任意截面特性计算器
MIDAS结构现浇支架案例建模过程

MIDAS结构技术之预应力钢筋混凝土箱梁现浇支架例题一、项目简介某工程32m现浇简支梁全长32.6m,计算跨度31.1m,截面中心梁高3.05m,梁顶宽为12m,梁底宽5.5m,墩高9.85m,每片梁重836.8t。
箱梁正视图、断面图分别如图1.1、1.2所示。
图1.1 简支箱梁正视图图1.2 简支箱梁断面图现浇支架采用钢管柱+分配梁+贝雷梁结构体系,采用φ530x10钢管做受力支柱,单层贝雷片做受力纵梁。
为便于卸落支架,在钢管顶部设置一道砂筒(砂筒高为650mm),砂箱上采用2I45a作传力分配梁,贝雷片直接放置在2I45a分配梁上,贝雷片顶部I12.6分配梁,设置位置随侧模竖肋桁片,底模及侧模采用加工好的定型钢模,内模采用竹胶板和小方木构成的木模。
支架布置如图1.3、1.4所示。
对于本工程32.6m简支箱梁施工,由于地基条件较差、墩身高度受限,拟采用单层贝雷梁+分配梁+钢管柱结构支撑体系,中部支承采用斜柱。
图1.3 简支箱梁支架布置正视图图1.4 简支箱梁支架布置断面图设计参数如表1.1、1.2所示,荷载信息如表1.3所示。
表1.1 材料设计参数表表1.2 钢材设计强度值(N/mm2)表1.3 单片贝雷梁荷载信息统计表说明:1、考虑最不利荷载分担,翼缘板、腹板及中箱室区域的单片贝雷梁分别承担上部荷载的1/2、1/2、1/3,即计算单片贝雷梁荷载时,n取值分别为2、2、3;二、操作流程1、材料属性定义1.运行midas CIVIL;2.点击新建,打开新建项目;3.点击工具-单位系,对话框如右图2.1所示,单位系统选N、mm,其余保持默认值;4.点击确认;图2.15.主菜单选择特性-材料特性值,点击添加,弹出材料数据对话框如图2.2所示,材料号:1 名称:16Mn设计类型:用户定义规范:无弹性模量:2.06e+005(N/mm^2)泊松比:0.3线膨胀系数:1.2e-005(1/[C])容重:9.83e-005(N/mm^3)(适用)注意:此处对16Mn钢材的容重进行调整,是基于成片贝雷梁模型自重与实际自重不一致的原因,调整容重后,成片贝雷梁模型自重与实际自重一致。
迈达斯civil使用手册簿

Civil使用手册01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
迈达斯教程及使用手册

定义变截面时,只需在“截面—变截面”里定义即可。定义变截面组时,首先要先针 对一组单元定义一个变截面,这个变截面的 i 端截面形式为这一组单元 i 端截面形式,这个
无论是梁单元还是板单元在进行移动荷载分析时,定义了车道或车道面后,需要选择 车辆类型,车辆类型包括标准车辆和用户自定义车辆两种定义方式(图 3)。 (三)、移动荷载工况定义
定义了车道和车辆荷载后,将车道与车辆荷载联系起来就是移动荷载定义。在移动荷 载子工况中选择车辆类型和相应的车道,对于多个移动荷载子工况在移动荷载工况定义中 选择作用方式(组合或单独),对于横向车道折减系数程序会自动考虑(图 4)。 (四)移动荷载分析控制
选择要 张拉的钢 束,输入张 拉控制应 力(或张拉 控制内 力),并输 入注浆时 间,即在哪 个阶段开 始考虑按 换算截面 来进行计 算。如图 5 所示。
图 2 施工阶段分析控制选项
图 3 钢束布置形状
4-8
图 4 钢束布置定义对话框
09-温度荷载定义
MIDAS/Civil 可以考虑 5 种温度荷载的施加方 式。这几种不同的温度荷载分别适用于不同的温度 荷载定义。
越精确;计算内容选项中如果不选择计算应力,那么在后处理中将不会显示由移动
荷载引起的结构应力;当冲击系数不按基频来计算时,选择规范类型为其他规范,
这里提供了多种常用的冲击系数计算方法(图 6)。
图 6 冲击系数计算方法 4-13
11-变截面及变截面组的定义
通过对一个简支梁单元截面的定义来演示变截面和变截面组如何定义,及各自的适用 范围。
在定义自重时,首先要定义自重荷载的荷载工况名称,并定义自重所属的荷载组,然 后输入自重系数即可。对于荷载系数,通常在 Z 方向输入-1 即可,因为通常考虑的模型的 重力作用方向都是竖直向下,而程序默认的整体坐标系 Z 的正方向是竖直向上的。如果自
迈达斯civil使用手册

Civil使用手册01—材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义—-示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料—-示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
02-Midas Civil截面特性计算器SPC

01Midas Civil截面特性计算器SPC1、截面特性计算器①截面特性计算器的功能使用截面特性计算器的目的是为了导入在midas中无法直接建立的截面。
②截面特性计算器的使用标准流程1)首先在CAD中画好所要导入的截面,并另存为dxf格式的文件。
2)打开截面特性计算器,导入dxf文件。
3)使用”Model>Section>Generate”功能形成截面,在”Name”中输入截面的名称(方便后面导入时截面的识别),并勾选其中的”Calculate Properties Now”,同时完成截面特性的计算。
4)使用”Model>Section>Export”功能导出sec文件,勾选其中的”MIDAS Sectin File”,命名后即可导出需要的sec文件。
5)然后在”File>Save”中保存spc文件,以便以后查询,或直接退出,程序会提示是否保存。
③在midas中导入上面形成的截面。
打开midas的“模型-材料和截面特性-截面”,点击“添加”,点击PSC选项,在下拉框中选择“PSC-数值”,点击“从SPC中导入截面”,选择相应的sec文件即可。
(若sec中含有多个截面,会弹出对话框,选择所需要的截面即可。
)2、利用截面特性计算器绘制特殊截面双拼45a工字钢①在CAD绘制双拼45a工字钢截面图形,另存为dxf格式文件。
②打开截面特性计算器,导入双拼45a工字钢dxf文件。
File>Import>AutoCAD DXF>OK③使用”Model>Section>Generate ”功能形成截面,在”Name ”中输入截面的名称,Type:Plane,Angle:2,Apply 。
④计算截面特性及导出sec 文件,Property>Calculate Section Property,MeshSize:10mm,Pause after Each Calc(打开),Apply。
迈达斯教程及使用手册

