P A n=n---样本点数,k---事件A 包含的样本点数。
2024考研数学概率论重要考点总结(2篇)
2024考研数学概率论重要考点总结2024考研数学考试中的概率论部分是一个非常重要的考点,对于考生来说,掌握好概率论的相关知识点是非常关键的。
下面是2024考研数学概率论重要考点的总结,希望能够帮助到考生。
一、概率基本概念:1. 随机试验、样本空间、随机事件;2. 古典概型、几何概型、随机变量概型;3. 定义域、值域、事件域;4. 频率与概率的关系。
二、概率公理与概率的性质:1. 概率公理;2. 概率的性质(非负性、规范性、可列可加性);3. 条件概率、乘法公式;4. 全概率公式、贝叶斯公式。
三、随机变量的概念:1. 随机变量的定义;2. 离散型随机变量与连续型随机变量;3. 离散型随机变量的概率分布律、累积分布函数;4. 连续型随机变量的概率密度函数、累积分布函数;5. 随机变量的数学期望、方差、标准差。
四、常见概率分布:1. 二项分布;2. 泊松分布;3. 均匀分布;4. 正态分布。
五、多维随机变量与联合分布:1. 二维随机变量的联合分布律、联合分布函数;2. 边缘分布;3. 条件分布。
六、独立性与随机变量的函数的分布:1. 独立性的概念;2. 独立随机变量的数学期望、方差;3. 独立连续型随机变量的函数的分布;4. 独立离散型随机变量的函数的分布。
七、大数定律与中心极限定理:1. 大数定律的概念与几种形式;2. 切比雪夫不等式;3. 中心极限定理的概念;4. 利用中心极限定理进行概率近似计算。
八、随机过程:1. 随机过程的概念;2. 马尔可夫性;3. 随机过程的平稳性。
九、统计量与抽样分布:1. 统计量的概念;2. 抽样分布与大样本正态分布近似;3. 正态总体均值与方差的推断。
以上就是2024考研数学概率论部分的重要考点总结,希望对考生有所帮助。
考生要多进行习题的练习和考点的整理与总结,提高自己的概率论水平,为考试做好准备。
祝考生取得好成绩!2024考研数学概率论重要考点总结(2)2024考研数学概率论的重要考点总结如下:1. 概率的基本概念:样本空间、事件、概率等基本概念的定义和性质。
考研数学概率论重点公式速记
考研数学概率论重点公式速记概率论是数学中的一个重要分支,广泛应用于各个领域。
对于考研数学概率论的学习来说,熟悉并掌握相关的重点公式是非常必要的。
本文将为大家提供一些概率论中的重点公式,帮助大家更好地进行复习和备考。
一、基本概念1. 概率的加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)2. 概率的乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A)P(B|A) = P(B)P(A|B),其中P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。
3. 全概率公式:若{B1, B2, ..., Bn}为样本空间的一个划分,即满足Bi与Bj互不相容且它们的并集为样本空间,同时假设P(Bi) > 0,那么对于任意一个事件A,有:P(A) = P(A∩B1) + P(A∩B2) + ... + P(A∩Bn) = P(B1)P(A|B1) +P(B2)P(A|B2) + ... + P(Bn)P(A|Bn)二、常用概率分布1. 二项分布:设试验成功的概率为p,则n次试验中成功次数的概率为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中C(n,k)为组合数,表示从n个元素中取出k个元素的组合数。
2. 泊松分布:设单位时间(或单位面积)内某事件发生的次数的平均值为λ,则单位时间(或单位面积)内某事件发生k次的概率为:P(X=k) = (e^(-λ) * λ^k) / k!其中e为自然对数的底数(约等于2.71828)。
3. 正态分布:对于服从正态分布N(μ,σ^2)的随机变量X,其概率密度函数为:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2 / (2σ^2)))三、常用性质1. 期望:对于离散随机变量X,其期望值E(X)为:E(X) = Σ(x * P(X=x))对于连续随机变量X,其期望值E(X)为:E(X) = ∫(x * f(x)) dx,其中f(x)为概率密度函数。
考研数学概率复习知识点
考研数学概率复习知识点考研数学概率复习知识点汇总随着考研的时间越来越近,我们在学习数学概率的时候,需要掌握一些重要的知识点。
店铺为大家精心准备了考研数学概率复习指南攻略,欢迎大家前来阅读。
考研数学概率重点知识一、随机事件与概率重点难点:重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算常考题型:(1)事件关系与概率的性质(2)古典概型与几何概型(3)乘法公式和条件概率公式(4)全概率公式和Bayes公式(5)事件的独立性(6)贝努利概型二、随机变量及其分布重点难点重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布常考题型(1)分布函数的概念及其性质(2)求随机变量的分布律、分布函数(3)利用常见分布计算概率(4)常见分布的逆问题(5)随机变量函数的分布三、多维随机变量及其分布重点难点重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布难点:多维随机变量的描述方法、两个随机变量函数的分布的求解常考题型(1)二维离散型随机变量的联合分布、边缘分布和条件分布(2)二维离散型随机变量的联合分布、边缘分布和条件分布(3)二维随机变量函数的分布(4)二维随机变量取值的概率计算(5)随机变量的独立性四、随机变量的数字特征重点难点重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数难点:各种数字特征的概念及算法常考题型(1)数学期望与方差的计算(2)一维随机变量函数的期望与方差(3)二维随机变量函数的期望与方差(4)协方差与相关系数的计算(5)随机变量的独立性与不相关性五、大数定律和中心极限定理重点:中心极限定理难点:切比雪夫不等式、依概率收敛的概念。
考研数学概率笔记...
