空气—蒸汽对流给热系数测定实验报告与数据、答案
实验五 空气_蒸汽对流给热系数
76.3
76.4
76.7
76.9
77.2
75.9
78.9
78.8
43.2
23.9
75.8
75.6
76.2
76.4
76.5
76.7
76.8
75.6
78.8
78.9
43.5
24.2
75.8
75.5
76.2
76.4
76.5
76.7
76.8
75.6
78.8
78.9
43.6
24.4
75.8
75.6
76.2
102.5
103.1
15
51.8
83.1
102.3
103
10
49.9
82.9
102.4
103.1
7.5
47.6
82.5
102.4
103.2
5
表2冷流体特性参数
空气流速u(m/s)
对数平均温度差Δt
冷流体平均温度
空气密度ρ(Kg/m3)
空气质量流量qm(Kg/h)
空气黏度μ(Pa/s)×10-5
空气的导热系数λ(W•m﹣¹•K﹣¹)
cPF=1.01+(3.1949× ×lg37.7-5.5099×37.7-3.0506× )×10﹣³
=0.84kcal/Kg=161.7KJ/(Kmol•℃)
q= 1+161.7×(83.4-41.82)/90883.7=1.0740
故加料线方程y= X- =14.5X-2.58
= =0.246
即61.26/0.6950.4=A•25008m
50.90/0.6950.4=A•20388.1m
空气水蒸气对流给热系数测定实验报告
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211lnt t t t t t t t t t W W W W m W-----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α(4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
空气—蒸汽对流给热系数测定实验报告及数据、答案
空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1 实验装置结构参数化工原理实验对流传热实验3图1 空气-水蒸气传热综合实验装置流程图孔板流量计测量空气流量空气压力蒸汽压力空气入口温度蒸汽温度空气出口温度1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为: Nu=CRe m Pr n Gr l(1)式中C 、m 、n 、l 为待定参数。
空气-水蒸气对流给热系数测定实验报告
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t tt t t t t t t W W W W m W-----=- (4-3)δ TT W t Wt图4-1间壁式传热过程示意图式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T lnt T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
空气-水蒸气对流给热系数测定实验报告
空气-水蒸气对流给热系数测定实验报告
实验目的:测定空气-水蒸气对流给热系数。
实验原理:空气-水蒸气对流给热系数是指在给定条件下,单位时间内单位面积的对流热流量。
在实际应用中,了解对流给热系数的大小对于设计和优化热传递设备非常重要。
实验装置:实验装置包括一个加热管、一个水槽以及一个温度计。
通过控制加热管的电压和水槽的温度,可以得到不同的条件下空气-水蒸气对流的热传递情况。
实验步骤:
1. 将实验装置准备好,确保加热管和温度计的位置正确。
2. 首先将加热管的电压调整到一个固定值,记录加热管上的电压和电流。
3. 启动水槽并将水温调整到一个适当的温度。
4. 将温度计放置在实验装置中,记录下来水的初始温度。
5. 开始记录时间和温度,每隔一段时间记录一次温度值。
6. 进行多组实验,每组实验可以改变加热管的电压或者水槽的温度,以得到不同的实验数据。
实验数据处理:
1. 将实验数据整理成表格。
2. 根据实验数据绘制温度-时间曲线。
3. 计算出空气-水蒸气对流的热传递系数。
4. 对不同实验条件下得到的热传递系数进行比较和分析。
实验结果:
根据实验数据计算得出的空气-水蒸气对流给热系数为X(单位)。
实验讨论:
根据实验结果可以得出结论:在给定的实验条件下,空气-水
蒸气对流给热系数为X,说明X。
实验结论:
通过本实验测定得到空气-水蒸气对流给热系数为X(单位),实验结果具有一定的参考价值,并为相关热传递设备的设计和优化提供了理论依据。
空气水蒸气对流给热系数测定实验报告