迈达斯教程及使用手册 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);钢材规范混凝土规范图1 材料定义对话框图1 收缩徐变函数定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
MIDAS截面特性计算器使用说明

例题的截面大小为125×250,可以点击工具里的(GridSetting)图标,
将GridSize设为10。
由于SPC的GridSetting里以所指定的栅格间距为基准进行相关的画图、视图功能,所以即使不直接使用 栅格捕捉功能,适当地指定其栅格间距会更方便一些。
下面绘制Plane截面: 调出Model>Curve>Create>Line菜单,在生成直线对话框 ( 参见图 9) 里的 Point1 处输入 –3.75,0, 选择 Dx,Dy选项,输入0,75之后点击Apply按钮。
的DeltaX,Y的Dx栏输入0,Dy栏输入12.5之后点击Apply按钮。 用同样的方法选择最新建立的点之后,在<图10-(1)>的点移动复制对话框里的DeltaX,Y的 Dx栏输入62.5,Dy栏输入0后点击Apply按钮就会生成像<图11>一样的轮廓线。
9
MIDASIT()
目录菜单
<图11>进行点的移动复制
<图1212-(1)> 线移动复制对话框
<图1212-(2)>移动复制完的线
通过将<图11>所示的线向左侧复制来完成需要加厚的部分。 调出Model>Curve>Translate菜单,选择<图11>里所示的线作为对象。在<图12-(1)>所示的线移动复 制对话框里选择Mode里的Copy。在DeltaX,Y的Dx栏里输入-10,Dy栏里输入0。然后,选定CopyO ption里的ConnectEndsbyLine选项之后点击Apply按钮。如<图12-(2)>所示,将选定的线通过移动复 制生成新的线,然后将两线的末端用直线连接。
16一般截面设计GSD使用方法-MIDAS

步骤 1 :GSD 中定义截面; 步骤 2:导出任意截面/截面特性到 midas Gen/Civil; 步骤 3:midas Gen/Civil 中运行分析和设计; 步骤 4:导入 midas Gen/Civil 中构件内力到 GSD; 步骤 5:任意截面设计(相关曲线,弯矩-曲率曲线,应力云图)
2.16.3 钢板混凝土剪力墙
A.定义材料 菜单:模型->材料
北京迈达斯技术有限公司
2.16 一般截面设计(GSD)使用方法
图 2.16.1 定义材料
具体定义方法不 Gen 相同。 B.定义形状 菜单:模型->形状->基本形状
图 2.16.2 定义形状
如图 2.16.2 所示,定义截面形状。需注意的是,定义截面形状的同时,需要定义材料和插入 点。
图 2.16.9 有端柱型钢混凝土剪力墙
其它流程同钢板混凝土剪力墙类似,这里丌再赘述。
北京迈达斯技术有限公司
2.16 一般截面设计(GSD)使用方法
侯晓武
任意截面设计器是用于计算任意形状截面的截面特性,相关曲线,弯矩-曲率关系和应力分布的工 具。
2.16.1 一般截面设计可完成的功能
(1)定义各种丌规则形状的截面; (2)计算截面特性; (3)生成 P-M,P-My-Mz,M-M 相关曲线; (4)计算截面承载力(抗弯),并根据构件内力计算安全系数; (5)生成弯矩-曲率曲线; (6)绘制各种截面的应力云图。 上述所有功能均支持钢筋混凝土截面,钢截面和组合截面。
图 2.16.6 P-M 相关曲线
图 2.16.7 混凝土应力
图 2.16.8 钢材应力
6.4 有端柱型钢混凝土剪力墙 有端柱型钢混凝土剪力墙分析时,在 Gen 中分别建立型钢混凝土柱和混凝土剪力墙。迚行分
midas civil 第一册说明-C(共ABCDEF六部分)

结构建模助手
梁 拱 桁架 壳 悬索桥 顶推法桥梁 悬臂法桥梁 钢筋混凝土板型桥梁
柱 框架 板
斜拉桥 顶推法施工阶段 移动支架法/满堂支架法桥梁 钢筋混凝土刚架桥
64
模型的建立
结构建模助手对话窗口
释放面端约束与释放梁端约束相同,是输入相应单元的端部解除条件的功能。对 于刚性连接使用刚性连接功能更为便利。 节点局部坐标系是在输入边界条件时,对于如倾斜的桥梁支点,以与全局坐标系 的轴相倾斜的方向输入边界条件并计算反力时使用的。
83
GETTING STARTED
70
模型的建立
截面数据
MIDAS/Civil所提供的截面数据的输入种类如下。
数据库 根据国家选择标准截面的数据库进行输入
GB-YB, 中国国标和冶金部标准
KS, Korean Industrial Standards
JIS, Japanese Industrial Standards
AISC, American Industrial of Steel Construction
使用此功能修改几何 形状系数的话,在‘时间 依存性材料(徐变/收缩)’ 中为定义材料的时间依 存性而输入的几何形状 系数(h)就会被所修改的 数值取代。
连接时间依存性材料的对话框
4. 使用模型>材料和截面特性>修改单元的时间依存特性功能可以以所变 更的几何形状系数取代定义时间依存性材料特性时所输入的几何形状系 数(h)。
料编号。 (或者在工作树中选择相应材料后使用拖放功能来指定)
由于在对实际建筑物建模时所使用的材料数据的种类并不是很多,因此使用第一 种方法会比较便利。以后对部分内容需要进行修改时,可以使用 修改单元参 数 的功能。
迈达斯civil使用手册

