贝叶斯估计PPT课件

合集下载

第五章贝叶斯决策PPT资料44页

第五章贝叶斯决策PPT资料44页
个样本,参数 的先验分布为共轭先验分
布 N(0, 2),其中 2 已知,损失函数为
L(,x)10,,
求参数 的贝叶斯估计
例5.6 在新的止痛剂的市场占有率 的估计问题中
已给出损失函数 L(,x) 2( ,) 0, 1
药厂厂长对市场占有率 无任何先验信息。在市场
调查中,在n个购买止痛剂的顾客中有x个人买了新
我们约定,若已知
(1)有一个可观察的随机变量X,其密度函数 p(x )依赖于未知
参数 ,且 。
(2)在参数空间 上有一个先验分布
(3)有一个行动集 {a}。
在对 做点估计时,一般取;在对 做区间估计
时,行动a就是一个区间,的一切可能的区间构成行动 集 ;在对 作假设检验时,只有两个行动:接受和拒
一.平方损失函数下的贝叶斯估计
定理5.1 在平方损失函数L (,x) ( )下2 ,的贝叶 斯估计为后验均值,即 BxE(x)
定理5.2在加权平方损失函数 L ( ,x ) ( )2下,
的贝叶斯估计为
Bx
Ex Ex
定理5.3 在参数向量 (1,2,,k) 的场合下,对
多元二次损失函数 L(,)()Q()Q ,为正定矩
的止痛剂,试在后验风险准则下对 作出贝叶斯估
计。
例5.7 设样本x只能来自密度函数 p0 (x)或 p1(x)
中的一个,为了研究该样本到底来自哪个分布,
我们来考虑如下简单假设的检验问题:
H 0:x来 p 0(自 x), H 1:x来 p 1(自 x)
损失函数用矩阵表示如下:
L
0 1
1 0
5.3 常用损失函数下的贝叶斯估计
个样本,其中 已知。
试在平方损失函数下寻求 1 的贝叶斯估计。

Bayes(贝叶斯)估计

Bayes(贝叶斯)估计


参数作为随机变量
• 条件分布: p(x1,x2,..xn | )
精选完整ppt课件
几个学派(3)
• 信念学派:
• 带头人:Fisher
• 观点:概率是频率

主观不是概率,而是信念度

参数不是随机变量,仅是普通变量
• 似然函数: L( | x1,x2,..xn)
精选完整ppt课件
批评1:置信区间
后验风险:
• Bayesian风险与后验风险
(L(,)p(x|) ()d)dx
• 后验分析最小=>Bayesian风险最小
精选完整ppt课件
两种常用损失函数:
• 平方损失:
L(,)()2
– 最小Bayesian风险估计:后验期望
• 点损失:
L(a,
)
0,|
a
|
1,|
a
|
– 最大后验密度估计
精选完整ppt课件
• 3、联合分布密度->条件分布密度
• p(x1,x2,..xn | ), 是随机变量
• 4、确定的先验分布() • 5、利用Bayesian公式求后验分布密度 • 6、使用后验分布做推断(参数估计、假设检验)
精选完整ppt课件
例1:两点分布b(1,p)的
• 1. 联合分布:p(x|)nxx(1)nx
• 使得 h ( |r ) p (x |)* ( )与先验分布同类型
• 若p(x|)服从正态分布,选正态分布 • 若p(x|)服从两点分布,选Beta分布 • 若p(x|)服从指数分布,选逆Gamma分布
精选完整ppt课件
Bayes统计推断问题
• 参数估计:
– 点估计 – 区间估计

《贝叶斯估计》PPT课件

《贝叶斯估计》PPT课件

前面的分析总结如下:人们根据先验信息对参数θ
已有一个认识,这个认识就是先验分布π (θ )。通
过试验,获得样本。从而对θ 的先验分布进行调整,
调整的方法就是使用上面的贝叶斯公式,调整的结
果就是后验分布 ( x1,。, xn后) 验分布是三种信息 的综合。获得后验分布使人们对θ 的认识又前进一
1)
,
x

0,1, n
( x)
(n 2)
x (1 )nx ,0 1
(x 1)(n x 1)