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()()22112211ln W W W W m W T T T T T T T T T T -----=-(4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W -----=-(4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆(4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α(4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。
空气-蒸汽给热系数测定实验 实验报告
浙江科技学院实验报告化工原理课程名称:学院:专业班:姓名:学号:同组人员:实验时间:年月日指导教师:一、实验课程名称:化工原理二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求:1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四、实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα(4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211lnW W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211lnt t t t t t t t t t W W W W m W -----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,Tt图4-1间壁式传热过程示意图()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
对流传热系数测定实验报告
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
空气水蒸气对流给热系数测定实验报告
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211lnt t t t t t t t t t W W W W m W-----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α(4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
空气-蒸汽给热系数测定实验_实验报告
空气-蒸汽对流给热系数测定取序1作为计算实例:实验数据:空气进口温度 t1=34.7℃;空气出口温度 t2=78.6℃;空气进口处蒸汽温度T1=108.7℃;空气出口处蒸汽温度T1=108.7℃;空气流量V=20.0m 3/h ;数据处理:空气进口密度52310 4.510 1.2916t t ρ--=-⨯+ 1.1475kg/ m 3,t=t1;空气质量流量2m V ρ==0.0064kg/s ;空气流速u=27.63m/s ;空气定性温度221t t +=56.65℃; t2-t1= 43.9℃;换热面积11l d A π== 0.0503m 2;空气的比热 C p2=1005 J / (kg ∙℃);对数平均温度 ()()12211221ln t T t T t T t T t m -----=∆=48.80℃;总给热系数 ()m p t A t t c m K ∆-=1222= 114.65511 W/(m 2·℃); 流体粘度6235(210510 1.716910t t μ---=-⨯+⨯+⨯)= 1.994E-05 Pa ·s,t=定性温度; 流体导热系数8252108100.0244t t λ--=-⨯+⨯+= 0.0288678 W/(m ·℃);雷诺数 μρdu =Re = 23699.222;普兰特数 λμ2Pr p c == 0.6940949; 理论值 α=4.08.0Pr Re 023.0d λ= 113.33827W/(m 2·℃); 杜赛尔数λαdNu == 62.817787。
八、实验结果与分析1)在对实验值与理论值进行比较得,在温度的较小时误差较大,随着温度的升高,误差减小。
但在t1=34.7℃时误差最小,即在空气流速最大时,产生的误差最小。
所以迪图斯-贝尔特公式在本实验中适合于空气进口温度为31~39℃,此时误差较小。
空气水蒸气对流给热系数测定实验报告
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211lnt t t t t t t t t t W W W W m W-----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α(4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
空气水蒸气对流给热系数测定实验报告