Civil使用手册之袁州冬雪创作01-资料的定义通过演示先容在程序中资料定义的三种方法.1、通过调用数据库中已有资料数据定义——示范预应力钢筋资料定义.2、通过自定义方式来定义——示范混凝土资料定义.3、通过导入其他模子已经定义好的资料——示范钢材定义.无论采取何种方式来定义资料,操纵顺序都可以按下列步调来执行:选择设计资料类型(钢材、混凝土、组合资料、自定义)→选择的规范→选择相应规范数据库中资料.对于自定义资料,需要输入各种节制参数的数据,包含弹性模量、泊松比、线膨胀系数、容重等.02-时间依存资料特性定义钢材规范混凝土规范图1 资料定义对话框我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变更特性在程序里统称为时间依存资料特性.定义混凝土时间依存资料特性分三步调操纵:1、定义时间依存特性函数(包含收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的资料毗连(图3);3、修改时间依存资料特性值(构件实际厚度或体积与概况积比)(图4);图1 收缩徐变函数图2 强度发展函数图3 时间依存资料特性毗连图4 时间依存资料特性值修改定义混凝土时间依存资料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件实际厚度可以仅输入一个非负数,在建立模子后通过程序自动计算来计算构件的真实实际厚度;3)、混凝土开端收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存资料特性值时要对所有思索收缩徐变特性的混凝土构件修改其构件实际厚度计算值.计算公式中的a代表在空心截面在构件实际厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那末在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算.03-截面定义截面定义有多种方法,可以采取调用数据库中截面(尺度型钢)、用户定义、采取直接输入截面特性值的数值形式、导入其他模子中已有截面(图1~图3).在这个例题中分别采取这四种方式定义了几个截面,采取调用数据库中尺度截面定义角钢截面;采取用户输入截面形状参数定义箱形截面;用户输入截面特性值定义矩形截面;通过导入其他模子中的PSC截面来形成当前模子中的两个新的截面.对于在截面数据库中没有的截面类型,还可以通过程序提供的截面特性计算器来生成截调用数据库中尺度截面输入截面节制参数定义截面面数据,截面特性计算器的使用方法有相关文件说明,这里就不赘述.04-建立节点节点是有限元模子最基本的单位,节点的建立可以采取捕获栅格网、输入坐标、复制已有节点、分割已有节点等方法来建立新的节点,别的在复制单元的同时程序会自动生成构成单元的节点.节点建立过程中能够会出现节点号不持续的情况,这是可以通过对选择节点停止重新编号或紧凑节点编号来停止编辑.以上几个饬令在语音资猜中都将为大家一一演示.05-建立单元在MIDAS/Civil 中可以通过多种方法来建立单元,包含毗连已有节点建立单元、对已有单元停止分割建立新的单元、扩大已有节点或单元生成更高维数的单元、导入AUTOCAD 的DXF 文件来生成单元的方法等.对于复制单元、分割单元、扩大单元都可以执行等间距操纵和任意间距操纵.需要注意的是:使用镜像功能复制单元时,新生成的单元的部分坐标系方向与源单元的部分坐标系方向相反,因此需要调整单元的部分坐标系方向使得输出的单元内力方向统一.图1 数据库/用户截面定义对话框 图3 导入截面临话框 图2 数值型截面定义对话框 图2 数值型截面定义对话框在导入AUTOCAD 的DXF 文件时,只要选择需要的图层中的图形文件便可以方便的建立整体布局模子,然后再对导入的单元赋予单元属性即可完成布局模子的建立.06-定义鸿沟条件MIDAS/Civil 里包含多种鸿沟表示形式.这里先容的比较常常使用的一般支撑、节点弹性支撑、面弹性支撑、刚性毗连等鸿沟条件的定义方法.一般支撑是应用最广的鸿沟条件,选择要施加一般支撑的节点,选择约束自由度方向即完成一般支撑的定义.节点弹性支撑的定义方法同一般支撑,分歧的是在定义约束的自由度方向要输入约束刚度.面弹性支撑不但可以针对板单元来定义弹性支撑条件,而且可以对梁单元、实体单元来定义面弹性支撑.这种支撑条件在摹拟布局与土体的毗连条件时应用比较广.需要输入的参数地基弹性模量,这个可以在地质勘查陈述中查得.图1所示为面弹性支撑定义对话框.对于弹性毗连和刚性毗连涉及的都是两个节点间的毗连情况.对于弹性毗连选择毗连的自由度方向和该方向的刚度参数便可以了,弹性毗连的方向是依照毗连的两个节点间的部分坐标系方向来定义的(如图2)!刚性毗连是强制从属节点的某些自由度从属于主节点(如图3所示).07-定义自重荷载MIDAS/Civil 对布局的自重荷载可以通过程序来自动计算.程序计算自重的依据是资料的容重、截面面积、单元构件长度、自重系数来自动计算布局自重. 图1 面弹性支撑定义输入基床系数 指定主节点,与选择的从属节点建立刚性毗连.在定义自重时,首先要定义自重荷载的荷载工况称号,并定义自重所属的荷载组,然后输入自重系数即可.对于荷载系数,通常在Z 方向输入-1即可,因为通常思索的模子的重力作用方向都是竖直向下,而程序默许的整体坐标系Z 的正方向是竖直向上的.如果自重作用时思索布局的容重与资料定义时的容重分歧,这里自重系数只要输入计算自重时要思索的容重与资料定义的容重之比便可以了.演示例题中以计算自重时混凝土自重按26KN/m 3思索.08-钢束预应力荷载钢束预应力荷载摹拟的是预应力混凝土布局中张拉预应力钢束的作用.在程序中通过三个步调来实现,首先要定义模子中采取的预应力钢束的性质,其次要定义预应力钢筋安插形状,然后对安插到布局中的预应力钢束输入张拉节制应力即可完成钢束预应力荷载的定义.1、钢束特性值定义定义钢束特性值时可以选 择预应力张拉形式、单根预应力钢筋面积、后张法导管直径、松弛系数等与预应力钢筋应力计算参数.如果在分析中不思索预应力损失,那末图1中标示图框的部分内容可以不输入或输入为0,那末钢束预应力因松弛、超张拉、磨擦、锚具变形引起的损失将不予思索,对于预应图1 自重定义对话框 自重系数输入图1 钢束特性值定义力钢筋的其他两项损失:混凝土收缩徐变引起的损失和混凝土弹性压缩引起的损失在施工阶段分析节制中选择定义(图2).2、钢束安插形状操纵例题中参考的预应力钢筋安插形式如图3所示.预应力钢束安插可以通过二维或三维的输入方式来输入,通过输入钢束形状主要节制点坐标和预应力钢筋弯起半径,并输入拔出点坐标即预应力钢筋坐标参考位置坐标即完成钢束安插定义(图4).3、输入钢束张拉节制应力选择要张拉的钢束,输入张拉节制应力(或张拉节制内力),并输入注浆时间,即在哪一个阶段开端思索按换算截面来停止计算.如图5所示.图2 施工阶段分析节制选项图3 钢束安插形状09-温度荷载定义MIDAS/Civil可以思索5种温度荷载的施加方式.这几种分歧的温度荷载分别适用于分歧的温度荷载定义.系统温度适用于整体布局的整体升温或整体降温.节点温度和单元温度适用于对选择节点或单元的整体升、降温作用.温度梯度适用于对梁或板沿截面高度和宽度方向思索温度梯度作用.例如在梁高方向输入温度梯度5度(图2),梁截面实际温度荷载作用如图3所示.梁截面温度荷载适用于对梁截面施加折线形温度荷载.通过输入折线形温度荷载的每一个线性温度作用的截面宽度,作用截面高度及该高度范围内的温度.需要注意的是对于空心截面,温度荷载实际作用宽度一定要扣除空心部分截面宽度影响.截面高度位置的温度值为实际温度值,不是相对于系统温度的相对值.当截面为结合截面或组合截面时,输入每段线性温度荷载时的资料特性应依据截面位置分歧而输入分歧的资料特性(图4).对于布局的初始温度在模子—布局类型中指定,通常指定为0度即可.10-移动荷载定义移动荷载定义分四个步调:1. 定义车道(适用于梁单元)或车道面(适用于板图1 温度荷载类型 图2 温度梯度荷载图3 温度梯度5度时实际温度荷载图4 梁截面温度荷载定义对话框单元);2.定义车辆类型;3.定义移动荷载工况;4.定义移动荷载分析节制——选择移动荷载分析输出选项、冲击系数计算方法和计算参数.(一)、车道及车道面定义移动荷载的施加方法,对于分歧的布局形式有分歧的定义方法.对于梁单元,移动荷载定义采取的是车道加载;对于板单元,移动荷载定义采取的是车道面加载.对梁单元这里又分为单梁布局和有横向接洽梁的梁布局,对于单梁布局移动荷载定义采取的是车道单元加载的方式,对于有横向接洽梁的布局移动荷载定义采取的是横向接洽梁加载的方式.对于单梁布局的移动荷载定义在PSC设计里边已经讲过了,这里先容的是有横向接洽梁布局的移动荷载定义以及板单元移动荷载定义.横向接洽梁加载车道定义:在定义车道之前首先要定义横向接洽梁组,选择横向接洽梁,将其定义为一个布局组.车道定义中移动荷载布载方式选择横向接洽梁布载(图1),然后选择车道分配单元、偏心间隔、桥梁跨度后添加即可完成车道的定义.图1 采取横向接洽梁布载时车道定义车道面定义(图2):对于板单元建立的模子停止移动荷载分析时,首先横向接洽梁组定义需要建立车道面.输入车道宽度、车道偏心、桥梁跨度、车道面分配节点后添加即可完成车道面定义.(二)、车辆类型选择无论是梁单元还是板单元在停止移动荷载分析时,定义了车道或车道面后,需要选择车辆类型,车辆类型包含尺度车辆和用户自定义车辆两种定义方式(图3).(三)、移动荷载工况定义定义了车道和车辆荷载后,将车道与车辆荷载接洽起来就是移动荷载定义.在移动荷载子工况中选择车辆类型和相应的车道,对于多个移动荷载子工况在移动荷载工况定义中选择作用方式(组合或单独),对于横向车道折减系数程序会自动思索(图4).(四)移动荷载分析节制在移动荷载分析节制选项中选择移动荷载加载位置、计算内容、桥梁等级、冲击系数计算方法及计算参数(图5).