第一章 事件与概率(一次半)基础班(8次 学时8×3=24小时)概率论:它是研究随机现象统计规律性的一门数学科学。
简史:起源于赌博。
17世纪法国Pascal 和Fermat 解决Mere (公平赌博)问题等并提出了排列与组合的新知识。
18世纪早期J.Bernoulli 提出了概率论历史上第一个极限定理(贝努里大数定理),19世纪初Laplace 提出了古典概率定义。
20世纪30年代Kolmogorov 建立了概率的公理化定义(19世纪末Cantor 集合论和20世纪30年代Lebesgue 测试论)。
历史上Gauss 、De Moirve 、、Chebeshev 、Liapunov 、Borel 、Khinchine 、Markov 、K.Pearson 、Fisher 、Cramer 、Wiener 、Doob 、Ito 、许宝禄、Rao 等人亦对概率统计发展作出了重要贡献。
1.1随机事件、样本空间①、②、③、④例子,称满足○a 、○b 、○c 条件的试验为随机试验,记为E ,基本事件(样本点):用e 表示;随机事件:用“A,B,…”表示;样本空间(必然事件):用S 表示。
Remark :(1)A 发生A e e i i ∈∃⇔,,e i 出现了;(2)S 引入意义。
1.2事件的关系与运算(两种语言刻划)一、六种关系:{}{}{}{}1.0,1,2,....,1000,...,0,1,2,3,4,5,0,1,2,3,4,5,....,100,7,8,9,10,11,12,,.S A B C A B C ====例观查某电话呼叫台接到的呼叫次数的随机试验,,求之间的关系二、四个运算性质:Remark :(1)两个事件互斥(互不相容) 两个事件互为对立事件;(2)A -B=B A =A -AB ;(3)事件的假设与事件的相互表示是学好概率论与数理统计的基本功。
例1 某人向一目标射击三次,A i 表示第i 次命中(i=1,2,3),B j 表示命中j 次(j=0,1,2,3),用A i 表示B j 。
考研概率统计--多维随机变量及其分布笔记
若G为矩形,服从均匀;推:X服从均匀,Y服从均匀,X,Y独立立
2)二二维正态分布(the special one)
1.定义;
Note:1.淡化公式,强调性质
2.规律律:e的-x2,e的-y2,e的-xy
2.性质:
(1)联合可以推边缘;边缘不不能推联合
(2)(aX+bY,cX+dY)服从二二维正态分布(利利用用卷积公式证明)(只要求 5个参数即可)(联合的线性仍然正态)
(3)aX+bY服从正态(只要求2个参数)(二二维推一一维线性依然是正态的)
(4)X和Y相互独立立互推p=0(独立立性仅有数字特征决定)
四 二二维随机变量量函数的分布
1.二二维离散型:已知联合概率分布律律,求Z=g(X,Y)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 ห้องสมุดไป่ตู้二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
2.二二维随机变量量的联合分布函数
1)X,Y取积;
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
方方法:枚举,合并(相同量量合并)
Note:当然还有二二维
考研数学概率知识点总结
考研数学概率知识点总结概率是数学中一个非常重要的概念,在考研数学中也是一个必考的知识点。
概率论是数学的一个分支,研究随机现象的规律性和统计规律性。
考研数学中的概率知识点主要包括基本概率公式、条件概率、随机变量和概率分布、大数定律和中心极限定理等内容。
本文将对这些知识点进行总结和梳理,帮助考生更好地理解和掌握这些知识。
一、基本概率公式1.1 基本概率公式的含义基本概率公式是描述事件发生概率的基本规律,通过公式可以计算事件发生的概率,是概率论中最常用的基本概念之一。
1.2 基本概率公式的公式设A为一个随机事件,P(A)表示事件A发生的概率,则基本概率公式为:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的样本点个数,n(S)表示样本空间Ω的样本点个数。
1.3 基本概率公式的应用基本概率公式可以应用于各种随机事件的概率计算,如掷骰子、抽扑克牌等。
通过基本概率公式,可以准确地计算出事件发生的概率,为后续的概率计算提供基础。
二、条件概率2.1 条件概率的定义条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率可以表示为P(A|B)。
2.2 条件概率的公式条件概率的公式为:P(A|B) = P(AB) / P(B)其中,P(AB)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
2.3 条件概率的性质条件概率具有以下性质:(1)非负性:条件概率始终为非负数。
(2)规范性:如果事件A包含在事件B中,那么P(A|B) = 1。
(3)对称性:P(A|B) ≠ P(B|A)。
