钻井过程中地层压力预测与监测
泥页岩地层孔隙压力的预测方法
泥页岩地层孔隙压力的预测方法左 星1 何世明1 黄 桢2 范兴亮2 李 薇1 曾永清3(11西南石油大学,四川成都610500;21四川石油管理局川东开发公司,重庆400021;31塔里木油田公司勘探事业部,新疆库尔勒841000) 摘 要 勘探开发过程中,由于地层孔隙压力预测不准,时常造成井眼坍塌、破裂,这不但影响了工程的进行,而且带来了巨大的经济损失。
因此,准确预测地层孔隙压力,对钻井设计中钻井液密度的选择和合理的井身结构设计起着重要作用,同时也是打好一口井的重要因素。
文中概述了关于地层孔隙压力预测的一系列方法,并通过实例来说明如何准确预测,最后针对预测方法的局限性提出了一些建议。
关键词 勘探开发 预测 地层孔隙压力 钻井液密度 地层孔隙压力预测方法的理论基础是压实理论、均衡理论及有效应力理论,预测方法有钻速法、地球物理方法(地震波)、测井法(声波时差)等。
目前单一应用某一种方法是很难准确评价一个地区或区块的地层孔隙压力,往往需要运用多种方法形成一种规范的预测准则[1],来进行综合分析和解释。
地层孔隙压力评价方法可分为2类:一类是利用地震资料或已钻井资料进行预测,建立单井或区块地层压力剖面,用于钻井工程设计、施工;另一类是钻井过程中监测地层压力,掌握地层压力实际变化,确定现行钻井措施及溢流监控。
3 目前常用的地层孔隙压力预测方法有钻前预测地层压力、随钻检测地层压力和钻井后检测地层压力。
1 钻前预测地层压力由于在钻某一区块的第一口井时没有可用的测井资料及邻井相关数据,所以只能通过地震资料来估算地层压力[2]。
预测原理:地震波在地层中的传播速度与地层岩石的岩性压实程度、埋藏深度以及地质时代等因素有关。
一般情况下,地震波的传播速度随地层的埋藏深度的加大而增加,地震波在地层介质中的传播速度与岩层埋藏深度、岩石沉积时代和岩石密度成正比关系,与岩石孔隙度成反比关系,利用这些特性就可以对地层压力进行预测。
随钻地层压力监测技术在钻井工程上的应用思考
随钻地层压力监测技术在钻井工程上的应用思考【摘要】随钻地层压力监测技术在钻井工程中扮演着重要的角色。
通过对压力变化的实时监测和分析,可以有效指导钻井过程中的施工操作,提高钻井效率、降低事故风险。
本文首先介绍了随钻地层压力监测技术的原理和应用范围,然后重点探讨了其在钻井过程中的优势和具体应用案例。
随后,文章对随钻地层压力监测技术未来的发展方向进行了展望,强调了其在钻井工程中的潜在价值和应用前景。
通过对这一技术的深入研究和应用,将有望推动钻井工程的发展,提高钻井效率和安全性,为整个行业带来新的发展机遇和挑战。
【关键词】随钻地层压力监测技术、钻井工程、原理、应用范围、优势、应用案例、发展方向、价值、应用前景1. 引言1.1 背景介绍随钻地层压力监测技术在钻井工程上的应用思考引言随着石油工业的发展和需求的不断增长,钻井工程作为石油勘探开发的重要环节,其安全高效进行对于石油产量的稳定和提高至关重要。
地层压力是影响钻井过程中井底工作状态的关键因素之一,通过监测地层压力,可以更准确地掌握井下情况,避免因为地层压力突变而引发的事故。
传统的地层压力监测技术存在着监测精度低、实时性差等问题,为了解决这些问题,随钻地层压力监测技术应运而生。
随钻地层压力监测技术利用传感器与钻头下接触,实时监测地层压力变化情况,为钻井工程提供实时数据支持,提高了钻井作业的安全性和效率。
随钻地层压力监测技术的引入,为钻井工程带来了新的发展机遇和挑战。
在实际应用中,随钻地层压力监测技术已经取得了一定的成功,但也面临着一些问题和挑战,需要进一步深入研究和探讨。
1.2 研究意义随钻地层压力监测技术在钻井工程中具有重要的研究意义。
随钻地层压力监测技术可以帮助钻井工程人员实时了解井下地层的压力情况,有助于预防井漏、井喷等事故的发生,提高钻井作业的安全性和效率。
随钻地层压力监测技术可以为钻井设计提供可靠的地质参数,帮助钻井工程人员准确地选择钻井液密度、井深等参数,从而保证钻井过程的顺利进行。
地层孔隙压力检测预测技术
异常地层孔隙压力定量确定技术
樊洪海
2006 年11月17日
二、异常高压的形成机制与分类
1、不平衡压实作用
①沉积速率;②孔隙空间减小速率;③地层渗透率的大小;④流体排出情况; 平衡压实形成正常压力,平衡压实形成异常高压。
快速沉积是造成不平衡压实的主要原因之一,由于沉积速率过快,造成沉积颗粒排列不规则(没有足够的时间),排水能力减弱,继续增加的上覆沉积载荷部分由孔隙流体承担,形成异常高压,同时造成地层的欠压实。
原始加载曲线关系卸载曲线关系沉积压实过程力学关系
3. 存在的问题:
◆dc的求法:钻头磨损(牙齿磨损、轴承磨损)、水力因素等影响不易消除;
◆正常趋势确定:非直线
◆Eaton指数确定
◆仅限于泥岩使用
正常压实地层:式中:Δt: h 处的时差,us/m.