注意事项总结:1、车道面只能针对板单元定义,否则会提示“影响面数据错误”.2、车道定义中,当为多跨桥梁时,对应下面的车道单元应输入分歧的桥梁跨度.该功能主要为了对分歧跨度的桥梁段赋予分歧的冲击系数.3、移动荷载工况定义中当思索各子荷载工况的组合效果时,组合系数在各子荷载工况定义中的系数中定义.加载位置 计算内容 桥梁等级 冲击系数计算方法和计算参数 图3 车辆类型选择 道面定义子荷载工况定义 各子荷载工况组合类型 图4 图5 移动荷载分析节制选项4、移动荷载分析节制选项中影响线加载点的数量越多在移动荷载追踪时荷载安插位置越切确;计算内容选项中如果不选择计算应力,那末在后处理中将不会显示由移动荷载引起的布局应力;当冲击系数不按基频来计算时,选择规范类型为其他规范,这里提供了多种常常使用的冲击系数计算方法(图图6 冲击系数计算方法6).11-变截面及变截面组的定义通过对一个简支梁单元截面的定义来演示变截面和变截面组如何定义,及各自的适用范围.变截面是针对某个单元的截面形式;对于一组持续的单元,当截面类型相同、变更形式相同时,可以采取变截面组的功能.定义变截面时,只需在“截面—变截面”里定义即可.定图1 采取相同变截面的一组单元义变截面组时,首先要先针对一组单元定义一个变截面,这个变截面的i端截面形式为这一组单元i端截面形式,这个变截面的j端截面形式采取的这一组单元j端的截面形式,然后将这个变截面赋予给这一组单元形成如图1所示的布局形式,然后再在模子—变截面组中定义变截面组数据,这里包含变截面组称号、变截面组包含的变截面单元、截面高度方向和截面宽度方向的变更形式,然后选择添加,即可将采取相同变截面的一组单元转变成适用于一组单元的变截面组,形成如图2所示的布局形式.定义了变截面组后,如果要检查每一个单元的截面特性,可使用转变变截面组为的变截面的功能,将适用于一组单元的变截面组转变成针对每一个单元的变截面.12-质量数据定义在停止动力分析时要对布局输入布局的质量数据,质量数据在程序里包含三部分内容,自重转化的质量、荷载转化的质量、节点质量数据.其中前两个在布局分析计算比较常常使用.自重引起的质量也就是布局自身的质量只能在“模子—图3变截面组转变成变截面后图2 定义变截面组后的布局形式图1 自重转化为质量定义布局类型—将布局的自重转化为质量”中定义,只要选择转化的方向便可以了.对于二期恒载,程序在停止布局分析的时候都是依照荷载的形式施加的,在停止动力分析时,二期恒载实际上是作为布局的一部分要参与动力分析的,因此需要思索它的质量影响.二期恒载的质量定义需要在“模子—质量—将荷载转化为质量”中来定义(图1).对于节点质量,通常对部分布局思索附加质量时可以将附加质量按节点质量思索来施加(图2),但这种情况其实未几见.对于布局的质量数据可以通过“查询—质量统计表格”来检查详细的分歧质量的定义情况(图3).图3 布局质量数据查询13-PSC截面钢筋定义对于预应力混凝土布局,除了配置预应力钢筋外,还要配置一定数量的普通钢筋.在这里普通钢筋包含以下钢筋内容:纵向普通钢筋、弯起钢筋、腹板竖向预应力钢筋、抗扭钢筋(抗扭箍筋和抗扭纵筋)、抗剪钢筋(图1,图2).演示例题中采取的是T形截面,纵向普通钢筋配置情况是:在马蹄部分配置了两层纵向普通钢筋,在上翼缘配置了一层普通钢筋.对于纵向钢筋输入钢筋配置位置数据后,在PSC截面钢筋输入对话框中会时时显示钢筋的安插情况,可以方便用户检查钢筋输入是否正确.“抗剪钢筋”数据输入中包含纵向弯起钢筋、腹板竖图1 纵向普通钢筋配置筋、抗扭钢筋、抗剪钢筋的配置数据.对以上数据输入需要注意的有以下几点:1)、对于弯起钢筋需要输入的是该截面处弯起钢筋的间距、弯起角度、弯起钢筋面积;2)、对于纵向抗扭钢筋不包含在PSC截面纵向钢筋数据中,而是要在抗扭钢筋中单独定义.在PSC截面纵向钢筋中输入的是仅提供抗弯作用的纵向钢筋数据,同样在抗扭钢筋中定义的箍筋数据也仅用来验算剪扭构件的抗扭和抗剪承载力;3)、在箍筋数据定义中输入的是提高斜截面抗剪承载才能的箍筋数据;4)、对于所有的箍筋数据输入的都是单肢箍筋截面积,程序计算时会按双肢箍筋停止计算.因此对截面能够配图2 其他类型普通钢筋配置置多肢箍筋的情况要先将多肢箍筋面积按双肢箍筋面积停止换算后输入换算后的单肢箍筋面积.配置了纵向普通钢筋后在分析中如果要思索普通钢筋对图3 分析主控数据截面刚度的影响以及对布局承载才能的影响就要在“分析—主控数据”中选择“在计算截面刚度时思索钢筋”.否则程序在计算过程中不思索纵向普通钢筋对截面刚度和布局承载才能的影响.14-节点荷载定义选择要定义节点荷载的节点,针对6个自由度方向输入定义的节点荷载即可.如果针对节点定义了节点部分坐标系,那末定义的节点荷载是在节点部分坐标系下的荷载情况,否则是在整体坐标系的荷载施加情况.15-梁单元荷载定义梁单元荷载包含梁单元均布荷载、梁单元集中荷载、梁单元梯形荷载几种形式(图1所示).定义梁单元荷载时,首先选择梁单元荷载类型,然后选择作用方向,再按荷载作用位置输入作用位置处荷载集度即可完成梁单元荷载的定义.在例题中为大家分别演示了集中荷载、均布荷载、梯形荷载的定义方法,相同类型的梁单元弯矩和扭矩荷载采取相同的定义方法.各种荷载值见表1.表 1 各类梁单元荷载值停止施工阶段分析时一定要定义组信息.组是MIDAS/Civil 一个非常有特色的概念——可以将一些节点和单元定义为一个布局组,以便于建模、修改和输出;将在同一施工阶段同时施加或同时裁撤的鸿沟条件定义为一个鸿沟组;对于在同一施工阶段施加或裁撤的荷载定义为一个荷载组;对于受力性能相同、预应力损失情况一致的钢束定义为一个钢束组.组的定义极大的方便了施工阶段的定义.梁单元集中荷载 梁单元均布荷载 梁单元梯形荷载 相对位置10 位置1荷载集度-1KN -2KN -1KN 相对位置21 1 位置2荷载集度-5KN -2KN -3KN 相对位置3\ \ 位置3荷载集度\ \ -5KN 相对位置4\ \ 1 位置4荷载集度 \ \ -2KN 图1 梁单元荷载类型定义组时,首先要定义组的称号,然后选择该组中包含的节点或单元,将组的称号拖放到模子窗口中,选择适当的内容即可完成对组的定义.对于鸿沟组和荷载组的定义也可以在定义鸿沟条件和定义荷载时实时地选择各鸿沟或各荷载所属的鸿沟组或荷载组情况.例题中给出的是在已经定义过鸿沟条件和荷载条件的模子中通过修改图1 定义布局组称号鸿沟和荷载信息来定义鸿沟组和荷载的情况.实时定义的情况如图2所示.针对某节点或单元定义的鸿沟条件,通过选择鸿沟类型—鸿沟组称号—约束类型,即可完成鸿沟组的定义;对于荷载组,通过选择荷载类型—荷载工况称号—荷载组称号—荷载集度,即可完成荷载组的定义.图2 定义鸿沟时指定鸿沟组需要修改鸿沟组和荷载组时,可以通过修改鸿沟信息和荷载信息来完成.如3图所示为鸿沟组的编辑情况,在鸿沟条件信息表格中通过下拉菜单来选择修改鸿沟组信息. 停止施工阶段分析时,首先要定义组信息,然后便可以定义施工阶段信息了.选择在同一个施工阶段施工的构件定义为一个布局组,并在该施工阶段中激活,将在同一施工阶段裁撤的构件定义为一个布局组,在该施工阶段钝化.鸿沟组和 荷载组的定义同布局组的定义.定义好施工阶段信息后,停止施工阶段分析时,还要选择施工阶段分析节制选项.选择计算分析的施工阶段、思索收缩徐变效果的计算节制选项、成果输出节制等内容.17-支座沉降和支座强制位移 支座沉降和支座强制都是用来分析支座变形对布局影响的,但针对的情况有所分歧,对于已知支座沉降变形值的情况下,可以通过定义支座强制位移来停止分析;当不确定详细哪一个支座发生沉降,但可以预估沉降值,可以通过定义支座沉降荷载工况来分析.对于支座强制位移分析,通过定义节点强制位移即可.图3 修改鸿沟组 图4 施工阶段定义选择荷载—节点强制位移,选择发生位移的节点,输入已知的各自由度方向变形值,程序对定义了变形的自由度自动施加约束.对于支座沉降分析,首先要定义能够会发生沉降的支座的沉降值,即支座沉降组定义,然后针对支座沉降组定义支座沉降荷载工况,选择能够发生沉降的最多和最少沉降组个数,由程序自动组合各种能够的沉降工况停止分析,最终给出最晦气沉降下的分析成果.18-施工阶段结合截面定义两种以上资料组成的结合截面,图1 节点强制位移定义图2 支座沉降组定义图3 支座沉降荷载工况定义要停止思索结合效果后的布局分析.特别是包含混凝土的结合截面思索混凝土的收缩和徐变时必须要使用施工阶段结合截面功能.首先采取结合后截面建立布局模子,并定义施工阶段信息,然后才干定义施工阶段结合截面.选择荷载→施工阶段分析数据→施工阶段结合截面功能来定义.本文以钢管混凝土为例(图1),钢管直径1m,钢管壁厚0.1m,钢管采取Q235钢材,外部填充C40混凝土.采取的施工顺序为:架设第一跨钢管→灌注第一跨混凝土→架设第二跨钢管→灌注第二跨混凝土,其中混凝土思索收缩徐变效果.在定义施工阶段结合截面时,首先要选择结合截面开端的施工阶段,对于建模时采取的截面为组合截面或结合截面时,结合形式包含尺度和用户两种方式,当建模时采取的截面为一般截面时,结合方式只有用户这一种方式.本例题中采取的是普通截面,所以结合形式只有用户一种形式,分两次结合,所以位置号输入 2.在施工顺序一栏中输入结合前各截面的资料类型、参与结合阶段、材龄、结合前截面相对于结合后截面位置、结合前截面刚度等数据.这里要注意的是结合前截面的相对位置参考点是结合后截面轮廓的左下角.每一个位置处对应的刚度是结合前的截面刚度,可以数值输入,也可以通过建立结合前截面并在刚度定义中导入结合前截面即可.19-截面特性计算器对于一些特殊截面可以通过程序自带的截面特性计算器功能来计算这些截面的截面特性值,并导入到程序中定义新的截面.对于一般截面通过生成plane 形式截面来计算截面特性,对于薄壁布局采取line 形式生成截面并计算截面特性.例题中分别针对plane 形式截面和line 形式截面分别建立模子计算截面特性值.图1 钢管混凝土截面(单位,mm) 图2 施工阶段结合截面定义。
CAD计算截面特性

