555定时器,脉冲的产生与整形电路

合集下载

脉冲与整形电路

脉冲与整形电路

现在您浏览到是二十二页,共二十七页。
22
UCC
uc
R1
84
2UCC/3
7
3
uo
UCC/3
t
R2
6 555
0
uc
2
5uoC10.01μF 0 tP1
tP2
t
第 一 个 暂 稳 态 的 脉 冲 宽 度 t p 1 , 即 u c 从 U C C / 3 充 电 上 升 到 2 U C C / 3 所 需 的 时 间 :
现在您浏览到是八页,共二十七页。
8
CO TH
<2UCC/3
TR
<UCC/3
+U CC 8
5kΩ ∞
+1
5
A1 +

6
5kΩ

2
+A02 +

5kΩ
R 4
RD Q
0
SD Q
1 3 uo
7D V
1
①R=0时,Q=1 、Q=0 ,uo=0,V饱和导通。
②R=1、UTH>2UCC/3、UTR>UCC/3时,RD=0、SD=1, Q=1、Q=0,uo=0,V饱和导通。 ③R=1、UTH<2UCC/3、UTR>UCC/3时,RD=1、SD=1, Q、Q不变,uo不变,V状态不变。 ④R=1、UTH<2UCC/3、UTR<UCC/3时,RD=1、SD=0, Q=0、Q=1,uo=1,V截止。
脉冲幅度Um:脉冲高低电平之间电压的最大变化值。
脉冲宽度tw:脉冲幅度为方便用户0.5 Um处脉冲前后沿之间的 时间间隔。
脉冲周期T:周期性重复脉冲序列两相邻脉冲之间看时间间隔。
上升时间tr: 脉冲上升沿0.1 Um上升到0.9 Um所需时间。

555芯片内部原理及经典应用

555芯片内部原理及经典应用

555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。

555定时器配以外部元件,可以构成多种实际应用电路。

广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。

2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。

555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。

双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。

2.2 555定时器的电路组成图2-2为555芯片的内部等效电路U31kBJT_NPN_VIRTUAL2-2 555定时器电路组成5G555定时器内部电路如图所示, 一般由分压器、比较器、触发器和开关。

及输出等四部分组成,这里我们主要介绍RS 触发器和电压比较器。

2.2.1基本RS 触发器原理如图2-3是由两个“与非”门构成的基本R-S 触发器, RD 、SD 是两个输入端,Q 及是两个输出端。

QQRDSD2-3 RS 触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。

555脉冲电路

555脉冲电路

4 555 3
v O2
1
vO
vI
v O1
T C
2 1 5 D1 D2
vI
VT + VT VI Vo1 2 VC C 3 VC Vo2
Vo
8.3 多谐振荡器 多谐振荡器——能产生矩形脉冲波的自激振荡器。 一. 用555定时器构成的多谐振荡器 1. 电路组成及工作原理
VC C R1 8 P R2 7 VC C 4 RD
(3)暂稳态的维持时间 在暂稳态期间,三极管 T 截止, VCC 经 R 向 C 充电。 时间常数τ 1=RC,
vC 由 0V 开始增大,在 vC 上升到 2/3VCC 之前,电路
保持暂稳态不变。 (4)自动返回(暂稳态结束)时间 当vC上升至2/3VCC时,vO由1跳变0,三极管T由截 止转为饱和导通, 电容C经T迅速放电,电压vC迅速降至0V,电路由 暂稳态重新转入稳态。
T
放 电端
(1 )
2. 振荡频率的估算 (1)电容充电时间T1:(用三要素法计算)
1 V VCC CC v )v C( C(0 ) 3 T 1ln 1 ln 0 . 7 ( R RC ) 1 1 2 2 v )v T C( C( 1) VCC VCC 3

