金属切削原理基础知识解析

合集下载

金属切削原理知识点总结

金属切削原理知识点总结

金属切削原理知识点总结一、切削力分析切削力是切削加工过程中刀具对工件产生的力,切削力的大小和方向直接影响加工质量和刀具的寿命。

切削力的大小受到刀具几何形状、刀具材料、切削速度、进给量和切削深度等因素的影响。

切削力的分析可以帮助工程师了解切削加工过程的机理,优化切削参数,提高加工效率和加工质量。

1.1 切削力的计算切削力的计算是切削过程中的重要内容,可以根据切削力的计算结果来选择合适的刀具和切削参数,从而达到理想的加工效果。

切削力可以分为主切削力和辅切削力,主切削力是指在切削方向上的切削力,而辅切削力是指与切屑流方向垂直的切削力。

切削力的计算可以通过力的平衡关系,切削力的大小与切削过程中的材料变形和切削屑形成有关,因此需要进行深入的力学分析和实验研究。

1.2 切削力的影响因素切削力的大小与切削条件、切削材料、刀具几何形状等因素有关,切削速度和进给量是影响切削力的重要因素。

切削速度的增加会导致切削力的增加,但切削力的增加并不是线性的,而是随着切削速度的增加呈指数增加。

进给量的增加也会导致切削力的增加,因为进给量的增加会导致材料的切削屑变厚,从而增加切削力。

1.3 切削力的测量切削力的测量是对切削过程中切削力的实时监测和记录,可以通过直接力传感器或间接力传感器来测量切削力。

直接力传感器可以直接测量刀具上的切削力,而间接力传感器则可以通过测量机床上的力来间接计算切削力。

切削力的测量可以帮助工程师了解切削过程的特点,对刀具和加工参数进行优化调整,减小切削力,提高加工效率和刀具寿命。

二、切削热切削热是在金属切削过程中产生的热量,是由于切削过程中的塑性变形和切削摩擦所产生的。

切削热会直接影响刀具的温度和寿命,同时也会影响加工表面的质量。

切削热的分析可以帮助工程师了解切削过程中的热特性,以便进行刀具选择和切削参数优化。

2.1 切削热的产生切削热的产生主要包括两个方面,一是切削变形热,二是切削摩擦热。

切削变形热是在金属切削过程中由于金属材料的塑性变形产生的热量,切削摩擦热是由于切削过程中刀具与工件表面的摩擦所产生的热量。

金属切削原理的基本工作原理解析

金属切削原理的基本工作原理解析

金属切削原理的基本工作原理解析金属切削是一种常见的金属加工方式,广泛应用于制造业中。

它通过切削刀具与工件之间的相对运动,将工件上的金属材料切削、去除,从而得到所需形状和尺寸的工件。

金属切削是一项复杂的工艺,其基本工作原理涉及多个方面,包括切削力、切削温度和切削变形等。

本文将对金属切削原理的基本工作原理进行解析。

首先,金属切削过程中产生的切削力是一项重要的参数。

切削力是指切削刀具施加到工件上的力,它由两个主要部分组成:法向切削力和切向切削力。

法向切削力垂直于切削的刀具轴线,使工件沿着切削方向变形;而切向切削力平行于切削的刀具轴线,使刀具与工件之间产生摩擦。

切削力的大小受到多个因素的影响,包括切削速度、切削深度和切削角度等。

合理控制切削力的大小对于提高切削效率和延长刀具寿命具有重要意义。

其次,金属切削过程中的切削温度也是需要考虑的因素。

切削温度是指切削区域的温度,它的升高主要是由于切削产生的摩擦和塑性变形引起的工件材料的变形功。

切削温度的升高会导致切削刀具的磨损加剧,并可能引起工件表面的质量问题。

因此,减少切削温度对于提高加工质量和刀具寿命至关重要。

控制切削速度、供冷液和正确选择切削工具等措施可以有效降低切削温度。

此外,金属切削过程中还会产生切削变形。

切削变形是指在切削过程中,由于切削作用和热效应等原因引起的工件材料的形状和尺寸变化。

在金属切削中,切削变形主要表现为表面粗糙度、尺寸误差和变形层等。

合理选择切削参数、采用合适的切削工具和刀具结构设计等措施可以减少切削变形,提高工件的加工精度。

最后,金属切削还涉及切削刀具的选择和刀具材料的应用。

切削刀具是进行金属切削的关键工具,其选择将直接影响加工质量和效率。