(4)加法规则:P(A ∪ B) = P(A) + P(B) - P(AB)。
三、随机变量和概率分布随机变量是指在一次试验中所观察到的随机现象的数值结果,它的取值依赖于试验的结果。
概率分布是描述随机变量取值概率的规律性。
在考研数学中,常见的随机变量包括离散型随机变量和连续型随机变量。
3.1 离散型随机变量离散型随机变量是指在一次试验中所观察到的结果有限且可数,其概率分布可以通过概率质量函数(PMF)来描述。
考研概率统计必须掌握核心知识点
考研概率统计必须掌握核心知识点●离散分布●二项分布●E(X)=np●D(X)=np(1-p)●泊松分布●E(X)=\lambda●D(X)=\lambda●几何分布●E(X)=\frac{1}{p}●D(X)=\frac{1-p}{p^2}●超几何分布●E(X)=\frac{nM}{N}●连续分布●均匀分布●E(X)=\cfrac{b+a}{2}●D(X)=\cfrac{(b-a)^2}{12}●指数分布●E(X)=\cfrac{1}{\lambda}●D(X)=\cfrac{1}{\lambda ^2}●正态分布●E(X)=\mu●D(X)=\sigma ^2●二维●联合分布函数●边缘分布函数●条件分布函数●随机变量函数分布●公式法(绝对单调)●分布函数法●数字特征●期望的性质●E(X)=\int_{-\infty}^{+\infty} xf(x)dx 绝对收敛●E(c)=c●E(cX)=cE(X)●E(X+Y)=E(X)+E(Y)●若XY独立,E(XY)=E(X)E(Y)●方差的性质●D(X)=E(X^2)-E^2(X)●D(c)=0●D(cX)=c^2D(X)●D(aX+bY)=a^2D(X)+b^2D(Y)+2abCov(X,Y)●若XY独立,D(XY)=D(X)D(Y)+D(X)E^2(Y)+D(Y)E^2(X) \geqslantD(X)D(Y)●若 D(X) 存在,D(X)=E[(X-E^2(X))^2] \leqslant E((X-c)^2)●协方差●Cov(X,Y)=E(XY)-E(X)E(Y)●Cov(X,X)=D(X)●Cov(aX+b,cY+d)=acCov(X,Y)●Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)●XY独立时,协方差=0●Cov(X,c)=0●相关系数●\rho _{x,y} =\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}●\rho _{x,y}=0 \iff Cov(X,Y)=0 ,XY不相关●规范性:| \rho _{x,y} | =1的充要条件为存在线性关系●Y=aX+b 且 a>0 , \rho _{x,y} =1●Y=aX+b 且 a<0 , \rho _{x,y} =-1●独立与不相关●XY独立,则一定不相关:反之,不成立●XY的联合分布是二维正态分布,XY独立的充要条件是XY不相关●XY都服从0-1分布,XY独立的充要条件是XY不相关●XY不相关 \iff Cov(X,Y)=0 \iff E(XY)=E(X)E(Y) \iff D(X\pmY)=D(X)+D(Y)●大数定律●切比雪夫不等式●P\{ | X - \mu |\geqslant \epsilon \} \leqslant\ \frac{\sigma ^2}{\epsilon^2}●P\{ | X - \mu | < \epsilon \} \leqslant\ 1-\frac{\sigma ^2}{\epsilon ^2}●伯努利大数定律n_A是n重伯努力实验中A事件的发生次数,P(A)=p●\lim\limits_{n \to \infty} P\{ | \frac{n_A}{n}-p| < \epsilon \} =1●切比雪夫大数定律独立,存在期望和方差,且方差有界●\lim\limits_{n \to \infty} P\{ | \frac{1}{n}\sum\limits_{k=1}^{n}X_k-\frac{1}{n}\sum\limits_{k=1}^{n}E(X_k)| < \epsilon \} =1●辛勤大数定律独立且同分布,期望存在E(X_i)=\mu●\lim\limits_{n \to \infty} P\{ | \frac{1}{n}\sum\limits_{k=1}^{n}X_k-\mu| < \epsilon \} =1●中心极限定律●列维-林德伯格中心极限定理独立,同分布,期望方差存在●\lim\limits_{n \to \infty} P\{ \frac{\sum\limits_{i=1}^{n}X_i-n\mu}{\sqrt{n} \sigma} \leqslant x \} = \phi(x)●棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为其极限分布定理)Y_n \sim B(n,p)●\lim\limits_{n \to \infty} P\{ \frac{Y_n-np}{\sqrt{npq} } \leqslant x \} =\phi(x)●抽样分布●卡方分布●\chi^2 = X_1^2+X_2^2+……+X_n^2服从自由度为n●可加性:●\chi_1^2 \sim \chi^2(n_1),\chi_2^2 \sim \chi^2(n_2),相互独立●\chi_1^2 + \chi_2^2 \sim \chi^2(n_1+n_2)●E(\chi^2)=n,D(\chi^2)=2n●t分布●X \sim N(0,1) ,Y\sim\chi^2(n),独立●t=\frac{X}{\sqrt{Y/n}}服从自由度为n的t分布●X \sim t(n),f(x) 为偶函数●X \sim t(n) ,n充分大时,X近似服从N(0,1)●X \sim t(n),E(X)=0,D(X)=\frac{n}{n-2}●F分布●U\sim\chi^2(m),V\sim\chi^2(n)且UV独立●F=\frac{U/m}{V/n} ,F \sim F(m,n)●X \sim F(m,n) ,\frac{1}{X} \sim F(n,m)●X\sim t(n), X^2 \sim F(1,n)●●参数估计●点估计●矩估计法●E(X)=\overline{X}●最大似然估\sum\limits_{i=1}^{n}●写似然函数L( \theta ) = \prod\limits _{i=1}^{n}f(x_i;\theta)●取对数●求导●最大似然估计量用大写,最大似然估计值用小写●无偏性 E(\hat{\theta})= \theta●有效性 D(\theta_1)<D(\theta_2)●一致性 \lim\limits_{n \to \infty} P\{ | \hat{\theta}-\theta | \leqslant\epsilon \} = 1●区间估计●\mu构造统计量●\sigma^2 未知,Z=\cfrac {\overline{X}-\mu}{\sigma/ \sqrt{n}} \simN(0,1)●\sigma^2已知,Z=\cfrac {\overline{X}-\mu}{S/ \sqrt{n}} \sim t(n-1)@\sigma^@Z=\cfrac {\overline{X}-\mu}{S/ \sqrt{n}} \sim t(n-1)●\sigma^2构造统计量●\mu未知,\cfrac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)●\mu已知,\cfrac{1}{\sigma^2} \sum\limits_{i=1}^{n}(X_i-\mu)^2\sim \chi^2(n)●置信区间●假设检验●过程●提出假设H_0和备择假设H_1●构建检验统计量●写出拒绝域●双边检验●单边检验●判断●= 必须在H_0中●双正态总体均值之差的检验●\sigma_1^2,\sigma_2^2已知●Z=\cfrac{ \overline{X} -\overline{Y} }{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \sim N(0,1)●未知,但相等●t=\cfrac{ \overline{X} - \overline{Y} }{S_W\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2)●S_W=\sqrt{\cfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}}。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
考研概率统计总结笔记
(3) 一般情形下, A, B 独立与 A, B 互斥没有蕴含关系;
当 P( A) > 0, P(B) > 0 时, A, B 独立与 A, B 互斥不能同时成立.
2 三事件的独立性
P( AB) = P( A)P(B)
(1)
A,
B,
C
相互独立
⇔
P( AC)
P(BC)
= =
P( A)P(C)两两独立 P( B) P(C )
若 A ⊂ B 且 B ⊂ A , 则 A = B. 2 和事件: A + B . 概率含义: A , B 至少有一发生. 3 积事件: A • B . 概率含义: A , B 同时发生. 4 差事件: A − B . 概率含义: A 发生且 B 不发生. 5 互不相容(互斥): A • B =Φ . 概率含义: A , B 不可能同时发生.
特例: A • B =Φ 且 A + B =Ω , 称 A , B 互为对立事件, 记为 A = B . 注:对立 ←≠→ 互不相容(互斥).
三 事件的运算和事件概率的计算 1 事件的运算 (1)分配律: A(B + C) = AB + AC .
(2) 对偶律: A + B = A • B , A • B = A + B . 2 概率的定义
( ) (3) 对立公式: P A = 1− P ( A)
(4) A = Ω ←≠→ P( A) = 1, A = Φ ←≠→ P( A) = 0 . 5 抽象事件概率的计算:先用运算律进行化简, 然后利用概率性质计算.
