20192020高中物理 第三章 磁场 习题课带电粒子在磁场中偏转的几种题型练习含解析新人教版选修31.doc
高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析
(1)若 A、C 间加速电压为 U,求电子通过金属网 C 发射出来的速度大小 vC; (2)若在 A、C 间不加磁场和电场时,检测到电子从 M 射出形成的电流为 I,求圆柱体 A 在 t 时间内发射电子的数量 N.(忽略 C、D 间的距离以及电子碰撞到 C、D 上的反射效应和金属 网对电子的吸收) (3)若 A、C 间不加电压,要使由 A 发射的电子不从金属网 C 射出,可在金属网内环形区域 加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度 B 的最小值.
,t
3 R 4 vM
3L 8
m ;(3)T 的表达式为T mL (n=
eU
2n 2emU
【详解】
(1)在加速电场中,从
P
点到
Q
点由动能定理得: eU
1 2
mv02
可得 v0
2eU m
电子从 Q 点到 M 点,做类平抛运动,
x 轴方向做匀速直线运动, t L L m
v0
2eU
y 轴方向做匀加速直线运动, L 1 eE t2 2 2m
(1)两金属极板间的电压 U 是多大?
(2)若 To=0.5s,求 t=0s 时刻射人磁场的带电粒子在磁场中运动的时间 t 和离开磁场的 位置.
(3)要使所有带电粒子通过 O 点后的运动过程中 不再从 AB 两点间越过,求出磁场的变化
周期 Bo,To 应满足的条件.
【答案】(1)100V (2)t= 2 105s ,射出点在 AB 间离 O 点 0.04 2 m
2a (3)设粒子在第二象限运动时间为 t1,则:t1= v0 ;
子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求
解 B.
【详解】
高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析
高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。
y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。
现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。
【答案】(1)8qBLvm=;(2)41(1)45mtqBπ=+【解析】【详解】(1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得:5sin37oQC L=15 sin37O OQO Q L==在y轴左侧磁场中做匀速圆周运动,半径为1R,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oot T =带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
带电粒子在磁场中偏转的题型
带电粒子在磁场中的偏转一.带电粒子在磁场中偏转的临界问题1:解决此类问题的关键是:找准临界点.2:找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v (或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆周角大的,运动时间越长.例题1:如图所示, 匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF.一电子从CD 边界外侧以速率v0垂直匀强磁场射入, 入射方向与CD边界间夹角为θ. 已知电子的质量为m,电荷量为e, 为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?练习:一带正电的粒子(不计重力)以速度v从P点进入磁感应强度为B的匀强磁场中,OP=L,要使该粒子恰好能从OA边射出,求:(1)粒子运动的半径R (2)荷质比(3)粒子在磁场中运动的时间例题2:如图3所示,M、N是两块水平放置的平行金属板,板长为L,板间距离为d,两板间存在磁感应强度为B,方向垂直于纸面向里的匀强磁场。
有一质量为m,电荷量为q 的带正电粒子从磁场左侧靠近N板处水平射入,欲使粒子打到金属板上,则粒子的入射速度v应满足什么条件?图9练习2:长为L 的水平板间,有垂直纸面向内的匀强磁场,如图所示,磁感应强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A.使粒子的速度v <m BqL 4B.使粒子的速度v >mBqL 45 C.使粒子的速度v >m BqL D.使粒子的速度m BqL 4<v <m BqL 45 例题3:质量m =0.1g 的小物块,带有5×10 C 的电荷,放在图示倾角为30°的光滑绝缘固定斜面顶端,整个斜面置于B =0.5T 的匀强磁场中,磁场方向垂直纸面向里.物块由静止开始下滑,到某一位置离开斜面(设斜面足够长,g 取10m/s ).求:(1)物块带何种电荷?(2)物块离开斜面时的速度是多大?(3)物块在斜面上滑行的距离是多大?例题4:如图所示,一带电粒子,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。
高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析