常见的切削刀具包括旋转刀具、铣削刀具和钻削刀具等。

切削刀具的材料应具备良好的切削性能,如硬度高、强度好和耐磨性能佳等。

常用的刀具材料包括硬质合金、高速钢和陶瓷等。

正确选择和使用切削刀具是确保金属切削质量的重要因素之一。

金属切削原理讲义及刀具

金属切削原理讲义及刀具

金属切削原理讲义及刀具一、金属切削原理金属切削是指用刀具对金属材料进行切削加工的过程。

它是制造业中最常见的加工方法之一、金属切削原理主要涉及到力学、热学、材料学、机械设计等多个学科。

1.金属切削力学金属切削的力学主要涉及到塑性变形、弹性变形、剪切应力等方面。

在切削过程中,刀具通过施加剪切力对金属材料进行剪切。

金属在剪切区域受到的应力会导致金属发生塑性变形,形成切屑。

2.金属切削热学金属切削过程中,由于摩擦和变形的能量损耗,切削区域会产生高温。

这些热量会传导到刀具和切削区域,导致材料软化和刀具磨损。

因此,及时冷却切削区域和刀具是非常重要的,可以通过切削润滑剂和冷却剂来实现。

3.金属切削材料学金属切削材料学主要研究刀具材料和工件材料之间的相互作用。

选择合适的刀具材料和工件材料对于获得良好的切削效果至关重要。

刀具材料需要具有一定的硬度、耐磨性和耐冲击性,以适应切削过程中的高负荷和高速度。

而工件材料的硬度、强度和塑性等性质则会影响到切削加工的难易程度。

4.金属切削的刀具刀具是金属切削过程中的重要工具,它直接与工件接触,对工件进行加工。

不同的切削操作需要使用不同类型的刀具。

常见的金属切削刀具包括刀片、铣刀、车刀和钻头等。

-刀片:刀片是金属切削中最为常用的刀具,它可用于车削、铣削、镗削等工艺。

刀片一般由高速钢制成,也有使用硬质合金和陶瓷材料制造的高级刀片。

-铣刀:铣刀是一种用于铣削操作的刀具。

它主要用于在工件上形成平面、槽口和曲面等形状。

-车刀:车刀是用于车削加工的刀具,它通过旋转刀具将工件上的旋转刀具切削掉。

-钻头:钻头是用于钻孔加工的刀具,它通过旋转切削力将工件上的孔切削掉。

以上只是金属切削原理及刀具的简要介绍,金属切削涉及的知识和技术极为广泛和复杂,需要深入学习和实践才能掌握。

通过不断的学习和实践,我们可以了解金属切削的原理和技术,并且选择合适的刀具进行加工,提高加工效率和质量。

2.王明玉,杨炯.金属材料切削原理与刀具[M].湖南大学出版社,2024.。

《金属切削原理与刀具》知识点总结

《金属切削原理与刀具》知识点总结

I 切削原理部分第1章刀具几何角度及切削要素1、切削加工必备三个条件:刀具与工件之间要有相对运动;刀具具有适当的几何参数,即切削角度;刀具材料具有一定的切削性能2、切削运动:刀具与工件间的相对运动,即表面成形运动。

分为主运动和进给运动。

1)主运动是刀具与工件之间最主要的相对运动,消耗功率最大,速度最高。

有且仅有一个。

运动形式:旋转运动(车削、镗削的主轴运动)直线运动(刨削、拉削的刀具运动)运动主体:工件(车削);刀具(铣削)。

2)进给运动:使新切削层不断投入切削,使切削工作得以继续下去的运动。

进给运动的速度一般较低,功率也较少。

其数量可以是一个,也可以是多个。

可以是连续进行的,也可以是断续进行的。

可以是工件完成的,也可以是刀具完成的。

运动形式:连续运动:如车削;间歇运动:如刨削。

一个运动,如钻削;多个运动,如车削时的纵向与横向进给运动;没有进给运动,如拉削。

运动主体:工件,如铣削、磨削;刀具,如车削、钻削。

3、切削用量切削用量是指切削速度c v 、进给量f (或进给速度)和背吃刀量p a 。

三者又称为切削用量三要素。

1)切削速度c v (m/s 或m/min):切削刃选定点相对于工件的主运动速度称为切削速度。

主运动为旋转运动时,切削速度由下式确定1000dn v c π=式中:d-工件或刀具的最大直(mm)n-工件或刀具的转速(r/s 或r/min)2)进给量f:工件或刀具转一周(或每往复一次),两者在进给运动方向上的相对位移量称为进给量,其单位是mm/r(或mm/双行程)。

