随机过程期末考试精彩试题

合集下载

随机过程期末复习试题

随机过程期末复习试题

期末复习试题一、填空题1. 假设()0.4,P A =()0.7P A B =, 若A 与B 互不相容,则()________P B =; 若A 与B 相互独立,则()________P B =.2.设0<P (A )<1,0<P (B )<11=+)|()|(B A P B A P ,则A 与B 满足什么关系__________.3.设A 与B 为两个事件,()0.9P A =,()0.3P AB =,则()P AB =___________.4. 设()0.5P A =,()0.3P B =()0.2P B A =,则()P B A ⋃=___________. 5.设随机变量X 的分布率为{}7aP X k ==,( 1, 2, ,7k =)则常数a =_______.6.设随机变量X 的密度函数为, 01,()0, ax x f x <<⎧=⎨⎩其它.则常数a =_________7. 设X 和Y 是两个随机变量,且3(0,0)7P X Y ≥≥=,4(0)(0)7P X P Y ≥=≥=, 则{max(,)0}P X Y ≥= ______________8. 设随机变量()Xπλ,且已知[(1)(2)]1E X X --=,则λ=___________.9.设随机变量(,)XB n p 的二项分布,且()4,()3,E X D X ==则n =___,p =___10. 设X 服从2(,)N μσ,随σ增大,概率{}P X μσ-<的值________________. 11. 设X 服从(1,4)N ,则2()E X 为 ________________.12.设随机变量X 和Y 独立,且都服从(,1)N μ,若{1}0.5P X Y +≤=,则μ为____13.设随机变量X 和Y 独立,且X 服从(1,2)N ,Y 服从(0,1)N ,则23Z X Y =-+服从_________14. 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则由切比雪夫不等式,有{||6}P X Y +≥≤_______________.15. 某人不断地掷骰子.设n X 表示前n 次抛掷中出现的最大点数,那么随机序列{},1n X n ≥的状态空间是____________________.16.设计数过程{(),0}N t t ≥是强度为λ的泊松过程,令00t =,则均值函数为_____,方差函数为_____.17.设{(),0}W t t ≥是以2σ为参数的维纳过程,则0, ()t W t ∀>___________________.18.已知1{,}n X n T ∈为马尔可夫链,12{,,}I a a =为状态空间,对于120,r t t t m ≤<<<<(1,,i t m m n T +∈),都有1122{,,,,}r r m n t i t i i i m i p X a X a X a X a X a +======______二、简单计算题1. 已知1()()(),4P A P B P C ===1()0, ()(),8P AC P AB P BC ===求,,A B C 至少有一个发生的概率2.设X 的密度函数为, 0 1,()0, .ax x f x <<⎧=⎨⎩其他试求:(1)常数a ;(2)1{0}2P X ≤≤.3.设X 的密度函数为121, 0,()20, .x e x f x -⎧>⎪=⎨⎪⎩其他求以a 为未知数的一元二次方程2240a Xa ++=有实根的概率。

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程期末复习题

随机过程期末复习题

,转移概率矩阵为:
则该链的状态分类为( A ). A. 1 和 2 都是遍历状态,3 和 4 是非常返状态; B. 1 和 2 都是遍历状态,3 和 4 是零返状态 ; C. 1 和 2 都是零常返状态,3 和 4 是正常返状态; D. 1 和 2 都是非常返状态,3 和 4 是遍历状态.
53. 如果状态 是常返的,则
0.
54. 如果状态 是零常返的,则从 出发再回到 的平均回转时间
55. 如果状态 是正常返的,则从 出发再回到 的平均回转时间
0.
. .
56. 马尔可夫链
从 出发到达 的平均次数为
.
57. 状态 是常返的充要条件是
.
58. 状态 是非常返的充要条件是
.
59. 为从状态 出发经有限步返回 的概率.如果
的矩母函数
,设 与 分别是以 ( B ).
A.
B.
C.
D.
7. 已知
是维纳过程,则下面错误的是(
B
).
A.Leabharlann 是独立增量过程B.
是平稳过程
C.
是平稳增量过程
D.
是正态过程
8. (
A
)的有限维分布关于时间是平移不变的.
A. 严平稳过程 B. 宽平稳过程 C. 平稳增量过程 D. 独立增量过程
9. 设
是泊松过程,下述结论不正确的是( B ).
元.
解题思路:索赔次数为一速率为 (次 月)泊松过程 ,总索赔金额为一复合泊松过程
赔付额为
,每次的赔付金额 ,故一年中保险公司的平均
39. 设顾客以每分钟 6 人的平均速率进入某商场,这一过程可以用泊松过程来描述.又设
表示进入该商场的第 位顾客在该商场所花费的金额(单位:元),且有