高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点3,0P L⎛⎫⎪⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;(3)若在xOy平面内加沿y轴正向的匀强电场E o,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动.请尝试用该思路求解.【答案】(1)23BLqm(2221BLq32203BE EvB+⎛⎫⎪⎝⎭【解析】【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111vqv B mr=由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 20v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x=2ay设粒子最终打在荧光屏上的点距Q点为H,粒子射出电场时与x轴的夹角为θ,则2tan yxqE xv m v yv v aθ⋅===有H=(3a-x)·tan θ=(32)2a y y-当322a y y-=时,即y=98a时,H有最大值由于98a<2a,所以H的最大值H max=94a,粒子射入磁场的位置为y=98a-2a=-78a4.如图所示,在xOy平面内,以O′(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x轴成45°角倾斜放置的挡板PQ,P,Q两点在坐标轴上,且O,P两点间的距离大于2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m,电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进入x轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B的大小;(2)挡板端点P的坐标;(3)挡板上被粒子打中的区域长度.【答案】(1)mvqR(2)(21),0R⎡⎤⎣⎦21042R+-【解析】【分析】【详解】(1)设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图甲所示,过A点做速度的垂线长度为r,C为该轨迹圆的圆心.连接AOˊ、CO,可证得ACOOˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r=R,由2v qvB m r=得:mv B qR=(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =+P 点的坐标为((21)R +,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(1OG R R ==+② 225-22=2FG OF OG R=-③22EG R=④ 挡板上被粒子打中的区域长度l =FE =2R +5-222R =2+10-42R ⑤5.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高考物理高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)
高考物理高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=neI t求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =ne I t224d dNn N a aππ==⨯解得4altN edπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B .设此轨迹圆的半径为 r ,则222(2)a r r a -=+2v Bev m r=解得:43mvB ae=2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高中物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)
高中物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k =A球在磁场中运动周期为2m TqBπ=当13k=时,如图4,A球在磁场中运动的最长时间34t T=即32m tqBπ=3.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S= 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=4.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y ,由带电粒子在电场中偏转的规律得: y =12at 2…① a =qE m =qU md …② t =Lv…③ 由①②③解得:y =0.08m设此粒子射入时与x 轴的夹角为α,则由几何知识得:y =r sinα+R 0-R 0cosα 可知tanα=43,即α=53° 比例η=53180×100%=29%5.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧;又有033AO mv d R qB==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin v =︒=,水平分速度001602x v v cos v =︒=;质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==; 所以质点在P 点的竖直分速度032yP y v v v ==, 水平分速度000317322xP x v qE v v t v g v m g =+=+⋅=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;2.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B 点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A 点,则该粒子的速度为多大?(3)若R =3cm 、B =0.2T ,在A 点的粒子源向圆平面内的各个方向发射速度均为3×105m /s 、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr 32+2×π(2r 3)2−r 32=9.0×10-4m 2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.3.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。
高考物理高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)