Δt 0: 地表时差,us/m.
c —系数。
若将上式在半对数坐标(Δt 为对数、h 为常规坐标),则Δt 与h 成直线。
在非正常压实地层:Δt 偏离(大于)正常趋势线,意味着高压地层。
2.算法:
c 、确定正常趋势线(选泥岩声波时差)
d 、定性判断异常高压
e 、定量计算。
ch
e t t −Δ=Δ0。
精细控压钻井技术创新及应用探讨
精细控压钻井技术创新及应用探讨随着石油工业的发展,传统的钻井技术已经不能满足日益复杂的油气田开发需求,钻井工程中的控压钻井技术应运而生。
精细控压钻井技术是一种将压力控制作为主要目标的钻井技术,通过优化井探、井涌和井泥等环节,实现在高压高温、脆弱地层和易燃易爆气体层块等困难机井状况下的安全高效钻井作业。
精细控压钻井技术的创新主要体现在以下几个方面:1.压力预测与控制:传统钻井过程中,地层压力预测准确度较低,容易导致井溢漏现象,而精细控压钻井技术采用了先进的井下测量技术和分析方法,能够实时准确地预测地层压力,及时采取相应措施进行压力控制,有效避免井溢漏风险。
2.岩石力学与井壁稳定:精细控压钻井技术注重研究地层力学行为,针对不同地层岩石的物理力学特性进行分析,并结合井壁稳定性评价方法,科学合理地选择钻井液,优化钻井参数,提高井壁稳定性和钻井效率。
3.井探技术与井眼质量控制:精细控压钻井技术引入了先进的测井和地层评价方法,能够实时监测并评估井壁稳定性、岩性、孔隙度等地层参数,及时调整钻井液和钻井工艺,确保井眼质量,避免井下事故和作业延误。
4.井涌与井泥控制:在复杂地层条件下,井涌和井泥控制是精细控压钻井技术的重要研究内容。
通过合理设计固井策略、优化钻井液配方和监测井下压力变化等手段,控制井涌和井泥,防止井下气体和地层流体逆进,确保井口安全。
精细控压钻井技术在石油工业中的应用也得到了广泛推广。
通过应用该技术,可以提高钻井作业的安全性、稳定性和效率,降低边际成本,提高项目经济效益。
精细控压钻井技术能够有效地控制井下压力,降低井溢漏风险,保障作业人员和设备的安全。
在高压高温、脆弱地层和易燃易爆气体层块等复杂环境下,精细控压钻井技术可以准确预测地层压力,及时采取相应措施,实现安全高效的钻井作业。
精细控压钻井技术还可以降低油气井的开发成本,提高项目经济效益。
通过优化钻井液配方和控制井涌和井泥,可以减少资源的浪费,降低开发成本;通过提高钻井效率,可以缩短开发周期,提前实现投资回收。
地层压力-地层破裂压力-地层坍塌压力预检测
地层破裂压力和坍塌压力预测摘要地层破裂压力和地层坍塌压力是钻井工程设计的重要依据,对确定合理的钻井液密度和其他钻井参数有重要意义。
在参考了一些书籍和相关论文的基础上,对地层破裂压力和坍塌压力的预测方法做出了较为系统的总结。
地层破裂压力的预测主要有H-W模式和H-F模式,包括伊顿法、黄荣樽法、安德森法等;地层坍塌压力的预测主要基于井壁岩石剪切和拉伸破坏的原理。
关键词:破裂压力;坍塌压力;预测第一章前言地层破裂压力是指使地层产生水力裂缝或张开原有裂缝时的井底流体压力。
它是钻井和压裂设计的基础和依据。
如何准确地预测地层破裂压力,对于预防漏、喷、塌、卡等钻井事故的发生及确保油气井压裂增产施工的成功有着重要的意义。
地层坍塌压力是指随着钻井液密度的降低,井眼围岩的剪应力水平不断提高,当超过岩石的抗剪强度时,岩石发生剪切破坏时的临界井眼压力。
它的确定对于确定合理的钻井液密度和钻井设计及施工有重要意义。
地层三项压力研究历史及发展现状:✧八十年代以前,地层孔隙压力以监测为主,地层破裂压力预测处于经验模式阶段,如马修斯-凯利模式、伊顿模式等。
没有地层坍塌压力的概念。
✧八十年代,提出了地层坍塌压力的概念,从理论上对地层三个压力进行了公式推导。
✧九十年代以来,一般根据岩石力学的基本原理由地应力和地层的抗拉强度预测地层的破裂压力,进入实用技术开发阶段。
目前,地层三项压力预测技术已经得到广泛的重视,也从各个方面对其进行了研究和应用:●室内实验研究方法(研究院)●地震层速度法(石大北京)●常规测井资料法(华北钻井所、石大)●页岩比表面积法(Exxon)●人造岩心法(Norway)●岩屑法(Amoco、石油大学)●LWD、SWD法(厂家)●经验模式法(USA)第二章 地层三项压力预测机理2.1 地应力模型1、各向同性模型利用电缆地层测试或压力恢复测试资料,在不考虑构造应力影响情况下,各向同性模型计算水平应力公式为:()p p b x P P P PR PR αασ+-⎪⎪⎭⎫⎝⎛-=01(2-1) 式中:PR — 泊松比;Pob — 上覆岩层压力;Pp — 孔隙流体压力;α — Biot 常量。
地层压力检测
地层压力检测钻进时,井内压力的控制是使井眼压力处在地层孔隙压力和地层破裂压力之间。
既不发生井喷,又不压破地层,钻井的整个过程中要随时测试地层孔隙压力、井内液柱压力和地层破裂压力的平衡情况。
一、压力完整性测试1、dc指数法dc指数法是通过分析钻进动态数据来检测地层压力的一种方法。
其原理是钻进速度在钻头类型;钻头直径;水眼尺寸;钻头磨损;钻压;转速;钻井液类型;钻井液密度;钻井液粘度;固相含量、颗粒大小及在钻井液中的分布;泵压;泵速相对不变的条件下和地层压力、地层岩性有关。
正常情况下,随井深的增加岩石的强度增大,钻速下降,但进入异常压力过渡带,正常趋势发生变化。
这是由于地层的欠压实作用,地层的空隙度大硬度小,所以利用随井深钻速的变化能检测异常高压层的到来。
