fluent网格自适应

合集下载

fluent中scale-adaptive simulation介绍

fluent中scale-adaptive simulation介绍

fluent中scale-adaptive simulation介绍Fluent中的Scale-Adaptive Simulation (SAS) 是一种用于计算流体力学 (CFD) 模拟的自适应网格方法,它可以在不同空间尺度上直接模拟流体流动。

SAS 可以在不同尺度下揭示流体流动中的复杂特性,并为各种应用提供更准确和可靠的结果。

SAS 是一种结合了雷诺平均N-S方程 (RANS) 模型和大涡模拟(LES) 方法的模拟技术。

在传统的RANS模拟中,流体流动被假设是平稳和各向同性的,而忽略了湍流的尺度和时间相关性。

然而,在某些流动情况下,湍流的尺度变化和空间相关性对结果的准确性具有重要影响。

相比之下,LES方法可以解决流动中的尺度和相关性问题,但计算成本较高。

SAS方法在不同的空间尺度上组合了RANS和LES方法的优点,以平衡计算效率和准确性。

SAS的核心思想是在CFD模拟中引入一个尺度自适应方法,根据流动场的特性来选择合适的网格尺度进行模拟。

该方法基于雷诺应力的局部尺度来调整模型的二阶湍流粘度。

通过自适应地调整模型的粘度值,SAS方法可以在不同的网格尺度上更准确地模拟湍流流动,并解决RANS方法在处理局部尺度流动时的不足。

为了实现尺度自适应,SAS引入了一个形如子网格的尺度函数。

该尺度函数基于湍流的空间和时间尺度,它可以自适应地调整网格的大小和分辨率。

在SAS中,子网格的尺度将根据当地的湍流动力学来确定。

当流动中存在大尺度的涡旋时,子网格的尺度将调整为较大值以更好地保持这些结构。

而当流动中存在小尺度的涡旋时,子网格的尺度将减小以捕获更多的细节。

SAS方法在多个领域得到了广泛的应用,包括空气动力学、船舶流体力学、涡轮机械、燃烧和环境工程等。

通过适当选择尺度函数和调整模型的湍流粘度,SAS可以在不同尺度下模拟出更准确和可靠的结果。

相比传统的RANS方法,SAS方法能够更好地预测湍流结构、细节和湍流交互。

fluent命令介绍、网格划分、参数使用

fluent命令介绍、网格划分、参数使用

第一章Fluent 软件的介绍fluent 软件的组成:软件功能介绍:GAMBIT 专用的CFD 前置处理器(几何/网格生成) Fluent4.5 基于结构化网格的通用CFD 求解器 Fluent6.0 基于非结构化网格的通用CFD 求解器 Fidap 基于有限元方法的通用CFD 求解器 Polyflow 针对粘弹性流动的专用CFD 求解器 Mixsim 针对搅拌混合问题的专用CFD 软件 Icepak专用的热控分析CFD 软件软件安装步骤:step 1: 首先安装exceed软件,推荐是exceed6.2版本,再装exceed3d,按提示步骤完成即可,提问设定密码等,可忽略或随便填写。

step 2: 点击gambit文件夹的setup.exe,按步骤安装;step 3: FLUENT和GAMBIT需要把相应license.dat文件拷贝到FLUENT.INC/license目录下;step 4:安装完之后,把x:\FLUENT.INC\ntbin\ntx86\gambit.exe命令符拖到桌面(x为安装的盘符);step 5: 点击fluent源文件夹的setup.exe,按步骤安装;step 6: 从程序里找到fluent应用程序,发到桌面上。

注:安装可能出现的几个问题:1.出错信息“unable find/open license.dat",第三步没执行;2.gambit在使用过程中出现非正常退出时可能会产生*.lok文件,下次使用不能打开该工作文件时,进入x:\FLUENT.INC\ntbin\ntx86\,把*.lok文件删除即可;3.安装好FLUENT和GAMBIT最好设置一下用户默认路径,推荐设置办法,在非系统分区建一个目录,如d:\usersa) win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改;b) xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式在快捷方式-起始位置加入D:\users,重起检查。

fluent以及流体力学相关知识

fluent以及流体力学相关知识

fluent以及流体⼒学相关知识1234 弟:“上次说到了在进⾏计算结果评估的时候需要做⽆关性评价,这个⽆关性的概念应该怎么去理解呢?”哥:“这⾥的⽆关性验证主要是指⽹格⽆关性,在⼀些特殊在场合中可能包括有时间步长⽆关性检验。