西安邮电大学研究生随机过程期末试题

西安邮电大学研究生随机过程期末试题

西安邮电大学研究生随机过程期末试题1单选(2分)随机过程的数学期望,是随机过程的( )平均,而非( )平均。

[单选题] *A.时间平均,统计平均B.集合平均,统计平均C.统计平均,集合平均D.统计平均,时间平均(正确答案)2单选(2分)随机过程X(t)的互相关函数,描述了( )个随机过程任意( )个不同时刻状态之间的相互关系(相关程度) [单选题] *A.1,2B.2,1C.2,2(正确答案)D.1,13单选(2分)如果两个随机过程相互独立,则这两个随机过程之间没有( )关系。

如果两个随机过程互不相关,则这两个随机过程之间没有( )关系 [单选题] *A.任何,任何B.任何,线性(正确答案)C.线性,线性D.线性,任何4单选(2分)实现遍历过程时间自相关的三部曲正确的顺序是( ),( )和( ) [单选题] *A.平移、点对点相乘、相加2.00/2.00(正确答案)B.相加、点对点相乘,平移C.相加、平移、点对点相乘D.点对点相乘、平移、相加5单选(2分)实现卷积运算的的四部曲( ),( ),( )和( ) [单选题] *A.点对点相乘、平移、反转、相加B.点对点相乘、平移、相加、反转C.反转、相加、点对点相乘,平移D.反转、平移、点对点相乘、相加(正确答案)6单选(2分)若平稳随机过程含有一个周期分量,则其自相关函数则含有一个( )的周期分量。

[单选题] *A.0.5倍周期B.1倍周期(正确答案)C.3倍周期D.2倍周期7单选(2分)。

[单选题] *A.20.00/2.00B.5C.0(正确答案)D.18单选(2分)。

[单选题] *A.(正确答案)B.C.D.9单选(2分)。

[单选题] *A.5(正确答案)B.0C.1D.20.00/2.0010单选[单选题] *A.B.(正确答案)C.D.11单选[单选题] *A.1B.00.00/2.00C.3D.2(正确答案)12单选[单选题] *A.无法判断B.不遍历(正确答案)C.可能遍历也可能不遍历D.遍历13单选[单选题] *A.是的B.无法判断0.00/2.00C.不是(正确答案)D.可能是也可能不是14多选(3分)确定随机试验的3个基本要素是什么? *A.试验之前却不能断言它出现哪个结果1.00/3.00(正确答案)B.不同条件下可以重复C.相同条件下可以重复;(正确答案)D.结果不止一个;1.00/3.00(正确答案)15多选(3分)随机过程宽平稳的判据有? *A.数学期望是一常数(正确答案)B.自相关函数只与时间间隔有关,(正确答案)C.均方值是常数D.均方值有限(正确答案)16判断(2分)某次试验的随机变量,可以描述该次随机试验的所有结果,对吗?[单选题] *A.对(正确答案)B.错17判断随机过程是把以时间t作为参数的随机函数的统称,对吗? [单选题] *A.错B.对(正确答案)18判断(2分)随机过程的一维概率密度,描述的是随机过程在任一特定时刻对应的随机变量的一维概率密度。

概率统计随机过程-期末试卷-参考答案

概率统计随机过程-期末试卷-参考答案

7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4

152
2 15 S 2 (15) 知 D 2 2 15

D S 2 2 15
2

得 D S

2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}

随机过程试题与答案

随机过程试题与答案

随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。

4、二重积分 R X s,t dsdt ba b a 存在且有限。

二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。

(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。

则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。

最新-期末随机过程试题及答案资料

最新-期末随机过程试题及答案资料

《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

11-12随机过程期末试题A卷答案

11-12随机过程期末试题A卷答案

一.填空题(每空2分,共20分)1.设随机变量X 服从两点分布,则X 的特征函数为__it pe q +______。

2.设X(t)=Vcos t,α ,t T=[0,+)∈∞,振幅V 是在区间(0,1)上均匀分布的随机变量,α为常数,则X(t)的相关函数=)4,2(X R _∂∂4cos 2cos 31 ____。