根据钻速模式:R=aN(W/D)d式中:R-钻速,ft/h;a-可钻性系数,对于大段页岩,视为1;N-转数,r/min;W-钻压,klbf;D-钻头直径,in;d-指数,无因次。
由钻速方程,可得出d指数的表达式为:d指数可用来检测从正常到异常压力的过渡带。
但没有考虑钻井液密度的影响现场上用修正d指数,式中:ρn-地层水密度(从当地地层水含盐量中查出)g/cm3ρm-所用密度g/cm3d用下式表达式中:R-钻速m/h; N-转速r/min;W-钻压t;D-钻头直径mm;L-进尺m;T-钻时min。
若W的单位用KN(千牛),则由于0.0547R N 一般小于1,所以在d中,R增大,则d减小,故d反映地层的压实情况与ΔP。
压实差、孔隙多,地层压力大,ΔP减小,钻速可增加。
运用d c指数求地层压力可按下述方法进行:(1)、列表,准备记录和计算表的内容包括:井深H,进尺L,钻时T,钻速R,转速N,井径D,钻压W,地层水密度ρ0,钻井液密度ρm大,dc地层压力PP。
(2)、取点记录,计算dc,填入表内.在钻速慢的地层每1m-3m取1点,在钻速快的地层,可5、10、15、30m取1点。
在钻井过程中影响地层压力预测的因素分析
在钻井过程中影响地层压力预测的因素分析地层压力预测是钻井过程中的重要环节之一。
它对钻井的安全、效率和经济性都有着至关重要的影响。
地层压力预测的准确性和可靠性不仅取决于地质条件和地应力状况,还受到多种因素的影响。
本文将分析在钻井过程中影响地层压力预测的因素。
一、地质构造地质构造是影响地层压力预测的主要因素之一。
地质构造是指地壳的形成及其内部结构。
不同地质构造的地层性质和应力状况不同,因此在进行地层压力预测时需要考虑地质构造的影响。
例如,断层带地区的地层断裂、变形等因素对地层压力造成了很大的影响。
二、地层岩性地层岩性是影响地层压力的另一个重要因素。
地层的岩性不同,导致其地应力状态不同。
例如,相对于砂岩来说,页岩因其含油、气等物质的渗透性差,其应力状态相对较低,因此需要在地层压力预测时特别注意。
三、井筒设计与施工井筒设计与施工也是影响地层压力预测的重要因素。
良好的井筒设计和施工有利于减少孔隙压力及正应力,并且能够降低地层与井壁之间的剪切应力,从而减小地层的应力状态。
因此,在进行地层压力预测时,需要综合考虑井筒设计和施工的因素,以保证预测结果的准确性和可靠性。
四、钻井工艺钻井工艺是影响地层压力的因素之一。
不同的钻井工艺对地层的应力状态有不同的影响。
例如,直井钻探相对于水平井钻探,能够减少钻井带来的应力变化,从而提高地层压力预测的精度和可靠性。
五、测井技术测井技术也是影响地层压力预测的重要因素之一。
测井技术可以对地层进行全面、详细的测量和评价,可以有效地提高地层压力预测的准确性和可靠性。
例如,电阻率测井、声波测井等技术都能够提供地层重要参数的测量结果,有利于进行地层压力预测。
综上所述,在钻井过程中影响地层压力预测的因素包括地质构造、地层岩性、井筒设计与施工、钻井工艺、测井技术等多个方面,需要将这些因素合理地综合考虑,才能更好地预测地层压力,并且确保钻井过程的安全、高效和经济。
钻井工程地质条件—压力
(1-8)
式中:Δ t——声波时差; ρ ——岩层密度, ρ =f(φ ); E ——岩石的弹性模量; μ ——岩石的泊松比。 对于一定的岩性(泥页岩), Δ t≈f(φ )。
第一节
2.基本原理
地下压力特性
(1)声波时差与泥页岩孔隙度的关系
t t t
f
t
m m
(1-9)
(2)正常沉积条件下,泥页岩孔隙度与埋藏深度的关系
第一节
3. 地层压力的计算方法
地下压力特性
经验图版法、经验公式法、当量(等效)深度法 (1)经验公式法
p
d
n
cn ca
d
(1—17)
(2)等效深度法
等效深度:若深度为D的异常压力地 层与正常压力段的某一深度De处的地层 具有相等的dc指数,则可以认为两处地 层的压实程度相同,基岩应力相等,即: 若dc(D)=dc(De),则σ(D)= σ(De)。 De处:po(De)=σ(De)+pp(De) D处: po(D)= σ(De)+pp(D) pp(D)= po(D)- po(De)+ pp(De) =GOD -(GO -Gpn)De (1-18)
第一节
地下压力特性
(二)地层压力监测(检测)
dc指数法、页岩密度法、标准化钻速法
1.dc指数的概念
宾汉钻速模型(Bingham,1964):Vpc=Kne(W/db)d
(1―13)
(1—14)
d指数(泥页岩层):
d
采用常用工程单位:
d
log( V
pc
/ n)
log(W / d b )
第一节
石油钻井地层压力预测与计算方法
(1)
Pc——套管压力,MPa; Lf——动液面,m
L——泵挂深度,m; H——油层中部深度,m;
ot , os ——地下、地面原油密度, g/cm3
w
——地层水密度,g/cm3;
三、 井底压力的计算
水井井底注入压力p井计算
p井 pef H w 101 .97
(2) (3) (4)
pef p pm p fr pcf pV
p fr 1.06510
14 1.8 0.2 0.8 HQ1
d14.8
2 Q2 4 d2
pcf 1.0861013
(5)
pef , ppm——有效、实测井口注入压力,MPa; pfr,pcf,pV——注入水通过油管、水嘴、配水器节流凡尔所产生的压力损失, MPa; Q1, Q2——注入量,m3/d; 当有两个直径相同的水嘴时,Q1=0.5Q2.