四 三种概率模型 1 古典概型:样本空间 Ω 为一个有限集,且每个样本点的出现具有等可能性,
P( A) = A中有利事件数 基本事件总数
考研数学《概率论与数理统计》知识点总结
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
考研数学《概率论与数理统计》知识点总结
第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件.事件关系: 1.A ⊂B ,A 发生必导致B 发生. 2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 与B 互不相容(互斥),A 与B 不能同时发生,基本事件两两互不相容.6.A B=S 且A B=Ø,A 与B 互为逆事件或对立事件,A 与B 中必有且仅有一个发生,记B=A S A -=.事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 与B ,A 与B ,A 与B 也相互独立.第二章 随机变量及其分布(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),k n kk n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 应用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a a b x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b ll c X c P -=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(exp[21)(22σμσπ--=x x f ;t t x F xd ]2)(exp[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2exp[21)(2π.即μ=0,ζ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F . 正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3ζ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3ζ,μ+3ζ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Y h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.应用: Y=aX +b ~N(a μ+b ,(|a |ζ)2).第三章 多维随机变量及其分布二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质: 1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(. 4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似. 边缘分布:F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*.连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,ζ12,ζ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =||条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式:记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ). 正态卷积:若X 和Y 相互独立且X ~N (μ1,ζ12),记Y ~N (μ2,ζ22),则对Z=X+Y 有Z ~N (μ1+μ2,ζ12+ζ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t tαα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x x zx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则: ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y 是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为ζ(X ),ζ(X )= . 通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1. 正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 与Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i 的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c cc c c212222111211C ,),Cov(j i ij X X c ==E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩:E {[X -E (X )]k [Y -E (Y )]l }.n 维正态分布:)}()(21exp{det )2(1),,,(1T 221μX C μX C ---=-n n x x x f π ,T21T 21),,,(),,,(n nx x x μμμ ==μX . 性质:1.n 维正态随机变量(X 1,X 2,…,X n )的每一个分量X i (i =1,2,…,n )都是正态随机变量,反之,亦成立. 2.n 维随机变量(X 1,X 2,…,X n )服从n 维正态分布的充要条件是X 1,X 2,…,X n 的任意线性组合l 1X 1+l 2X 2+…+l n X n 服从一维正态分布(其中l 1,l 2,…,l n 不全为零).3.若(X 1,X 2,…,X n )服从n 维正态分布,且Y 1,Y 2,…,Y k 是X j (j =1,2,…,n )的线性函数,则(Y 1,Y 2,…,Y k )也服从多维正态分布.4.若(X 1,X 2,…,X n )服从n 维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.)(x D第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=ζ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=ζk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,X n是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞yyfnPn)(222d)()}({,则称)(2nαχ为)(2nχ的上α分位点.~ 近似的min Q1 M Q3 max当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n 的t 分布:记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点. 