3)背吃刀量p a (切削深度mm)2m w p d d a -=式中:w d -工件上待加工表面直径(mm);m d -工件上已加工表面直径(mm)。

4、工件表面:切削过程中,工件上有三个不断变化的表面待加工表面:工件上即将被切除的表面。

过渡表面:正被切削的表面。

下一切削行程将被切除。

己加工表面:切削后形成的新表面。

5、刀具上承担切削工作的部分称为刀具的削部分,刀具切削部分由一尖二刃三面组成。

金属切削的基础知识概述

金属切削的基础知识概述

金属切削的基础知识概述简介金属切削是一种通过削剪和切割金属材料的方法,是制造业中常见的一项工艺。

基于材料的性质和切削工具的性能,金属切削可以实现高精度和高效率的加工。

本文将介绍金属切削的基本原理、切削工具、切削过程中的参数和常见的切削方式。

基本原理金属切削的基本原理是通过切削工具对金属材料进行削剪,从而使金属材料形成所需的形状和尺寸。

切削工具通常是由刀具和刀具架组成。

刀具用于切削金属材料,而刀具架则用于固定刀具并提供切削力。

切削过程中,刀具和工件之间形成了切削区域。

刀具通过在切削区域施加切削力,将金属材料削去。

这种削去的过程称为切削,并产生了削屑。

削屑是通过切削工具对金属材料进行切割而产生的废料。

切削工具金属切削中常用的切削工具有刀具、铣刀和钻头等。

下面简单介绍几种常见的切削工具:1. 刀具刀具是用于切削金属材料的基本工具。

刀具通常包括刀片和刀柄两部分。

刀片是用来切削金属材料的零件,而刀柄则用于固定刀片和提供切削力。

常见的刀具类型包括车刀、铣刀、刨刀和麻花钻等。

不同的刀具适用于不同的切削任务和金属材料。

2. 铣刀铣刀是一种旋转切削工具,用于将金属材料进行铣削。

铣刀通常由刀柄和多个刀片组成。

刀柄用于固定刀片,而刀片通过旋转进行切削。

铣刀常用于对金属材料进行复杂的零件加工,如开槽、螺纹加工和表面光洁度要求较高的加工。

3. 钻头钻头是一种专门用于钻孔的切削工具。

钻头通常由刀片和刀杆组成。

刀片被用于切削金属材料,并通过刀杆进行固定。

钻头适用于对金属材料进行孔加工,如钻孔和锪孔等。

切削过程中的参数切削过程中有几个重要的参数需要考虑,包括切削速度、进给速度和切削深度。

1. 切削速度切削速度是指切削工具在单位时间内切削的线速度。

切削速度的选择与金属材料的性质和切削工具的性能有关。

切削速度过高容易引起切削工具的损坏,而切削速度过低则会降低加工效率。

因此,在切削过程中需要选择适当的切削速度,以确保切削质量和切削效率。

金属切削原理的基本概述

金属切削原理的基本概述

金属切削原理的基本概述金属切削是一种常见的金属加工技术,广泛应用于制造业和机械加工领域。

金属切削的原理是通过切削工具对金属材料施加力量,以去除材料表面的金属层,实现工件的加工和成形。

金属切削原理可以分为以下几个方面:1. 切削力:在金属切削过程中,切削工具施加力量以去除金属材料。

切削力是指切削工具对工件施加的力的大小和方向。

切削力的大小取决于刀具的几何形状、切削速度、切削深度、切削角度等因素。

在金属切削中,通常会产生切向力(与切削方向垂直的力)和径向力(指向工件中心的力)。

2. 切削削角:切削削角是切削刀具与工件表面之间的夹角。

切削削角的大小和形状会影响切削力的大小、切削刃的寿命和切削表面的质量。

常见的切削削角有前角、主削角、副削角等。

3. 切削速度:切削速度是指切削工具和工件相对运动的线速度。

切削速度的选择会影响切削力、切削表面的质量和刀具的寿命。

过低的切削速度可能导致刀具与工件之间产生太多的摩擦热,使刀具磨损加快;而过高的切削速度则可能导致工件表面粗糙、切削力过大。

4. 切削深度:切削深度是指切削工具将金属材料削除的深度。

切削深度的选择取决于工件的要求和切削工具的强度。

过大的切削深度可能导致切削力过大,增加切削工具的磨损和变形的风险;而过小的切削深度则可能导致加工效率低。

5. 切削热效应:切削过程中,因为摩擦和形变,切削区域会产生热量。

切削热效应可能对切削工具和工件产生不良影响,如切削刃磨损、加工表面质量下降等。

因此,在金属切削过程中,需要采取适当的切削冷却液和润滑剂等措施来降低切削热效应。

总结起来,金属切削原理是通过切削工具施加力量,削除金属材料表面的方法。

切削力、切削削角、切削速度、切削深度和切削热效应是决定切削过程中刀具寿命、工件表面质量和加工效率的重要因素。

掌握金属切削原理,对于提高金属加工的质量和效率具有重要意义。

金属切削原理(基本理论)