(6)
p1 , p2——水井、油井单独生产在任一点产生的地层 压力,MPa; pe——原始地层压力,MPa.
四、油水井间地层压力分布
对水井
p1 p
' 井1
1.842103 Q1 r ln 1 K K rw h1 rw
1.842103 Q2 r ln 2 K K rw h2 rw
式(11)减式(12)得
p井1 p井 2 1.842103 K K rw Q1 Q2 d h h ln r 2 w 1
(13)
设M=K· Krw/µ ,则式(13)变换 为
1.842 103 M p 井1-p 井 2 Q1 Q2 d h h ln r 2 w 1
p井1 p井1 p井2 1.842103 Q2 d pe ln K K rw h2 rw
在钻井过程中影响地层压力预测的因素分析
在钻井过程中影响地层压力预测的因素分析1. 引言1.1 钻井过程中地层压力的重要性在钻井过程中,地层压力是一个至关重要的参数,对钻井安全、钻井液性能、地层稳定性等方面都具有极大的影响。
地层压力的准确预测可以帮助钻井工程师选择合适的钻井液密度,以保证钻井过程中井眼的稳定性。
如果地层压力预测不准确,过高的钻井液密度可能导致井眼受损,造成钻头卡钻等事故发生,对钻井工程造成巨大损失。
地层压力还直接影响井筒气体逸失的情况,过高的地层压力会增加气体逸失的风险,从而影响钻井作业的顺利进行。
地层压力的准确预测还可以帮助工程师判断地层中是否存在高压气体或高温高压油层,以采取相应的措施进行保护,避免发生意外事件。
钻井过程中地层压力的准确预测对于保障钻井作业的顺利进行和安全性具有至关重要的意义。
1.2 地层压力预测的必要性地层压力预测在钻井过程中具有极其重要的必要性。
地层压力是指地下岩石受到的压力,对于预测地层压力可以帮助确定钻井过程中的地质条件。
地层压力预测可以帮助钻井工程师制定合理的钻井方案,减小钻井风险,提高钻井的成功率。
地层压力预测还可以帮助钻井人员预测地层流体的性质,如钻井液的密度和黏度等,从而更好地控制钻井过程中的井底情况。
地层压力预测还可以帮助评估地下储层中的天然气或油藏的压力情况,为后续的油气开发提供重要参考。
地层压力预测的必要性不仅在于保证钻井过程的安全和顺利进行,更在于对油气开发的有效管理和优化有着至关重要的作用。
2. 正文2.1 地层物性对地层压力影响分析地层物性对地层压力影响分析是钻井过程中一个重要的因素。
地层物性包括地层岩石的孔隙度、渗透率、饱和度等参数,这些参数直接影响地层的压力传递和承载能力。
孔隙度是地层中储存流体的空隙比例,孔隙度越大,地层的压力传递效果就越好,地层压力也越大。
渗透率则影响地层中流体的运移速度,高渗透率地层会导致地层压力快速下降。
饱和度是指地层中已经被流体填充的比例,饱和度高的地层对地层压力有一定的缓冲作用。
钻井工程中随钻地层压力监测技术的应用
钻井工程中随钻地层压力监测技术的应用摘要:随着渤海油田勘探向古近系和古潜山探井数量越来越多,油气藏埋藏越来越深。
通过已钻井证实,渤海油田古近系存在地层超压井超过三分之一。
通过对已钻地层超压井统计,多口井由于预测地层压力与实钻地层压力存在偏差,导致井漏、井涌等工程复杂情况发生,从而导致钻井工期延长,油层污染,甚至单井报废等严重后果,不仅影响勘探进程,而且造成了极大的经济损失。
前人利用两级串联筛选超压分类方法,将渤海油田古近系超压分为单纯欠压实型、欠压实主导型、生烃主导型和流体传导型4类,并分析了古近系超压分布特征,指导区域地层压力预测工作。
但是随着勘探的深入,发现钻前地层压力的预测基于地震和邻井录测井资料,受资料的精度等多因素影响,单凭经验或已钻井资料预测地层超压的精度和准确度不够,无法为现场钻井作业提供精准指导。
因此,地层压力的随钻监测对钻井过程指导意义重大。