X ~ Be(x 1, n x 1)
9
贝叶斯统计学首先要想方设法先去寻求θ的先验分布。 先验分布的确定大致可分以下几步: 第一步,选一个适应面较广的分布族作先验分布族, 使它在数学处理上方便一些,这里我们选用β分布族
步,可看出,获得样本的的效果是把我们对θ的认识
由π(θ)调整到 应建立在后验分布
( 。x1,所,以xn)对θ的统计推断就 ( 的x1,基础, xn上) 。
7
例1 设事件A(产品为废品)的概率为 ,即P(A) 。 为了估计 而作n次独立观察,其中事件A出现次数
为X,则有X服从二项分布 b(n, )
第三章 贝叶斯估计
§3.1贝叶斯推断方法 一 、统计推断中可用的三种信息
美籍波兰统计学家耐(E.L.Lehmann1894~1981) 高度概括了在统计推断中可用的三种信息:
1.总体信息,即总体分布或所属分布族给我们 的信息。譬如“总体是指数分布”或“总体是正 态分布”在统计推断中都发挥重要作用,只要有 总体信息,就要想方设法在统计推断中使用。
假设Ⅱ 当给定θ后,从总体p(x|θ)中随机抽取一个样 本X1,…,Xn,该样本中含有θ的有关信息。这种信 息就是样本信息。

贝叶斯统计及其推断(PowerPoint 123页)

贝叶斯统计及其推断(PowerPoint 123页)

1.先验矩法
历史数据得的估计值1,..., k
计算
1 +...+k
k
, S2
1 k 1
k
(i
i 1
)2
令E =
Var
(
)2 (
1)
S2
解得 , 的一个估计 ,
先验分布的确定
2.利用先验分位数
若历史经验得 ( )的下P1和上P2分位数L和U
则有
L 0
( ) 1(1 ) 1d ( )T ( )
解:m(x) p(x, )d p(x | ) ( )d , ( | x) p(x, ) / p(x, )d p(x | ) ( ) / m(x).
求解的例子
设x b(n, ), ~ U (0,1).求m(x), ( | x)
解:m(x)
1 0
Cnx
x
(1
)nx
1d
Cnx
函数为P(x)=c.h(x)
则称h(x)为P(x)的核
由于 ch(x)dx 1(或 ch(x) 1) x
c
1
从而P(x) h( x)
h(x)dx
h(x)dx
即P( x)由核唯一确定,
除了相差一个常数倍外,核也由P(x)唯一确定
计算的简化---边缘密度的核
例3.1.设x ~ N (1, 4)
可信区间——选择标准
由上例知的1 可信区间a, b不唯一
选择区间长度最短的。假如,某人年龄的两个
1 可信区间为30,40和38,41,则38,41更好,
精度更高,信息更精确
可信区间——选择标准
a, b为1 可信区间,则
b
a ( | x)d 1

贝叶斯统计ppt课件

贝叶斯统计ppt课件

29
二 参数的Bayes点估计
(3)后验中位数估计
若 Me是后验分布h(θ| x )的中位数, 则 Me称为θ的后验中位数估计。即若
u0.5 h( x)d 0.5
则后验分布中位数估计
Me u0.5
30
二 参数的Bayes点估计
以上三种估计统称θ的Bayes估计,记为
或简记B 为 。它们 皆是样本观察值
18
历史迭代图
不收敛 收敛
19
(2)观察自相关性图 (m)
自相关性图用于描述(m)序列在不同迭代
延迟下的相关性,延迟i的自相关性是指相 距i步的两迭代之间的相关性。具有较差的 性质的链随着迭代延迟的增加会表现出较 慢的自相关衰弱。
20
21
22
23
Bayes Bayes统计推断
Bayes统计推断概述 参数的Bayes点估计 Bayes区间估计 Bayes假设检验
选择检验统计量,确定抽样分布,等等。
41
四 Bayes假设检验
Bayes假设检验不同型:
简单假设 简单假设
复杂假设 复杂假设 假单假设 复杂假设
42
四 Bayes假设检验
Bayes因子
设两个假设Θ0,Θ1的先验概率分布为π0与π1,
即:
0 P( 0 ),1 P( 1)
则 0 1 称为先验概率比。
3
(一)预备知识
4
5
(二)基本思想
6
(三)常用MCMC算法 Gibbs抽样(吉布斯采样算法)
7
8
立即更新的Gibbs抽样
每次迭带的时候 的一些元素已经被跟新了,如果在更
新其他的元素时不使用这些更新后的元素会造成一定程度 的浪费。事实上, Gibbs抽样 可通过在每一步都利用近似 得到的其他元素的值来获得更好的效果。这种方法改进了 练的混合,换句话说,链能更加迅速,更加详尽的搜索目 标分布的支撑空间。