由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,则有),(~2n N X σμ,其中X 是样本均值. 定理二:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 与2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 与Y 1,Y 2,…,Y n 2分别是来自N (μ1,ζ12)和N (μ2,ζ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.2.当ζ12=ζ22=ζ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ.设总体X 均值μ及方差ζ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ. 最大似然估计法: 似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉与θ无关的因式项.θˆ即为)(θL 最大值,可由方程0)(d d =θθL 或0)(ln d d =θθL 求得. 当多个未知参数θ1,θ1,…,θk 时:可由方程组 0d d =L i θ或0ln d d =L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ). 结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m e t t F -=>}{,则)(}){()(1i m i m n m m n t P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:与定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ与),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21n X X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,ζ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μζ2已知 )1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μζ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -= ζ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2ζ12,ζ22已知 )1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2ζ12=ζ22=ζ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ()12112--+±-n n S tY X w α2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμ2)1()1(2122 22112-+-+-=nnS nSnSwζ12/ζ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X~N(μ,ζ2),两个总体X~N(μ1,ζ12),Y~N(μ2,ζ22).第八章假设实验定义:H0:原假设或零假设,为理想结果假设;H1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H0实际为真时,却拒绝H0.第Ⅱ类错误:H0实际为假时,却接受H0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P{当H0为真拒绝H0}≤α,α称为显著水平.拒绝域:取值拒绝H0.临界点:拒绝域边界.双边假设检验:H0:θ=θ0,H1:θ≠θ0.右边检验:H0:θ≤θ0,H1:θ>θ0.左边检验:H0:θ≥θ0,H1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H0备择假设H1检验统计量拒绝域1 ζ2已知μ≤μ0μ>μ0nXZσμ-=z≥zαμ≥μ0μ<μ0z≤-zαμ=μ0μ≠μ0|z|≥zα/22 ζ2未知μ≤μ0μ>μ0nSXt0μ-=t≥tα(n-1) μ≥μ0μ<μ0t≤-tα(n-1) μ=μ0μ≠μ0|t|≥tα/2(n-1)3 ζ1,ζ2已知μ1-μ2≤δμ1-μ2>δ222121nnYXZσσδ+--=z≥zαμ1-μ2≥δμ1-μ2<δz≤-zαμ1-μ2=δμ1-μ2≠δ|z|≥zα/24 ζ12=ζ22=ζ2未知μ1-μ2≤δμ1-μ2>δ1211--+--=nnSYXtwδ2)1()1(212222112-+-+-=nnSnSnSwt≥tα(n1+n2-2) μ1-μ2≥δμ1-μ2<δt≤-tα(n1+n2-2)μ1-μ2=δμ1-μ2≠δ|t|≥tα/2(n1+n2-2)5 μ未知ζ2≤ζ02ζ2>ζ02222)1(σχSn-=χ2≥χα2(n-1)ζ2≥ζ02ζ2<ζ02χ2≤χ21-α(n-1)ζ2=ζ02ζ2≠ζ02χ2≥χ2α/2(n-1)或χ2≤χ21-α/2(n-1)6 μ1,μ2未知ζ12≤ζ22ζ12>ζ222221SSF=F≥Fα(n1-1,n2-1) ζ12≥ζ22ζ12<ζ22F≤F1-α(n1-1,n2-1)ζ12=ζ22ζ12≠ζ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
考研数学概率论与数理统计知识点终极梳理
考研数学概率论与数理统计知识点终极梳理概率论与数理统计是硕士研究生入学考试(除数二)的一个重要组成部分,从研究必然问题到研究随机问题,不仅大多数初学者感到困难, 即使是对于曾学过这门学科的考生也有不少问题,特别是在做习题以及解决实际问题方面遇到的困难会更多一些。
从近几年硕士研究生入学考试数学阅卷结果来看,概率论这一部分得分率普遍较低。
在最后几天,建议大家,加强数学基本计算联系,熟练、严谨、规范非常至关重要。
此外,要注意回顾一遍大纲考点,查漏补缺。
第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基木性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维林德伯格定理、棣莫弗拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验。
2025考研概率论重点知识总结
2025考研概率论重点知识总结概率论是考研数学中的重要组成部分,对于考生来说,掌握好概率论的重点知识至关重要。
以下是对 2025 考研概率论重点知识的详细总结。
一、随机事件与概率1、随机事件及其运算随机事件的定义:在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
事件的关系:包含、相等、互斥、对立。
事件的运算:并、交、差。
2、概率的定义与性质概率的古典定义:若某试验的样本空间中样本点总数为 n,事件 A 包含的样本点个数为 m,则事件 A 发生的概率为 P(A) = m / n。
概率的公理化定义:满足非负性、规范性、可列可加性。
概率的性质:包括0 ≤ P(A) ≤ 1、P(Ω) = 1、P(∅)= 0、P(A∪B) = P(A) + P(B) P(AB) 等。