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()()22112211ln W W W W m W T T T T T T T T T T -----=-(4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W-----=-(4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆(4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α(4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。
空气-水蒸气对流给热系数测定实验报告
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M Wp p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t tt t t t t t t W W W W m W-----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
空气—蒸汽对流给热系数测定实验
1、似法求算对流给热子数x:以管内壁面积为基:准的总给热系数与对流给热系数间的关线, =a,+RS,+d +,d,ddi-换热管外住,m;d,-换热管内往,m:dn一换热管的对数平均直径,m b-换热管的壁厚,m;入-换热管材料的导热系数,w(m(y.RS,一换热管外侧的污后热阻,mikw;PS,一换热管内侧的污热阻,m^2kw管办冷流体与管壁间的对流给热热系数约为十到几百Wm^iK);而管外才蒸汽冷凝, 冷凝给热系数义可达10w(m^2k)左后,因此次凝传热热阻可忽略,同时蒸汽法微较水清洁,因此换热管外侧的污垢热阻,也息略,实验中的传热元件材料采用学习热系数为383.8W/cmik)壁原为2.5mm,因此换热管壁的导热热阳・1d可忽略若换热管内侧的游向热阻P_,也忽略不计,则a_2≈K被忽略的传热热阻与冷流体侧对流传热热阻相比越功,比法得到的准确性就越高。
2、传热准数式求算对流给热系数,对于流体在圆形直管内作强制湍流对流传热时,若符合如下范围内iRe=1.0X10先1.2x上. Pr=0.~120,管长与管均经之比1d≥60,则传热准数经验式为:Nu=0.023ReiB当洗体被加热时0.4.当流体被冷却时n=0.3 洗体与因体壁面的对流传热系数,wcm^ik d-换热管内纪m入-总体的导热养数 u-流体在管内流动的平均速度,Ms -流体的密度,kg/m^3从一流体的粉应,P ・sw(mck) 4流体的比热J/(kg.e)管d2一定时,m也为常数,实验测定不同流量对应的titT.1,求取一系列x,丫值,作图8Y.X值回归成一直线,该直线斜率为M。
任一冷流体流量下的给热示数,3、冷流体质量流量的测定。
用孔板流量计测冷流体的流量,则m,=V√为泛流体进口处流量计读数,为冷流体进口温度下对应的密度。
4、泛流体物性与温度的关式在0~100℃之间,泛冷流体的物性与温度的关系有如下拟合公式.1)空气的密度与温度的关系式:9=t24.5x10t+1.2916(2)空气的比热与温度的关系式:60℃以FC4=1005万/(kg.e) 70℃以上Ce=1009J1(kg.号)B)空气的导热系数与温度的关系式:入:-20°852+x105t+0.0244 能法4)空气的黏度与温度的关系式:=(2x10°t^2+5x10^3t+1.7691x5三,实验装置与流程1. 实验装置来自蒸汽发生器中的水蒸气进入不锈钢套管中换热器形隙,来自风机的空气在套管换热器内进行热交换,冷凝水红疏水器排汉地沟。
空气蒸汽对流传热系数的测定实验报告
空气蒸汽对流传热系数的测定实验报告实验目的:测定空气中的蒸汽对流传热系数,了解其在热传导过程中的特性和规律。
实验原理:空气中的热传导有两个主要的途径,即对流传热和辐射传热。
在大气压力下,空气中的蒸汽通常以微小的水滴或颗粒的形式存在。
当热量传递给空气蒸汽颗粒时,其会通过对流传热的方式将热量散发到周围的空气中。
对流传热系数(h)是描述对流传热性能的一个重要参数,通过测量传热流量和温度差,可以计算出空气蒸汽对流传热系数。
实验器材:1. 空气蒸汽发生器:用于产生空气中的蒸汽。
2. 传热试样:具有良好的导热性能的金属试样。
3. 温度测量仪器:如温度计或热电偶,用于测量传热试样和周围环境的温度。
4. 流量计:用于测量蒸汽的流量。
5. 电源和电表:用于供电和测量电能消耗。
实验步骤:1. 将空气蒸汽发生器连接到传热试样,并保持一定的温度差。
2. 打开空气蒸汽发生器和流量计,开始生成空气中的蒸汽,并调整蒸汽流量至稳定。
3. 同时开启温度测量仪器,分别测量传热试样的表面温度和周围环境的温度。
4. 根据传热试样表面温度和周围环境温度的差值,计算出传热速率,即传热流量。
5. 根据蒸汽流量和传热流量,计算得到空气蒸汽的对流传热系数。
实验数据记录与处理:1. 记录传热试样表面温度和周围环境温度的数值。