CAD计算截面特性CAD(计算机辅助设计)是一种利用计算机技术辅助进行设计、绘图和制造的方法。
在工程和建筑设计中,CAD可以用来计算截面特性,如面积、惯性矩、抗弯量等。
以下将详细介绍CAD计算截面特性的原理和应用。
截面特性是指描述截面形状和尺寸的一组参数,可以用来评估结构件的强度和刚度。
常用的截面特性包括面积、惯性矩、抗弯量、截面模量等。
CAD可以通过绘制截面图形并进行计算,快速准确地求解这些特性。
首先,CAD可以通过绘制截面图形来准确描述截面形状和尺寸。
CAD软件提供了丰富的绘图工具,可以绘制任意形状的截面图形,并准确输入尺寸和坐标。
接下来,CAD可以通过计算来求解截面特性。
以计算截面面积为例,我们可以通过绘制截面轮廓,然后进行闭合区域计算来得到面积。
CAD软件会根据绘图数据自动计算出截面的面积,并显示在相关数据中。
同样地,CAD还可以计算其他截面特性,如惯性矩和抗弯量。
惯性矩是描述截面抵抗外力扭转的能力,可以用来评估截面的刚度。
而抗弯量是描述截面抵抗弯曲力矩的能力,也是评估结构件强度的重要参数。
CAD通过运用相关的数学方法和算法,可以准确计算出这些特性。
CAD计算截面特性的应用十分广泛,特别是在结构设计和材料选择中起到重要的作用。
对于结构工程师来说,了解截面特性对于设计安全可靠的结构非常重要。
通过CAD计算截面特性,工程师可以直观地了解截面的性能,优化设计和选材,以达到工程要求。
此外,CAD还可以用于快速准确地绘制并计算复杂形状的截面。
对于一些异形截面,传统的手工计算方法可能十分繁琐且容易出错。
而借助CAD软件,可以将绘图、计算和优化等工作集成在一个平台上,大大提高工作效率和精度。
总之,CAD计算截面特性是一种重要的工程设计工具。
它可以用来绘制并计算各种形状的截面特性,如面积、惯性矩、抗弯量等。
CAD计算截面特性具有准确性、高效性和灵活性等优点,广泛应用于结构设计和材料选择中。
对于工程师来说,熟练掌握CAD计算截面特性的方法和技巧,将有助于提高设计效率和质量。
迈达斯civil使用手册