6.4贝叶斯估计

6.4贝叶斯估计

由此即可利用贝叶斯公式求出 的后验分布。具体 如下:先写出X和 的联合分布
然后求X的h 边(x ,际) 分 n 布x x(1 )n x , x 0 ,1 , ,n , 0 1
n 1
x 0
x(1 )n xd n x (x 1 ) ( n ( n 2 )x 1 )
某些场合,贝叶斯估计要比极大似然估计更合理 一点。比如: “抽检3个全是合格品”与“抽检10 个全是合格品”,后者的质量比前者更信得过。 这种差别在不合格品率的极大似然估计中反映不 出来(两者都为0),而用贝叶斯估计两者分别是 0.2 和 0.083。 由此可以看到,在这些极端情况下,贝叶斯估计 比极大似然估计更符合人们的理念。
• 选择一个模型 f ( x ; )(在此处记为 f ( x | ) ) 来反映在给定参数 情况下我们对x的信念。
• 当得到数据 X1, X2,…Xn 后,我们更新我们的信
念并且计算后验分布 f(|X1,...,Xn) 。
• 从后验分布中得到点估计和区间估计。
整理ppt
6.4.2 贝叶斯公式的密度函数形式
应用贝叶斯公式即可得到后验分布
(|x ) h m (x ( ,x )) (2 /A )1 /2 e x p 2 1 /A ( B /A )2
这说明在样本给定后, 的后验分布为
N(B/A,1/A),即 |x~Nnxn 0 0 2 2 22,n0212 整理ppt
后验均值即为其贝叶斯估计:
整理ppt
例6.4.3 设x1, x2 , …, xn是来自正态分布
N(,02)的一个样本,其中02已知, 未 知,假设 的先验分布亦为正态分布 N( , 2),其中先验均值和先验方差 2均 已知,试求 的贝叶斯估计。

贝叶斯统计ppt课件

贝叶斯统计ppt课件
3
(一)预备知识
4
5
(二)基本思想
6
(三)常用MCMC算法 Gibbs抽样(吉布斯采样算法)
7
8
立即更新的Gibbs抽样
每次迭带的时候 的一些元素已经被跟新了,如果在更
新其他的元素时不使用这些更新后的元素会造成一定程度 的浪费。事实上, Gibbs抽样 可通过在每一步都利用近似 得到的其他元素的值来获得更好的效果。这种方法改进了 练的混合,换句话说,链能更加迅速,更加详尽的搜索目 标分布的支撑空间。
x=(x1,x2,…,xn)T 的函数,即
(x) (x1,x2, , xn )
在一般场合下,这三种估计是不同的,
当后验分布h(θ| x )对称时,这三种估计 是相等的。
31
三 Bayes区间估计
经典区间估计
参数θ是未知常数(非随机变量),其置信 度为1-α的区间估计[θL ,θU]满足
P(L U ) 1
理解为进行了大量重复试验,随机区间 [θL ,θU ]包含常数θ的概率为1-α (θL ,Θu样本x的 函数,是随机变量)。
32
三 Bayes区间估计
经典统计学中,对给定的样本容量n,若进 行多次反复的抽样,得到了众多个不同的 区间,其中每个区间,要么包含θ的真值, 要么不包含θ的真值。
=
0 0
建议分布为N( 0 ,I),再由它生成一个随机向量作为 0
1,然后看接受概率a,设先验 ( )为均匀分布,设 p(x,x' )=p(x',x),则a min(1, ( ' ))
( )
15
三、MCMC方法的收敛性诊断
要多久链才可以不依赖于其初始值以及需 要多久该链能完全挖掘目标分布函数支撑 的信息。

十大经典算法朴素贝叶斯讲解PPT

十大经典算法朴素贝叶斯讲解PPT


在人工智能领域,贝叶斯方法是一种非常具有 代表性的不确定性知识表示和推理方法。
贝叶斯定理:

P(A)是A的先验概率或边缘概率。之所以称为“先验”是因为它不考 虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称 作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称 作B的后验概率。 P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant).
购买电脑实例:

购买电脑实例:
P(X | buys_computer = “no”) P(buys_computer = “no”) = 0.019×0.357 = 0.007

因此,对于样本X,朴素贝叶斯分类预测 buys_computer =”yes” 特别要注意的是:朴素贝叶斯的核心在于它假设向量 的所有分量之间是独立的。
扩展:


该算法就是将特征相关的属性分成一组,然后假设不 同组中的属性是相互独立的,同一组中的属性是相互 关联的。 (3)还有一种具有树结构的TAN(tree augmented naï ve Bayes)分类器,它放松了朴素贝叶斯中的独 立性假设条件,允许每个属性结点最多可以依赖一个 非类结点。TAN具有较好的综合性能。算是一种受限 制的贝叶斯网络算法。
Thank you!
贝叶斯算法处理流程:
第二阶段——分类器训练阶段: 主要工作是计算每个类别在训练样本中出现 频率以及每个特征属性划分对每个类别的条件 概率估计。输入是特征属性和训练样本,输出 是分类器。 第三阶段——应用阶段:

Hale Waihona Puke 这个阶段的任务是使用分类器对待分类项进行分类 ,其输入是分类器和待分类项,输出是待分类项与类 别的映射关系。

《贝叶斯决策理论》PPT课件

《贝叶斯决策理论》PPT课件
常表示为
p (x )~ N (, )
多元正态分布的性质
等密度点的轨迹是超椭球面
R 1
R 2
R 22 (12 22) p(x2)dx
R 1
P ( 1)(11 22) (21 11) p(x 1)dx (12 22) p(x2)dx
R 2
R 1
一旦R 1 和 R 2 确定,风险 R 就是先验概率 P (1 ) 的线性函数,可表
示为
RabP(1)
a22(1222) p(x2)dx
R 11P(1x)12P(2 x)p(x)dx
R1
21P(1x)22P(2 x)p(x)dx
R2
R11P(1)p(x1)12P(2)p(x2)dx
R 1
21P(1)p(x1)22P(2)p(x2)dx
R2
P (2 ) 1 P (1 ) p ( x 1 ) d x p ( x 1 ) d x 1
2.3 正态分布时的统计决策
贝叶斯分类器的结构可由条件概率密度 和先验概率来决定
最受青睐的密度函数——正态分布,也称 高斯分布
合理性:中心极限定理表明,在相当一般的 条件下,当独立随机变量的个数增加时,其 和的分布趋于正态分布
简易性
2.3.1 正态分布的定义及性质
单变量正态分布由两个参数完全确定,即 均值和方差
模式识别的目的就是要确定某一个给定 的模式样本属于哪一类
可以通过对被识别对象的多次观察和测
量,构成特征向量,并将其作为某一个
判决规则的输入,按此规则来对样本进 行分类
作为统计判别问题的模式分类
在获取模式的观测值时,有些事物具有 确定的因果关系,即在一定的条件下, 它必然会发生或必然不发生
例如识别一块模板是不是直角三角形,只要 凭“三条直线边闭合连线和一个直角”这个 特征,测量它是否有三条直线边的闭合连线 并有一个直角,就完全可以确定它是不是直 角三角形

全概率公式和贝叶斯公式(PPT课件)

全概率公式和贝叶斯公式(PPT课件)

则称 为 A1, A2 , An
样本空间 S 的一个划分。
BA1
A1
BA2
A2
…... BAn …... An
S
返回主目录
第一章 概率论的基本概念
全 概 率 公 式:
§3条件概率
设随机事件 A1, A2 , , An 以及 B
满足:
1.A1, A2, , An 两两互不相容;


第一章 概率论的基本概念
§3条件概率
例6 某小组有20名射手,其中一、二、三、四级 射手分别为2、6、9、3名.又若选一、二、 三、四级射手参加比赛,则在比赛中射中目标 的概率分别为0.85、0.64、0.45、0.32,今 随机选一人参加比赛,试求该小组在比赛中射
中设目B标的概该率小组 .在比赛中射中目 标
2. An S 或 B An ;
n 1
n 1
3.PAn 0 n 1, 2,
则有
PB