但是稍微有点数值计算常识的⼈都知道,计算结果不可能与⽹格⼤⼩⽆关的。

我们这⾥的⽆关是⼀种近似的概念。

”弟:“求真相。

”哥:“我们先讨论⽹格⽆关的概念,步长⽆关的概念与这个相似。

数值计算中之所以需要⽹格,是由所采取的算法密切相关的。

当前的主流偏微分⽅程数值离散⽅法都是先计算节点上的物理量,然后通过插值在⽅式求得节点间的值。

因此,从理论上讲,⽹格点布置得越密集,所得到的计算结果也越精确。

”哥:“但是⽹格不可能⽆限制的加密。

主要存在的问题有:风格越密,计算量越⼤,计算周期也越长。

⽽我们的计算资源总是有限的。

其次,随着⽹格的加密,计算机浮点运算造成的舍⼊误差也会增⼤。

因此在实际应⽤中,使⽤者总是在计算精度与计算开销间寻求⼀个⽐较合适的点,这个点所处的位置就是达到⽹格⽆关的阈值。

”弟:“你的意思是,⽹格的数量会影响计算精度,也会影响求解开销,这两个东西是相互⽭盾的,使⽤者需要找到⼀个⽐较合适的风格密度,不会损失太多的精度,计算开销上也能过得去,对吧?”弟:“我想我有些明⽩了。

所谓⽹格⽆关性验证,实际上就是验证计算结果对于⽹格密度变化的敏感性。

也就是不断的改变⽹格的疏密,观察计算结果的变化,若其变化幅度在允许的范围之内,我们就可以说计算值已经与风格⽆关了。

但是在实际计算过程中,我们应该怎样去操作呢?”哥:“在实际计算之前,我们就应当对计算过程有⼀个规划,在划分⽹格的时候,常常需要根据计算机配置估计能处理问题的规模,通常是估计计算⽹格的数量,正常情况下,1G的内存⼤概能求解100W⽹格。

⾸先划分相对粗糙的⽹格进⾏初步计算,对于试算的结果进⾏评估,在流场趋势基本正确的情况下逐步加密⽹格,将多次计算结果进⾏对⽐,当然这其中有试验数据作为参考的话效果更好。

Fluent_操作手册

Fluent_操作手册

第01章fluent简单算例21FLUENT是用于模拟具有复杂外形的流体流动以及热传导的计算机程序。

对于大梯度区域,如自由剪切层和边界层,为了非常准确的预测流动,自适应网格是非常有用的。

FLUENT解算器有如下模拟能力:●用非结构自适应网格模拟2D或者3D流场,它所使用的非结构网格主要有三角形/五边形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。

(一致网格和悬挂节点网格都可以)●不可压或可压流动●定常状态或者过渡分析●无粘,层流和湍流●牛顿流或者非牛顿流●对流热传导,包括自然对流和强迫对流●耦合热传导和对流●辐射热传导模型●惯性(静止)坐标系非惯性(旋转)坐标系模型●多重运动参考框架,包括滑动网格界面和rotor/stator interaction modeling的混合界面●化学组分混合和反应,包括燃烧子模型和表面沉积反应模型●热,质量,动量,湍流和化学组分的控制体源●粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合●多孔流动●一维风扇/热交换模型●两相流,包括气穴现象●复杂外形的自由表面流动上述各功能使得FLUENT具有广泛的应用,主要有以下几个方面●Process and process equipment applications●油/气能量的产生和环境应用●航天和涡轮机械的应用●汽车工业的应用●热交换应用●电子/HV AC/应用●材料处理应用●建筑设计和火灾研究总而言之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。

当你决定使FLUENT解决某一问题时,首先要考虑如下几点问题:定义模型目标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使用什么样的边界条件?二维问题还是三维问题?什么样的网格拓扑结构适合解决问题?物理模型的选取:无粘,层流还湍流?定常还是非定常?可压流还是不可压流?是否需要应用其它的物理模型?确定解的程序:问题可否简化?是否使用缺省的解的格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间?在使用CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。

05-第五章 FLUENT适应性网格技术

05-第五章 FLUENT适应性网格技术

第五章 适应性网格技术FLUENT的解适应性网格细化的特性允许用户在几何的和数值的解数据的基础上细化和/或粗糙化网格。

另外,为建立和查看用户化的适应场,FLUENT提供了特殊应用的工具。

本章从以下10节详细介绍适应性处理。

5.1 使用适应性网格5.2 网格适应过程5.3 边界适应5.4 梯度适应5.5 各向同性适应5.6 区域适应5.7 体积适应5.8 y+和y*适应5.9 管理适应标识5.10 适应性控制5.11 用光滑和交换的方式改善网格5.1 使用适应性网格在FLUENT中,非结构网格的功能有两个重要的优势:与结构网格相比,缩短设置时间合并网格的解适应性细化的能力使用解适应性细化可以添加网格中需要的单元,从而能够使流场得到更好的解决。

