气路控制阀控制回路
简单气路设计
回路的构成
气源 空气压缩机
气源处 理装置
过滤器 油雾器
压力 控制阀
减压阀
(驱动部分)
方向 控制阀
流量 控制阀
电磁阀
速度控制阀
气压控制阀
驱动装置
气缸 摆动缸 空气马达
电源
(控制部分)
(检测部分)
操作装置
按钮开关 选择开关 按钮阀
指示装置
指示灯 计数器 蜂鸣器
控制(运算) 回路
继电器 定时器 电子元件 预制计数器 顺序控制器 气动控制元件
典型应用回路 c、利用气/液转换器的位置控制 如前所述,通过在规定位置设置位移传感器或行程开关,根据行程信号控制三位阀的切换,可实现 简单的中间定位控制。但在气缸的运动速度较快的场合,由于气体的压缩性,难以获得高的定位精 度。为了保证定位精度,可以在一定程度上牺牲运动速度,采用气/液转换器来实现。
例题1 设计一个双向调速的气路: 要求:1、执行元件为单作用气缸
2、其它元件任选
例题2
答案1
用单作用气缸设计一个生产流水线上的阻挡机构,要求气缸开始为伸出状态,当接触产品并且完成 此处工序后迅速缩回使工件通过。
要求:1、选择合适的气缸类型
2、画出气路图
答案2
例题3
设计一个气路
现有单动押出型气缸
1条
挡块
利用外部挡块定位的方法
典型应用回路 b、利用气缸结构的位置控制 使用多位气缸,可实现多点位置控制,其基本构成如图所示。气缸A、B、C的行程各不相同。当三 通换向阀1通电时,气缸A的活塞杆推动活塞B、C伸出,到达气缸A的行程终点。当三通电磁阀2通电 时,活塞A保持不动,活塞C向右移动。
使用多位气缸的位置控制回路
气动基本回路和控制阀
迈进,实现“与”门.
(2)关键元件 双压阀
5.迅速排气阀及其应用回路
(1)迅速排气阀
(2)应用回路
3.3 速度控制回路和流量控制阀
3.3.1 流量控制阀 在气动系统中,经常要求控制气 动执行元件旳运动速度,这要靠调整 压缩空气旳流量来实现。用来控制气 体流量旳阀,称为流量控制阀。流量 控阀是经过变化阀旳通流截面积来实 现流量控制旳元件,它涉及节流阀、 单向节流阀、排气节流阀等。
压力控制阀 2.顺序阀 (1)作用 依托气路中压力
旳变化来控制各执行元 件按顺序动作。 (2)工作原理 (3)单向顺序阀
顺序阀旳工作原理 a)进气 b)排气
3.4.2 压力控制回路
1.一次压力控制回路 (1)作用 (2)工作原理 2.二次压力控制回路 (1)作用 (2)工作原理 3.高下压转换回路 (1)作用 (2)工作原理
速度控制回路旳工作原理、作用
进气节流调速 排气节流调速 慢进-快退调 速回路
气液联用缸速度控制回路 气液阻尼缸速度控 制回路
速度控制阀旳功能
节流阀 单向节流阀 排气节流阀
压力控制回路旳工作原理、作用
压力控制阀旳图形符号和功能
溢流阀 顺序阀
其他常用旳基本回路旳应用
3.2 气动换向回路和换向阀
3.2.1 换向阀 1.换向阀旳构造及控制
(1)控制方式 (2)位与通 2.分类
3.工作原理
3.2.2 换向回路
1、单作用气缸旳控制 控制单作用气缸旳迈进、后退必须
采用二位三通阀。如图所示单作用气缸 控制回路,按下按钮,压缩空气从1口流 向2口,活塞伸出,3口遮断,单作用气 缸活塞杆伸出。放开按钮,阀内弹簧复 位,缸内压缩空气由2口流向3口排放,1 口被遮断,气缸活塞杆在复位弹簧作用 下立即缩回。
气动程序控制回路设计方法 课题设计
课题六气动程序控制回路设计方法一、概述生产实践中,各种自动生产线,大多是按程序工作的。
所谓程序控制,就是根据生产过程中的位移、压力、时间、温度、液位等物理量的变化,使被控制的执行元件,按预先规定的顺序协调动作的一种自动控制方式。