P
An
PB
An

n1
返回主目录
全概率公式第的一章 概率论的基本概念 证明
§3条件概率
由条件:

B An
B = BA1 BA2 BAn
P( A) 0.0125
返回主目录
第一章 概率论的基本概念
例10(续)
§3条件概率
元件制造厂 1
P( A| Bi )
P( Bi )
0.02 × 0.15
2
0.01 × 0.80
3
0.03 × 0.05
P(B1| A)

P( A| B1) P(B1) P( A)

贝叶斯决策理论课件(PPT90页)

贝叶斯决策理论课件(PPT90页)

Some about Bayes(2)
一所学校里面有 60% 的男生,40% 的女生。男生总是穿长 裤,女生则一半穿长裤一半穿裙子。假设你走在校园中, 迎面走来一个穿长裤的学生(很不幸的是你高度近似,你 只看得见他(她)穿的是否长裤,而无法确定他(她)的 性别),你能够推断出他(她)是女生的概率是多大吗?
要决策分类的类别数是一定的
引言
在连续情况下,假设对要识别的物理对象有d种特征
观察量x1,x2,…xd,这些特征的所有可能的取值范围构 成了d维特征空间。
称向量 x x1, x2, , xd T x Rd 为d维特征向量。
假设要研究的分类问题有c个类别,类型空间表示
为:
1,2 , ,i ,c
P(B|LB)∝P(LB|B)P(B)∝0.75P(B) P(~B|LB)∝P(LB|~B)P(~B)∝0.25(1-P(B)) 而西安的出租车10辆中有9辆是绿色的,则给出了先验概率P(B)=0.1,于 是有 P(B|LB)∝0.75×0.1=0.075 P(~B|LB)∝0.25(1-P(B))=0.25×0.9=0.225 P(B|LB)=0.075/0.072+0.225=0.25 P(~B|LB)=0.225/0.072+0.225=0.75 因此肇事车辆为绿色。
Neyman-Pearson准则
问题:先验概率和损失未知
通常情况下,无法确定损失。 先验概率未知,是一个确定的值 某一种错误较另一种错误更为重要。
基本思想:
要求一类错误率控制在很小,在满足此条件的 前提下再使另一类错误率尽可能小。
用lagrange乘子法求条件极值
Neyman-Pearson准则
和绿色的区分的可靠度是75%; 假设随后你又了解到第3条信息:(3)西安的出租车10辆

02 贝叶斯决策理论精品资料PPT课件

02 贝叶斯决策理论精品资料PPT课件

n 那么当 R (1|x)R (2|x)n 时,采取第1个行动。即:
1 P ( 1 1 |x ) 1 P ( 2 2 | x ) 2 P ( 1 1 |x ) 2 P ( 2 2 |x )
( 1 1 2 ) P ( 1 1 |x ) ( 2 2 1 ) P 2 (2 |x )
( 1 1 2 ) P ( 1 x |1 ) P ( 1 ) ( 2 2 1 ) P ( 2 x |2 ) P ( 2 )
加上相同的树,或取自然对数。那么不等式的关系是不变的。因 此不考虑损失时的贝叶斯判别函数:
gi(x)p(i|x)p(x|p (ix ))p(i)
n 可以写成:
gi(x)p(x|i)p(i)
g i(x ) ln p (x| i) ln p (i)
n
比鱼的时如ω罐候1对头分的于里类罐上装后头面入采里的了取装例 鲈 的入子 鱼 行了动λω鲑111就鱼,=λ要ω那222偏么=,0向客那。于户么鲈便很客鱼宜难户ω的感1会比鲑到很鲑鱼有生鱼。损气ω因失;2贵此。如。设那果如当么鲑果真这鱼鲈正个ω2
类装将λ21别入x=归0是了类.2鲑鲑。为鱼鱼可鲑ωω以鱼22的)看的ω时2到损(造候,失成,上λ鲑1将2面=鱼x的2归, ω公类2设的式为当罐变鲈真头成鱼正里了ω类装1:(别入造是了成鲈鲈鲈鱼鱼鱼ωωω111的的)的时罐损候头失,里
P(y|x)P(x| y)P(y) P(x)
n 换一种写法:
P(j |x)P(x| P(jx)P )(j)
P(j |x)P(x| P(jx)P )(j)
n 这就是著名的贝叶斯公式。其中P(ωj)叫做先验概率,就是类别出现 的可能性;p(x|ωj)叫条件概率,就是在ωj时x出现的可能性;p(ωj|x) 叫后验概率;p(x)是该样例出现的可能性。