金属切削原理(基本理论)
切削液中含有活性物质,能迅速渗入加工表面和刀具之间,
减小切屑与刀具前刀面的摩擦,并能降低切削温度,所以不易
产生积屑瘤。
积屑瘤对切削过程的影响
1. 影响刀具耐用度:
积屑瘤包围着切削刃,同时覆盖着一部分前刀面。积屑
瘤相对稳定时,可代替切削刃进行切削。切削刃和前刀面
都得到积屑瘤的保护,减少了刀具的磨损,提高刀具耐用
如铜、20钢、40Cr钢、1Crl8Ni9Ti等,随着工件材料的强
度和硬度的依次增大,摩擦系数μ略有减小;
这是由于在切削速度不变的情况下,材料的硬度、强度
大时,切削温度增高,故摩擦系数下降。
切削厚度ac增加时, μ也略为下降;如20钢的ac从0.
lmm增大到0. 18mm, μ从0 .74降至0 .72。因为ac增加
最后长成积屑瘤。
影响积屑瘤产生的因素:
①工件材料的影响:塑性高的材料,由于切削时塑性
变形较大,加工硬化趋势较强,积屑瘤容易形成;而
脆性材料一般没有塑性变形,并且切屑不在前刀面流
过,因此无积屑瘤产生。
②切削速度主要通过切削温度影响积屑瘤。
低速(Vc<3~5m/min)时,切削温度较低(低于
300℃),切屑流动速度较慢,摩擦力未超过切屑分子的结
工件母体分离,一部分变成切屑,很小一部分留在已加
工表面上。
第Ⅰ变形区
近切削刃处切削层内产生的塑性变形区——剪切滑移变形;
第Ⅱ变形区
与前刀面接触的切屑底层内产生的变形区——挤压变形;
第Ⅲ变形区
近切削刃处已加工表层内产生的变形区——已加工表面变形。
三) 第一变形区内金属的剪切变形
追踪切削层上任一点P,可以观察切屑的变形和形
系数ξ可直观反映切屑的变形程度,并且容易测量。

金属切削的基础知识

金属切削的基础知识

5) ห้องสมุดไป่ตู้倾角
15
9
金属切削的基础知识
1.4 刀具几何形状
2) 主后刀

4) 主切销

1) 前刀面
组成
6) 刀尖
3) 副后刀

5) 副切削

10
金属切削的基础知识
1.4 刀具几何形状
刀具(普通外圆车刀)切削部分的组成
11
金属切削的基础知识
1.4 刀具几何形状
1—假定主运动方向; 2—假定进给运动方向; 3—切削刃选定点
7
1.3 切削用量
金属切削的基础知识
2)进给量
刀具在进给运动方向相对于工件的位移 量,称为进给量。车削加工的刀具进给量常 用工件每转一周刀具的位移量来表述和度量, 用 f 表示,单位为 mm/r。
8
1.3 切削用量
金属切削的基础知识
3)背吃刀量
与主运动和进给方向垂直的方向上测量 的已加工表面和待加工表面间的垂直距离, 用符号 ap 表示,单位为 mm。
刀具静止参考系的主要基准坐平面
12
金属切削的基础知识
1.4 刀具几何形状
1) 基面
2) 假定工 作平面
4) 副切削
平面
3) 主切削
平面
5) 正交平

13
金属切削的基础知识
1.4 刀具几何形状
刀具切削部分的主要角度
14
金属切削的基础知识
1.4 刀具几何形状
1)前角
2)后角
3) 主偏角
4) 副偏角
4
金属切削的基础知识
1.2 切削时的三个表面
(1)
(2)
待加工 表面

《金属切削原理》课件

《金属切削原理》课件

金属切削在机械制造中的应用
加工精度:金属切削可以精确地加工出各种形状和尺寸的零件 加工效率:金属切削可以提高生产效率,缩短生产周期 加工范围:金属切削可以加工各种金属材料,包括钢、铝、铜等 加工质量:金属切削可以保证加工质量,提高产品的可靠性和耐用性
金属切削在航空航天领域的应用
飞机制造:金属 切削用于制造飞 机机身、机翼、 发动机等部件
新材料硬度 高,耐磨性 好,对刀具 寿命和加工 效率产生影 响
新材料热导 率低,切削 过程中热量 难以散发, 对刀具和工 件产生影响
新材料化学 活性强,易 与刀具材料 发生化学反 应,影响刀 具寿命和加 工质量
新材料加工 难度大,对 刀具材料和 加工工艺提 出更高要求
新材料加工 过程中产生 的废料处理 问题,对环 保和资源利 用提出挑战
切削热的ห้องสมุดไป่ตู้生与散失
切削热的产生:刀具与工件之间的摩擦和剪切作用 切削热的散失:通过刀具、工件和切屑的传导、对流和辐射等方式 切削热的影响:影响刀具寿命、工件加工精度和表面质量 切削热的控制:通过优化刀具材料、切削参数和冷却方式等手段
切削表面的形成与变化
切削过程:刀具与工件之间的相对运动 切削力:刀具与工件之间的相互作用力 切削温度:刀具与工件之间的摩擦热 切削表面:刀具与工件之间的接触面
火箭制造:金属 切削用于制造火 箭发动机、燃料 箱、控制系统等 部件
卫星制造:金属 切削用于制造卫 星外壳、太阳能 电池板、天线等 部件
空间站制造:金 属切削用于制造 空间站外壳、太 阳能电池板、生 命支持系统等部 件
金属切削在汽车工业领域的应用
汽车零部件制造:金属切削用于生产汽车发动机、变速箱、底盘等零部件 汽车车身制造:金属切削用于生产汽车车身、车门、车窗等车身部件 汽车模具制造:金属切削用于生产汽车模具,如冲压模具、注塑模具等 汽车维修与保养:金属切削用于汽车维修与保养,如更换损坏的零部件、修复车身损伤等