当适应性被合适的利用时,由于解被用来决定添加更多单元的地方,因此所得到的网格对于流动的解是最理想的。

换言之,网格中包含多余的单元不会浪费计算资源,这发生在结构网格中是比较有代表性的情形。

进一步而言,网格细化对解的影响可以在不用完全重新生成网格的情况下来研究。

!在一个并行计算中,任何时候执行网格适应性,一个负荷平衡步将被FLUENT在缺省下执行。

可以通过如下的命令关闭自动负荷平衡:(disable-load-balance-after-adaption)若返回到默认行为,则使用下面的命令:(enable-load-balance-after-adaption)注意,自动负荷平衡将不发生在与动态适应相关联的情况下。

5.1.1 适应性的例子这一小节介绍怎样在可压缩、湍流流动经过一个2D涡轮叶栅的解中有效地使用适应性。

最初的网格,如图5.1.1所示,在叶片周围是非常细的。

表面节点分布为叶片几何提供了足够的定义,并且使湍流边界层不用进一步适应而能够得到完全解决。

另一方面,进口、出口和周期边界处的网格是比较粗糙的。

为保证在叶片通道里的流动得到适当地解决,解适应性细化被用来建立网格,如图5.1.2所示。

Fluent学习总结

Fluent学习总结

Fluent学习总结报告学号:班级:姓名:指导老师:前言FLUENT是世界上流行的商用CFD软件包,包括基于压力的分离求解器、基于压力的耦合求解器、基于密度的隐式求解器、基于密度的显示求解器。

它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,可对高超音速流场、传热与相变、化学与相变、化学反应与燃烧、多相流、旋转机械、变/动网络、噪声、材料加工复杂激励等流动问题进行精确的模拟,具有较高的可信度,。

用户自定义函数也为改进和完善模型,处理个性化问题和给出更合理的边界条件提供了可能。

经过这一个学期对 Fluent的初步入门学习,我对其有了初步的了解,通过练习一些例子,掌握了用 Fluent 求解分析的大概步骤和对鼠标的操作,也大概清楚这些分析有什么用。

由于软件和指导资料几乎全部都是英文书写,还没能完全地理解软件上各个选项的意义和选项之间的联系,目前仅仅是照着实例练操作,要想解决实际问题还远远不够,不过孰能生巧,我相信经过大量的练习,思考,感悟,我一定可以熟练掌握并运用 Fluent。

本学习报告将从Fluent的应用总结分析和几个算例的操作来叙述。

fluent 简单操作指南1.读入文件file--read--case找到.msh文件打开2.网格检查grid-check网格检查会报告有关网格的任何错误,特别make sure最小体积不能使负值;3.平滑和交换网格grid-smooth/swap---点击smooth再点击swap,重复多次;4.确定长度单位grid-scale----在units conversion中的grid was created in中选择相应的单位,点击change length units给出相应的范围,点击scal,然后关闭;5.显示网格display--grid建立求解模型1.define-models-solver(求解器)2.设置湍流模型define-models-viscous3.选择能量方程define-models-energy4 设置流体物理属性define-materials,进行设置,然后点击change/create,弹出的对话框点NO。

fluent介绍

fluent介绍

fluent目录简介基本特点优点其他相关编辑本段简介CFD商业软件介绍之一——Fluent通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。

由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。

灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。

编辑本段基本特点FLUENT软件具有以下特点:☆FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法;☆定常/非定常流动模拟,而且新增快速非定常模拟功能;☆FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。

网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。

其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题;☆FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。

值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术;☆FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的;☆FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。

湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。

另外用户还可以定制或添加自己的湍流模型;☆适用于牛顿流体、非牛顿流体;☆含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射;☆化学组份的混合/反应;☆自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型;☆融化溶化/凝固;蒸发/冷凝相变模型;☆离散相的拉格朗日跟踪计算;☆非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变);☆风扇,散热器,以热交换器为对象的集中参数模型;☆惯性或非惯性坐标系,复数基准坐标系及滑移网格;☆动静翼相互作用模型化后的接续界面;☆基于精细流场解算的预测流体噪声的声学模型;☆质量、动量、热、化学组份的体积源项;☆丰富的物性参数的数据库;☆磁流体模块主要模拟电磁场和导电流体之间的相互作用问题;☆连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题;☆高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。

第8讲 自适应网格和fluent计算数据的后处理(学生用)