2. 根据所测得的温度差值,计算出传热速率。
3. 根据蒸汽流量和传热速率的比值,计算得到空气蒸汽的对流传热系数。
实验结果与讨论:根据实验测得的数据,计算出空气蒸汽的对流传热系数,并进行实验结果的分析和讨论,比较不同实验条件下的对流传热系数差异,探究影响因素与对流传热系数的关系。
结论:通过本次实验,测定并计算得到了空气蒸汽的对流传热系数,并对影响因素进行了讨论。
实验结果可以为热传导以及相关工程问题的研究和应用提供参考。
空气—蒸汽对流给热系数测定实验报告及数据、答案
气氛—蒸汽对于流给热系数测定之阳早格格创做一、真验手段⒈通过对于气氛—火蒸气光润套管换热器的真验钻研,掌握对于流传热系数α1的测定要领,加深对于其观念战效用果素的明白.并应用线性返回分解要领,决定联系式Nu=ARe m Pr中常数A、m的值.⒉通过对于管程里里插有螺纹管的气氛—火蒸气加强套管换热器的真验钻研,测定其准数联系式Nu=BRe m中常数B、m的值战加强比Nu/Nu0,相识加强传热的基础表里战基础办法.二、真验拆置本真验设备由二组黄铜管(其中一组为光润管,另一组为波纹管)组成仄止的二组套管换热器,内管为紫铜材量,中管为不锈钢管,二端用不锈钢法兰牢固.气氛由旋涡气泵吹出,由旁路安排阀安排,经孔板流量计,由支路统制阀采用分歧的支路加进换热器.管程蒸汽由加热釜爆收后自然降下,经支路统制阀采用顺流加进换热器壳程,其热凝搁出热量通过黄铜管壁被传播到管内震动的气氛,达到顺流换热的效验.鼓战蒸汽由配套的电加热蒸汽爆收器爆收.该真验过程图如图1所示,其主要参数睹表1.表1 真验拆置结构参数真验内管中径d o(mm)真验中管内径D i(mm)50 真验中管中径D o(mm)总管少(紫铜内管)L(m)丈量段少度l(m)蒸汽温度图1 气氛-火蒸气传热概括真验拆置过程图1— 光润套管换热器;2—螺纹管的加强套管换热器;3—蒸汽爆收器;4—旋涡气泵;5—旁路安排阀;6—孔板流量计;7、8、9—气氛支路统制阀;10、11—蒸汽支路统制阀;12、13—蒸汽搁空心; 15—搁火心;14—液位计;16—加火心;三、真验真量1、光润管①测定6~8个分歧流速下光润管换热器的对于流传热系数α1.②对于α1的真验数据举止线性返回,供联系式Nu=ARe m孔板流量计丈量气氛流量气氛压力蒸汽压力气氛出心温度气氛出心温度中常数A 、m 的值.2、波纹管①测定6~8个分歧流速下波纹管换热器的对于流传热系数α1.②对于α1的真验数据举止线性返回,供联系式Nu=BRe m 中常数B 、m 的值. 四、真验本理 1.准数联系效用对于流传热的果素很多,根据果次分解得到的对于流传热的准数联系为:Nu=CRe m Pr n Gr l (1)式中C 、m 、n 、l 为待定参数.介进传热的流体、流态及温度仄分歧,待定参数分歧.暂时,只可通过真验去决定特定范畴的参数.本真验是测定气氛正在圆管内做强制对于流时的对于流传热系数.果此,不妨忽略自然对于流对于传热膜系数的效用,则Gr 为常数.正在温度变更不太大的情况下,Pr 可视为常数.所以,准数联系式(1)可写成Nu =CRe m (2)Re4du V d ρρπμμ==其中: , 500.02826W/(m.K)d Nu αλλ==℃时,空气的导热系数待定参数C 战m 可通过真验测定蒸汽、气氛的有关数据后,对于式(2)与对于数,返回供得曲线斜率战截距.2.传热量估计努塞我数Nu 大概α1无法曲交用真验测定,只可测定相关的参数并通过估计供得.当通过套管环隙的鼓战蒸汽与热凝壁里交触后,蒸汽将搁出热凝潜热,热凝成火,热量通过间壁传播给套管内的气氛,使气氛的温度降下,气氛从管的终端排出管中,传播的热量由(3)式估计.Q =W e c pc (t 2-t 1)= V ρ1c pc (t 2-t 1) (3) 根据热传播速率Q =KS Δt m (4) 所以 KS Δt m =V ρ1c pc (t 2-t 1) (5)式中:Q ——换热器的热背荷(即传热速率),kJ /s ; We ——热流体的品量流量,kg /s ;V ——热流体(气氛)的体积流量,m 3/s ; ρ1一热流体(气氛)的稀度,kg /m 3;K ——换热器总传热系数,W/(m 2·℃);C pc 一一热流体(气氛)的仄衡比定压热容,kJ/(kg ·K );S ——传热里积,m 2;Remc dαλ=因此:Δt m ——蒸汽与气氛的对于数仄衡温度好,℃.气氛的流量及二种流体的温度等不妨通过百般丈量仪容测得.概括上头各式即可算出传热总系数K. 3.传热膜系数的估计当传热里为仄壁大概者当管壁很薄时,总的传热阻力战传热分阻力的关系可表示为:式中:αl ——气氛正在圆管中强制对于流的传热膜系数,W /(m 2·℃);α2——蒸汽热凝时的传热膜系数,W /(m 2·℃).当管壁热阻不妨忽略(内管为黄铜管而且壁薄b 较薄,黄铜导热系数λ比较大)时,1211111K ααα≈+≈(7) 蒸汽热凝传热膜系数近近大于气氛传热膜系数,则K ≈α1.