高考物理高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知22r L =解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:421 2.010s 4t T -==⨯带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (23B E【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()22211r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:29v m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
江苏省2020版高考物理三轮复习热点8带电粒子的电偏转和磁偏转练习含解析201911221149
热点8 带电粒子的电偏转和磁偏转(建议用时:20分钟)1.(2019·连云港高三模拟)如图所示,在边长为L 的正方形ABCD 阴影区域内存在垂直纸面的匀强磁场,一质量为m 、电荷量为q (q <0)的带电粒子以大小为v 0的速度沿纸面垂直AB 边射入正方形,若粒子从AB 边上任意点垂直射入,都只能从C 点射出磁场,不计粒子重力的影响.下列说法正确的是( )A .此匀强磁场的方向可能垂直纸面向外B .此匀强磁场的磁感应强度大小为2mv 0qLC .此匀强磁场区域的面积为πL 24D .此匀强磁场区域的面积为(π-2)L222.(多选)如图所示,矩形的四个顶点分别固定有带电荷量均为q 的正、负点电荷,水平直线AC 将矩形分成面积相等的两部分,B 为矩形的重心.一质量为m 的带正电微粒(重力不计)沿直线AC 从左向右运动,到A 点时的速度为v 0,到B 点时的速度为 5v 0.取无穷远处的电势为零,则( )A .微粒在A 、C 两点的加速度相同B .微粒从A 点到C 点的过程中,电势能先减小后增大 C .A 、C 两点间的电势差为U AC =4mv 20qD .微粒最终可以返回B 点,其速度大小为 5v 03.(多选)如图所示,半径为R 的圆形区域内存在垂直于纸面向里的匀强磁场,现有比荷大小相等的甲、乙两粒子,甲以速度v 1从A 点沿直径AOB 方向射入磁场,经过t 1时间射出磁场,射出磁场时的速度方向与初速度方向间的夹角为60°;乙以速度v 2从距离直径AOB 为R2的C 点平行于直径AOB 方向射入磁场,经过t 2时间射出磁场,其轨迹恰好通过磁场的圆心.不计粒子受到的重力,则( )A .两个粒子带异种电荷B .t 1=t 2C .v 1∶v 2=3∶1D .两粒子在磁场中轨迹长度之比l 1∶l 2=3∶14.(多选)(2019·徐州高三质量检测)在一次南极科考中,科考人员使用磁强计测定地磁场的磁感应强度.其原理如图所示,电路中有一段长方体的金属导体,它长、宽、高分别为a 、b 、c ,放在沿y 轴正方向的匀强磁场中,导体中电流沿x 轴正方向,大小为I .已知金属导体单位体积中的自由电子数为n ,电子电荷量为e ,自由电子做定向移动可视为匀速运动,测得金属导体前后两个侧面间电压为U ,则( )A .金属导体的前侧面电势较低B .金属导体的电阻为U IC .自由电子定向移动的速度大小为I neabD .磁感应强度的大小为necUI5.一带负电的小球以一定的初速度v 0竖直向上抛出,达到的最大高度为h 1;若加上水平方向的匀强磁场,且保持初速度仍为v 0,小球上升的最大高度为h 2;若加上水平方向的匀强电场,且保持初速度仍为v 0,小球上升的最大高度为h 3;若加上竖直向上的匀强电场,且保持初速度仍为v 0,小球上升的最大高度为h 4,如图所示.不计空气阻力,则( )A .h 1=h 3B .h 1<h 4C .h 2与h 3无法比较D .h 2<h 46.(多选)(2019·扬州中学高三模拟)如图所示直角坐标系xOy ,P (a ,-b )为第四象限内的一点,一质量为m 、电荷量为q 的负电荷(电荷重力不计)从原点O 以初速度v 0沿y 轴正方向射入.第一次在整个坐标系内加垂直纸面向内的匀强磁场,该电荷恰好能通过P 点;第二次保持y >0区域磁场不变,而将y <0区域磁场改为沿x 轴方向的匀强电场,该电荷仍通过P 点( )A .匀强磁场的磁感应强度B =2amv 0q (a 2+b 2)B .匀强磁场的磁感应强度B =2amv 0q a 2+b 2C .电荷从O 运动到P ,第二次所用时间一定短些D .电荷通过P 点时的速度,第二次与x 轴负方向的夹角一定小些 7.(多选)(2019·盐城二模)磁流体发电机是一种把物体内能直接转化为电能的低碳环保发电机,如图所示为其原理示意图,平行金属板C 、D 间有匀强磁场,磁感应强度为B ,将一束等离子体(高温下电离的气体,含有大量带正电和带负电的微粒)水平喷入磁场,两金属板间就产生电压.定值电阻R 0的阻值是滑动变阻器最大阻值的一半,与开关S 串联接在C 、D 两端,已知两金属板间距离为d ,喷入气流的速度为v ,磁流体发电机的电阻为r (R 0<r <2R 0).则滑动变阻器的滑片P 由a 端向b 端滑动的过程中( )A .电阻R 0消耗功率最大值为B 2d 2v 2R 0(R 0+r )2B .滑动变阻器消耗功率最大值为B 2d 2v 2R 0+rC .金属板C 为电源负极,D 为电源正极 D .发电机的输出功率先增大后减小8.质谱仪可以测定有机化合物分子结构,现有一种质谱仪的结构可简化为如图所示,有机物的气体分子从样品室注入离子化室,在高能电子作用下,样品气体分子离子化或碎裂成离子.若离子化后的离子带正电,初速度为零,此后经过高压电源区、圆形磁场室(内为匀强磁场)、真空管,最后打在记录仪上,通过处理就可以得到离子比荷(qm),进而推测有机物的分子结构.已知高压电源的电压为U ,圆形磁场区的半径为R ,真空管与水平面夹角为θ,离子进入磁场室时速度方向指向圆心.则下列说法正确的是( )A .高压电源A 端应接电源的正极B .磁场室的磁场方向必须垂直纸面向里C .若离子化后的两同位素X 1、X 2(X 1质量大于X 2质量)同时进入磁场室后,出现图中的轨迹Ⅰ和Ⅱ,则轨迹Ⅰ一定对应X 1D .若磁场室内的磁感应强度大小为B ,当记录仪接收到一个明显的信号时,与该信号对应的离子比荷qm =2U tan2θ2B 2R2热点8 带电粒子的电偏转和磁偏转1.解析:选D.若保证所有的粒子均从C 点离开此区域,则由左手定则可判断匀强磁场的方向应垂直纸面向里,A 错误;由A 点射入磁场的粒子从C 点离开磁场,结合题图可知该粒子的轨道半径应为R =L ,则由qBv 0=m v 20R ,可解得B =mv 0qL,B 错误;由几何关系可知匀强磁场区域的面积应为S =2×(14πL 2-12L 2)=(π-2)L 22,C 错误,D 正确.2.