第8讲 自适应网格和fluent计算数据的后处理(学生用)

FLUENT模拟中的关键问题与数据后处理以混合问题为例:一、自定义函数(p57)使用命令:Define>Custom Field Function打开自定义函数设计对话框:以定义速度水头为例:显示自定义函数的数值分布:使用命令:Display>Contours…取消Filled选项,保留其它默认设置,点击Display点击Close,结果见下图:二、使用二阶离散化方法重新计算为了提高计算精度,对于计算当中的变量可以在离散格式中,提高其精度:1)使用命令:Solve>Controls>Solution在条目下,选择能量项,并选择,此时要修改相应的能量方程的松弛因子为 0.8。

点击OK。

2)再进行200次计算:得到的结果明显改善:提高精度后的结果和前的结果比较三、 自适应网格FLUENT 设置自适应网格的目的是为了提高计算精度。

1. Display>contours…,选择温度作为显示对象;2. 取消node values 选项,再点击display ,看到单元边界不光滑,即梯度很大,其范围也会显示出来;从图中可以明显的看到,单元间边界很不光滑了。

为了改进梯度变化较大的区域的精度,我们必须建立梯度比较大的网格组合,以便于细分网格,提高计算精度。

3.在contours of 下拉菜单中,选择adption…和adaption function;显示用于改进计算精度的网格图:取消node values选项;点击display;4.把梯度范围大于0.01的显示出来,取消Options项下的Auto Range,设定min为0.01,把梯度大于0.01的边界节点显示出来:如果把min设置为0.005,网格数量明显增加:5.对高温度梯度的范围进行改进:使用Adapt>Gradient对计算区域重新修正;取消上表中的Coarsen选项,点击Compute,Fluent将修正Min和Max,把threshold值改为0.01,点击Mark,这时实际上对比较高梯度的网格节点进行了标记。

fluent动态网格自适应

fluent动态网格自适应

Fluent动态网格自适应详解动态网格自适应用于,瞬态求解计算时,按照一定方法动态的加密某一区域,以实现对该区域物理变量的高精度捕捉。

比如,利用VOF计算液流雾化时,连续的流体会雾化成细小的液滴,且液滴的大小和位置是时时变化的,此时就要用动态网格自适应,去动态的捕捉液滴的位置,并相应的加密此处网格,用以更精确的捕捉液滴的形状。

如下:1,网格自适应设置Method-gradient:一般选择gradient(梯度)自适应方法,本方法可以有效的捕捉两相交界面处的网格,便于更好的细化此处网格。

Coarsen threshold:粗化阀值。

这个数值的意思是,低于这个阀值的网格将被标记并粗化,还原成原来的网格。

也就是说当液滴运动到其他位置后,之前位置被细化的网格将被粗化,还原成原来的粗网格。

如果这个值设为0,那么所有被细化的网格将不会被粗化,也就是不会被还原成原来的粗网格。

只有这个值大于0,粗化才有意义。

如本案例中,粗化阀值为0.001,也就是从体积分数梯度的:MIN(1.42E-14)到0.001,这之间的网格将被粗化,还原成原来的网格。

Refine Threshold:细化阀值。

这个数值的意思是,高于这个数值的网格将被标记并细化。

拿本案例来说,体积分数梯度大于这个数值的位置,网格才被加密。

Dynamic:选择这个按钮,说明是在瞬态仿真中,要时时的去细化网格。

瞬态网格自适应,必须选择这个按钮才有效果。

Interval:这个数值的意思是,细化网格的频率。

如果数值为1,就是每个时间步长都要进行网格自适应计算。

数值为10,就是每10个步长进行一次网格自适应计算。

Normalization:包括三种正规化方法。

Standard、scale和normalize,当进行瞬态网格自适应计算时,推荐scale和normalize。

2,设置细化水平这里的细化水平的也就是网格细化的程度,数值越大表示网格细化的越厉害。

默认为2.。

Fluent软件的使用(2)

Fluent软件的使用(2)