果此,只消正在真验中测得热、热流体的温度及气氛的体积流量,即可通过热衡算供出套管换热器的总传热系数K 值,由此供得气氛传热膜系数α1. 4.努塞我数战雷诺数的估计式中:λ——气氛导热系数,W /(m ·℃); μ一气氛的粘度,Pa ·s ;d ——套管换热器的内管仄衡曲径,m ; ρ1——进心温度t 1时的气氛稀度,kg /m 3.由于热阻主要集结正在气氛一侧,本真验的传热里积S 与管子的内表面较为合理,即 S =πdl本拆置d=0.0178 m ,l=1.327m. 5.气氛流量战稀度的估计气氛稀度ρ1可按理念气体估计: 式中:p a ——当天大气压,Pa ;t ——孔板流量计前气氛温度,℃,可与t=t 1;气氛的流量由 1/4喷嘴流量计丈量,合并常数后,气氛的体积流量可由(11)式估计11ρRC V =(11)式中:C 0——合并整治的流量系数,其值为C 0=0.001233;R ——喷嘴流量计的压好计示值,mmH 2O. V 1——气氛的体积流量,m 3/s. 五、真验支配 1.真验前的准备(1)背电加热釜加火至液位计上端白线处. (2)查看气氛流量旁路安排阀是可齐开.12731.29(10)101330273pP tρ=⨯+(3)查看一般管支路各统制阀是可已挨开,包管蒸汽战气氛管路的疏通.(4)交通电源总闸,设定加热电压,开用电热锅炉开关,开初加热.2.真验开初(1)当蒸汽压力宁静后,开用旋涡气泵并运止一段时间,包管真验开初时气氛出心温度t(℃)宁静.1(2)安排气氛流量旁路阀的开度大概主阀开度,使孔板流量计的压好计读数为所需的气氛流量值.(3)宁静5-8分钟安排读与压好计读数,读与气氛出心、出心的温度值t、2t(温度丈量可采与热电奇大概温度1计)、气氛压力值p1、气氛进、出心之间压力好p2、蒸汽温度值t3及压力值p3,孔板流量计读数p4.(4)安排气氛流量,沉复(3)与(4)共测6-10组数据(注意:正在气氛进、出心之间压力好p2最大值与最小值之间可分为6-10段).(5)真验历程,要尽大概包管蒸汽温度大概压力宁静,正在蒸汽锅炉加热历程(蒸汽温度大概压力变更较大)不要记录数据.3.真验中断(1)关关加热器开关.(2)过5分钟后关关鼓风机,并将旁路阀齐开. (3)切断总电源.六、真验注意事项1、查看蒸汽加热釜中的火位是可正在仄常范畴内.特天是每个真验中断后,举止下一真验之前,如果创制火位过矮,应即时补给火量.2、必须包管蒸汽降下管线的疏通.正在变换支路时,应先开开需要的支路阀,再关关另一侧,且开开战关关统制阀必须缓缓,预防管线截断大概蒸汽压力过大突然喷出.3、必须包管气氛管线的疏通.即正在交透气机电源之前,三个气氛支路统制阀之一战旁路安排阀(睹图1所示)必须齐开.正在变换支路时,应先关关风机电源,而后开开战关关统制阀.4、安排流量后,应起码宁静5~10分钟后读与真验数据.5、套管换热器中聚集的热火要即时搁掉,免得效用蒸汽传热.七、真验记录及数据处理缺点分解:1.迪图斯-贝我特公式有条件范畴,而真验数据并不是齐正在其适用范畴内,用此公式算出的Nu’战α2’缺点便大概较大.2.真验时,等待时间缺乏,引导数据已宁静时便记录了.热流体给热系数的准数式:Nu/Pr=APr mln(Nu/Pr)=lnA+m ln(Re)lnA=-7.9273 ,A=0.0256另附上本初真验数据:4、对于真验截止举止分解与计划.从图像中线性返回圆程的相关系数去瞅,真验数据截止不是很准确,特天是螺纹管.爆收缺点的根源很多,读数不宁静、换热器保温效验好、换热器使用暂了,污秽较薄,热流量值下落等皆使截止有一定的偏偏好.而且正在处理数据时,采与很多近似处理,而本量真验时很多的条件本去不宁静.正在真验历程中采与改变气氛流量去安排,然而是正在改变气氛流量的共时,其余的数据也会改变,比圆道气氛出心温度,而且正在改变的历程中,要通过一段时间气氛出心温度才会宁静,而咱们测定的温度一定假如那个宁静的温度,所以正在测定中不通过脚够少的时间引导测定的温度不是宁静的温度,所以真验时要注意等待五到格中钟待数据比较宁静时,那样真验截止便比较准确.八、思索题(1)效用传热膜系数的果素有哪些?问:膜的薄度,液体的物性,以及压力温度.另有资料的分子结构及其化教成份、资料沉度、资料干度情景战温度情景.(2)正在蒸气热凝时,若存留不凝性气体,您认为将会有什么效用?该当采与什么步伐?问:对于换热系数效用很大,普遍设念子与消,比圆溴化锂吸支式制热机均伴伴真空泵,其效用便是即时排除系统内的不凝性气体.1)会由于气氛中含有火分制成冰堵.冰堵不但使制热效用下落.而且会引导系统停机.压力不竭落矮,还会益坏压缩机.2)气氛混进压缩腔,由于气氛中含有不凝性气体,如氮气.那些不凝性气体验缩小制热剂的循环量,使制热量落矮.3)而且不凝性气体验滞留正在热凝器的上部管路内,以致本量热凝里积减小,热凝背荷删大,热凝压力降下,进而制热量会落矮.(3)蒸气热凝后,将爆收热凝火,如热凝火不克不迭搁出,乏积后淹埋加热铜管,您认为将会有什么效用?该当采与什么步伐?问:1)会由于气氛中含有火分制成冰堵.冰堵不但使制热效用下落.而且会引导系统停机.压力不竭落矮,还会益坏压缩机.2)气氛混进压缩腔,由于气氛中含有不凝性气体,如氮气.那些不凝性气体验缩小制热剂的循环量,使制热量落矮.3)而且不凝性气体验滞留正在热凝器的上部管路内,以致本量热凝里积减小,热凝背荷删大,热凝压力降下,进而制热量会落矮.(4)本真验中所测定的壁里温度是靠拢蒸气侧的温度,仍旧交近气氛侧的温度?为什么?问:壁里温度是靠拢蒸汽温度.应为壁里温度交近于对于流传热系数大的一侧的温度,而正在真验历程中是以1211111K ααα≈+≈,所以21αα〈,所以壁里温度交近于蒸汽温度. (5)正在真验中有哪些果素效用真验的宁静性?问:气氛战蒸汽的流背,热凝火不即时排走,蒸汽热凝历程中,存留不热凝气体,对于传热的有效用等.。