解析:选AC.由场强叠加原理和对称性可知,A 、C 两点的场强大小相等、方向相同,故由牛顿第二定律可知,微粒在A 、C 两点的加速度相同,A 正确;由电场的性质可知,沿直线AC 电势逐渐降低,根据电场力做功W =qU 可知,电场力对该微粒一直做正功,故微粒从A 点到C 点的过程中电势能一直在减小,B 错误;由对称性可知U AB =U BC ,故由动能定理可得qU AB =12mv 2B -12mv 2A ,同理可得qU BC =12mv 2C -12mv 2B ,以上两式联立并代入数据求解可得vC =3v 0,故qU AC=12mv 2C -12mv 2A ,解得U AC =4mv 20q ,C 正确;由于B 点电势为零,故微粒从B 点沿直线AC 运动到无穷远处的过程中,电场力做功为零,所以微粒到无穷远处的速度与微粒在B 点时的速度相同,仍为5v 0,故粒子不会返回B 点,D 错误.3.解析:选AC.根据左手定则判断可得,甲粒子带正电,乙粒子带负电,选项A 正确;分别对甲、乙粒子作图,找出其做匀速圆周运动的圆心和半径以及圆心角,则有:r 甲=3R ,r 乙=R ,θ甲=π3,θ乙=2π3,根据qvB =m v 2r 可得:v =qBr m ,所以v 1v 2=r 甲r 乙=31,选项C 正确;根据t =θ2πT 可得:t 1t 2=θ甲θ乙=12,选项B 错误;粒子在磁场中的轨迹长度为l =vt ,所以l 1l 2=v 1t 1v 2t 2=32,选项D 错误.4.解析:选AD.根据左手定则(注意电子带负电)可知电子打在前侧面,即前侧面带负电,电势较低,A 正确;电流方向为从左向右,而题中U 表示的是导体前后两个侧面的电压,故导体的电阻不等于UI ,B 错误;在t 时间内通过bc 横截面的电荷量为q =n (bcvt )e ,又I =nbcvte t=nbcve ,解得v =Inbce①,C 错误;因为当金属导体中自由电子定向移动时受洛伦兹力作用向前侧面偏转,使得前后两侧面间产生电势差,当电子所受的电场力与洛伦兹力平衡时,前后两侧面间产生恒定的电势差.因而可得eU b =Bev ②,联立①②式可得B =necUI,D 正确. 5.解析:选A.甲图,由竖直上抛运动的规律得h 1=v 202g;丙图,当加上电场时,在竖直方向上有v 20=2gh 3,所以h 1=h 3,A 项正确;乙图中,洛伦兹力改变速度的方向,当小球在磁场中运动到最高点时,小球有水平速度,设此时小球的动能为E k ,则由能量守恒定律得mgh 2+E k =12mv 20,又12mv 20=mgh 1,所以h 1>h 2,h 3>h 2,C 项错误;丁图,因小球带负电,所受电场力方向向下,则h 4一定小于h 1,B 项错误;由于无法明确电场力做功的多少,故无法确定h 2和h 4之间的关系,D 项错误.6.解析:选AC.第一次在整个坐标系内加垂直纸面向内的匀强磁场,该电荷恰好能通过P 点;粒子做匀速圆周运动,由几何作图得(a -R )2+b 2=R 2,解得R =a 2+b 22a ,由qvB =m v 2R解得匀强磁场的磁感应强度B =2amv 0q (a 2+b 2),故A 正确,B 错误;第二次保持y >0区域磁场不变,而将y <0区域磁场改为沿x 轴方向的匀强电场,该电荷仍通过P 点,粒子先做匀速圆周运动,后做类平抛运动,运动时间t 2=12T +b v 0;第一次粒子做匀速圆周运动,运动时间t 1=12T +QP︵v 0,弧长大于b ,所以t 1>t 2,即第二次所用时间一定短些,故C 正确;电荷通过P 点时的速度,第一次与x 轴负方向的夹角为α,则有tan α=R 2-b 2b =a 2-b 22ab;第二次与x 轴负方向的夹角为θ,则有tan θ=b2R -R 2-b 2=a2b,所以有tan θ>tan α,电荷通过P 点时的速度,第二次与x 轴负方向的夹角一定大些,故D 错误.7.解析:选ACD.根据左手定则判断两金属板的极性,离子在运动过程中同时受电场力和洛伦兹力,二力平衡时两板间的电压稳定.由题图知当滑片P 位于b 端时,电路中电流最大,电阻R 0消耗功率最大,其最大值为P 1=I 2R 0=E 2R 0(R 0+r )2=B 2d 2v 2R 0(R 0+r )2,故A 正确;将定值电阻归为电源内阻,由滑动变阻器的最大阻值2R 0<r +R 0,则当滑动变阻器连入电路的阻值最大时消耗功率最大,最大值为P =2B 2d 2v 2R 0(r +3R 0)2,故B 错误;因等离子体喷入磁场后,由左手定则可知正离子向D 板偏,负离子向C 板偏,即金属板C 为电源负极,D 为电源正极,故C 正确;等离子体稳定流动时,洛伦兹力与电场力平衡,即Bqv =q E d,所以电源电动势为E =Bdv ,又R 0<r <2R 0,所以滑片P 由a 向b 端滑动时,外电路总电阻减小,期间某位置有r =R 0+R ,由电源输出功率与外电阻关系可知,滑片P 由a 向b 端滑动的过程中,发电机的输出功率先增大后减小,故D 正确.8.解析:选D.正离子在电场中加速,可以判断高压电源A 端应接负极,同时根据左手定则知,磁场室的磁场方向应垂直纸面向外,A 、B 均错误;设离子通过高压电源后的速度为v ,由动能定理可得qU =12mv 2,离子在磁场中偏转,则qvB =m v 2r ,联立计算得出r =1B2mUq,由此可见,质量大的离子的运动轨迹半径大,即轨迹 Ⅱ 一定对应X 1,C 错误;离子在磁场中偏转轨迹如图所示,由几何关系可知r =Rtanθ2,可解得qm =2U tan2θ2B 2R2,D 正确.。
高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析
高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv lQ kq= (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α==由洛伦兹力提供向心力可得2011v qv Bm r =解得:0152mv B ql=(2)粒子从P 到A 的轨迹如图所示:粒子绕负点电荷Q 做匀速圆周运动,设半径为r 2 由几何关系得252cos 8l r l α==由库仑力提供向心力得20222v Qqk mr r = 解得:2058mv lQ kq=(3)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
带电粒子在磁场中运动的六类高考题型归纳