流动局部超音速的静压;如果流动亚音 速,则被忽略;如果流场从该边界开始 不可压缩流动: 初始化,该表压将被应用初始化计算。
可压缩流动:
入口的流动方向 湍流的物理量
总温(对于热传导或者可压缩流动)
质量流量入口Mass Flow Inlet
为可压流设计,也可用于不可压流。
总的压力被调整来满足质量流量 比压力入口的收敛难度大
Pressure-Based (coupled)
Density-Based (coupled)
压力基求解器包含两种算法:
解耦求解器,顺序求解压力修 正方程和动量方程 耦合求解器,同时求解压力修 正方程和动量方程
Solve Energy Solve Species Solve Turbulence Equation(s) Solve Other Transport Equations as required
First-Order Upwind – 收敛容易,但是只有一阶精度。 Power Law – 当Recell < 5 (典型的低雷诺数)时,比一阶格式具 有更高的精度。
对流项插值格式
对流项的插值格式:
Second-Order Upwind – 具有二阶精度,当采用三角形/四面体 网格或者网格没有沿着流动方向布置时是十分必要的,收敛 速度较慢。
Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) –应用于非结构网格的局部三阶对流项离散格式,在 计算二次流、漩涡等方面具有较高的精度。 Quadratic Upwind Interpolation (QUICK) – 适用于四边形/六面 体网格和混合网格,对于旋转流动非常有用,在均匀网格上 具有三阶精度。

谈谈FLUENT中网格质量的问题

谈谈FLUENT中网格质量的问题

谈谈FLUENT中⽹格质量的问题谈谈Fluent中⽹格质量的问题中⽹格质量的问题我们在fluent计算中经常碰到⽹格划分质量的问题,如果要得到⾼质量的⽹格划分需要注意哪些问题?其具体的依据是什么啊?个⼈认为主要有三项:⽹格的正交性,雅可⽐值,扭⾓,和光滑性。

对于⼀般的CFD程序,结构化⽹格要求正交性和光滑性要⽐较好,但是对于FLUENT这样基于⾮结构⽹格的,尤其是其中程序中加⼊了很多加快收敛速度的⽅法的软件,后者要求就不要太⾼。

因此真正需要考虑⽹格影响的,⼀般应该在基于结构⽹格的软件上才需要。

基于⾮结构⽹格的有限体积法,计算通量的时候存在相邻节点的通量计算本⾝就可能存在计算误差,所以精度始终有限,顺便说⼀下,对于FLUENT,顶多⼆阶离散格式就够了,⽽且绰绰有余。

甚⾄诸多⼯程师认为⼀阶精度⾜够⽤于⼯程计算,因为FLUENT的内核算法缺陷在于,其在计算中的误差远远达不到⼆阶的精度。

⽹格质量本⾝与具体问题的具体⼏何特性、流动特性及流场求解算法有关。

因此,⽹格质量最终要由计算结果来评判,但是误差分析以及经验表明,CFD计算对计算⽹格有⼀些⼀般性的要求,例如光滑性、正交性、⽹格单元的正则性以及在流动变化剧烈的区域分布⾜够多的⽹格点等。

对于复杂⼏何外形的⽹格⽣成,这些要求往往并不可能同时完全满⾜。

例如,给定边界⽹格点分布,采⽤Laplace⽅程⽣成的⽹格是最光滑的,但是最光滑的⽹格不⼀定满⾜物⾯边界正交性条件,其⽹格点分布也很有可能不能捕捉流动特征,因此,最光滑的⽹格不⼀定是最好的⽹格。

对计算⽹格的⼀个最基本的要求当然是所有⽹格点的Jacobian必须为正值,即⽹格体积必须为正,其他⼀些最常⽤的⽹格质量度量参数包括扭⾓(skew angle)、纵横⽐(aspect ratio、Laplacian、以及弧长(arc length)等。