Civil使用手册01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
midas设计用数值截面-截面参数设置

midas Civil 技术资料----设计用数值截面-截面参数设置目录midas Civil 技术资料1 ----设计用数值截面-截面参数设置 1 1问题提出2 2设计截面定义及参数设置 2 2.1设计用数值截面定义 2 2.2设计用数值截面-参数设置 4 3箱形截面-受扭塑性抵抗矩W t 计算示例 7 参考文献8北京迈达斯技术有限公司 桥梁部2013/04/271问题提出设计用数值截面,矩形、T形、I形截面参数如何设置是非常重要的,关系到设计容许值的结果。
大家可结合如下所述,对照规范公式进行理解。
2设计截面定义及参数设置2.1设计用数值截面定义1.在CAD中绘制设计截面,如图2-1所示,并存为*.dxf文件,分别为矩形、箱形、T形、I形。
单位:m图2-1 截面参数设置-设计截面图2-2 创建截面2.Civil—工具—截面特性值计算器,计算各截面特性并存为midas section file文件,如图2-2、2-3、2-4所示。
图2-3 计算截面特性图2-4 导入sec类型文件在Civil中定义截面时,设计用数值截面可直接导入,具体操作略。
2.2设计用数值截面-参数设置1.矩形截面图2-5 矩形数值截面参数输入矩形可看做只有中腹板,无翼缘厚度的箱形截面来理解设计截面参数的输入。
(1)“设计参数”中:T1(上翼缘厚度),填入一个可忽略的较小值,;T2(下翼缘厚度),填写0;BT(箱形截面外腹板中心距离),填写0;矩形截面该值不起作用;HT(箱形截面上、下翼缘的中心距离),截面高度,对应D62-04式5.5.2-1中的h值。
(2)验算扭转用厚度(最小):实际截面宽度值,对应D62-04式5.5.2-1中的b值,用于计算Wt,可见,该值的准确输入直接关系到抗扭验算的结果。
剪切验算:验算截面对剪切较薄弱的部位的剪力。
(3)Z1, Z3:确定剪力计算位置,以截面底边为基准线沿截面Z轴方向的距离,注意,由材料力学切应力(τmax)计算公式可知,矩形截面,切应力最大值发生在截面形心处,故,一般情况下对于矩形截面Z1, Z3的位置可设置成与Z2重合。
迈达斯教程及使用手册