3.强度为λ的泊松过程{}X(t),t 0≥,{}n T ,n 1≥是对应的时间间隔序列,则随机变量n T (n=1,2,)独立同分布,密度函数为_t e λλ-_______________。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则1W 的分布函数为__teλ--1____________。

5.设随机过程 X(t)只有两条样本曲线,1X(t,)=acost,ω2X(t,)=-acost,ω其中常数a>0,且12P()=3ω,21P()=3ω,则随机过程的期望=)(t EX ___t a cos 31______。

6.马氏链{}n X ,n 0≥,状态空间I ,记初始概率i 0p P(X =i)=,绝对概率j n p (n)P(X =j)=,n 步转移概率(n)ij p ,三者之间的关系式为__)()(n p p n p ij i Ii j ∑∈=______。

7.设{}n X ,n 0≥为马氏链,状态空间I ,记初始概率i 0p P(X =i)=,一步转移概率{}ij n+1n p p X j X i ===,用其表示{}0011n n P X =i ,X =i ,,X i ==__n n i i i i i p p p 1100- __。

8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,若1<ii f ,称状态i 为__非常返________。

随机过程试题及答案(精.选)

随机过程试题及答案(精.选)

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程期末试题及答案

随机过程期末试题及答案

随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。

B. 具有随机变量。

C. 具有时间集合。

D. 具有马尔可夫性质。

答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。

B. 布朗运动。

C. 维纳过程。

D. 马尔可夫链。

答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。

B. 随机过程的均值不随时间变化。

C. 随机过程的方差不随时间变化。

D. 随机过程的偏度不随时间变化。

答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。

B. 指数分布过程。

C. 广义强度过程。

D. 随机驱动过程。

答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。

2. 在某一区间内,随机过程的均值是时间的(函数)。

3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。

4. 利用(随机过程)可以模拟无记忆的随机现象。

三、解答题1. 试述随机过程的定义及其要素。

随机过程是描述随机现象随时间演化的数学模型。

它由两个基本要素组成:时间集合和取值集合。

时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。

取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。

2. 什么是时间齐次随机过程?请举例说明。

时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。

即随机过程在任意两个时间点上的特性是相同的。

例如,离散时间的随机游走就是一个时间齐次随机过程。

在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。

3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。

马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。

最新华中师范大学随机过程试题a卷附答案

最新华中师范大学随机过程试题a卷附答案

由于 EZ(t) DZ(t) ,故 Z (t) 不是泊松过程。
8分
7 .设 X (n) sinUn, n N ,这里U 为(0, 2 ) 上的均匀分布。证明 X (n) sinUn 是宽平稳过程。
2
1
EX (n) 0
sin tn dt 0 2
3分
EX (n)X (n )
2
sin(tn)sin[(n )t]
得分 评阅人
三、计算题:(共 3 题,每题 10 分)
9.某网站以顾客的接入时长收费,每单位时间一元钱。假设顾客以强度 的 Poisson 过程 N(t)
进入该网站,进入即开始计算使用时长,试计算该网站(0,t] 收益的期望。
解:由题意设顾客的到达时间为i ,则使用时长为 t i
N (t)
总收费为 S(t) (t k ) k 1
0.9 0.05 0.05
P= 0.1 0.8
0.1
0.2 0.1 0.7
1)求该 Markov 链的平稳分布 2) 求河流再次达到污染的平均时间(即状态 3 的平均返回时间)。
解: 1) 易知此 Markov 链式遍历的,则平稳分布存在,由定理可得方程组
1 0.91 0.1 2 0.2 3
证明:独立增量所以马氏 状态空间{0,1, 2, }
5分
p0 p1 p2 p3
0
p0
p1
p2
0 转移矩阵 P
0
p0 p1
8分
0 0 0
p0
p1
第 1 页(共 3 页)
精品文档
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------

期末随机过程试题及答案

期末随机过程试题及答案

《随机过程期末考试 卷》1设随机变量X 服从参数为的 泊松分布,贝U X 的特征函数为。

2 •设随机过程X(t)二Acos( t+ ),- <t< 其中为 率P j (n) P X n j , n 步转移概率 p j n ),三者之间的关系为。

8•设{X(t),t0}是泊松过程,且对于任意 t 2 t i 0 则P { X (5) 6|X (3) 4}—正常数,A 和是相互独立的随机变 量,且A 和服从在区间0,1上的 均匀分布,则X(t)的数学期望为。