通过计算、检查这些参数,可以定性的甚⾄从某种程度上定量的对⽹格质量进⾏评判。

FLUENT算法的一些说明

FLUENT算法的一些说明

FLUENT算法的一些说明FLUENT算法是一种用于求解流体力学问题的计算流体力学(CFD)软件中的常用算法。

它是通过数值模拟来解决复杂流体流动和传热问题的一种方法。

FLUENT算法的核心是Navier-Stokes方程的离散化求解,能够模拟液体和气体的流动行为。

1.高精度的离散化方法:FLUENT算法采用有限体积法(FVM)进行离散化求解。

有限体积法基于物理量在控制体上的平均值,通过对控制体上的守恒定律进行积分,将控制体内外的通量与体积耦合起来。

这种方法能较好地保持计算量的守恒性和耗散性,适用于复杂流动情况的求解。

2.多种物理模型:FLUENT算法提供了多种物理模型,可用于模拟不同流动和传热问题。

例如,它支持可压缩流动、非定常流动、湍流流动、多相流动、多组分流动、多场耦合问题等。

用户可以根据具体问题选择适当的物理模型。

3. 高效的求解器:FLUENT算法采用了一系列高效的求解器来求解Navier-Stokes方程。

它使用迭代算法进行求解,支持稀疏矩阵的存储和处理,针对不同的问题类型使用合适的求解策略。

此外,FLUENT还支持并行计算,可以将计算任务分配给多个处理器或计算节点,加快求解速度。

4.先进的网格生成:FLUENT算法使用一种自适应网格生成技术,能够根据流动特性和几何形状进行自动的网格划分。

它提供了多种网格生成方法,包括结构网格和非结构网格,并支持网格剖分和网格重构。

这些功能可帮助用户准确地建立模型,提高模拟结果的准确性。

5.丰富的后处理功能:FLUENT算法提供了丰富的后处理功能,可以对求解结果进行可视化和分析。

它支持流场和温度场的可视化显示,可以生成流线、等值面、剖面图等多种图形。

此外,还可以输出各种物理量的曲线和统计数据,帮助用户深入分析模拟结果。

尽管FLUENT算法有许多优点,但在应用过程中也存在一些限制和注意事项。

首先,FLUENT算法对计算资源要求较高,求解过程通常需要大量的计算时间和内存。

fluent网格

fluent网格

网格的读入和使用FLUENT可以从输入各种类型,各种来源的网格。

你可以通过各种手段对网格进行修改,如:转换和调解节点坐标系,对并行处理划分单元,在计算区域内对单元重新排序以减少带宽以及合并和分割区域等。

你也可以获取网格的诊断信息,其中包括内存的使用与简化,网格的拓扑结构,解域的信息。

你可以在网格中确定节点、表面以及单元的个数,并决定计算区域内单元体积的最大值和最小值,而且检查每一单元内适当的节点数。

以下详细叙述了FLUENT关于网格的各种功能。

(请参阅网格适应一章以详细了解网格适应的具体内容。

)网格拓扑结构FLUENT是非结构解法器,它使用内部数据结构来为单元和表面网格点分配顺序,以保持临近网格的接触。

因此它不需要i,j,k指数来确定临近单元的位置。

解算器不会要求所有的网格结构和拓扑类型,这使我们能够灵活使用网格拓扑结构来适应特定的问题。

二维问题,可以使用四边形网格和三角形网格,三维问题,可以使用六面体、四面体,金字塔形以及楔形单元,具体形状请看下面的图形。

FLUENT可以接受单块和多块网格,以及二维混合网格和三维混合网格。

另外还接受FLUENT有悬挂节点的网格(即并不是所有单元都共有边和面的顶点),有关悬挂节点的详细信息请参阅“节点适应”一节。

非一致边界的网格也可接受(即具有多重子区域的网格,在这个多重子区域内,内部子区域边界的网格节点并不是同一的)。

详情请参阅非一致网格Figure 1: 单元类型可接受网格拓扑结构的例子正如网格拓扑结构一节所说,FLUENT可以在很多种网格上解决问题。

图1—11所示为FLUENT的有效网格。

O型网格,零厚度壁面网格,C型网格,一致块结构网格,多块结构网格,非一致网格,非结构三角形,四边形和六边型网格都是有效的。

Note that while FLUENT does not require a cyclic branch cut in an O-type grid,it will accept a grid that contains one.Figure 1: 机翼的四边形结构网格Figure 2:非结构四边形网格Figure 3: 多块结构四边形网格Figure 4: O型结构四边形网格Figure 5: 降落伞的零厚度壁面模拟Figure 6: C型结构四边形网格Figure 7:三维多块结构网格Figure 8: Unstructured Triangular Grid for an AirfoilFigure 9:非结构四面体网格Figure 10:具有悬挂节点的混合型三角形/四边形网格Figure 11:非一致混合网格for a Rotor-Stator Geometry选择适当的网格类型FLUENT在二维问题中可以使用由三角形、四边形或混合单元组成的网格,在三维问题中可以使用四面体,六面体,金字塔形以及楔形单元,或者两种单元的混合。