带电粒子在磁场中运动的六类高考题型归纳找圆心、画轨迹是解题的基础。
带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。
二、带电粒子在磁场中轨道半径变化问题导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化。
如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。
②磁场变化导致半径变化。
如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。
③动量变化导致半径变化。
如粒子裂变,或者与别的粒子碰撞;④电量变化导致半径变化。
如吸收电荷等。
总之,由洛伦兹力提供向心力公式可以看出m、v、q、B中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。
三、带电粒子在磁场中运动的临界问题和带电粒子在多磁场中运动问题带电粒子在磁场中运动的临界问题的原因有:粒子运动范围的空间临界问题;磁场所占据范围的空间临界问题,运动电荷相遇的时空临界问题等。
审题时应注意恰好,最大、最多、至少等关键字四、带电粒子在有界磁场中的极值问题寻找产生极值的条件:①直径是圆的最大弦;②同一圆中大弦对应大的圆心角;③由轨迹确定半径的极值。
五、带电粒子在复合场中运动问题复合场包括:磁场和电场,磁场和重力场,或重力场、电场和磁场。
有带电粒子的平衡问题,匀变速运动问题,非匀变速运动问题,在解题过程中始终抓住洛伦兹力不做功这一特点。
粒子动能的变化是电场力或重力做功的结果。
六、带电粒子在磁场中的周期性和多解问题多解形成原因:带电粒子的电性不确定形成多解;磁场方向不确定形成多解;临界状态的不唯一形成多解,在有界磁场中运动时表现出来多解,运动的重复性形成多解,在半径为r的圆筒中有沿筒轴线方向的匀强磁场,磁感应强度为B;一质量为m带电+q的粒子以速度V 从筒壁A处沿半径方向垂直于磁场射入筒中;若它在筒中只受洛伦兹力作用且与筒壁发生弹性碰撞,欲使粒子与筒壁连续相碰撞并绕筒壁一周后仍从A处射出;则B必须满足什么条件?。
高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析
高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。
【答案】(1)2U E L =,M eUv m=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3348M R L m t v eUππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】(1)在加速电场中,从P 点到Q 点由动能定理得:2012eU mv = 可得02eUv m=电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU==y 轴方向做匀加速直线运动,2122L eEt m=⨯ 由以上各式可得:2U E L=电子运动至M 点时:220()M Ee v v t m=+ 即:2M eUv m= 设v M 的方向与x 轴的夹角为θ,02cos M v v θ== 解得:θ=45°。
高考物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)
高考物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mg q,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mg q ,方向竖直向上;(2);(3013v .【解析】【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mg E q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=, 所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R ==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AO d arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin =︒=,水平分速度001602x v v cos v =︒=; 质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023yv v t g == 所以质点在P 点的竖直分速度032yP y v v v ==, 水平分速度000317322xP x v qE v v t v g v m g =+=⋅=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(3a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba (2)0≤y≤2a (3)78y a =,94a 【解析】【详解】 (1)由题意可知, 粒子在磁场中的轨迹半径为r =a由牛顿第二定律得Bqv 0=m 20v r故粒子的比荷0v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·AB BC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a(3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 0 2019222qE y t a a m ==>,所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得 x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅=== 有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为 y =98a -2a =-78a3.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U ,周期为0T 。
高中物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)