关键词:钻井工程;随钻地层;压力监测技术引言地层压力确定关系到油气钻探过程中钻井液密度的选择及井身结构设计,在实践中,因地层压力预测不准确而引发井下事故,因井身结构及钻进设备不适应地层高压而影响工程作业的情形时有发生。
川西地区深层油井平均井深较大,井眼地质情况复杂,异常高压,且地层裂隙多,断裂发育,易发生破碎坍塌,井喷、井涌、卡钻等井下事故出现频繁。
为此,必须采取恰当的技术加强随钻地层压力监测,为预测异常地层压力及加强钻井液密度设计提供科学指导。
1地层压力钻井钻至储集层后,砂岩骨架局部被破坏,可能产生裂缝,使储集层抗剪强度降低,更容易出砂。
而储气库需在短时间内大排量高速开采,地层压力下降导致岩石所承载的应力增大,超过岩石抗拉强度时,岩石骨架会被破坏而引起出砂,导致水平井调峰能力降低。
2地层异常压力成因及分布规律通过对邻区15口邻井的钻前地震层速度、随钻压力、钻后声波时差等资料进行分析,结合泥岩声波速度与密度交会图板法,得到了该区域的地层超压成因和纵向分布规律。
压力预测在钻井当中的应用
生烃增压作用:生烃增压是指当高密度的有机质
异常高压的主因,其他作用都是次因,但是某一地区异
转化成低密度的油或者气时,促使孔隙流体膨胀,如果
常高压的形成并非是单因素导致的,通常是多种因素
生烃作用增加的流体体积大于由于渗漏等因素释放的
共同作用的结果。
流体体积则产生异常高压[7]。
压实作用:通过前人的研究,认为世界上年轻的沉
而是多种因素共同的结果;
全钻井液密度的上限。
(下转第 49 页)
2021 年第 7 期
49
西部探矿工程
论分析同一样品还是不同样品,都提高了样品分析的
DB-Petro 色谱柱。在同一方法下,应用保留时间锁定
准确率,
也大大缩短了分析时间。
程序,分析与实验一相同的五块样品。总共分析 360 个
2.3.2 实验二
样品名
分析峰(个数)
错误峰(个数)
分析时间(min:
s)
样品 1
72
0
1:58
样品 2
73
4
2:58
样品 3
75
2
1:
22
样品 4
68
0
1:
12
样品 5
72
0
1:03
总和
360
6
8:33
同一方法条件下,应用保留时间锁定程序依然能够提
高样品分析的准确率,大大缩短分析时间。
3 结论
应用保留时间锁定程序做轻烃定性分析时,既能
常高压的形成。
[1]
障的发生,有着十分重要的意义 。地层孔隙压力的预
蒙脱石脱水:随着地层温度不断升高,蒙脱石会因
测在钻进过程中一直是倍受关心的问题。目前在钻井
地层压力
目前对这些问题正在进行研究解决
2. 岩石强度法
岩石强度法检测地层压力原理
正常地层在其上覆岩层的作用下,随着岩层埋 藏深度的增加,岩石的压实程度相应增加,地 层的孔隙度减小,钻进时岩石所表现出的强度 增加。 大多数类型的岩石,其岩石强度的变化与地层 的孔隙压力有必然的联系. 利用这一规律可在钻进过程中及时发现井下异 常压力。
n—Eaton指数
2.感应电导率测井法
原理
在地层水性质相对稳定的井段,岩性已知。地层电导率取决与地层 孔隙度。对于正常压实的地层,随着埋深增加,泥岩孔隙度减小, 电导率也逐渐减小。 在异常高压带,泥岩电导率则增高而偏离正常变化趋势。 通过正常地层孔隙压力井段的电阻率数据,建立正常电阻率趋势线 方程, 根据所测地层电阻率偏离正常趋势线的大小,来计算出该处的地层 孔隙压力。
岩石强度法是建立在对岩石物性的研究的基础上的, 从理论上讲,它对所检测地层岩性没有太严格的限制, 它的使用范围广。
岩石强度法检测地层孔隙压力,经过现场初步应用, 其检测结果精度高,大大高于常用的dc指数法,证明 该方法是一有效、可行的随钻地层孔隙压力检测方法
C指数法
C指数法以相对平衡为出发点 在一定条件下,由于孔隙压力的增加使机械 钻速增加,如果增加泥浆密度使机械钻速恢 复到正常值,则增加的泥浆密度就是地层压 力当量泥浆密度的增量. 前提条件是在保持钻劲参数和岩性不变. C指数法是通过求岩石的压实行系数来求地 层压力的.
判别出地层的性质.