这种控制方式,能在一定范围内满足各种不同程序的需要,实现一机多用。
根据控制方式的不同,程序控制可分为时间程序控制、行程程序控制和混合程序控制三种。
各执行元件的动作顺序按时间顺序进行的控制方式称为时间程序控制。
时间程序控制系统中,各时间信号通过控制线路,按一定的时间间隔分配给相应的执行元件,令其产生有序的动作。
显然,这是一种开环控制系统。
执行元件完成某一动作后,由行程发信器发出相应信号,此信号输入逻辑控制回路中,经放大、转换回路处理后成为主控阀可以接受的信号,控制主控阀换向,再驱动执行元件,实现对被控对象的控制。
执行元件的运动状态经行程发信器检测后,再发出开始下一个动作的控制信号。
如此循环往复,直至完成全部预定动作为止。
显然,这样的回路属于闭环控制系统,它可以在给定的位置准确实现动作的转换,故称为行程程序控制,图1所示为行程程序控制框图。
从框图可看出,行程程序控制主要包括行程发信装置、执行元件、逻辑控制回路、放大转换回路、主控阀和动力源等部分。
行程发信装置是一种位置传感器,其作用是把由执行机构接收来的信号转发给逻辑控制回路,常用的有行程阀、行程开关、逻辑“非门”等,此外,液位、压力、流量、温度等传感器也可看作行程发信装置;常用的执行元件有气缸、气液缸、气动马达等;主控阀为气动换向阀;逻辑控制回路、放大转换回路一般由各种气动控制元件组成,也可以由各种气动逻辑元件等组成;动力源主要包括气压发生装置和气源处理设备两部分。
行程程序控制的优点是结构简单、维修方便、动作稳定,特别是当程序中某节拍出现故障时,通过运行停止程序可以实现自动保护。
为此,行程程序控制方式在气压传动系统中得到广泛应用。
气动控制基本回路
方向控制阀
单向型控制阀 换向型控制阀:通过改变气体通路使气流方向发生改
变 换向型控制阀按驱动方式可分为气压控制阀、电磁控制 阀、机械控制阀、手动控制阀和时间控制阀
方向控制回路
单作用气缸换向回路 双作用气缸换向回路
单向型控制阀
单向阀:气流只能向一个方向流动而不能反向流动通 过的阀
AB
1
2
1
2
AB
O1 P O2 a)
O1 P O2 b)
P c)
双电磁铁直动式换向阀工作原理图 图17-10
换向型控制阀
时间控制换向阀:使气流通过气阻(如小孔、缝隙等)
节流后到气容(储气空间)中,经过一定时间气容内建立起一定 的压力后,再使阀芯动作的换向阀
K
A
a
POK
延时换向阀 图17-11 延时换向阀 图17-11
“是门”(S=A) “或门”(S=A+B ) “与门”(S=A·B) “非门”(S= Ã)元件 双稳元件
按结构形式分:
截止式 膜片式 滑阀式
或门:S=A+B
或门元件 图17-33 或门元件 图17-33
是门:S=A 与门:S=A·B
A
P(B)
图17-34是门和与门元件 是门和与门元件 图17-34
YT4543动力滑台液压系统:电磁铁动作表、基本回路、 工作原理、特点
气液速度控制回路 图17-32
气动逻辑元件(又称逻辑阀)
工作原理:
均是用压缩空气为工作介质,通过元件内部可动部 件的动作,改变气流方向,从而实现逻辑控制功能
气动逻辑元件的分类
按工作压力分:
高压元件(0.2~0.8MPa ) 低压元件(0.02~0.2MPa ) 微压元件(〈0.02MPa)
气动回路工作原理
气动回路工作原理
气动回路工作原理是通过气压来实现机械运动或执行某一控制功能的系统。
气动回路的基本组成包括压缩空气供应源、执行器、控制阀和管路连接等。
首先,气动回路的压缩空气供应源会提供高压气体,通常使用气压机或气罐来提供稳定的气压。