3、条件概率与乘法公式条件概率的定义:P(B|A) = P(AB) / P(A),其中 P(A) > 0。
乘法公式:P(AB) = P(A)P(B|A) = P(B)P(A|B)。
4、全概率公式与贝叶斯公式全概率公式:设 B1, B2,, Bn 是样本空间Ω 的一个划分,且 P(Bi) > 0 (i = 1, 2,, n),则对任意事件 A 有 P(A) =ΣP(Bi)P(A|Bi)。
贝叶斯公式:在全概率公式的基础上,已知事件 A 已经发生,求事件 Bi 发生的概率,即 P(Bi|A) = P(Bi)P(A|Bi) /ΣP(Bj)P(A|Bj)。
二、随机变量及其分布1、随机变量的概念定义:设随机试验的样本空间为Ω,对于Ω 中的每个样本点ω,都有唯一的实数X(ω)与之对应,则称X(ω)为随机变量。
2、离散型随机变量概率分布列:P(X = xi) = pi (i = 1, 2,),且Σpi = 1。
常见的离散型随机变量:0 1 分布、二项分布、泊松分布。
3、连续型随机变量概率密度函数:f(x),满足f(x) ≥ 0 且∫f(x)dx = 1。
考研数学备考:概率论各章节知识点梳理
考研数学备考:概率论各章节知识点梳理考研数学备考:概率论各章节知识点梳理第一局部:随机事件和概率(1)样本空间与随机事件(2)概率的定义与性质(含古典概型、几何概型、加法公式)(3)条件概率与概率的乘法公式(4)事件之间的关系与运算(含事件的独立性)(5)全概公式与贝叶斯公式(6)伯努利概型其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,请各位研友务必重视起来。
第二局部:随机变量及其概率分布(1)随机变量的概念及分类(2)离散型随机变量概率分布及其性质(3)连续型随机变量概率密度及其性质(4)随机变量分布函数及其性质(5)常见分布(6)随机变量函数的分布其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且纯熟。
第三局部:二维随机变量及其概率分布(1)多维随机变量的概念及分类(2)二维离散型随机变量结合概率分布及其性质(3)二维连续型随机变量结合概率密度及其性质(4)二维随机变量结合分布函数及其性质(5)二维随机变量的边缘分布和条件分布(6)随机变量的独立性(7)两个随机变量的简单函数的分布其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视!第四局部:随机变量的数字特征(1)随机变量的数字期望的概念与性质(2)随机变量的方差的概念与性质(3)常见分布的数字期望与方差(4)随机变量矩、协方差和相关系数其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算。
第五局部:大数定律和中心极限定理(1)切比雪夫不等式(2)大数定律(3)中心极限定理其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。
第六局部:数理统计的根本概念(1)总体与样本(2)样本函数与统计量(3)样本分布函数和样本矩其中:本章还是以概念为主,清楚概念后灵敏运用解决此类问题不在话下第七局部:参数估计(1)点估计(2)估计量的优良性(3)区间估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论基础知识第一章随机事件及其概率一随机事件§1几个概念随机实验::满足下列三个条件的试验称为随机试验;(1)试验可在相同条件1、随机实验下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。
例如:E1:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数。
2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B,C……例如,在E1中,A表示“掷出2点”,B表示“掷出偶数点”均为随机事件。
3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Ω。
每次试验都不可能发生的事情称为不可能事件,记为Φ。
例如,在E1中,“掷出不大于6点”的事件便是必然事件,而“掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件。
4、基本事件:试验中直接观察到的最简单的结果称为基本事件。
例如,在E1中,“掷出1点”,“掷出2点”,……,“掷出6点”均为此试验的基本事件。
由基本事件构成的事件称为复合事件,例如,在E1中“掷出偶数点”便是复合事件。
5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E1中,用数字1,2,……,6表示掷出的点数,而由它们分别构成的单点集{1},{2},…{6}便是E1中的基本事件。
在E2中,用H表示正面,T 表示反面,此试验的样本点有(H,H),(H,T),(T,H),(T,T),其基本事件便是{(H,H)},{(H,T)},{(T,H)},{(T,T)}显然,任何事件均为某些样本点构成的集合。
例如,在E1中“掷出偶数点”的事件便可表为{2,4,6}。
试验中所有样本点构成的集合称为样本空间。
记为Ω。
例如,在E1中,Ω={1,2,3,4,5,6}在E2中,Ω={(H,H),(H,T),(T,H),(T,T)}在E3中,Ω={0,1,2,……}例1,一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种。
此试验样本空间所有样本点的个数为N=P210=90.(排列:和顺序有关,如Ω北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为(组合)例2.随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。
此试验的样本空间所有样本点的个数为第一种方法用组合+乘法原理;第二种方法用排列§2事件间的关系与运算1、包含:“若事件A的发生必导致事件B发生,则称事件B包含事件A,记为A B或B A。
例如,在E1中,令A表示“掷出2点”的事件,即A={2}B表示“掷出偶数”的事件,即B={2,4,6}则2、相等:若A B且B A,则称事件A等于事件B,记为A=B例如,从一付52张的扑克牌中任取4张,令A表示“取得到少有3张红桃”的事件;B表示“取得至多有一张不是红桃”的事件。
显然A=B3、和:称事件A与事件B至少有一个发生的事件为A与B的和事件简称为和,记为A B,或A+B例如,甲,乙两人向目标射击,令A表示“甲击中目标”的事件,B表示“乙击中目标”的事件,则AUB表示“目标被击中”的事件。
推广:有限个无穷可列个4、积:称事件A与事件B同时发生的事件为A与B的积事件,简称为积,记为A B或AB。
例如,在E3中,即观察某电话交换台在某时刻接到的呼唤次数中,令A={接到偶数次呼唤},B={接到奇数次呼唤},则A B={接到6的倍数次呼唤}推广:任意有限个无穷可列个5、差:称事件A发生但事件B不发生的事件为A减B的差事件简称为差,记为A-B。
例如,测量晶体管的β参数值,令A={测得β值不超过50},B={测得β值不超过100},则,A-B=φ,B-A={测得β值为50﹤β≤100}6、互不相容:若事件A与事件B不能同时发生,即AB=φ,则称A与B 是互不相容的。