1.声波测井法
地层声波时差与孔隙度的关系
t tma
t f tma
式中 φ-- 岩石孔隙度,%;
Δt--岩层声波时差测量值,μs/m; Δtma --岩层骨架声波时差,μs/m;
钻井基础知识
钻井基础知识1 钻头钻头主要分为:刮刀钻头;牙轮钻头;金刚石钻头;硬质合金钻头;特种钻头等。
衡量钻头的主要指标是:钻头进尺和机械钻速。
2 钻机八大件钻机八大件是指:井架、天车、游动滑车、大钩、水龙头、绞车、转盘、泥浆泵。
3 钻柱组成及其作用钻柱通常的组成部分有:钻头、钻铤、钻杆、稳定器、专用接头及方钻杆。
钻柱的基本作用是:(1)起下钻头;(2)施加钻压;(3)传递动力;(4)输送钻井液;(5)进行特殊作业:挤水泥、处理井下事故等。
4 钻井液的性能及作用钻井液的性能主要有:(1)密度;(2)粘度;(3)屈服值;(4)静切力;(5)失水量;(6)泥饼厚度;(7)含砂量;(8)酸碱度;(9)固相、油水含量。
钻井液是钻井的血液,其主作用是:1)携带、悬浮岩屑;2)冷却、润滑钻头和钻具;3)清洗、冲刷井底,利于钻井;4)利用钻井液液柱压力,防止井喷;5)保护井壁,防止井壁垮塌;6)为井下动力钻具传递动力。
5 常用的钻井液净化设备常用的钻井液净化设备:(1)振动筛,作用是清除大于筛孔尺寸的砂粒;(2)旋流分离器,作用是清除小于振动筛筛孔尺寸的颗粒;(3)螺杆式离心分离机,作用是回收重晶石,分离粘土颗粒;(4)筛筒式离心分离机,作用是回收重晶石。
6 钻井中钻井液的循环程序钻井液罐经泵→地面管汇→立管→水龙带、水龙头→钻柱内→钻头→钻柱外环形空间→井口、泥浆(钻井液)槽→钻井液净化设备→钻井液罐。
7 钻开油气层过程中,钻井液对油气层的损害主要有以下几种损害:(1)固相颗粒及泥饼堵塞油气通道;(2)滤失液使地层中粘土膨胀而堵塞地层孔隙;(3)钻井液滤液中离子与地层离子作用产生沉淀堵塞通道;(4)产生水锁效应,增加油气流动阻力。
8 预测和监测地层压力的方法(1)钻井前,采用地震法;(2)钻井中,采用机械钻速法,d、dc指数法,页岩密度法;(3)完井后,采用密度测井,声波时差测井,试油测试等方法。
9 钻井液静液压力和钻井中变化静液压力,是由钻井液本身重量引起的压力。
随钻地层压力检测
随钻地层压力检测随钻地层压力检测是钻井中非常重要的一项技术,它通过对钻井过程中地层压力的实时监测,可以帮助钻井工程师做出正确的钻井决策,降低钻井事故发生率,提高钻井效率和钻井质量。
本文将对随钻地层压力检测的原理、方法和应用进行详细介绍。
一、随钻地层压力检测的原理随钻地层压力检测的原理与杨氏模量定律有关。
杨氏模量是固体材料的一种弹性模量,在应力作用下,杨氏模量越小,则固体的周围表面变形越大。
在钻井过程中,地层中的岩石是固体材料,当钻头在岩石上钻进去时,会产生应力作用,使得周围的岩石受到压缩,形成应力。
如果地层中的岩石属于非均质性地层,那么不同深度、不同类型的岩石受到的应力也会不同,因此在进行钻井时,如果能够实时监测到地层中不同深度的压力值,就可以更加精确地判断地层类型和性质,从而做出正确的钻井决策。
二、随钻地层压力检测的方法随钻地层压力检测的方法主要有两种:一种是通过钻井液循环监测地层压力,另一种是通过安装随钻地层压力感应器实时监测地层压力。
1、通过钻井液循环监测地层压力在钻井过程中,钻井液不仅能起到润滑和冷却的作用,还可以通过变化的压力来反映地层的压力情况。
在液循环系统中,钻井液的流动速度和压力大小是可以通过仪器进行实时监测的。
当钻头钻进地层时,压力的变化就能够反映出地层中的压力情况。
通过对液压系统中高低压差的监测,可以得到地层压力值的近似估算。
2、通过安装随钻地层压力感应器实时监测地层压力随钻地层压力感应器一般是安装在钻杆上,可以实时测量地层压力,输出地层压力数据,包括静态压力和动态压力。
静态压力是指钻头不受力时钻柱内的压力,用来确定地层结构和压力的水平梯度;动态压力则是指钻头在不同深度下钻进岩石时所受到的压力,用来判断岩石类型和性质。
通过随钻地层压力感应器的安装,可以对地层压力进行高精度、实时的监测和分析,为钻井工程师提供重要的决策依据。
三、随钻地层压力检测的应用随钻地层压力检测可以应用于多个方面,比如确定井筒下端孔段位置、预测地层高压区、识别地层异常、评价井壁稳定性、判断地质条件和可钻性等。
钻井过程中地层压力预测与监测
此, 将根据地 震资料 或邻井资料 所作 的地 层压力 预测对于 正常压力趋 势线 的确 定 就显 得非常 重要 。 3应用 实倒 3 . 1 异常高压 地层 的发 育情况
超压 体的成 因是 由多种 因素造 成的 , 可归 纳为 沉积型和 构造 型两类 沉 积 型成 因以快 速沉积 造成 的不均衡 压 实作用 为主 , 带动 水热增 压作 用 、 蒙脱石 变 成伊利石 的成岩 作用和烃 类生成 作用等 。 构造型成 因主要是 由区域 l 生抬升 隆起
视的, 同时也是 决定 了压力预 测与监 测结 果可信 度最 为关键 性的 因素 。 这 从 图 1 中的第 四栏 中的D C N曲线可 以说 明 。 该 曲线与实 际 资料没 有任 何关 系 , 显然 是人 为确 定的 , 可 想而知 , 这 样确 定正常 趋 势线 的方法 根本 没有精 度可 言 。 因此 , 根据声 波测井 资料所 反映 出来的地 层压 实情况 , 也就 决定 了地层 中 异 常高 压 的发 育与 分 布情 况 。 ( 图1 ) 中清 楚地 表 示 出了 沙一段 地 层 3 2 0 0 m~ 3 7 0 0 m井 段为该 井异常 高压 的主要 发育 段 , 地 层压力 最高 的深度 约为3 5 o o r  ̄