(2) 电容放电时间T2
电压比较器的功能:
v+> v-,vO=1 v+< v-,vO=0 (3)基本RS触发器、 (4)放电三极管T及缓冲器G。
二.工作原理
(1)4脚为复位输入端( RD ),当RD为低电平时,
不管其他输入端的状态如何,输出vo为低电平。
正常工作时,应将其接高电平。 (2)5脚为电压控制端,当其悬空时,比较器C1 和C2的比较电压分别为2/3VCC 和1/3VCC 。 (3)2脚为触发输入端,6脚为阈值输入端,两端

第6章 555定时器

第6章 555定时器

T T1 q= 1 = T T1 + T2 0.7 R1C = 0.7 R1C + 0.7 R2 C = R1 R1 + R2
vI1 vC
C
3 6 555 2 1 5 0.01µF C1
vO
v I2
二. 石英晶体多谐振荡器
问题: 上面介绍的多谐振荡器中,由于其工作频率取决于电容C充 问题 上面介绍的多谐振荡器中,由于其工作频率取决于电容 充、放电过 程中,电压到达转换值的时间,因此稳定度不够高。 程中,电压到达转换值的时间,因此稳定度不够高。一般在对振荡器频率稳 定度要求很高的场合,都需要采取稳频措施,其中最常用的一种方法, 定度要求很高的场合,都需要采取稳频措施,其中最常用的一种方法,就是 利用石英谐振器—简称石英晶体或晶体 构成石英晶体多谐振荡器。 简称石英晶体或晶体, 利用石英谐振器 简称石英晶体或晶体,构成石英晶体多谐振荡器。 1.石英晶体的选频特性 石英晶体的选频特性
+ C - 1
5 kΩ Ω
R
vo
G
R2 (2)
+
5 kΩ Ω
S
C2
&
&
1
(7)
T
C
(1)
(三) 振荡频率的估算 三
用三要素法计算) (1)电容充电时间 1:(用三要素法计算) )电容充电时间T
vc (t ) = vc (∞) − [vc (∞) − vc (0)]e
vC (∞) − vC (0 + ) VCC − VCC T1 = τ 1 ln 3 vC (∞) − vC (T1 ) = τ 1 ln 2
G 1
(3)
vO
vI2 vO
,

脉冲波形发生器与整形电路555定时器PPT课件

脉冲波形发生器与整形电路555定时器PPT课件

TH = uC 0 < 2/3 VCC,uO 保持
低电平不变。因此,稳态时
t u第C 13页0/共V6,2页uO 为低电平。
充电 UIL
uI 1323UVVuIOCCHCCC
uOO UOH UOL
O
tWI tWO
2. 触发进入暂稳态
UOH
当输入 uI 由高电平跃变为低电平 (应< 1/3 VCC )时,使 TR = UIL<1/3 VCC
当 uC 上升到 uC ≥2/3 VCC 时, TH = uC ≥2/3 VCC,而TR = uI =
UIH(> 1/3 VCC ),因此 uO 重新跃
t
变为低电平。同时,放电管导通, C
经 V 迅速放电 uC 0 V,放电完毕
t
后,电路返回稳态。
第15页/共62页
uI 1323UVVuIOCCHCCC
第2页/共62页
下图为:双极型555定时器内部逻辑电路结构图和逻辑符号
当V图C悬。空时,
u1+ = 2/3VCC
当u+ > u-时,输出uc为高电平 三个5kΩ电阻构成分压器(1态)。
当u+ < u-时,输出uc为高电平 (0态)。
u2- = 1/3VCC
第3页/共62页
6.1.1 555定时器的结构及工作原理
本章教学基本要求:
熟悉: (1)555定时器电路的结构、工作原理和引脚功能. (2) 由555定时器组成的单稳态触发器、多谐振荡和 施密特触发器的电路、工作波形和参数的计算。 (3)集成单稳态触发器和集成施特触以器的应用电 路。
了解: 石英晶体和门电路构成的方波发生器的基本电路。
第1页/共62页