Fluent 使用指导

Fluent 使用指导

离散格式
离散格式是针对对流项通量而言的
可供选择的离散格式:
• First-Order Upwind – 易收敛,一阶精度。
• Power Law –对低雷诺数流动 ( Recell < 5 )比一阶格式更精确 • Second-Order Upwind – 尤其适用流动和网格方向不一致的四面体/三 角形网格,二阶精度,收敛慢 • Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) – 对非结构网格,局部三阶精度,对二次流、旋转涡、力等 预测的更精确
• 用于几何建模和计算域划分
求解器和后处理器(Fluent)
• 设置求解模型和计算条件
• 进行计算求解
• 进行结果后处理
系统模拟器(Exceed)
• 模拟Linux运行环境,保证Gambit运行
可选用其它前处理器和后处理器,如ICEM-CFD 和TecPlot等
计算域的确定
需要哪类几何体?
几何体的选取范围?
?使用高阶离散格式二阶上风muscl?尽量让网格和流动方向一致减少伪扩散?加密网格?足够的网格密度对求解有突变的流动非常有用随着网格尺寸减少插值误差也减少?对非均匀网格尺寸变化不要太大均匀网格的截断误差小fluent提供基于网格尺寸梯度的自适应?减小网格扭曲度和长细比一般地避免使用长细比大于5的网格边界层允许使用更大长细比的网格优化四边形六面体网格使其更接近正交优化三边形四面体网格使其更接近等边湍流模型湍流模型ransbasedmodels一方程模型spalartallmaras二方程模型standardkrngkrelizablekstandardksstk多方程模型reynoldsstressmodelkkltransitionmodelssttransitionmodeldetachededdysimulationlargeeddysimulationincreaseincomputationalcostperiterationsa模型sa模型求解修正涡粘系数的一个输运方程计算量小?修正后涡粘系数在近壁面处容易求解主要应用于气动旋转机械等流动分离很小的领域如绕过机翼的超音速跨音速流动边界层流动等是一个相对新的一方程模型不需求解和局部剪切层厚度相关的长度尺度为气动领域设计的包括封闭腔内流动?可以很好计算有反向压力梯度的边界层流动?在旋转机械方面应用很广局限性?不可用于所有类型的复杂工程流动?不能预测各向同性湍流的耗散准标准k模型skeske是工业应用中最广泛使用的模型?模型参数通过试验数据校验过如管流平板流等?对大多数应用有很好的稳定性和合理的精度?包括适用于压缩性浮力燃烧等子模型ske局限性