金属切削的基础知识

金属切削的基础知识

金属切削的基础知识金属切削是一种通过切削工具在金属工件上施加力量,使其产生剪切应力,从而剥离所需形状的金属层的加工方法。

它是目前最常用和广泛应用的金属加工方式之一。

以下是金属切削的基础知识:1. 切削工具:切削工具通常由硬质材料制成,如高速钢、硬质合金等。

常见的切削工具包括刀片、钻头、铣刀等。

刀具的选择根据加工材料、加工形状和加工质量要求等因素进行。

2. 切削速度:切削速度是指在单位时间内切削刀具工作部分对工件的相对运动速度。

它是影响切削加工效果和刀具寿命的重要因素。

通常以米每分钟(m/min)作为单位。

3. 进给速度:进给速度是指切削刀具沿工件表面移动的速度。

它决定了每分钟进给长度。

进给速度的选择需要考虑切削深度、加工精度和刀具强度等因素。

4. 切削深度:切削深度是指切削刀具在每次切削中从工件表面剥离金属的厚度。

切削深度越大,切削力也会增加,刀具磨损加剧。

因此,切削深度的选择要根据材料性质、刀具强度和加工要求等综合考虑。

5. 切削力:切削力是指在切削过程中作用在切削刀具上的力。

它是切削加工过程中的重要力学参数,会影响刀具的磨损和加工精度。

切削力的大小与切削厚度、切削速度、切削角度和材料硬度等因素密切相关。

6. 刀具磨损:切削刀具在切削过程中会不可避免地发生磨损。

刀具磨损会使切削力增加、切削质量下降,并且降低了刀具的寿命。

因此,定期更换和修磨切削刀具是保证加工质量和生产效率的重要措施。

7. 切削液:切削液是指在金属切削过程中加入的一种液体。

它主要用于降低切削温度、润滑切削表面、冲洗切削区域,以减少金属切削时产生的摩擦和热量。

良好的切削液选择能够有效地提高加工质量和刀具寿命。

金属切削是工业生产中广泛应用的加工方式之一,掌握金属切削的基础知识对于提高加工质量、降低生产成本具有重要意义。

因此,对于从事金属加工的工作者来说,了解切削工具、切削速度、进给速度、切削深度、切削力、刀具磨损以及切削液等基础知识是十分必要的。

金属切削基础ppt课件

金属切削基础ppt课件
21
基面
基面Pr: “通过主切削刃上选定 点垂直于主运动方向的 平面”
22
切削平面
2.切削平面Ps: 3.通过主切削刃上选定 点,与切削刃相切并垂 直于基面的平面
23
主剖面
主剖面Po: 通过主切削刃上选定点,并 同时垂直于基面和切削平面 的平面
24
法平面
法平面Pn: 通过主切削刃上选定点,并垂直 于切削刃的平面。
热塑性差,不宜制造成大截面刀具。
B、钨钼钢(将一部分钨用钼代替所制成 的钢 )典型牌号:W 6 Mo 5 Cr 4 V 2
优点:减小了碳化物数量及分布的不均匀性 。 缺点:高温切削性能和W18相比稍差。
66
高性能高速钢
在通用型高速钢的基础上,通过调整基本 化学成分并添加其他合金元素,使其常温 与高温力学性能得到显著提高
45
刀具的工作角度
•刀杆轴线安装的偏 斜的影响: •改变了主偏角和副 偏角 •(也就是说:实际的 主偏角和标注时的 主偏角不同)
46
刀具的工作角度
进给运动的 影响
进给量改变了 合成运动的方 向
(从而改变了基 面的位置以及 其他面的位置, 影响所有的角 度)
47
刀具的工作角度
刀尖的安装位 置的影响
63
高速钢
概念:
高速钢是一种含有钨、钼、铬、钒等合金元 素较多的工具钢
性质:
①、具有良好的热稳定性 ②、具有较高强度和韧性 ③、具有一定的硬度(63~70HRC)和耐磨性
64
高速钢的分类
普通高速钢 钨系高速钢 钨钼钢
高性能高速钢
65
普通高速钢
A、钨系高速钢(简称 W18) 典型牌号:W18Cr4V 优点:钢磨削性能和综合性能好,通用性强。 缺点:碳化物分布常不均匀,强度与韧性不够强,