用555定时器组成的脉冲电路

用555定时器组成的脉冲电路
端为低电平。
(4)放电管V(也称开关管)和输出缓冲器门2和门3:
V为N沟道增强型MOS管,当OUT为低电平时,V的栅极电位为 高电平,V导通; 当OUT为高电平时,V的栅极电位为低电平,
V截止。 门2和门3为输出缓冲器,用来提高定时器的带负 载能力, 同时也隔离负载对定时器的影响。
2. CC7555
的多谐振荡器。 本节主要介绍用集成定时器构成的多谐振 荡器和频率稳定性高的石英晶体振荡器。 多谐振荡器的符 号如图9.3.1所示。
G
图7.3.1 多谐振荡器符号
7.3.1 由555定时器构成的多谐振荡器
1. 工作原理
图7.3.2(a)所示为由CC7555构成的多谐振荡器电路,
R1、 R2和C是外接定时元件。 电路的工作波形如图7.3.2
由于电路中接入了石英晶体,这个振荡器只能谐振在
频率f0上。对于TTL门,R1、R2通常取0.7~2kΩ,而对于C MOS门取10~100MΩ。电容C1、C2作为非门间的耦合,其容 抗对石英晶体的谐振频率f0应可忽略不计。
在振荡器输出端再加一级反相器, 可以提高带负载 能力, 改善输出波形。
图7.3.6(a)是在输出端加一级分频后再输出的可以 产生两相时钟信号的电路, 7.3.6(b)是其工作波形。
保证参考电压不变。
(2)比较器:集成运算放大器A、B组成两个电压比较器,
每个比较器的两个输入端标有+号和-号。当U+>U-时,比较器 输出高电平; 当U+<U-时,比较器输出低电平。
(3)基本RS触发器:R、S的值取决于比较器A、B的输 出。R端为RS触发器的复位端,该端为低电平时,Q=0,OUT
0.5 Um 0.1 Um
Um

第6章 脉冲产生、整形电路

第6章  脉冲产生、整形电路
一、延时与定时 二、整形
6.3 多谐振荡器 6.3.1 用555定时器构成的多谐振荡器 一、电路组成及其工作原理
1.电路组成:仿真图6.3.1所示是用555定时器构成的 多谐振荡器。 2.工作原理:起始状态 (1)暂稳态I (2)自动翻转I (3)暂稳态Ⅱ (4)自动翻转Ⅱ
二、振荡频率的估算和占空比可调电路
6.1.2 集成施密特触发器 一、CMOS集成施密特触发器
1.引出端功能图:仿真图6.1.4所示是国产CMOS集成 施密特触发门电路CC40106(六反相器)和CC4093 (四2输入与非门)的引出端功能图。 2.主要静态参数
二、TTL集成施密特触发器
1.外引线功能图:仿真图6.1.5所示是几种常用的国产 TTL集成施密特触发逻辑的外引线功能图。 2.几个主要参数的典型值
1.振荡频率的估算 2.占空比可调电路:如仿真图6.3.3所示。
6.3.2 石英晶体多谐振荡器
一、石英晶体的选频特性 二、石英晶体多谐振荡器 1.电路组成:仿真图6.3.5所示是一种比较典型的石英 晶体振荡电路。 2.工作原理 3.CMOS石英晶体多谐振荡器:仿真图6.3.6所示是更 简单、更典型的CMOS石英晶体振荡电路。
二、阈值探测、脉冲展宽
1.用作阈值电压探测器 图 6.1.8所示是用作阈值电压探测器时,施密 特触发器的输入、输出波形,显然,凡是幅值达 到UT+的输入电压信号,均可被探测出来并形成相 应的输出脉冲。 2.用作脉冲展宽 图 6.1.9所示是用施密特触发器构成的脉冲展 宽器的电路及工作波形图。 3.用作多谐振荡器 仿真图 6.1.10 所示是用施密特触发反相器构 成的多谐振荡器。
二、可重触发单稳态触发器74122 74122 是一种比较典型的可重触发 TTL 单稳态触发器。 1.图形符号与功能表 (1)图形符号:仿真图6.2.4所示是可重触发单稳态 触发器74122的国标图形符号。 (2)功能表:见表6.2.2 2.功能说明及主要参数 (1)功能说明 (2)主要参数