空气-蒸汽对流给热系数测定
空气-蒸汽对流给热系数测定紫铜管规格:直径φ21×2.5mm ,长度L=1000mm 外套玻璃管规格:直径φ100×5mm ,长度L=1000mm1、原始数据记录如下表:2、根据()()12211221m t T tT ln t T t T t -----=∆ 将冷热流体的进出口温度换算成冷热流体间的对数平均温差,数据总结如下表.3、在0~100℃之间,冷流体的物性与温度的关系有如下拟合公式。
(1)空气的密度与温度的关系式:52310 4.510 1.2916t t ρ--=-⨯+ (2)空气的比热与温度的关系式:60℃以下p C =1005 J / (kg ∙℃),70℃以上p C =1009 J / (kg ∙℃)。
(3)空气的导热系数与温度的关系式: 8252108100.0244t t λ--=-⨯+⨯+(4)空气的黏度与温度的关系式:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)按以上公式,并以标准单位换算,得到如下数据结果表:4、对于流体在圆形直管内作强制湍流对流传热时,若符合如下范围内:Re=1.0×104~1.2×105,Pr =0.7~120,管长与管内径之比l/d ≥60,则传热准数经验式为,n 8.0Pr Re 023.0Nu = (4-9) 式中:Nu -努塞尔数,λα=dNu ,无因次;Re -雷诺数,μρ=du Re ,无因次; Pr -普兰特数,λμ=p c Pr ,无因次;当流体被加热时n =0.4,流体被冷却时n =0.3;按以上公式,并以标准单位换算,得如下数据结果表。
5、由式 ()mp t A t t c m K ∆-=1222,实验测定2m 、2121T T t t 、、、、并查取()2121t t t +=平均下冷流体对应的2p c 、换热面积A ,即可由上式计算得总给热系数K 如下表。
空气-蒸汽给热系数测定实验实验报告
浙江科技学院实验报告化工原理课程名称:学院:专业班:姓名:学号:同组人员:实验时间:年月日指导教师:一、实验课程名称:化工原理二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求:1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四、实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα(4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211lnW W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211lnt t t t t t t t t t W W W W m W -----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,δTT W t Wt图4-1间壁式传热过程示意图()()12211221m t T t T ln t T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
空气—蒸汽对流给热系数测定实验报告及数据、答案.doc
空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1 实验装置结构参数实验内管内径d i(mm)16.00实验内管外径d o(mm)17.92实验外管内径D i(mm)50实验外管外径D o(mm)52.5总管长(紫铜内管)L(m) 1.3010测量段长度l(m) 1.10 1010图1 空气-水蒸气传热综合实验装置流程图1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;孔板流量计测量空气流量空气压力蒸汽压力空气入口温度蒸汽温度空气出口温度10 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
空气-蒸汽给热系数测定_实验报告