FLUENT不收敛的解决方法

FLUENT不收敛的解决方法

FLUENT不收敛的解决方法解决FLUENT不收敛的问题是一个复杂的过程,因为它涉及到多个因素的相互影响。

下面是一些解决FLUENT不收敛问题的常用方法:1.初始条件的选择:在开始数值求解之前,需要确定一个合适的初始条件。

初始条件对于解的收敛性至关重要。

初始条件应该尽可能接近真实的解,以便尽快地达到收敛状态。

2.网格的质量:网格的质量对于解的收敛性有重要影响。

不合适的网格质量可能导致剧烈的数值振荡和不收敛。

因此,在进行数值求解之前,要确保网格是充分细化和适当分布的。

3.边界条件的设置:边界条件是数值求解的重要组成部分。

正确选择和设置边界条件可以帮助解决不收敛的问题。

边界条件应该与实际情况相适应,并且在数值上稳定。

4.松弛因子的调整:松弛因子是迭代求解过程中的一个重要参数。

它可以控制数值振荡的幅度和求解的速度。

调整松弛因子可以帮助改善解的收敛性。

通常,可以通过逐步调整松弛因子的值来找到合适的取值。

5.改变求解方法:FLUENT提供了多种求解方法,包括迭代解法、隐式解法等。

在遇到不收敛的情况下,可以尝试改变求解方法。

例如,从显式求解器切换到隐式求解器,或者改变迭代收敛准则等。

6.缩小时间步长:时间步长是时间离散化的重要参数。

当模拟流体现象有快速变化时,时间步长可能需要相应缩小。

缩小时间步长可以提高求解的稳定性和收敛性。

7.考虑物理特性:在建立数学模型和设定边界条件时,要充分考虑物理特性。

不合理的模型和边界条件可能导致不收敛的问题。

合理的物理模型和边界条件可以提高解的收敛性。

8.自适应网格:自适应网格技术可以根据流场的变化情况动态调整网格,从而提高求解的精度和收敛性。

在遇到不收敛的问题时,可以尝试使用自适应网格技术。

9.并行计算:FLUENT支持并行计算,可以利用多个处理器进行求解。

并行计算可以加速求解过程,并有助于解决不收敛的问题。

通过提高计算效率,可以增加求解的稳定性和收敛性。

10.稳定化技术:当遇到不稳定的流场时,可以尝试使用稳定化技术来提高求解的稳定性。

fluent简介

fluent简介

二维网格:
triangle
quadrilateral
tetrahedron 三维网格:
hexahedron
prism or wedge pyramid
图 1-1,FLUENT 的基本控制体形状 用 FLUENT 程序求解问题的步骤 1, 确定几何形状,生成计算网格(用 GAMBIT,也可以读入其它指定程序生成的网格) 2, 选择 2D 或 3D 来模拟计算 3, 输入网格 4, 检查网格 5, 选择解法器 6, 选择求解的方程:层流或湍流(或无粘流) ,化学组分或化学反应,传热模型等。确定 其它需要的模型如:风扇、热交换器、多孔介质等模型。
3
第二章,基本物理模型
无论是可压、还是不可压流动,无论是层流还是湍流问题,FLUENT 都具有很强的模 拟能力。FLUENT 提供了很多数学模型用以模拟复杂几何结构下的输运现象(如传热与化 学反应) 。该软件能解决比较广泛的工程实际问题,包括处理设备内部过程中的层流非牛顿 流体流动,透平机械和汽车发动机过程中的湍流传热过程,锅炉炉里的粉煤燃烧过程,还有 可压射流、外流气体动力学和固体火箭中的可压反应流动等。 为了能模拟工业设备和过程中的流动及相关的输运现象,FLUENT 提供了许多解决工 程实际问题的选择,其中包括多空介质流动, (风扇和热交换器)的集总参量计算,流向周 期流动与传热, 有旋流动和动坐标系下流动问题。 随精确时间滑移网格的动坐标方法可以模 拟计算涡轮流动问题。FLUENT 还提供了离散相模型用以模拟喷雾过程或者稀疏颗粒流动 问题。还有些两相流模型可供大家选用。 第一节,连续和动量方程 对于所有流动,FLUENT 都求解质量和动量守恒方程。对于包含传热或可压性流动, 还需要增加能量守恒方程。对于有组分混合或者化学反应的流动问题则要增加组分守恒方 程,当选择 pdf 模型时,需要求解混合分数及其方差的守恒方程。如果是湍流问题,还有 相应的输运方程需要求解。 下面给出层流的守恒方程。 2.1.1 质量守恒方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.读入文件
.file--read--case找到.msh文件打开
2.网格检查
grid-check
网格检查会报告有关网格的任何错误,特别make sure最小体积不能使负值;3.平滑和交换网格
. grid-smooth/swap---点击smooth再点击swap,重复多次;
4.确定长度单位
grid-scale----
.在units conversion中的grid was created in中选择相应的单位,
.点击change length units给出相应的范围,点击scal,然后关闭;
5.显示网格
.display--grid
建立求解模型
1.define-models-solver(求解器)
2.设置湍流模型
.define-models-viscous
3.选择能量方程
define-models-energy
4 设置流体物理属性
define-materials,进行设置,然后点击change/create,弹出的对话框点NO。

可以从材料库database选择材料和拷贝属性,也可以在properties栏编辑属性,然后点击change/create。

5设置边界条件
define-boundary conditions,根据给定条件设置
6.求解
solver-initialize-initialize
computer from列表中选择要计算的点,点击init,close
7监控
display-monitors--surface
设置surface monitors的个数,勾选plot,点击define,在这里面修改和选择一些选项;
然后保存:file-writer-case
7 迭代
.solver --iterate,会出现检测结果
8,显示计算结果
.8.1 利用不同颜色显示速度分布display--contours,勾选filled(就是填充),在contours of 选择,点击computer,点击display。

..可以选择速度场,温度场,速度矢量场(这个注意,在style 中选择arrow,scale需要自己填),等压力线(levels可以选择条数)
9.创建XY曲线图
plot-XY plot,
10.可以自定义函数
define---custom field function中输入,然后在new funtion name中输入名字,点
击define,close;
在display ---contours中的contours of中选择custom field function,下栏就出现编辑的公式;
11(重要)使用二阶离散化方法重新计算
11.1打开求解控制器设置对话框,设置能量方程的二阶离散,降低松弛系数
.solve-controls--solution,在discretization下energy选择second order,under-relaxation factors 降低energy到0.8(具体为啥不知道)
然后迭代,再display发现温度等参数得到较好改善
12.自适应性网格修改功能
display--contours
12.1.在contours of中选择temperature,options 不选node values,点击display,
.在contours of中选择adaption,options一样不选node values,点击display,
.在一定范围内回执温度梯度,标出需要改进的单元(重要),在options 中不选择auto range以改变最小温度梯度值,
.在min输入0.01,点击display,有颜色的网格为“高梯度”范围,
12.2对高温区梯度的网格进行改进
.Adapt --Gradient(梯度),在gradients of 中选择temperature,在options 下不选coarsen(使变粗),仅执行网格修改
.点击computer,fluent修正max and min,在refine threshold(入口,极限,临界值)
.点击mark,fluent会显示要改进的个数
.点击manage,打开对话框,点击display,会显示要改进的地方.点击adapt,点击YES,然后close
13 显示改进后的网格
display---grid
然后可以再次计算查看结果。

相关文档
最新文档