脉冲电路的产生和整形电路

脉冲电路的产生和整形电路
v 重复此过程,则输出电压 O的波形变化即为一串脉冲波。
2
3.几种常见的脉冲波形
常见的波形有矩形波、锯齿波、钟形波、尖峰波、阶梯波等。
3
如何获得矩形脉冲信号? (1)利用整形电路对不符合要求的脉冲信号 进行整形;
(2)利用脉冲振荡器直接产生脉冲信号;
矩形脉冲的特性: 为了定量描述矩形脉冲的特性通常给出几个主要参数。
2)暂稳态: ui负脉冲到来时刻,因ui<VCC/3为0, uc 仍为0, ∴ uo由0变为1,放电管T截止,VCC经R对C充电,电路进入暂稳态。
3)暂稳态自动恢复到稳态:当uc充电到2VCC/3为1时, ui负脉冲已消 失ui =1, ∴输出uo=0,T导通,C放电,电路自动恢复到稳态。
VCC
ui
0 twH twL
t
电路
工作波形
接通VCC后,VCC经R1和R2对C充电。当uc上升到2VCC/3时,uo=0, T导通,C通过R2和T放电,uc下降。当uc下降到VCC/3时,uo又由0 变为1,T截止,VCC又经R1和R2对C充电。如此重复上述过程,在 输出端uo产生了连续的矩形脉冲。
2.电路组成、工作原理
振荡后,电路没有稳态,只有两个暂稳态在作交替变化, 是无稳态电路。
属于脉冲产生电路。
二.电路组成、工作原理
1、方法
①先构成施密特触发器; ②加R2在VI和VO之间,VI 和地之间接C;
2.电路组成、工作原理
VCC
uc
R1
84
2VCC/3
7
3
uo
VCC/3
R2
6 555
0
t
uc
2
5
uo
C
1
0.01μF

555定时器的电路解析

555定时器的电路解析

1、模拟功能部件
(1)、电阻分压器
VCC经3个5K欧姆的电阻分压后,提供基准电压:当不外接固定电压C-V时, UR1=2/3VDD , UR2=VDD/3;当外接固定电压U时,UR1=U , UR2=U/2
(2)、电压比较器C1和C2
〈1〉TH≥2/3VDD 、TR ≥VDD/3时,输出uo1=1,uo2=0, Q=0 Q =1。
3、UI≥2/3VDD时,Uo1=0、Uo2=1、 Q=0、Q=1,UO由UOH→UOL,即UO=0。 当UI上升到2/3VCC时,电路的输出状态发生跃变。 4、UI再增大时,对电路的输出状态没有影响。
(二)、下降过程 1、UI由高电平逐渐下降,且1/3VDD<UI<2/3VDD时,Uo1=0、Uo2=0。 基本RS触发器保持原状态不变。即 Q =0、Q=1,输出UO=UOL
使电路迅速由暂稳态返
回稳态,uO1=UOH (全0出1)。 uO= UOL。
从暂稳态自动返回稳态之后,电容C将通过电阻R放电, 使电容上的电压恢复到稳态时的初始值。
单稳态触发器工作波形
2. 主要参数
(1)输出脉冲宽度tw 输出脉冲宽度tw,就是暂稳态的维持时间。 tw ≈0.7RC
(2) 恢复时间tre 暂稳态结束后,电路需要一段时间恢复到初始状态。
〈2〉TH < 2/3VDD 、TR < VDD/3时,输出uo1=0,uo2=1, Q=1 Q =0 。
〈3〉TH < 2/3VDD 、TR ≥VDD/3时, uo1=0,uo2=0, Q、 Q状态维持不变。 (3) R为直接置0端,低电平有效。 (4)集电极开路的放电管V、输出UO=0时,V导通,输出UO=1时,V截止。
用555定时器组成单稳态触发器
一、电路结构