实验报告课程名称:化工原理学院:专业班:姓名:学号:同组人员:实验时间:年月日指导教师:一、实验课程名称:化工原理二、实验项目名称:空气-蒸汽对流给热系数测定三、实验目的和要求:1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四、实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)δ TT W t Wt图4-1间壁式传热过程示意图热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=-(4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W-----=-(4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆(4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α(4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1 实验装置结构参数图1 空气-水蒸气传热综合实验装置流程图1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;孔板流量计测量空气流量空气压力蒸汽压力空气入口温度蒸汽温度空气出口温度三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=ARe m中常数A 、m 的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为: Nu=CRe mPr nGrl(1)式中C 、m 、n 、l 为待定参数。
参加传热的流体、流态及温度等不同,待定参数不同。
目前,只能通过实验来确定特定范围的参数。
本实验是测定空气在圆管内作强制对流时的对流传热系数。
因此,可以忽略自然对流对传热膜系数的影响,则Gr 为常数。
在温度变化不太大的情况下,Pr 可视为常数。
所以,准数关联式(1)可写成Nu =CRem(2)待定参数C 和m 可通过实验测定蒸汽、空气的有关数据后,对式(2)取对数,回归求得直线斜率和截距。
2.传热量计算努塞尔数Nu 或α1无法直接用实验测定,只能测定相关的参数并通过计算求得。
当通过套管环隙的饱和蒸汽与冷凝壁面接触后,蒸汽将放出冷凝潜热,冷凝成水,热量通过间壁传递给套管内的空气,使空气的温度升高,空气从管的末端排出管外,传递的热量由(3)式计算。
Re4du V d ρρπμμ==其中: , 500.02826W/(m.K)dNu αλλ==℃时,空气的导热系数Remc dαλ=因此:Q =W e c pc (t 2-t 1)= V ρ1c pc (t 2-t 1) (3)根据热传递速率Q =KS Δt m(4) 所以 KS Δt m =V ρ1c pc (t 2-t 1)(5)式中:Q ——换热器的热负荷(即传热速率),kJ /s ; We ——冷流体的质量流量,kg /s ; V ——冷流体(空气)的体积流量,m 3/s ; ρ1一冷流体(空气)的密度,kg /m 3; K ——换热器总传热系数,W/(m 2·℃);C pc 一一冷流体(空气)的平均比定压热容,kJ/(kg ·K ); S ——传热面积,m 2;Δt m ——蒸汽与空气的对数平均温度差,℃。
空气的流量及两种流体的温度等可以通过各种测量仪表测得。
综合上面各式即可算出传热总系数K 。
3.传热膜系数的计算当传热面为平壁或者当管壁很薄时,总的传热阻力和传热分阻力的关系可表示为:1211b 1(6)K αλα=++式中:αl ——空气在圆管中强制对流的传热膜系数,W /(m 2·℃); α2——蒸汽冷凝时的传热膜系数,W /(m 2·℃)。
当管壁热阻可以忽略(内管为黄铜管而且壁厚b 较薄,黄铜导热系数λ比较大)时,1211111K ααα≈+≈ (7)蒸汽冷凝传热膜系数远远大于空气传热膜系数,则K ≈α1。
因此,只要在实验中测得冷、热流体的温度及空气的体积流量,即可通过热衡算求出套管换热器的总传热系数K 值,由此求得空气传热膜系数α1。
4.努塞尔数和雷诺数的计算1112du dV V Re (8)d d 44ρρρππμμμ===121V c ()d Kd Nu (9)pc mt t d S t ραλλλ-===∆式中:λ——空气导热系数,W /(m ·℃); μ一空气的粘度,Pa ·s ;d ——套管换热器的内管平均直径,m ; ρ1——进口温度t 1时的空气密度,kg /m 3。
由于热阻主要集中在空气一侧,本实验的传热面积S 取管子的内表面较为合理,即 S =πdl 本装置d=0.0178 m ,l=1.327m 。
5.空气流量和密度的计算 空气密度ρ1可按理想气体计算:式中:p a ——当地大气压,Pa ;t ——孔板流量计前空气温度,℃,可取t=t 1;空气的流量由 1/4喷嘴流量计测量,合并常数后,空气的体积流量可由(11)式计算11ρRC V = (11)式中:C 0——合并整理的流量系数,其值为C 0=0.001233; R ——喷嘴流量计的压差计示值,mmH 2O 。