高中物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R ==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin v =︒=,水平分速度001602x v v cos v =︒=;质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==; 所以质点在P 点的竖直分速度032yP y v v v ==, 水平分速度000317322xP x v qE v v t v g v m g =+=+⋅=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;2.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
2019-2020学年高二物理人教版选修3-1课件第三章习题课带电粒子在磁场中偏转的几种题型
-4-
习题课:带电粒子在磁场中偏转的几种题型
探究一
探究二
探究三 当堂检测
课堂探究案 问题探究 名师精讲 典例剖析
(3)找联系,列方程:①根据半径公式 r=������������������������,建立半径、速度、磁感 应强度的关系方程;②根据周期公式 T=2���π���������������,建立周期、磁感应强度、 质量和电荷量的关系方程;③根据 t=���2���π������,建立在磁场中运动时间、周 期、圆心角、偏转角度的关系方程;④根据 t=������������,建立在磁场中运动时 间、弧长和速度的关系方程;⑤几个有关的角及其关系:如图所示,粒
-7-
习题课:带电粒子在磁场中偏转的几种题型
课堂探究案
探究一
探究二
探究三 当堂检测
问题探究 名师精讲 典例剖析
解析:由左手定则确定,质子向上偏转,所以质子能射出两板间的
条件是:B较弱时,质子从M点射出(如图所示),此时轨道的圆心为O'
点,由平面几何知识得
R2=d2+
������-
1 2
������
-18-
习题课:带电粒子在磁场中偏转的几种题型
探究一
探究二
探究三 当堂检测
课堂探究案 问题探究 名师精讲 典例剖析
(3)由 qE=ma,得 E=24 N/C 设微粒从 P 点进入磁场以速度 v 做匀速圆周运 动,v= 2v0=120 2 m/s 由 qvB=m������������2得 r=������������������������ 由几何关系可知 r= 2 m,所以可得 B=������������������������=1.2 T。 答案:(1)0.05 s 2.4×103 m/s2 (2)45° 见解析图
2019-2020学年高中物理 第三章 磁场 习题课带电粒子在磁场中偏转的几种题型练习(含解析)新人教版选修3-1
带电粒子在磁场中偏转的几种题型课后篇巩固提升 基础巩固1.(多选)如图所示,带负电的粒子以速度v 从粒子源P 处竖直向下射出,若图中匀强磁场范围足够大(方向垂直纸面),则带电粒子的可能轨迹是( )A.aB.bC.cD.d,故轨迹a 、c 均不可能,正确选项为B 、D 。
2.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场方向射入磁场中,并从B 点射出。
∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为( )A.2πr 3r 0B.2√3πr 3r 0C.πr 3r 0D.√3πr3r 0rr ⏜所对圆心角θ=60°,知t=16T=πr3rr。
但题中已知条件不够,没有此选项,另想办法找规律表示t 。
由匀速圆周运动t=rr ⏜r 0,从题图分析有R=√3r ,则:rr ⏜=R ·θ=√3r×π3=√33πr ,则t=rr ⏜r 0=√3πr3r 0,故D 正确。
3.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( ) A.可能做直线运动 B.可能做匀减速运动 C.一定做曲线运动 D.可能做匀速圆周运动,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C 正确。
4.(多选)长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感应强度为B ,板间距离也为L ,极板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A.使粒子的速度v<rrr4r B.使粒子的速度v>5rrr 4rC.使粒子的速度v>rrr rD.使粒子的速度rrr 4r <v<5rrr4r,由题意知,若带正电的粒子从极板左边射出磁场,其在磁场中做圆周运动的半径R<r4,因粒子在磁场中做圆周运动,洛伦兹力提供向心力,即qvB=m r 2r可得粒子做圆周运动的半径:r=rrrr粒子不从左边射出,则:rr rr <r4即v<rrr 4r带正电的粒子从极板右边射出磁场,如图所示,此时粒子的最大半径为R ,由上图可知:R 2=L 2+(r -r 2)2可得粒子做圆周运动的最大半径:R=5r 4又因为粒子做圆周运动,洛伦兹力提供向心力,粒子不从右边射出,则rrrr >5r 4即v>5rrr 4r,故欲使粒子打在极板上,粒子的速度必须满足v<rrr4r或v>5rrr 4r故A 、B 正确,C 、D 错误。
高中物理高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)
高中物理高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。
y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。
现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。
【答案】(1)8qBLvm=;(2)41(1)45mtqBπ=+【解析】【详解】(1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得:5sin37oQC L=15 sin37O OQO Q L==在y轴左侧磁场中做匀速圆周运动,半径为1R,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oot T =带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