这种高压气体通过管路连接到执行器。
执行器可以是气缸或气动马达,它们在受到气体压力作用下能够产生机械运动。
气缸是最常见的执行器,它包括一个活塞和气缸筒。
当高压气体进入气缸筒时,活塞会受到压力的推动而运动,从而实现线性或往复运动。
气动马达则通过高压气体的推动来驱动轴或齿轮等部件旋转。
控制阀是气动回路中的重要组成部分,它用于控制气体的流动和压力。
控制阀通常有两个工作状态:打开和关闭。
当控制阀打开时,高压气体可以通过阀门流向执行器,从而推动执行器产生相应的运动。
而当控制阀关闭时,阻止气体流动,执行器停止工作。
管路连接将压缩空气源、执行器和控制阀连接在一起,使气体能够在系统中流动。
管路连接必须严密可靠,以确保气体不泄漏,并保持恰当的气体流速和压力。
根据具体的应用需求,气动回路还可以包括压力调节器、过滤器等辅助装置,用于调节气体压力和提供洁净的气体。
总的来说,气动回路工作原理依靠压缩空气作为动力源,通过控制阀和执行器来实现机械运动和控制功能,广泛应用于自动化生产线、工业机械以及各种机械设备中。
气动基本回路
2、双向调速回路 、
在气缸的进、排气口装设节流阀, 在气缸的进、排气口装设节流阀,就组成了双向调速回路
三、快速往复运动回路
将图14-5a中两只单向节流阀换成 将图14-5a中两只单向节流阀换成 14 快速排气阀就构成了快速往复回路
所以进气节流, 所以进气节流,多用于垂直安装的气缸的供气回路中
如图14-4b 在水平安装的气缸的供气回路中一般采用如图 所示的节流排气的回路。 排气节流调速回路具有下述特点: 排气节流调速回路具有下述特点: 1)气缸速度随负载变化较小 运动较平稳。 气缸速度随负载变化较小, 1)气缸速度随负载变化较小,运动较平稳。 2)能承受与活塞运动方向相同的负载 反向负载) 能承受与活塞运动方向相同的负载( 2)能承受与活塞运动方向相同的负载(反向负载)。
四、速度换接回路
利用两个二位二通阀与单向节流阀并联,当撞块压下行程开关时,发出 利用两个二位二通阀与单向节流阀并联,当撞块压下行程开关时, 电信号,使二位二通阀换向,改变排气通路,从而使气缸速度改变。行 电信号,使二位二通阀换向,改变排气通路,从而使气缸速度改变。 程开关的位置,可根据需要选定。图中二位二通阀也可改用行程阀。 程开关的位置,可根据需要选定。图中二位二通阀也可改用行程阀。
五、缓冲回路
要获得气缸行程末端的缓冲,除采用带缓冲的气缸外, 要获得气缸行程末端的缓冲,除采用带缓冲的气缸外,特 别在行程长、速度快、惯性大的情况下, 别在行程长、速度快、惯性大的情况下,往往需要采用缓冲 回路来满足气缸运动速度的要求。 回路来满足气缸运动速度的要求。
气动控制元件和基本回路
板书设计或授课提纲课堂教学安排整顿纪律,清点人数。
人员安全教育及预防突发情况的准备导入新课:通过上节课的学习,我们对气源装置、辅助元件和执行元件有了基本的了解,那么气动控制装置的结构和基本回路又是怎样的呢?我们这节课来学习一下。
课堂讨论如果使设备正常工作,一般需要那些典型气压回路?气压基本回路是由一系列气动元件组成的能完成某项特定功能的典型回路。