V 1——空气的体积流量,m 3/s 。
五、实验操作1.实验前的准备(1)向电加热釜加水至液位计上端红线处。
(2)检查空气流量旁路调节阀是否全开。
(3)检查普通管支路各控制阀是否已打开,保证蒸汽和空气管路的畅通。
(4)接通电源总闸,设定加热电压,启动电热锅炉开关,开始加热。
2.实验开始(1)当蒸汽压力稳定后,启动旋涡气泵并运行一段时间,保证实验开始时空气入口温12731.29(10)101330273pP tρ=⨯+度1t (℃)稳定。
(2)调节空气流量旁路阀的开度或主阀开度,使孔板流量计的压差计读数为所需的空气流量值。
(3)稳定5-8分钟左右读取压差计读数,读取空气入口、出口的温度值1t 、2t (温度测量可采用热电偶或温度计)、空气压力值p 1、空气入、出口之间压力差p 2、蒸汽温度值t 3及压力值p 3,孔板流量计读数p 4。
(4)调节空气流量,重复(3)与(4)共测6-10组数据(注意:在空气入、出口之间压力差p 2最大值与最小值之间可分为6-10段)。
(5)实验过程,要尽可能保证蒸汽温度或压力稳定,在蒸汽锅炉加热过程(蒸汽温度或压力变化较大)不要记录数据。
3.实验结束(1)关闭加热器开关。
(2)过5分钟后关闭鼓风机,并将旁路阀全开。
(3)切断总电源。
六、实验注意事项1、检查蒸汽加热釜中的水位是否在正常范围内。
特别是每个实验结束后,进行下一实验之前,如果发现水位过低,应及时补给水量。
2、必须保证蒸汽上升管线的畅通。
在转换支路时,应先开启需要的支路阀,再关闭另一侧,且开启和关闭控制阀必须缓慢,防止管线截断或蒸汽压力过大突然喷出。
3、必须保证空气管线的畅通。
即在接通风机电源之前,三个空气支路控制阀之一和旁路调节阀(见图1所示)必须全开。
在转换支路时,应先关闭风机电源,然后开启和关闭控制阀。
4、调节流量后,应至少稳定5~10分钟后读取实验数据。
5、套管换热器中积累的热水要及时放掉,以免影响蒸汽传热。
七、实验记录及数据处理误差分析:1.迪图斯-贝尔特公式有条件范围,而实验数据并非全在其适用范围内,用此公式算出的Nu’和α2’误差就可能较大。
2.实验时,等待时间不足,导致数据未稳定时就记录了。
冷流体给热系数的准数式:Nu/Pr0.4=APr mln(Nu/Pr0.4)=lnA+m ln(Re)lnA=-7.9273 ,A=0.0256 m=1.2124 另附上原始实验数据:4、对实验结果进行分析与讨论。
从图像中线性回归方程的相关系数来看,实验数据结果不是很准确,特别是螺纹管。
产生误差的来源很多,读数不稳定、换热器保温效果差、换热器使用久了,污垢较厚,热流量值下降等都使结果有一定的偏差。
而且在处理数据时,采用很多近似处理,而实际实验时很多的条件并不稳定。
在实验过程中采用改变空气流量来调节,但是在改变空气流量的同时,其他的数据也会改变,比如说空气出口温度,而且在改变的过程中,要经过一段时间空气出口温度才会稳定,而我们测定的温度一定要是这个稳定的温度,所以在测定中没有经过足够长的时间导致测定的温度不是稳定的温度,所以实验时要注意等待五到十分钟待数据比较稳定时,这样实验结果就比较准确。
八、思考题(1)影响传热膜系数的因素有哪些?答:膜的厚度,液体的物性,以及压力温度。
还有材料的分子结构及其化学成份、材料重度、材料湿度状况和温度状况。
(2)在蒸气冷凝时,若存在不凝性气体,你认为将会有什么影响?应该采取什么措施?答:对换热系数影响很大,一般想办法除去,比如溴化锂吸收式制冷机均陪伴真空泵,其作用就是及时排除系统内的不凝性气体。
1)会由于空气中含有水分造成冰堵。
冰堵不单使制冷效率下降。
而且会导致系统停机。
压力不断降低,还会损坏压缩机。
2)空气混入压缩腔,由于空气中含有不凝性气体,如氮气。
这些不凝性气体会减少制冷剂的循环量,使制冷量降低。
3)并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。
(3)蒸气冷凝后,将产生冷凝水,如冷凝水不能放出,累积后淹埋加热铜管,你认为将会有什么影响?应该采取什么措施?答:1)会由于空气中含有水分造成冰堵。
冰堵不单使制冷效率下降。
而且会导致系统停机。
压力不断降低,还会损坏压缩机。
2)空气混入压缩腔,由于空气中含有不凝性气体,如氮气。
这些不凝性气体会减少制冷剂的循环量,使制冷量降低。
3)并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。
(4)本实验中所测定的壁面温度是靠近蒸气侧的温度,还是接近空气侧的温度?为什么?答:壁面温度是靠近蒸汽温度。
应为壁面温度接近于对流传热系数大的一侧的温度,而在实验过程中是以1211111K ααα≈+≈,所以21αα〈,所以壁面温度接近于蒸汽温度。
(5)在实验中有哪些因素影响实验的稳定性?答:空气和蒸汽的流向,冷凝水不及时排走,蒸汽冷凝过程中,存在不冷凝气体,对传热的有影响等。