机械制造技术基础金属切削原理

机械制造技术基础金属切削原理

机械制造技术基础金属切削原理金属切削是机械加工中常见的一种工艺,广泛应用于机械制造领域。

金属切削的原理主要包括金属材料的切削力、金属切削的切削速度和金属切削的切削温度等方面。

本文将以机械制造技术基础为主题,详细介绍金属切削的原理。

一、金属切削的切削力在金属切削过程中,切削力是指作用在切削刃上的力。

切削力是切削过程中最重要的性能之一,它直接影响到加工精度、表面质量和切削工具的寿命。

切削力的大小与切削深度、进给量、切削速度、切削力角等因素有关。

1.切削深度:切削深度是指切削刀具与原材料表面的距离。

切削深度的增大会使得切削力增大,但是切削力增加并不是线性关系,切削深度较小时,切削力随着切削深度的增大呈线性增大;切削深度较大时,切削力随着切削深度的增大呈指数增大。

2.进给量:进给量是指切削刀具在单位时间内与工件的相对运动位移,通常用每转进给量表示。

进给量的增大会使得切削力增加,但是这种关系是线性关系。

3.切削速度:切削速度是指切削刀具与工件相对运动的速度。

切削速度的增大会使得切削力增加,但是这种关系并不是线性关系,一般呈现出二次方的增长。

4.切削力角:切削力角是指切削刃与切削面之间的夹角。

切削力角的大小主要取决于材料的性质,一般情况下切削硬材料时,切削力角偏大,切削软材料时,切削力角偏小。

二、金属切削的切削速度切削速度是指切削刀具与工件之间相对运动的速度。

切削速度对于金属切削的性能和加工效果具有重要影响。

切削速度的选择要根据切削材料的硬度、材料的大面积、工件的形状和工件表面的粗糙度等因素来进行选择。

1.切削硬度:切削硬度越大,切削速度越低。

这是由于硬度大的材料在切削过程中会提供更大的阻力,增加切削过程中所需的能量。

2.材料的大面积:当切削材料的大面积增大时,切削速度应适当降低,以避免因切削速度过高导致的工件变形、断裂等问题。

3.工件的形状:工件形状的不同会导致切削刃与工件之间的接触面积不一样,从而影响切削力的大小。

第2章金属切削原理

第2章金属切削原理

第二章金属切削原理2.1 金属切削加工基本知识2.1.1切削运动与切削要素1.切削运动在切削加工时,按工件与刀具相对运动所起的作用来分,切削运动可分为主运动和进给运动。

1)主运动切削加工中,刀具与工件之间最主要的相对运动,它消耗功率最多,速度最高。

主运动只有且必须有一个。

主运动可以是旋转运动(如车削、镗削中主轴的运动),如图2.1所示,也可以是直线运动(如牛头刨床刨削、拉削中的刀具运动),如图2.2所示。

图2.1 车削加工时的运动和工件上的表面2)进给运动刀具与工件之间产生的附加相对运动,配合主运动,不断将多余的金属投入切削以保持切削连续进行或反复进行的运动。

一般而言,进给运动速度较低,消耗功率较少。

进给运动可由刀具完成(如车削、钻削),也可由工件完成(如铣削);进给运动不限于一个(如滚齿),个别情况也可以没有进给运动(如拉削)。

3)工件上的表面切削时工件上形成三个不断变化着的表面,分别为已加工表面、待加工表面和过渡表面,如图2.1和图2.2所示。

其定义为:①已加工表面工件上经刀具切削后产生的表面。

②待加工表面工件上将被切去一层金属的表面。

③过渡表面工件上正在被切削的表面。

图2.2 刨削加工时的运动和工件上的表面2.切削用量切削用量是切削加工过程中切削速度、进给量和背吃刀量(切削深度)的总称。

它是用于调整机床、计算切削力、切削功率、核算工序成本等所必需的参数。

1)切削速度v c在切削加工时,切削刃选定点相对于工件主运动的瞬时速度称为切削速度,它表示在单位时间内工件和刀具沿主运动方向相对移动的距离,单位为m/s 或m/min 。