一、方向控制阀与方向控制回路1.方向控制阀(1)单向阀单向阀:控制气流只能向一个方向流动而不能反向流动的阀压缩空气从P口进入,克服弹簧力和摩擦力使阀口开启,压缩空气从A口流出;当P口无压缩空气时,在弹簧力和A口余气压力作用下,阀口关闭(2)换向阀利用换向阀阀芯相对于阀体的运动,可使气路接通或断开,从而使气动执行元件实现启动、停止或变换运动方向常用气动换向阀的图形符号2.方向控制回路压缩空气使二位四通气控阀4左位工作,同时压缩空气经换向阀4进入气缸2的左腔,活塞向右行进二、压力控制回路1.压力控制阀(1)溢流阀溢流阀可通过排出气体的方法降低系统压力,起到保压力控制阀与压力控制回路护系统的作用(2)调压阀◇调压阀也称为减压阀◇气源输出的压缩空气的压力高,其波动值也较大◇调压阀将压力减到设备所需压力,并使压力稳定高、低压转换回路三、流量控制阀1.流量控制阀(1)节流阀旋转阀芯螺杆3,可改变节流口的开度,调节压缩空气的流量(2)排气节流阀排气节流阀是在节流阀上增加了消声装置,排气节流阀安装在排气口,调节排入大气中的气体流量(3)单向节流阀四、速度控制回路速度控制回路——气压传动系统中用于控制和调节执行元件运动速度的回路。
单向调速控制回路双向调速控制回路缓冲回路1.单向调速控制回路2.缓冲回路当活塞前进到预定位置压下行程阀时,气缸排气腔的气流只能从节流阀通过,使活塞速度减慢,达到缓冲目的。
实现快进——慢进缓冲——停止快退的循环。
五、安全保护回路1.过载保护回路当活塞杆在伸出途中遇到故障或因其他原因使气缸过载时,活塞能自动返回。
03客车门气动控制回路(气动)
项目编号
Item No.
项目名称
Item
客车门气动控制回路
训练对象
Class
自动线技术、机械CAD/CAM
学时
Time
课程名称
Course
液压与气动技术
教材
Textbook
液压与气动技术
目 的
Objectives
1.双作用缸的直接控制;
2.操作两位五通按钮式方向控制阀;
2、动作顺序符合要求(3分)
3、关断气源,拆下管路,整理好,所有元件归位。(2分)
4、实训报告(2分)
3、认识元件及组装回路。
实训器材
(每3人)
名称
铝合金底板
过滤、调压开关阀
双作用缸
2位5通按钮式方向控制阀
单向节流阀
分气块
气管
数量
1
1
1
2
2
1
5
训练内容及要求
客车门开启和关闭,为方便起见,在司机位和售票员位都要能控制。
1.气缸动作顺序图
2.气动控制回路设计图
3.组装一个气动控制回路
考核要求与标准
1、按照气路图选气动元件并组装回路。(3分)
气阀工作原理及维修规范--6.28资料
缩气体的通断来实现换向;单 H 气阀/随动阀的 2 个出气口分别连接副箱气缸 的高低档腔,预选阀的拨头来控制单 H 气阀/随动阀的换向,实现高低挡气路 的转换。 4、气路连接原理图 4.1 单 H 气阀气路连接图:
气缸副箱气缸处于低档位置时,单 H 阀/随动阀排气口是否常排气; 如排气口分别在高、低档时无气,则副箱气缸活塞 O 型圈正常, 如排气口分别在高、低档时常排气,则副箱气缸活塞 O 型圈异常,更换副 箱气缸活塞 O 型圈; 备注: 通常情况下,这种泄漏量很大,可以听到明显的漏气声音。
8.2 空气滤清调节器的检查 a) 零部件有无泄露。 b) 见双 H 阀 8.2b)及图 7。
用手或者肥皂水检查;
气路控制阀顶杆不
顶杆不回位,气压无法通过,检查
检查气路控制阀顶杆状态
回位
出口有无气压;
双 H 气阀检查顶杆是否回位正常;
气阀卡滞失效
检查气阀是否转换正常 单 H 气阀从控制气口通气,检查是
否转换正常;
预选阀失效
预选阀高档气路截止,抵挡气路通 检查预选阀是否转换正常
过;
管线束漏气
检查管线束是否老化漏气
ቤተ መጻሕፍቲ ባይዱ
3、5-排气口
8、失效确认步骤:
8.1 副箱气缸活塞 0 型圈检查
图5
a) 检查副箱气缸有无泄露。
b) 检查气缸副箱气缸处于高档位置时,双 H 阀排气口 5 是否常排气;