预 测的基 础上 , 将预 测结 果应用 于现 场DC 指 数的 实时地 层压 力 监测 。
2 . 1地 层压 力预测
应用等 效深度法 , 将测井 解释 的泥岩 压实 曲线或地震速 度 曲线变 换为地层 压 力曲线 , 进而 获取地层 的地层 压力 、 过剩压 力 、 压 力系数 、 压力梯 度等参数 , 达 到异常压 力 预测的 目的 。 并将 计算 结果按 点 、 线、 面( 目标层 段 ) 成 图。 评价 研 究 区的压 力分布 和油 气富集 规律 、 指 导钻井 泥浆 比重的设 计 , 同 时也可 间接地 指
地层压力预测方法
一、地层压力预测软件有:1.JASON软件Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。
Jason 的重要特点就是随着越来越多的非地震信息(测井,测试,地质)的引入,由地震数据推演的油气藏参数模型的分辨率和细节会得到不断的改善。
用户可根据需要由Jason 的模块构建自己的研究流程。
其反演模块包括:InverTrace:递归反演稀疏脉冲反演InverTrace_plus:稀疏脉冲反演RockTrace:弹性反演InverMod:特征反演(主组分分析)StatMod:随机模拟随机反演FunctionMod:函数运算压力预测原理:由JASON反演出地层速度,速度计算垂直有效应力,进而求出孔隙流体压力。
2、地层孔隙压力和破裂压力预测和分析软件DrillWorks/PREDICTGNG软件功能:•趋势线(参考线)的建立--手工--最小二乘方拟合--参考线库•页岩辨别分析•上覆岩层梯度分析--体积密度测井--密度孔隙度测井--用户定义方法(程序)•孔隙压力分法--指数方法电阻率、D一指数声波、电导率地震波--等效深度方法电阻率、D--指数声波--潘尼派克方沾--用户定义方法(程序)•压裂梯度分法--伊顿方法--马修斯和凯利方法--用户定义方法(程序)•系统支持项目和油井数据库•系统支持所有趋势线方法•系统包括交叉绘图功能•用户定义方法(程序)•包括全套算子•系统支持井与井之间的关联分析•系统支持岩性显示•系统支持随钻实时分析•系统支持随钻关联分析•多用户网络版本数据装载功能:•斯仑贝谢LIS磁盘输入•斯仑贝谢LIS磁带输入•CWLS LAS输入•ASCII输入•离散的表格输入•井眼测斜数据•测深/垂深表格用户范围:•美国墨西哥湾•北海•西部非洲•南美•尼日利亚三角洲•南中国海•澳大利亚DrillWorks/PREDICTGNG 与其它软件的区别•世界上用得最多的地层压力软件•钻前预测、随钻监测和钻后检测•用户主导的软件系统•准确确定--上覆岩层压力梯度--孔隙压力梯度--破裂压力梯度•使用下列数据的任何组合来分析地层: -地震波速度-有线测井-MWD、LWD数据-重复地层测试(RFT)-泄漏试验(LOT)数据-录井资料-地质资料•面向现实世界中数据资料不尽人意、而新的方法又层出不穷的用户而设计的•地层压力软件平台:新的预测压力方法可通过"用户定义方法(程序)"编入系统软件用途:•准确预测地层压力•有效降低钻井成本•提高经济效益•优化井眼尺寸•优化泥浆和水力学•避免井涌和卡钻•减少地层污染•延伸套管鞋深度•减少套管数目•保障施工安全3、GeoPredict地层孔隙压力预测软件本程序基于当量深度法,根据钻进过程中钻时的快慢,并结合岩屑的岩性,由操作人员在图中用拖动鼠标的方式挑出的泥/页岩段,完成压力预测原理中首先选取泥/页岩段的过程。
石油钻井地层压力预测与计算方法
石油钻井地层压力预测与计算方法石油钻井地层压力预测与计算方法是石油钻井工程中非常重要的一项技术,它对于确定钻井的安全性、决策措施和钻井工艺起到了至关重要的作用。
在石油钻井过程中,地层压力是指在地层中由地层岩石的自重和上覆岩层压力产生的压力。
地层压力的准确预测和计算对于决策钻井贯通井段、选择钻井液密度和防喷措施等方面都有着至关重要的作用。
地层压力预测与计算的方法有很多种,根据所依据的理论基础和计算模型的不同,可以分为经验方法、物理模型方法和数学模型方法。
经验方法是根据统计和经验公式来进行地层压力预测和计算的方法。
这种方法是根据过去类似井的经验数据,通过对这些井的地层信息和地层压力数据的分析,建立了一些经验公式或预测模型,然后根据当前钻井井段的地层特征和钻井液情况,通过这些经验公式或预测模型来计算地层压力。
经验方法简单易行,适用范围广,但是精度相对较低。
物理模型方法是基于岩石力学和地层力学原理来进行地层压力预测和计算的方法。
这种方法是通过对地层力学性质和钻井液参数等进行实验室测试,然后根据物理模型和理论计算公式,将测试结果应用于井下实际情况的预测和计算。
物理模型方法具有一定的科学性和准确性,但是需要进行大量的实验和测试,成本较高。
数学模型方法是以数学计算为基础的地层压力预测和计算方法。
这种方法是通过建立数学方程和计算模型,根据井身中地层岩石的特征参数、地层参数和钻井液性质,利用计算机进行模拟和计算,得到地层压力的预测和计算结果。
数学模型方法是目前应用最广泛的方法之一,它具有较高的精度和准确性,但是需求模型参数较多,对计算机和软件的要求较高。
总结来说,石油钻井地层压力预测与计算方法有经验方法、物理模型方法和数学模型方法。
经验方法简单易行,适用范围广,但精度较低;物理模型方法具有科学性和准确性,但成本较高;数学模型方法精度高但需要大量参数和计算机支持。