主运动为旋转运动时,切削速度v c 计算公式为:式中 d ——工件待加工表面直径(mm );n ——工件或刀具每分(秒)钟转数(r/min 或r/s)。

主运动为往复运动时,平均切削速度为:式中 L ——往复运动行程长度(mm);n r ——主运动每分钟的往复次数(往复次数/min)。

金属切削设备知识点总结

金属切削设备知识点总结

金属切削设备知识点总结一、金属切削设备工作原理1.切削原理金属切削设备的工作原理是利用刀具对金属材料进行切削,从而使金属材料产生切屑,并实现工件形状、尺寸的精确加工。

切削过程中,切削速度、进给量、切削深度等参数是影响加工质量和效率的关键因素。

2.切削力原理在金属切削过程中,切削刀具对工件的切削力是一个重要的参数。

切削力的大小与切削系统的刚性、切削条件、切削参数等密切相关。

合理控制切削力可以有效减少设备磨损和提高加工质量。

3.切削热原理金属切削过程中,由于切屑的产生和切削区的摩擦热,会导致切削区温度的升高,进而影响刀具寿命和加工质量。

因此,控制切削热对金属切削设备的加工效果具有重要意义。

二、金属切削设备主要类型1.铣床铣床是一种常用的金属切削设备,主要用于对平面、曲面的铣削加工。

根据加工能力和结构形式的不同,铣床可以分为立式铣床、卧式铣床、数控铣床等类型。

2.车床车床是一种用来加工回转体(如轴类、盘类)的机械设备,主要适用于对金属材料进行车削加工。

按照加工方式的不同,车床又可分为普通车床、数控车床、车削中心等类型。

3.钻床钻床是一种专门用于金属材料进行钻孔加工的设备,按照结构类型可分为立式钻床、卧式钻床等。

4.磨床磨床是一种用磨削工具对工件进行精密加工的设备,包括平面磨床、外圆磨床、内圆磨床等。

5.锯床锯床是一种用于金属材料进行锯切加工的设备,可以分为手动锯床、半自动锯床和全自动锯床等。

6.冲床冲床是一种利用冲模对金属材料进行冲压加工的设备,适用于扁钢、槽钢、角钢等金属材料的切割和成型。

7.刨床刨床是一种用于对工件进行平面加工的设备,通过刀具的切削实现工件表面的平整和精密度的提高。

8.剪床剪床是一种用于对金属板材进行切割的设备,包括剪板机、剪板钢丝绳机、液压剪板机等。

以上是常见的金属切削设备主要类型,可以根据加工需求和工件特点选择合适的设备进行加工。

三、金属切削设备应用领域金属切削设备广泛应用于各个制造行业,主要包括以下领域:1.航空航天航空航天领域对金属零部件的精密度和表面质量要求非常高,因此需要使用高精度、高效率的金属切削设备进行加工。