气缸副箱气缸处于低档位置时,双 H 阀排气口 3 是否常排气;
如排气口 5、3 分别在高、低档时无气,则副箱气缸活塞 O 型圈正常,
第十四章气动基本回路
五、缓冲回路
要获得气缸行程末端的缓冲,除采用带缓冲的气缸外,特 别在行程长、速度快、惯性大的情况下,往往需要采用缓冲 回路来满足气缸运动速度的要求。
b)所示回路的特点是,当 活塞返回到行程末端时, 其左腔压力已降至打不开 顺序阀2的程度,余气只能 经节流阀1排出,因此活塞 得到缓冲。
a)所示回路能实现快进一慢进缓冲一停止快 退的循环,行程阀可根据需要来调整缓冲开始 位置,这种回路常用于惯性力大的场合。
气液联动回路
三、气液增压缸增力回路
利用气液增压缸1把较低的气压变为较高的液 压力,以提高气液缸2的输出力的回路
四、气液缸同步动作回路
特点是将油液密封在回路 之中,油路和气路串接, 同时驱动1、2两个缸,使 二者运动速度相同,
但这种回路要求缸1无杆腔 的有效面积必须和缸2的有 杆腔面积相等。在设计和 制造中,要保证活塞与缸 体之间的密封,回路中的 截止阀3与放气口相接,用 以放掉混人油液中的空气
第八节 顺序动作回路
顺序动作是指在气动回路中,各个气缸,按 一定程序完成各自的动作。
例如单缸有单往复动作、二次往复动作、连 续往复动作等;
双缸及多缸有单往复及多往复顺序动作等。
一、单缸往复动作回路
单缸往复动作回路
单向顺序阀控制回路
连续往复动作回路
当按下阀1的按钮后,阀4 换向,活塞向前运动,这 时由于阀3复位将气路封闭, 使阀4不能复位,活塞继续 前进。到行程终点压下行 程阀2,使阀4控制气路排 气,在弹簧作用下,阀4复 位,气缸返回,在终点压 下阀3,阀4换向,活塞再 次前进,形成了A1、 A0 、 A1 、A0多次反复动作,待 提起阀1的按钮后,阀4复 位,活塞返回而停止运动。
概念:用来调节气缸的运动速度或实现气缸的 缓冲等的控制回路,一般为节流调速。
气动回路的设计与应用实例
*
例16-4 校正程序[A1 B1 B0 A0 ] 解:程序、信号、相位状态表,如表16-6所示。可见,该程序为非标准程序,校正后的新程序为[A1 B1 X1 B0 A0 X0 ]。校正后的程序、信号、相位状态表,如表16-7所示。
其中,q表示手动启动信号,a1、a0 、b0、b1分别为气缸到位后由行程阀发出的原始信号。上述程序可以简化为:[A1 B1 B0 A0]。
*
2. 行程程序的相位与状态 (1)相位与状态 程序式[A1B1 B0 A0]中有四个动作,这四个动作将整个程序分为四段,每一段称为一个相位。 状态是指行程程序在气缸不同动作时行程阀输出信号的组合。 (2)程序、信号、状态表
*
2 设计气控回路 1)列出气动执行元件的工作程序。 2)对程序进行校核及校正,写出校正后的程序。 3)作X-D线图,写出执行信号的逻辑表达式。 4)画出系统的逻辑原理图。 5)画出系统的气动回路原理图。
(2) 计算压力损失
——总的压力损失,
——沿程压力损失之和
——局部压力损失之和
——允许压力损失
*
*
7 选择空压机 选择空压机的依据是:空压机的供气压力和供气 (1)计算空压机的供气量
脉冲信号法
逻辑回路法
机械法
顺序与法
排除Ⅰ型障碍信号的方法
3.Ⅰ型障碍信号的排除
*
16.2.3 绘制气动控制系统逻辑原理图 1.气动逻辑原理图的基本组成 1)逻辑控制回路主要是用“或”、“与”、“非”、“记忆”等逻辑符号来表示。 2)行程发信装置主要是行程阀,也包括启动阀、复位阀等。在各个控制信号上加上小方框表示各种原始信号而画在小方框上方的符号表示阀的操纵方式.