3. 强度为入的泊松过程的点间间 距是相互独立的随机变量,且服从均 值为的同一指数分布。

9. 更新方程tK t H t K t sdF s 解的0 一般形式为。

10. 记EX n ,对一切a 0,当t 时,M。

4道小题,每题8分,共32分)列,则W n 服从分布5. 袋中放有一个白球,两个红球, 每隔单位时间从袋中任取一球,取后 放回,对每一个确定的t 对应随机变则这个随机过程的状态空间。

6. 设马氏链的一步转移概率矩阵P=(P ij ),n 步转移矩阵 P (n) (p (n)),二者之间的关系为。

7. 设X n ,n 0为马氏链,状态空1. 设A,B,C 为三个随机事件,证明 条件概率的乘法公式: P(BCA)=P(B A)P(C AB)。

2. 设{X(t), t 0}是独立增量过程,且X(0)=0,证明{X(t), t 0}是一个马尔 科夫过程。

3. 设X n ,n 0为马尔科夫链,状态 空间为I ,则对任意整数 n 0,1 l <n 和i, j I ,n 步转移概率4. 设N(t),t 0是强度为的泊松间I ,初始概率p i P(X 0=i),绝对概科尔莫哥洛夫方程,证明并说明其意 义。

4.X(t,n 1是与泊松过程评卷人 二、证明题(本大题共 ),t 0对应的一个等待时间序 t +a M t量 X(t)丄3 t e ,如果t 时取得红球 如果t 时取得白球(n)P ijp ik )p j ),称此式为切普曼一k I分布随机变量,且与 N(t),t 0独N(t)立,令X(t)= Y k ,t 0,证明:若k=1E(Y I 12V ),则 E X(t) tE Y i 。

随机过程试题带答案

随机过程试题带答案

随机过程试题带答案1 ?设随机变量X服从参数为■的泊松分布,则X的特征函数为 __________2 ?设随机过程X(t)⼆Acos( ? ? t+G),-::⽴的随机变量,且A和门服从在区间10,1 1上的均匀分布,贝U X(t)的数学期望为______________ 。

3?强度为⼊的泊松过程的点间间距是相互独⽴的随机变量,且服从均值为丄____ 的同⼀指数分布。

4?设:W n,n 是与泊松过程1X(t),t ⼀0?对应的⼀个等待时间序列,则W n服从-分布。

5?袋中放有⼀个⽩球,两个红球,每隔单位时间从袋中任取⼀球,取后放回,f t对每⼀个确定的t对应随机变量x(t)⼆3,如果t时取得红球,则这个随机过e t, 如果t时取得⽩球程的状态空间_________ 。

6?设马⽒链的⼀步转移概率矩阵P=(P j),n步转移矩阵P(n),⼆者之间的关系为—P(n) =P n—。

7?设:X n,n ⼀0?为马⽒链,状态空间I,初始概率P i⼆P(X。

⼆i),绝对概率P j(n) =P(X n⼆j?,n步转移概率p j n),三者之间的关系为P j(n)⼋P i p j n)。

8 .设{X(t),t - 0}是泊松过程,且对于任意t2t^ 0则1. 设A,B,C为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

1.为e,(e -1)。

2. (sin(?t+1)-sin t)。

3. _ 2 ■1 24. - 5 . -1,—t,|l| ;e,e2"l 。

6 . P(n^ P n。

7 . P j(n) 7 P i p j n) <—13 3 J ------------ 阳6t a8. 18e 9。

K t i;=H t]⼇i0K t — sdM s 10.2. 设{X(t), t_0}是独⽴增量过程,且X(0)=0,证明{X(t), t_0}是⼀个马尔科夫过程。

随机过程试题及答案

随机过程试题及答案

一.填空题(每空2分,共20分)1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1)eλ。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2ωω。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从Γ分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t t X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为(n)n P P =。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)ji ij i Ip (n)p p ∈=⋅∑。

8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,若ii f 1<,称状态i 为非常返的。

9.非周期的正常返状态称为遍历态。

10.状态i 常返的充要条件为(n)iin=0p∞=∑∞。

二.证明题(每题6分,共24分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

证明:左边=P(ABC)P(ABC)P(AB)P(C AB)P(B A )P(A)P(AB)P(A)===右边2.设{X (t ),t ³0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ³0}是一个马尔科夫过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档