在实际应用中,可以根据具体的情况和需求选择不同的方法进行地层压力预测和计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钻井过程中地层压力预测与监测
[摘要]钻井过程中异常高压研究在石油勘探行业给予了足够的重视是因为它在石油勘探开发中具有十分重要的理论和实际意义。
本文提出了以地质研究为基础,综合测井、地震和录井等资料,进行区块研究,建立压力分布的宏观模型,为随钻预测与监测提供静态预测模型,并根据实时录井资料进行适当修正,将预测与监测紧密结合,达到准确压力预测的目的。
[关键词]超压成因超压预测 dc指数定量预测方法设计
中图分类号:te271 文献标识码:a 文章编号:1009-914x(2013)11-0164-01
1 异常高压的基本成因及压力预测的理论依据
对超压成因的认识是我们进行压力预测与监测的基础,不同成因类型的超压,决定了我们所采用预测和监测方法的适应程度。
超压体的成因是由多种因素造成的,可归纳为沉积型和构造型两类。
沉积型成因以快速沉积造成的不均衡压实作用为主,带动水热增压作用、蒙脱石变成伊利石的成岩作用和烃类生成作用等。
构造型成因主要是由区域性抬升隆起等构造应力作用形成的。
目前的压力预测水平分析,主要都是根据地震、测井、钻速等三个方面的资料来进行定量预测和监测的,而这些方法的根本理论依据就是超压起因于压实与排液的不平衡,我们的讨论也仅限于压实成因的超压预测问题。
2 地层压力定量预测方法设计
异常高压带的预测方法按类别可分为钻井法、测井法和地震法等。
这些方法的一个共同特点就是通过对欠压实地层的检测来间接地求取地层压力。
我们的研究主要通过钻井资料、测压资料进行标定,以地震资料和测井资料研究和处理为主,开展岩性组合、泥岩过剩压力、储层流体势的预测,在压力预测的基础上,将预测结果应用于现场dc 指数的实时地层压力监测。
2.1 地层压力预测
应用等效深度法,将测井解释的泥岩压实曲线或地震速度曲线变换为地层压力曲线,进而获取地层的地层压力、过剩压力、压力系数、压力梯度等参数,达到异常压力预测的目的。
并将计算结果按点、线、面(目标层段)成图。
评价研究区的压力分布和油气富集规律、指导钻井泥浆比重的设计,同时也可间接地指示储层的次生孔隙发育区段。
2.2 地层压力监测
在现场综合录井仪器上,比较系统采集的资料主要是钻井参数与泥浆参数,因此利用dc指数进行现场地层压力的监测就成为了最主要的手段。
而利用dc指数进行地层压力监测的核心技术环节是准确地确定正常压力趋势线,由于在每口井开钻前都缺少该项参数,就使得dc指数的压力监测缺乏可靠性。
因此,将根据地震资料或邻井资料所作的地层压力预测对于正常压力趋势线的确定就显得非常重要。
3 应用实例
3.1 异常高压地层的发育情况
图1综合表示了xx井测井(声波、密度)和钻井录井参数随深度的变化情况。
首先从测井资料反映的情况来看(图1中的第一、二栏),该井上、下第三系两套地层压实系统显示得非常清楚,表现为该井在纵向上应该具有两条不同的正常压力趋势线。
这一点是在目前所有综合录井压力预测中基本上都没有引起重视的,同时也是决定了压力预测与监测结果可信度最为关键性的因素。
这从图1中的第四栏中的dcn曲线可以说明。
该曲线与实际资料没有任何关系,显然是人为确定的,可想而知,这样确定正常趋势线的方法根本没有精度可言。
因此,根据声波测井资料所反映出来的地层压实情况,也就决定了地层中异常高压的发育与分布情况。
(图1)中清楚地表示出了沙一段地层3200m~3700m井段为该井异常高压的主要发育段,地层压力最高的深度约为3500m左右,计算地层压力系数1.435左右;沙二段次之。
3.2 异常高压的录井显示特征
在地层层段中,普遍发育的异常高压地层,在各项录井参数中都具有明显的显示在钻井参数中,集中体现为dc指数的异常降低变化;泥浆参数中表现为立管压力(spp)降低、进(出)温度在压力变化点突变(进入超压层出现温度梯度增大、进(出)口电阻率降低(意味着流体含量增大);气测参数则与异常高压段具有更好
的对应关系。
这些变化规律都与异常高压与各项录井参数的关系相一致,在目前尚未一一建立起它们与地层压力之间的定量相关关系的情况下,可以作为异常高压现场监测的重要的综合标志。
图1中一个非常值得注意现象就是,正常压实趋势线的分段性。
其分界面实际上就是地层不整合面。
是不同构造层的地层具有不同压实规律的反映。
5 结论
我们将测井计算、dc指数计算结果对比发现二者所预测的地层压力系数比较接近。
从他们的差异性来看,其差别具有很大的随机性,这显然与两套不同的参数系统的影响因素不同有关,在我们实际应用中,尽量考虑到了其中系统误差的校正问题。
钻井过程中地层压力的预测与监测是一项综合性的工作,对于预测和定量计算来讲,其主要的依据是异常高压的沉积成因,超压起源于欠压实泥岩。
因此,无论是钻井法、地质法,还是地球物理方法都会有一定的局限性。
对于那些非欠压实成因的异常高压,如构造成因,这套方法就会显得无能为力。
同样,对于压实作用没有那么明显的碳酸盐岩地层,这些方法也是不能适应的。
对于随钻监测,不能仅仅依靠上述的定量计算参数。
还应该综合各种能够反映超压存在的所有录井参数。
尤其是对那些非压实成因的超压的监测。
多参数的综合分析与判断是行之有效的。
参考文献
[1] 高德利.地层压力随钻监测和预测技术研究.《石油大学学报
(自然科学版)》.1999年01期.
[2] (美)g.v.奇林格等著;赵文智等译.异常地层压力成因与预测.《石油与天然气地质》.1982年04期.
[3] 朱礼平等.随钻监测技术在气体钻井中的应用.《海洋石油》.2008年28卷04期.。