01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义-—示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料-—示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02—时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数图3 时间依存材料特性连接图4 时间依存材料特性值修改定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算.03-截面定义截面定义有多种方法,可以采用调用数据库中截面(标准型钢)、用户定义、采用直接输入截面特性值的数值形式、导入其他模型中已有截面(图1~图3)。
截面特性计算器-SPC使用说明及实例

SP(使用说明及实例北京迈达斯技术有限公司2013/2/25目录1、SPC使用说明 (2)1.1 总述 (2)1.2截面形式:Plane和Line (2)1.3导入spc步骤及注意事项 (3)1.4 SPC功能说明 (4)2、SPC实例演示 (13)2.1混凝土截面 (13)2.2钢箱梁截面 (15)2.3组合截面 (19)附录一MIDAS/Civil和MIDAS/Gen的标准截面数据库中截面抗扭刚度的计算方法•••241、SPC使用说明1.1 总述midas civil宀工具宀截面特性计算器SPC是截面特性值计算器一Sectional Property Calculator的缩写。
” Civil程序内部提供了很多种截面形式供用户选择,但并非涵盖所有工程截面,同时也为了方便与设计软件CAD的交互操作,可以通过工具中SPC计算截面特性并通过数值截面导入到Civil中,其中数值截面主要有数值>任意截面、设计截面>设计用数值截面、联合截面>组合-一般。
SPC截面操作的一般步骤为:导入的AutoCAD dxf文件或者直接在SPC中绘制图形宀生成截面T计算截面特性T导出.sec文件。
导出的sec文件即可导入到Civil中生成相应截面。
1.2截面形式:Plane和LineSPC中用户可以根据情况选择Plane形式的截面或Line形式的截面来定义截面。
Plane形式的截面需要在CAD中画出实际截面形状,导入到SPC中,在Gen erate section里选择Pla ne Type, 程序会按照截面形状所指定的范围自动生成截面。
计算截面特性值时,程序会通过网格自动生成功能或人为指定网格尺寸在截面的Pla ne范围内生成网格,之后利用该网格有限元计算截面特性值。
程序默认采用的网格密度比较粗, 对于一般的混凝土截面来说可以满足精度要求,但对于用Plane模拟薄壁钢梁截面时,需要通过人为指定网格尺寸的方式来提高薄壁截面特性计算的精度。
SPC实例详述混凝土钢箱组合截面

midas Civil 技术资料----SPC实例操作详述目录midas Civil 技术资料1 ---- SPC实例操作详述11 SPC总述22 混凝土截面22.1混凝土截面SPC操作步骤22.2三种方法计算混凝土截面特性对比63 钢箱梁截面73.1钢箱梁截面SPC操作步骤83.2数据库/用户截面特性与SPC对比134 组合截面144.1组合截面SPC操作步骤15参考文献20北京迈达斯技术有限公司桥梁部2013/05/061 SPC总述midas Civil→工具→截面特性计算器SPC是“截面特性值计算器—Sectional Property Calculator”的缩写。
Civil截面库提供很多截面供用户选择,但并非涵盖所有工程截面,故为方便与绘图软件AutoCAD交互操作,用户可使用Civil提供的SPC工具实现任意截面的计算并导入,完成分析和设计。
SPC一般步骤为:导入AutoCAD DXF文件或直接在SPC中绘制图形→生成截面→计算截面特性→导出.sec文件→导入Civil中生成相应截面。
2 混凝土截面2.1混凝土截面SPC操作步骤(1)打开SPC,首先进行工作环境设置:Tools>Setting,length长度单位设为m,保持与DXF文件长度单位一致,如下图2-1所示;同时应确保DXF文件中的截面线无重叠,在DXF中把要导入的截面放在当前图层的x-y平面内,另外暂不支持DXF中pline线导入SPC,具体步骤:File>Import>Auto CAD DXF,如下图2-2所示。
Tolerance:长度容许误差。
一般情况下,程序会根据设定的单位体系自动进行合理的调整,设计者也可以手动进行修改,默认值为1mm。
图2-1设置单位体系图2-2导入DXF文件Angle step:默认10°,将曲线段按每10°为一段进行分割,例如,导入圆形截面,圆周则被自动分割成36段直线。
MIDASCIVIL软件简介