贝叶斯学习过程PPT课件

贝叶斯学习过程PPT课件

0 0
n 0
0
n ˆn
先验知识和经验数据各自的贡献取决于 和 的比值,这个比值称为决断因子(dogmatism)
当获得足够多的样本后, 和 的具体数值 的精确假定变得无关紧要, 将收敛于样本均 值
第28页/共48页
高斯情况:单变量, 未知, 已知
• 观察结论
• 随着样本数n的递增, 单调递
,其中的未知参数表示为向量
第20页/共48页
贝叶斯估计
• 贝叶斯估计 • 最大似然估计
第21页/共48页
贝叶斯估计
• 为明确数据集D的作用,类似于ML估计,贝叶斯决策所需后验概率可重新写作 • 简化
第22页/共48页
贝叶斯估计
• 核心问题
• 已知一组训练样本D,这些样本都是从固定但未知的概率密度函数p(x)中独立抽取的,要求根据这些样 本估计
第13页/共48页
ML估计-高斯情况: 未知
μ

• 在 下的对数似然
• 对数似然方程
• 的ML估计
数据集D的样本均值
第14页/共48页
ML估计-高斯情况: 和
• x为单变量情况 • 参数向量 • 在 下的对数似然
均未知
• 对数似然方程
μΣ
第15页/共48页
ML估计-高斯情况: 和
• x为单变量情况 • 的ML估计
第11页/共48页
最大化问题
• ML估计的解通过最大化似然函数或对数似然函数实现
第12页/共48页
最大化问题 • 记 表示p维参数向量
, 表示梯度算子
• 全局最大值的必要条件(似然方程)