20192020高中物理 第三章 磁场 习题课带电粒子在磁场中偏转的几种题型练习含解析新人教版选修31
带电粒子在磁场中偏转的几种题型课后篇巩固提升基础巩固1.(多选)如图所示,带负电的粒子以速度v从粒子源P处竖直向下射出,若图中匀强磁场范围足够大(方向垂直纸面),则带电粒子的可能轨迹是( )A.aB.bC.cD.d解析粒子的入射方向必定与它的运动轨迹相切,故轨迹a、c均不可能,正确选项为B、D。
答案BD2.半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直磁场方向射入磁场中,并从B点射出。
∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为( )A. B.C. D.解析从所对圆心角θ=60°,知t=T=。
但题中已知条件不够,没有此选项,另想办法找规律表示t。
由匀速圆周运动t=,从题图分析有R=r,则:=R·θ=r×πr,则t=,故D正确。
答案D3.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )A.可能做直线运动B.可能做匀减速运动C.一定做曲线运动D.可能做匀速圆周运动解析带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C正确。
答案C4.(多选)长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感应强度为B,板间距离也为L,极板不带电,现有质量为m、电荷量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A.使粒子的速度v<B.使粒子的速度v>C.使粒子的速度v>D.使粒子的速度<v<解析如图所示,由题意知,若带正电的粒子从极板左边射出磁场,其在磁场中做圆周运动的半径R<,因粒子在磁场中做圆周运动,洛伦兹力提供向心力,即qvB=m可得粒子做圆周运动的半径:r=粒子不从左边射出,则:即v<带正电的粒子从极板右边射出磁场,如图所示,此时粒子的最大半径为R,由上图可知:R2=L2+可得粒子做圆周运动的最大半径:R=又因为粒子做圆周运动,洛伦兹力提供向心力,粒子不从右边射出,则即v>,故欲使粒子打在极板上,粒子的速度必须满足v<或v>故A、B正确,C、D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在磁场中偏转的几种题型课后篇巩固提升基础巩固1.(多选)如图所示,带负电的粒子以速度v从粒子源P处竖直向下射出,若图中匀强磁场范围足够大(方向垂直纸面),则带电粒子的可能轨迹是( )A.aB.bC.cD.d解析粒子的入射方向必定与它的运动轨迹相切,故轨迹a、c均不可能,正确选项为B、D。
答案BD2.半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直磁场方向射入磁场中,并从B点射出。
∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为( )A. B.C. D.解析从所对圆心角θ=60°,知t=T=。
但题中已知条件不够,没有此选项,另想办法找规律表示t。
由匀速圆周运动t=,从题图分析有R=r,则:=R·θ=r×πr,则t=,故D正确。
答案D3.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )A.可能做直线运动B.可能做匀减速运动C.一定做曲线运动D.可能做匀速圆周运动解析带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C正确。
答案C4.(多选)长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感应强度为B,板间距离也为L,极板不带电,现有质量为m、电荷量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A.使粒子的速度v<B.使粒子的速度v>C.使粒子的速度v>D.使粒子的速度<v<解析如图所示,由题意知,若带正电的粒子从极板左边射出磁场,其在磁场中做圆周运动的半径R<,因粒子在磁场中做圆周运动,洛伦兹力提供向心力,即qvB=m可得粒子做圆周运动的半径:r=粒子不从左边射出,则:即v<带正电的粒子从极板右边射出磁场,如图所示,此时粒子的最大半径为R,由上图可知:R2=L2+可得粒子做圆周运动的最大半径:R=又因为粒子做圆周运动,洛伦兹力提供向心力,粒子不从右边射出,则即v>,故欲使粒子打在极板上,粒子的速度必须满足v<或v>故A、B正确,C、D错误。
答案AB5.(多选)如图所示,在x>0,y>0的空间有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B,现有四个质量及电荷量均相同的带电粒子,由x轴上的P点以不同的初速度平行于y轴射入此磁场,其出射方向如图所示,不计重力的影响,则( )A.初速度最大的粒子是沿①方向射出的粒子B.初速度最大的粒子是沿②方向射出的粒子C.在磁场中运动时间最长的是沿③方向射出的粒子D.在磁场中运动时间最长的是沿④方向射出的粒子解析显然图中四条圆弧中①对应的半径最大,由半径公式r=可知,质量和电荷量相同的带电粒子在同一个磁场中做匀速圆周运动的速度越大,半径越大,A对,B错;根据周期公式T=知,当圆弧对应的圆心角为θ时,带电粒子在磁场中运动的时间为t=,圆心角越大,则带电粒子在磁场中运动时间越长,圆心均在x轴上,由题图可知④的圆心角为π,且最大,故在磁场中运动时间最长的是沿④方向射出的粒子,C错,D对。
答案AD6.(多选)如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t。
若加上磁感应强度为B、水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°角,利用以上数据可求出下列物理量中的( )A.带电粒子的比荷B.带电粒子在磁场中运动的周期C.带电粒子的初速度D.带电粒子在磁场中运动所对应的圆心角解析由带电粒子在磁场中运动的偏向角,可知带电粒子运动轨迹所对的圆心角为60°,因此由几何关系得l=Rsin 60°,又由Bqv0=m得R=,故l=sin 60°,又未加磁场时有l=v0t,所以可求得比荷,故A、D正确;根据周期公式T=可得带电粒子在磁场中运动的周期T=,故B正确;由于半径未知,所以初速度无法求出,C错误。