液压与气压传动 第4版 第9章 气动控制阀及基本回路
梭阀结构及应用回路
原理动画
2021/11/4
原理动画
(3)双压阀
双压阀也相当于两个单向阀的组合。它有P1和P2 两个输入口和一个输出口A。只有当P1、P2同时有输 入时,A才有输出,否则A无输出。
2021/11/4
原理动画
双压阀应用回路
2021/11/4
原理动画
(4)快速排气阀
2021/11/4
1.单向型方向控制阀
(1)单向阀 在气动单向阀中,阀芯和阀座之间有一
层胶垫。下图 所示为单向阀的典型结构。
2梭阀
梭阀它有两个输入口P1、P2,一个输出
口A,阀芯在两个方向上起单向阀的作用。 当P1进气时,阀芯将P2切断,P1与A相通, A有输出。当P2进气时,阀芯将P1切断,P2 与A相通,A也有输出。如P1和P2都有进气 时,阀芯移向低压侧,使高压侧进气口与A 相通。如两侧压力相等,先加入压力一侧 与A相通,后加入一侧关闭。
先导式,其中先导式又分为内部先导式 和外部先导式两种。
2021/11/4
(1)直动型减压阀
右图为QTY型直动 型减压阀的结构图。
阀处于工作状态时, 压缩空气从左端输入, 经阀口11节流减压后 再从阀出口流出。
当推力与弹簧的作用 相互平衡后,阀口开度 稳定在某一值上,使减 压阀的出口减小,并保 持出口压力基本不变。
结构原理动画
2021/11/4
(2)先导型减压阀
由先导阀和主阀两部 分组成。当气流从左端 流入阀体后,一部分经 进气阀口9流向输出口, 另一部分经固定节流孔1 进入中气室5经喷嘴2、 挡板3、孔道反馈至下气 室6,在经阀杆7中心孔 及排气孔8排至大气。
2021/11/4
第十一章气动基本回路与常用回路
2021/3/11
36
计数回路(counting circuit)
❖ 在图a中,阀4的换向位置,取决于阀 2的位置,而阀2的换位又取决于阀3 和阀5。如图所示,若按下阀1,气信 号经阀2至阀4的左端使阀4换至左位, 同时使阀5切断气路,此时气缸活塞 杆伸出;当阀1复位后,原通人阀4左 控制端的气信号经阀1排空,阀5复位, 于是气缸无杆腔的气体经阀5至阀2左 端,使阀2换至左位等待阀1的下一次 信号输入。当阀1第二次按下后,气 信号经阀2的左位至阀4右端使阀4换 至右位,气缸活塞杆退回,同时阀3 将气路切断。待阀1复位后,阀4右端 信号经阀2、阀1排空,阀3复位并将 气流导至阀2左端使其换至右位,又 等待阀1下一次信号输入。这样,第1, 3,5…次(奇数)按下阀1,则气缸活塞 杆伸出;第2,4,6…次(偶数)按下阀 1,则气缸活塞杆退回。
❖ 双作用气缸控制; 带行程检测的压力控制;
❖ 利用梭阀的控制; 利用延时阀的单往复控制;
❖
利用双压阀控制; 带行程检测的时间控制;
从不同地点控制的单往复回路。
单作用气缸间接控制;
2021/3/11
17
3、利用梭阀的控制
如图12-10所示, 回路中的梭阀相当 于实现“或”门逻 辑功能的阀。在气 动控制系统中,有 时需要在不同地点 操作单作用缸或实 施手动/自动并用操 作回路。
2021/3/11
2
2.二次压力控制回路
❖ 作用:对气动系统气源压力的控制
❖ 图a是由气动三联件组成的主要由 溢流减压阀来实现压力控制;图b 是由减压阀和换向阀构成的,对同 一系统实现输出高、低压力p1、p2 的控制;图c是由减压阀来实现对 不同系统输出不同压力P1、P2的 控制。
2021/3/11
气动调节阀气路控制原理分析
160研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2021.01 (上)调节阀是自动调节系统不可缺少的组成部分,可以调节管路介质的压力、流量等。