例如,观察某定义通路口在某时刻的红绿灯:若A={红灯亮},B={绿灯亮},则A与B便是互不相容的。
7、对立:称事件A不发生的事件为A的对立事件,记为显然,A∩=φ例如,从有3个次品,7个正品的10个产品中任取3个,若令A={取得的3个产品中至少有一个次品},则={取得的3个产品均为正品}。
§3事件的运算规律1、交换律A∪B=B∪A;A∩B=B∩A2、结合律(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)3、分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)4、对偶律此外,还有一些常用性质,如A∪B A,A∪B B(越求和越大);A∩B A,A∩B B(越求积越小)。
若A B ,则A ∪B=B,A ∩B=A A-B=A-AB=A 等等。
例3,从一批产品中每次取一件进行检验,令A i ={第i 次取得合格品},i=1,2,3,试用事件的运算符号表示下列事件。
A={三次都取得合格品}B={三次中至少有一次取得合格品}C={三次中恰有两次取得合格品}D={三次中最多有一次取得合格品}解:A=A1A2A3表示方法常常不唯一,如事件B又可表为或例4,一名射手连续向某一目标射击三次,令Ai ={第i 次射击击中目标},i=1,2,3,试用文字叙述下列事件:解:A1A 2A 3={三次射击都击中目标}A 3-A 2={第三次击中目标但第二次未击中目标}例5,下图所示的电路中,以A 表示“信号灯亮”这一事件,以B,C,D 分别表示继电器接点,Ⅰ,Ⅱ,Ⅲ,闭合,试写出事件A,B,C,D 之间的关系。
解,不难看出有如下一些关系:二事件的概率§1概率的定义所谓事件A 的概率是指事件A 发生可能性程度的数值度量,记为P (A )。
规定P(A)≥0,P (Ω)=1。
1、古典概型中概率的定义古典概型:满足下列两条件的试验模型称为古典概型。
(1)所有基本事件是有限个;(2)各基本事件发生例如:掷一匀称的骰子,令A={掷出2点}={2},B={掷出偶数总}={2,4,6}。
此试验样本空间为Ω={1,2,3,4,5,6},于是,应有1=P(Ω)=6P(A),即P(A)=。
而P(B)=3P(A)=定义1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为NΩ而事件A所含的样本数,即有利于事件A发生的基本事件数为N A,则事件A的概率便定义为:例1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。
解:用H表示正面,T表示反面,则该试验的样本空间Ω={(H,H,H)(H,H,T)(H,T,H)(T,H,H)(H,T,T)(T,H,T)(T,T,H)(T,T,T)}。
可见NΩ=8令A={恰有一次出现正面},则A={(H,T,T)(T,H,T)(T,T,H)}可见,令N A=3故例2,(取球问题取球问题))袋中有5个白球,3个黑球,分别按下列三种取法在袋中取球。
(1)有放回地取球:从袋中取三次球,每次取一个,看后放回袋中,再取下一个球;(2)无放回地取球:从袋中取三次球,每次取一个,看后不再放回袋中,再取下一个球;(3)一次取球:从袋中任取3个球。
在以上三种取法中均求A={恰好取得2个白球}的概率。
解:(1)有放回取球NΩ=8×8×8=83=512(袋中八个球,不论什么颜色,取到每个球的概率相等)(先从三个球里取两个白球,第一次取白球有五种情况,第二次取白球还有五种情况<注意是有放回>,第三次取黑球只有三种情况)(2)无放回取球故(3)一次取球故属于取球问题的一个实例:设有100件产品,其中有5%的次品,今从中随机抽取15件,则其中恰有2件次品的概率便为(属于一次取球模型)例3(分球问题分球问题))将n个球放入N个盒子中去,试求恰有n个盒子各有一球的概率(n≤N)。
解:令A={恰有n个盒子各有一球},先考虑基本事件的总数先从N个盒子里选n个盒子,然后在n个盒子里n个球全排列故属于分球问题的一个实例:全班有40名同学,向他们的生日皆不相同的概率为多少?令A={40个同学生日皆不相同},则有故(可以认为有365个盒子,40个球)例4(取数问题)从0,1,……,9共十个数字中随机的不放回的接连取四个数字,并按其出现的先后排成一列,求下列事件的概率:(1)四个数排成一个偶数;(2)四个数排成一个四位数;(3)四个数排成一个四位偶数;解:令A={四个数排成一个偶数},B={四个数排成一个四位数},C={四个数排成一个四位偶数},,例5(分组问题)将一幅52张的朴克牌平均地分给四个人,分别求有人手里分得13张黑桃及有人手里有4张A牌的概率各为多少?解:令A={有人手里有13张黑桃},B={有人手里有4张A牌}于是,故不难证明,古典概型中所定义的概率有以下三条基本性质:1°P(A)≥02°P(Ω)=13°若A1,A2,……,A n两两互不相容,则2、概率的统计定义:在n次重复试验中,设事件A出现了n A次,则称:为事件A 频率:频率的频率。
频率具有一定的稳定性。
示例见下例表定义2:在相同条件下,将试验重复n 次,如果随着重复试验次数n 的增大,事件A 的频率f n (A)越来越稳定地在某一常数p 附近摆动,则称常数p 为事件A 的概率,即P (A )=p 不难证明频率有以下基本性质:1°2°3°若A 1,A 2,……,两两互不相容,则3、概率的公理化定义(数学定义)定义3:设某试验的样本空间为Ω,对其中每个事件A 定义一个实数P (A ),如果它满足下列三条公理:1°P (A )≥0(非负性)2°P (Ω)=1(规范性)3°若A 1,A 2,……,A n ……两两互不相容,则(可列可加性,简称可加性)则称P (A )为A 的概率4、几何定义定义4:假设Ω是Rn(n=1,2,3)中任何一个可度量的区域,从Ω中随机地选择一点,即Ω中任何一点都有同样的机会被选到,则相应随机试验的样本空间就是Ω,假设事件A 是Ω中任何一个可度量的子集,则P(A)==ū(A)/ū(Ω)§2概率的性质性质1:若AB,则P(B-A)=P(B)-P(A)——差的概率等于概率之差证:因为:AB所以:B=A ∪(B-A)且A ∩(B-A)=φ,由概率可加性得P (B )=P[A ∪(B-A )]=P (A )+P (B-A )即P (B-A )=P (B )-P (A )性质2:若AB ,则P (A )≤P (B )——概率的单调性证:由性质1及概率的非负性得0≤P (B-A )=P (B )-P (A ),即P (A )≤P (B )性质3:P (A )≤1证明:由于AΩ,由性质2及概率的规范性可得P(A )≤1性质4:对任意事件A ,P ()=1-P =1-P((A )证明:在性质1中令B =Ω便有P ()=P (Ω-A )=P (Ω)-P (A )=1-P (A )性质5:P (φ)=0证:在性质4中,令A=Ω,便有P (φ)=P ()=1-P(Ω)=1-1=0性质6(加法公式加法公式))对任意事件A ,B ,有P (AUB AUB))=P =P((A )+P +P((B )-P -P((AB AB))证:由于A∪B=A∪(B-AB)且A∩(B-AB)=φ(见图)由概率的可加性及性质1便得P (A ∪B )=P[A ∪(B-AB )]=P (A )+P (B-AB )=P (A )+P (B )-P (AB )推广推广::P (A ∪B ∪C )=P =P((A )+P +P((B )+P +P((C )-P -P((AB AB))-P -P((AC AC))-P -P((BC BC))+P (ABC ABC))例6设10个产品中有3个是次品,今从中任取3个,试求取出产品中至少有一个是次品的概率。