答案ABD7.如图所示为一圆形区域的匀强磁场,在O点处有一放射源,沿半径方向射出速率为v的不同带电粒子,其中带电粒子1从A点飞出磁场,带电粒子2从B点飞出磁场,不考虑带电粒子的重力。
则( )A.带电粒子1的比荷与带电粒子2的比荷的比值为3∶1B.带电粒子1的比荷与带电粒子2的比荷的比值为∶1C.带电粒子1与带电粒子2在磁场中运动时间比值为2∶1D.带电粒子1与带电粒子2在磁场中运动时间比值为1∶2解析根据题图中几何关系,tan 60°=,tan 30°=,带电粒子在匀强磁场中运动,r=,联立解得带电粒子1的比荷与带电粒子2的比荷的比值为3∶1,选项A正确,选项B错误;带电粒子1与带电粒子2在磁场中运动时间比值为=2=2∶3,选项C、D错误。
答案A8.(多选)如图所示,混合正离子束先后通过正交电磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子束在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的( )A.速度B.质量C.电荷量D.比荷解析在正交的电磁场区域中,正离子束不偏转,说明正离子束受力平衡,在区域Ⅰ中,离子受静电力和洛伦兹力,由qvB=qE,得v=,可知这些正离子具有相同的速度;进入只有匀强磁场的区域Ⅱ时,偏转半径相同,由R=和v=,得R=,可知这些正离子具有相同的比荷,故A、D正确。
答案AD9.如图所示,在平面直角坐标系xOy的第四象限有垂直纸面向里的匀强磁场,一质量为m=5.0×10-8 kg、电荷量为q=1.0×10-6 C的带电粒子由静止开始经U0=10 V的电压加速后,从P点沿图示方向进入磁场,已知OP=30 cm,粒子重力不计,sin 37°=0.6,cos 37°=0.8。
(1)求带电粒子到达P点时的速度v的大小;(2)若粒子不能进入x轴上方,求磁感应强度B满足的条件。
解析(1)对于带电粒子的加速过程,由动能定理得qU0=mv2,解得v=20 m/s。
(2)带电粒子不从x轴射出的临界情况如图所示,由几何关系得OP≥R+Rcos 53°,带电粒子仅在洛伦兹力作用下做匀速圆周运动,有qvB=m,解得B≥ T。
答案(1)20 m/s (2)B≥ T能力提升1.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成30°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )A.1∶2B.2∶1C.1∶D.1∶1解析如图所示,粗略地画出正、负电子在第一象限内的匀强磁场中的运动轨迹。
由几何关系知,正电子轨迹对应的圆心角为120°,运动时间为t1=,其中T1为正电子运动的周期,由T=及qvB=知T1=;同理,负电子在磁场中运动的周期T2=T1=,但由几何关系知负电子在磁场中转过的圆心角为60°,故在磁场中运动时间t2=。
所以正、负电子在磁场中运动的时间之比为,故B选项正确。
答案B2.(多选)如图所示,A板发出的电子(重力不计)经加速后,水平射入水平放置的两平行金属板M、N间,M、N之间有垂直纸面向里的匀强磁场,电子通过磁场后最终打在荧光屏P上,关于电子的运动,下列说法正确的是()A.当滑片向右移动时,电子打在荧光屏的位置上升B.当滑片向右移动时,电子通过磁场区域所用时间不变C.若磁场的磁感应强度增大,则电子打在荧光屏上的速度大小不变D.若磁场的磁感应强度增大,则电子打在荧光屏上的速度变大解析当滑片向右移动时,电场的加速电压增大,加速后电子动能增大,进入磁场的初速度增大,向下偏转程度变小,打在荧光屏上的位置上升,选项A正确;由于在磁场中运动对应的圆心角变小,运动时间变短,选项B错误;电子在磁场中运动速度大小不变,选项C正确,D错误。
答案AC3.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB 方向射入磁场,经过Δt时间从C点射出磁场,OC与OB成60°角。
现将带电粒子的速度变为,仍从A点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.ΔtB.2ΔtC.ΔtD.3Δt解析设带电粒子以速度v进入磁场做圆周运动,圆心为O1,半径为r1,则根据qvB=,得r1=,根据几何关系得=tan ,且φ1=60°。
当带电粒子以v的速度进入时,轨道半径r2=r1,圆心在O2,则=tan ,即tan =3tan 。
故=60°,φ2=120°;带电粒子在磁场中运动的时间t=T,所以,即Δt2=2Δt1=2Δt,故选项B正确,选项A、C、D错误。
答案B4.(多选)如图所示,空间存在竖直向下的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,阻力不计,以下说法正确的是( )A.液滴一定带负电B.液滴在C点时动能最大C.液滴从A运动到C的过程中机械能守恒D.液滴将由B点返回A点解析由轨迹走向可知液滴一定带负电。
洛伦兹力不做功,液滴由A到C,克服电场力做功,所以从A运动到C过程中机械能不守恒,由于重力大于电场力,所以由动能定理知,液滴在C点时动能最大。
液滴到达B处后,向右重复类似于A→C→B的运动,不能再由B点返回A点。
故选A、B。
答案AB5.(多选)电荷量分别为q和-q的两个带电粒子a、b分别以速度va和vb射入匀强磁场,两粒子的入射方向与磁场边界的夹角分别为30°和60°,磁场宽度为d且AB=d,两粒子同时由A点射入,同时到达B点,如图所示,则( )A.a粒子带负电,b粒子带正电B.两粒子的轨道半径之比ra∶rb=∶1C.两粒子的速度之比va∶vb=1∶2D.两粒子的质量之比ma∶mb=1∶2解析根据左手定则可判断出,a粒子带负电,b粒子带正电,故A正确;两粒子在磁场中做圆周运动,如图所示,Oa、Ob分别为其轨迹圆心,磁场宽度为d,由几何关系可知ra=,rb=d,所以ra∶rb=1∶,故B错误;两粒子的轨迹所对圆心角分别为θa=120°和θb=60°,两粒子在磁场中的运动时间相等,即,则Tb=2Ta,洛伦兹力提供向心力,根据qvB=mr,运动周期T=,两粒子的电荷量相同,在同一磁场中,B相同,周期与质量成正比,所以ma∶mb=Ta∶Tb=1∶2,故D正确;由qvB=m得v=,即速度与轨迹半径成正比,与质量成反比,所以,故C错误。