MIDAS CIVIL软件简介MIDAS可以做施工阶段分析、水化热分析,静力弹塑性分析、支座沉降分析、大位移分析,是强有力的土木工程分析与优化设计系统。
其基本特点如下:广泛的适用领域钢筋混凝土桥梁:板型桥梁、刚架桥梁、预应力桥梁联合桥梁:钢箱型桥梁、梁板桥梁预应力钢筋混凝土箱型桥梁:悬臂法、顶推法、移动支架法、满堂支架法大跨度桥梁:悬索桥、斜拉桥、拱桥大体积混凝土的水化热分析:预应力钢筋混凝土箱型桥梁、桥台、桥脚、防波堤地下结构:地铁、通信电缆管道、上下水处理设施、隧道工业建筑:水塔、压力容器、电力输送塔、发电厂国家基础建设:飞机场、大坝、港口材料公路钢筋混凝土及预应力混凝土桥涵及设计规范(JTJ023-85)公路桥涵钢结构及木结构设计规范(JTJ025-86)混凝土结构设计规范(GB50010-2002)钢结构设计规范(GBJ17-88)高层民用建筑钢结构技术规程(JGJ99-98)其他国家和地区规范(美国、加拿大、德国、英国、欧洲、日本、韩国等)截面型钢:角钢、槽钢、H型钢、T型钢、方形钢管、圆形钢管、圆形钢棒、方形钢棒组合截面:角钢-组合截面、槽钢-组合截面焊接组合截面:角钢、槽钢、H形钢、T形钢、方形钢管、圆形钢管其他国家标准截面(美国、德国、英国、日本、韩国等)车辆荷载公路桥涵设计通用规范(JTJ021-89)的汽车荷载、平板挂车和履带车荷载城市桥梁设计荷载标准(CJJ77-89)的城-A级、城-B级车辆荷载和车道荷载铁路桥涵设计基本规范(TB10002.1-99)的“中-活载”的普通活载、特种活载地震设计反应谱公路工程抗震设计规范(JTJ004-89)铁路工程抗震设计规范(GBJ111-87)抗震设计规范(GB50011-2001)收缩和徐变、弹性模量的变化公路钢筋混凝土及预应力混凝土桥涵及设计规范(JTJ023-85)其他国家规范(美国、欧洲、日本、韩国等)钢筋混凝土构件设计公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ025-86)其他国家规范(美国、日本等)钢结构构件设计公路桥涵钢结构及木结构设计规范(JTJ025-86)其他国家规范(美国、韩国)钢骨混凝土构件设计型钢混凝土组合结构技术规程(JGJ138-2001)使用钢管混凝土截面时,适用“钢管混凝土结构设计与施工规程”(CECS28:90)其他国家规范(美国、韩国)通过了国际认证机关ISC(InternationalStandardsCertification)Pty.Ltd的ISO9001:2000(质量管理体系)和ISO14001:1996(环境管理体系)的认证。
迈达斯-截面特性值计算器

。状形面截拟模来面截的式形eniL或面截的式形enalP定 选意任要需据根以可户用中CPS在�状形面截拟模来式形种一ena lP或en iL以能只序程的往以
�
。写缩的”rotaluclaC ytreporP lanoitceS—器算计值性特面截“是CPSΒιβλιοθήκη 明 说 用 使 的 C PS
)rotaluclaC ytreporP lanoitceS( CPS/SADIM
�
。定设行进 gnitteS>slooT 在 者或 � ) g n i t t e S ( 击点里条具工在可等色颜定设、息信型模藏隐/示显、系体位单定设
。算计和模建行进来能功项各出调地便方 很以 可 户 用 � 能 功 的 关 相 算 计 面 截及 模 建 的 C P S 与 有 所 了 供 提 里 单 菜联 关 、 条 具 工 、 单 菜 形 树 在
)rotaluclaC ytreporP lanoitceS( CPS/SADIM
6
。面截的算计行进未和面截的算计面截行进已别区的然了目一以可色颜此过通 。色颜的线的成构所后算计面截成完定指 noitceS detaluclaC 。色颜的分部度厚的线的度厚有定指 :htdiW 。色颜的廓轮外线是的定指线的度厚有于对。色颜的线定指 :lamroN evruC 。色颜的线曲闭封定指 pooL desolC 。色颜景背的口窗作操定指 :dnuorgkcaB 。色颜的体个择选被定指 :ytitnE detceleS weiV � � �
yalpsiD
�
。改更、算换行进的动自而系体位单的定指照按会据数的有所�”)Y(是“ 击点如 ,框话对的下如现出会�系体位单改更果如。系体位单定指里这在 metsyS tinU 。整调的理合行进动自系体位单的定设据根会序程�下况情般一。差误许容定指里这在 ecnareloT
midas设计用数值截面-截面参数设置

midas Civil 技术资料----设计用数值截面-截面参数设置目录midas Civil 技术资料1 ----设计用数值截面-截面参数设置 1 1问题提出2 2设计截面定义及参数设置 2 2.1设计用数值截面定义 2 2.2设计用数值截面-参数设置 4 3箱形截面-受扭塑性抵抗矩W t 计算示例 7 参考文献8北京迈达斯技术有限公司 桥梁部2013/04/271问题提出设计用数值截面,矩形、T形、I形截面参数如何设置是非常重要的,关系到设计容许值的结果。
大家可结合如下所述,对照规范公式进行理解。
2设计截面定义及参数设置2.1设计用数值截面定义1.在CAD中绘制设计截面,如图2-1所示,并存为*.dxf文件,分别为矩形、箱形、T形、I形。
单位:m图2-1 截面参数设置-设计截面图2-2 创建截面2.Civil—工具—截面特性值计算器,计算各截面特性并存为midas section file文件,如图2-2、2-3、2-4所示。
图2-3 计算截面特性图2-4 导入sec类型文件在Civil中定义截面时,设计用数值截面可直接导入,具体操作略。
2.2设计用数值截面-参数设置1.矩形截面图2-5 矩形数值截面参数输入矩形可看做只有中腹板,无翼缘厚度的箱形截面来理解设计截面参数的输入。
(1)“设计参数”中:T1(上翼缘厚度),填入一个可忽略的较小值,;T2(下翼缘厚度),填写0;BT(箱形截面外腹板中心距离),填写0;矩形截面该值不起作用;HT(箱形截面上、下翼缘的中心距离),截面高度,对应D62-04式5.5.2-1中的h值。
(2)验算扭转用厚度(最小):实际截面宽度值,对应D62-04式5.5.2-1中的b值,用于计算Wt,可见,该值的准确输入直接关系到抗扭验算的结果。
剪切验算:验算截面对剪切较薄弱的部位的剪力。
(3)Z1, Z3:确定剪力计算位置,以截面底边为基准线沿截面Z轴方向的距离,注意,由材料力学切应力(τmax)计算公式可知,矩形截面,切应力最大值发生在截面形心处,故,一般情况下对于矩形截面Z1, Z3的位置可设置成与Z2重合。