调节阀按驱动能源形式分为气动、电动、液动三种。
气动调节阀是以压缩气为动力源,以气动薄膜或活塞气缸作为执行机构,借助阀门定位器、电磁阀等附件去控制,从而实现阀门的开关、比例式调节,并在整个气动调节阀气路控制原理分析魏高鹏(杭州杭氧工装泵阀有限公司,浙江 杭州 311305)摘要:调节阀是过程控制中一种重要的执行器,是自动调节系统不可缺少的组成部分,在实现工业生产自动化过程控制中有着重要地位。
不同阀门附件的组合使用可以提高调节阀的控制精度、速度、灵活性以及整个系统的安全性。
本文主要介绍定位器、电磁阀等附件的工作原理及功能,并分析几种典型的气路控制原理,作为自动化生产现场解决气动调节阀控制故障的参考资料。
关键词:调节阀;过程控制;附件;原理中图分类号:TF345 文献标识码:A 文章编号:1671-0711(2021)01(上)-0160-04控制系统出现电气故障或连锁时,使阀门回到安全位置。
1 气动调节阀主要附件的工作原理及功能1.1 电-气定位器定位器可以改善阀门的静态特性和动态特性,有助于克服介质对阀杆的不平衡力和填料对阀杆的摩擦力,提高控制本产品选用单晶硅太阳能电池作为电能转换装置。
④背板对电池片具有一定程度的保护作用,其具有防水、密封、耐老化的特点。
⑤铝合金保护层压件,起一定的密封、支撑作用。
⑥接线盒用于保护整个发电装置,接线盒会及时的自动断开短路电池串,防止烧坏整个装置。
⑦硅胶主要用来密封组件与铝合金边框、组件与接线盒交界处发电原理:光电效应,太阳光照射到电池的表面,电池片由于光生伏特效应将太阳光能直接转化成电能,产生电流,从而为软叶风扇以及照明灯供电。
其中,光生伏特效应是指半导体在受到光照射时产生电动势的现象。
第6章 气动控制回路
第6章 气动控制回路气动系统由气源、气路、控制元件、执行元件和辅助元件等组成,并完成规定的动作。
任何复杂的气路系统,都是由一些具有特定功能的气动基本回路、功能回路和应用回路组成。
本章将介绍这些回路。
6.1 基本回路基本回路是指对压缩空气的压力、流量、方向等进行控制的回路。
基本回路包括供给回路、排出回路、单作用气缸回路、双作用气缸回路等。
一、供给回路压缩空气中含有的水分、灰尘、油污等杂质及输出压力的波动,对气动系统的正常工作都将造成不良影响,因而必须对其进行净化及稳压处理。
气动供给回路即气源处理回路,它要保证气动系统具有高质量的压缩空气和稳定的工作压力。
图6-1所示为一次气源处理回路。
由空气压缩机1产生的压缩空气经冷却器2冷却后,进入气罐3。
压缩空气由于冷却而分离出冷凝水,冷凝水存积于气罐底部,由自动排水器9排出。
由气罐出来的压缩空气经主路过滤器5再进入空气干燥器6进行除水,然后再通过主路油雾分离器7将油雾分离,即可供一般用气设备使用,供给回路的压力控制,可采用压力继电器8来控制空气压缩机的启动和停止,使储气罐内压力保持在规定的范围内。
该回路一般由过滤器、减压阀和油雾器组成。
过滤器除去压缩空气中的灰尘、水分等杂质;减压阀可使二次工作压力稳定;油雾器使润滑油雾化后注入空气流中,对需要润滑的部件进行润滑。
这三个元件组合在一起通常称为气动调节装置(气动三联件),其简化图形符号如图6-2b 所示。
近年来,不供油气动执行元件和控制元件构成的气动系统不断增多,这类系统的气动供给回路不需油雾器来进行润滑。
因此,在不同的情况下,过滤精度、润滑或免润滑应该分别进行考虑,以保证供给用气设备符合要求的压缩空气。
实践证明,提供高质量的压缩空气对提高气动元件的使用寿命及可靠性是至关重要的。
图6-2为二次气源处理回路。
图6-3所示为稳压回路,用于供气压力变化大或气动系统瞬时耗气量很大的场合。
在过滤器和减压阀的前面或后面设置气罐,以稳定工作压力。
气动控制阀与气动回路及使用与维修