金属切削原理及刀具分类解析

金属切削原理及刀具分类解析

金属切削原理及刀具分类解析金属切削是一种常见的加工工艺,广泛应用于制造业领域。

本文将对金属切削的原理和刀具分类进行解析,以帮助读者更好地理解和应用金属切削技术。

一、金属切削的原理金属切削是一种通过旋转刀具对工件进行削除金属的加工方式。

其原理主要包括以下几个方面:1. 切削力的产生切削力是刀具对工件施加的力,其产生主要与以下因素相关:切削速度、刀具形状和刀具材料。

高速旋转的刀具与工件碰撞时,会产生一个切削区域,切削力在切削区域内产生,使刃口与工件发生剪切作用,将工件上的金属削除。

2. 削除金属的形式金属切削过程中,金属层与刀具间的作用力导致金属的塑性变形和断裂。

切削时,刀具的刃口对工件表面施加一定的切削力,削除金属。

削除的金属以切屑的形式从切削区域排出。

3. 切削速度和进给速度切削速度是刀具刃口与工件接触的速度,进给速度是切削工具在单位时间内削除金属的量。

切削速度和进给速度的选择对切削过程中的切削力、表面质量和加工效率有重要影响。

二、刀具分类解析刀具是金属切削过程中最重要的工具,根据不同的切削任务和材料特性,可以进行不同类型的刀具选择。

下面将介绍常见的几种刀具分类及其特点。

1. 钻头钻头是一种主要用于钻孔的刀具,通常由高速钢或硬质合金制成。

根据不同的加工要求,钻头可以分为标准钻头、中心钻和铰孔钻。

钻头具有较高的强度和硬度,能够在金属表面快速形成孔洞。

2. 铰刀铰刀是一种用于加工内外螺纹孔的刀具,常用于车削、铣削等操作中。

铰刀的材质通常为高速钢,其刃口具有特殊的结构,可以进行内部和外部螺纹的加工。

3. 铣刀铣刀是一种用于铣削或者切削金属的刀具,广泛应用于零部件加工中。

根据不同的形状和用途,铣刀可分为平行刃铣刀、球头铣刀、刃部刃铣刀等。

铣刀通过旋转或移动刃部与工件接触,实现金属的切削。

4. 刀片刀片是一种常用的切削工具,被广泛应用于车削、铣削等加工工艺中。

刀片通常由硬质合金制成,具有较高的硬度和耐磨性。

金属切削原理

金属切削原理

金属切削原理1. 引言金属切削是一种常见的金属加工方法,广泛应用于制造业领域。

本文将深入探讨金属切削原理,包括切削过程的基本概念、切削力的产生机制、刀具和工件的相互作用以及切削力的影响因素等内容。

2. 切削过程的基本概念2.1 切削的定义切削是指通过刀具对工件进行切削行为,将工件的某部分削除或形成所需形状的加工过程。

2.2 切削的分类根据切削速度和切削温度的不同,切削可以分为常规切削和高速切削两种。

常规切削适用于低切削速度和温度的条件下,而高速切削则适用于高速和高温的情况。

2.3 切削力的定义切削力是指刀具在切削过程中对工件施加的力,通常包括主切削力、侧切削力和切削力矩等。

3. 切削力的产生机制切削力的产生是由刀具与工件之间的相互作用所引起的。

在切削过程中,刀具对工件施加的切削力可以分解为切削力和切削阻力两个方向。

4. 刀具和工件的相互作用刀具和工件之间的相互作用对切削过程的效果具有重要影响。

刀具的选择应根据工件的材料和几何形状来确定,不同的刀具结构和刀具材料将产生不同的切削效果。

5. 切削力的影响因素切削力的大小受多种因素的影响,包括刀具、切削条件、工件材料和几何形状等。

了解这些影响因素将有助于优化切削过程,提高加工效率和质量。

5.1 刀具的影响因素•刀具材料和硬度•刀具尺寸和几何形状•刀具刃口的磨损情况5.2 切削条件的影响因素•切削速度•进给量•切削深度5.3 工件材料的影响因素•材料的硬度和强度•材料的塑性和韧性5.4 工件几何形状的影响因素•工件的形状复杂程度•工件表面的光滑度6. 切削过程的优化与发展趋势为了提高切削过程的效率和质量,不断进行切削过程的优化是非常重要的。

随着技术的发展,一些新的切削方法和工具逐渐被引入,例如高速切削、超硬刀具和涂层刀具等。

结论金属切削原理是金属加工的核心内容之一,通过对切削过程的研究和了解,可以有效提高切削过程的效率和质量。

切削过程涉及多个因素,包括刀具和工件的相互作用、切削力的产生机制以及切削力的影响因素等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属切削原理基础知识解析
金属切削是一种常见的加工方法,广泛应用于制造业中。

了解金属切削的基础
原理对于合理选择切削工艺和工具,提高加工效率和质量非常重要。

本文将解析金属切削的基础知识,包括切削原理、切削力、毛坯形状与切削刃的几何形状以及金属切削中常用的切削材料。

1. 切削原理
金属切削是指通过刀具对金属工件进行机械加工,从而使工件形状发生改变的
过程。

在切削过程中,刀具通过对工件施加切削力,使工具切削刃与工件产生相对运动,将工件上的金属层削除或形成所需形状。

2. 切削力
切削力是指切削过程中刀具作用在工件上的力。

切削力的大小与材料的物理性质、切削刃的几何形状、切削速度等因素有关。

通常,切削力可分为切削力、切向力和法向力。

切削力的准确计算可以帮助选择合适的刀具、预测工具寿命以及优化切削工艺。

3. 毛坯形状与切削刃的几何形状
切削和加工形状的选择取决于所需产品的要求。

毛坯形状的设计决定了切削刃
的几何形状。

常见的切削刃形状包括直角切削刃、圆弧切削刃和锥形切削刃。

不同形状的切削刃适用于不同的切削操作,可以获得不同的切削效果。

4. 切削材料
在金属切削过程中,刀具与工件之间会产生高温、高压和强大的切削力。

因此,切削工具需要具备较高的硬度、耐磨性和热稳定性。

常用的切削材料包括高速钢(HSS)、硬质合金和陶瓷等。

每种材料都有其适用的加工范围和特点,根据加工
要求和具体情况选择合适的切削材料可以提高加工效率和工具寿命。

综上所述,金属切削是一种重要的加工方法,对于提高加工效率和产品质量至关重要。

了解金属切削的基础知识,包括切削原理、切削力、毛坯形状与切削刃的几何形状以及切削材料,可以帮助选择合适的切削工艺和工具,提高加工效率和质量。

在实际应用中,根据具体的加工要求和材料性质选择合适的刀具和切削参数,可以更好地发挥金属切削的功能。

相关文档
最新文档