等价的(对数似然方程)
• 似然方程或对数似然方程的解并不是获得全局最大值的充分条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝 叶 斯 统 计(Bayesian Statistics)
(Bayes,Thomas)(1702─1761)
贝叶斯是英国数学家.1702年生于伦敦;1761年4月17日 卒于坦布里奇韦尔斯.
贝叶斯是一位自学成才的数学家.曾助理宗教事务,后来 长期担任坦布里奇韦尔斯地方教堂的牧师.1742年,贝叶斯被 选为英国皇家学会会员.
如今在概率、数理统计学中以贝叶斯姓氏命名的有贝叶 斯公式、贝叶斯风险、贝叶斯决策函数、贝叶斯决策规则、贝 叶斯估计量、贝叶斯方法、贝叶斯统计等等.
贝叶斯方法(Bayesian approach )
• 贝叶斯方法是基于贝叶斯定理而发展起来用于系 统地阐述和解决统计问题的方法(Samuel Kotz和 吴喜之,2000)。
P(
i) n
i
,i
1,2,...,n
若这个分布的概率部 绝分 大在 0附近,那么,该产品为 "信得过产"品 ,
可见假定以后每天取 都几 抽件产品与历史的 资不 料合格率分布一 ,
使用单位就可以确"认 免为 检产品 ".
基于上述三种信息(总体信息、样本信息和先验信息)进行的 统计推断被称为贝叶斯统计学。它与经典统计学的主要差别在于 是否利用先验信息。贝叶斯统计学派把任意一个未知参数都看成 随机变量,应用一个概率分布去描述它的未知状况,该分布称为 先验分布。
信息处理
样 本 信 息
先 验 信 息 贝 叶 斯 定 理
后 验 信 息
统 计 推 断
从概率论的Bayes公式谈起
设自然状态有k种, 1,2,…, k, P(i)表示自然状态i发生的先验概率分布, P(x︱i)表示在状态i条件,事件为x的概 率。 P(i ︱x )为i发生的后验概率。
全概率公式:P(x)为x在各种状态下可能出现
某学生第一次看到他的数学老师,即有反应:老师 30岁到40之间,极可能35岁左右(左右可理解为正负 3岁,极可能可理解为90%的可能).
P(32≤X≤38)=0.90
三种信息
例2:"免检产品 "的确定
工厂每天都抽取几品 件,以产估计不合格率 ,根据历史资,料
对过去的不合格率一 构个 造分布 (先验分布 )
总体信息 样本信息
而贝叶斯学派认为是三种信息:
总体信息 样本信息 先验信息
总体信息
即总体分布或总体所属分布族给我们的 信息。譬如,“总体是正态分布”就给我 们带来很多信息:他的密度函数是一条钟 形曲线;他的一切一阶距都存在;有关正 态变量(服从正态分布随机变量)的一些 事件的概率可以计算;由正态分布可以导 出分布,分布和分布等重要分布,还有许 多成熟的点估计、区间估计和假设检验方 法可供我们选用。总体信息是很重要的信 息,为了获得此信息,往往耗资巨大。
先验信息
即在抽样之前有关统计问题的一些信息,一般说 来,先验信息主要来源于经验和历史资料。
例1:有一英国妇女,对奶茶能辨别出先倒进茶 还是先倒进奶,做十次试验她都正确说出。 若H0 :每次成功P概 0率 .5,那么十次猜中的概 P10(10)0.5100.00097,这 66是几乎不可能发 小概率事 ,可件 见应拒 H0,绝 P0.5.是经验在起 . 作
的概率综合值。
K
全概率公 P(x式 ) : P(x|i)P(i) i1
Bay公 es式 (后验概率 ): P 公 (i |式 x)
P(x|i)P(i)
K
P(x|i)P(i)
i1
注:把事件i,x看为随机变量,上公式则为Bayes后验分布
§1.2贝叶斯公式的密度函数形式
1、 依 赖 于 参 数 的 密 度 函 数 在 经典 统 计 中 记 为
样本信息
多愈 好。人们希望对样本的加工和处理对总体 的某些特征作出较为精确的统计推断。没 有样本就没有统计学可言。这是大家都理 解的事实。
样本信息
基于上述两种信息进行的统计推断称为经典统计学, 它的基本观点是把数据(样本)看成是具有一定概率 分布的总体,所研究的对象是这个总体而不局限于数 据本身。这方面最早的工作是高斯 (Gauss,C.F.1777~1855)和勒让德 (Legendre,A.M.1752~1833)的误差分析,正态分 布和最小二乘法。从十九世纪末到二十世纪上半叶, 经皮尔逊(Pearson,K.1857~1936)、费歇 (Fisher,R.A.1890~1962)奈曼(Neyman.J.)等 人的杰出工作创立了经典统计学。随着经典统计学的 持续发展与广泛的应用,它本身的缺陷也逐渐暴露出 来了。
这个样本是具体的,人们能看得到的,此样本 x 发生的概
§1.2贝叶斯公式的密度函数形式
3. 从贝叶斯观点看,样本 x (x1, xn ) 的产生要分两步
进行。首先设想从先验分布 ( ) 产生一个样本 ' ,这一步 是“老天爷”做的,人们是看不到的,故用“设想”二字。
第二步是从总体分布 p(x | ' ) 产生一个样本 x (x1, xn ) ,
• 贝叶斯推断的基本方法是将关于未知参数的先 验信息与样本信息综合,再根据贝叶斯定理,得 出后验信息,然后根据后验信息去推断未知参数 (茆诗松和王静龙等,1998年)。 “贝叶斯提出了一种归纳推理的理论(贝叶斯定 理),以后被一些统计学者发展为一种系统的统计 推断方法,称为贝叶斯方法.”──摘自《中国大百 科全书》(数学卷)
第一章先验分布与后验分布
统计学有两个主要学派:频率学派与贝叶斯学派. 它们之间有异同,贝叶斯统计是在与经典统计的争 论中发展起来,主要的争论有: 1.未知参数可否作为随机变量? 2.事件的概率是否一定的频率解释? 3.概率是否可用经验来确定? ……….
§1.1 先介绍三种信息的概念
经典统计学派规定统计推断使用两种信息:
p(x; ) ,它表示在参数空间 {} 中不同的 对应不 同的分布。可在贝叶斯统计中记为 p(x |) ,它表示 在随机变量 给定某个值时,总体指标 X 的条件分 布。
2、 根据参数 的先验信息确定先验分布 () (prior
distribution)。这是贝叶斯学派在最近几十年里重点 研究的问题。已获得一大批富有成效的方法。
相关文档
最新文档