气动控制阀与气动回路及使用与维修气动控制阀主要有方向控制阀、压力控制阀和流量控制阀三大类。
方向控制阀可分为单向型控制阀和换向型控制阀,压力控制阀可分为减压阀、溢流阀和顺序阀,流量控制阀可为节流阀、单向节流阀和排气节流阀等。
气动控制阀组合成各类气动回路,气动回路能实现较复杂多变的控制功能。
3.1 方向控制阀与方向控制回路及使用与维修3.1.1 方向控制阀按气流在阀内的流动方向,方向控制阀可分为单向型控制阀和换向型控制阀;按控制方式,方向阀分为手动控制、气动控制、电磁控制、机动控制等。
1.单向型方向控制阀单向型方向控制阀包括单向阀、或门型梭阀、与门型梭阀和快速排气阀等。
(1)单向阀图3-1 所示为单向阀的典型结构,图a为符号,图b为实物。
图3-1 单向阀(2)或门型梭阀图3-2所示为或门型梭阀结构,它有两个输入口P1、P2,一个输出口A,阀芯在两个方向上起单向阀的作用。
当P1进气时,阀芯将P2切断,P1与A相通,A有输出。
当P2进气时,阀芯将P1切断,P2与A相通,A也有输出。
如P1和P2都有进气时,阀芯移向低压侧,使高压侧进气口与A相通。
如两侧压力相等,先加入压力一侧与A相通,后加入一侧关闭。
图3-3所示是或门型梭阀应用回路,该回路应用或门型梭阀实现手动和自动换向。
图3-2 或门型梭阀结构图图3-3 或门型梭阀应用回路(3)与门型梭阀与门型梭阀又称双压阀。
图3-4所示为与门型梭阀结构。
它有P1和P2两个输入口和一个输出口A。
只有当P1、P2同时有输入时,A才有输出,否则A无输出;当P1和P2压力不等时,则关闭高压侧,低压侧与A 相通。
图3-5所示是与门型梭阀应用回路。
或门型梭阀和与门型梭阀的区别要从输入和输出关系来判断。
图3-4 与门型梭阀结构图图3-5 与门型梭阀应用回路(4)快速排气阀快速排气阀简称快排阀,是为了使气缸快速排气。
图3-6a所示为快速排气阀的结构。
快速排气阀常安装在气缸排气口。
图3-6 快速排气阀2.换向型方向控制阀(1)气压控制换向阀用气压力来使阀芯移动换向的操作方式称为气压控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作口
气路控制阀
气路控制阀换向后位置(关闭)
工作气源 球头受 力被压 缩时
气路控制阀
二、技术参数
• 工作温度:-40℃~120℃ 特点:工作温度范围宽 • 工作压力:0.5MPa~1MPa 特点:工作压力跨度大 • 换向频率:最高1次/秒 特点:换向频率高,响应时间短 • 寿命:实验室寿命达70万次 特点:寿命长,性价比高
气路控制阀
三、气路控制阀内部结构图
1、进口氟橡胶密 封圈,大幅度提 高寿命
三大 优势
3、阀体表面本色 氧化,耐腐蚀性好
2、硬质氧化阀芯, 提高表面光洁度和 硬度
气路控制阀
四、常见失效模式及预防
失效模式 1 漏气 1 原因 纠正预防措施
零部件采用了不合理的材料或者设 计缺陷
1
严格控制生产程序
2
换向迟钝
1、零部件失效
2
使用环境不符合要求,如温度超过 规定值,如在强腐蚀性的环 境中使用
a.使用方法不正确,如产品在运输 装配过程中受到猛烈撞击 b.零部件制造不合格或存在制造缺 陷等
2
在指定的环境中使用 产品 a.按正确的方法运输 和使用产品 b.增加成品极限换向 测试手段
3
无法换向
3
3
气路控制阀
谢谢!
气路控制阀
气路控制阀工作原理简介
主讲:
气路控制阀
一、包含有气路控制阀的控制回路
• 气路控制阀是一个 两位两通的机控阀, 我们通过控制顶杆 的行程来实现阀门 的换向 • 此阀有两个工作状 态:打开和关闭; 在自由状态时阀门 打开;当顶杆受到 指定大小的力作用 时,阀门可以关闭
气路控制阀
工作气源 球头未 受力时