555芯片内部原理及经典应用

555芯片内部原理及经典应用

555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。

555定时器配以外部元件,可以构成多种实际应用电路。

广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。

2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。

555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。

双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。

2.2 555定时器的电路组成图2-2为555芯片的内部等效电路2-2 555定时器电路组成5G555定时器内部电路如图所示,一般由分压器、比较器、触发器和开关。

及输出等四部分组成,这里我们主要介绍RS触发器和电压比较器。

2.2.1基本RS触发器原理如图2-3是由两个“与非”门构成的基本R-S触发器, RD、SD是两个输入端,Q及是两个输出端。

Q QRD SD2-3 RS触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。

通常将Q端作为触发器的状态。

若Q端处于高电平,就说触发器是1状态;2)Q=0,=1。

第六章 脉冲的产生与原理及原理的应用

第六章 脉冲的产生与原理及原理的应用
2. 实训要求 (1) 熟悉555定时器的符号、逻辑功能、引脚排列。 (2) 熟悉施密特触发器的构成。 (3) 小组之间相互学习和交流,比较实训结果。
第6章脉冲波形的产生与整形
3. 实训设备及元器件 (1) 实训设备: 双路直流稳压电源、信号发生器1台、双踪示 波器1台、面包板1块、单股导线若干、万用表(数字表、指针表 各1块)。 (2) 实训器件:一只0.01mF的电容、一只1k的电阻、一块 NE555。 4. 测试内容 1) 测试电路 测试电路如图6.9所示。 2) 测试步骤 (1) 按图6.9所示接好电路,在输入端接入信号发生器,并用 示波器分别观测输入端和输出端的波形
1. 实训任务 (1) 用仪表仪器测试555定时器的逻辑功能。 (2) 分析和仿真555定时器的逻辑功能。 (3) 记录并比较测试结果。 2. 实训要求 (1) 熟悉555定时器的符号、逻辑功能、引脚排列。 (2) 小组之间相互学习和交流,比较实训结果。 3. 实训设备及元器件 (1)实训设备:直流稳压电源1台、面包板1块、单股导线若干、万 用表(数字表、指针表各1块)。 (2)实训器件:一只0.01mF的电容、一只1k的电阻、一块NE555。
第6章脉冲波形的产生与整形
NE555集成定时器内部电路如图6.1所示,它主要由3个电阻
R组成的分压器、两个高精度电压比较器C1和C2、一个基本RS
触发器、一个作为放电的三极管VT及输出驱动G3组成。
第6章脉冲波形的产生与整形
图6.1 NE555集成定时器内部电路
第6章脉冲波形的产生与整形
图6.2所示为555定时器的逻辑符号 和引脚排列。
t RC ln uC () uC (0) uC () UD
(6-2)
第6章脉冲波形的产生与整形

脉冲产生与变换电路(555定时器)

脉冲产生与变换电路(555定时器)
当施密特触发器输入一定时, 其输出可以保持OUT
为“0”或“1”的稳定状态,所以施密特触发器又称为 双稳态电路。
uo UDD
o
1 3
UDD
2 3
UDD
ui
图6.6 施密特触发器电压传输特性
3. 典型应用 (1) 波形变换。将任何符合特定条件的输入信号
变为对应的矩形波输出信号。
UR1 UR2
图6.7波形变换
(2) 幅度 ui
鉴别
UTH
o
t
uo
o
t
图6.7 利用施密特触发器进行幅度鉴别
(3) 脉冲 ui
干扰
整形
UTH
UTR
o
t
uo
o
t
图6.8 利用施密特触发器进行脉冲整形
3.2 单稳态触发器
单稳态触发器也有两个状态:一个是稳定状态,另 一个是暂稳状态。当无触发脉冲输入时,单稳态触发器 处于稳定状态;当有触发脉冲时,单稳态触发器将从稳 定状态变为暂稳定状态,暂稳状态在保持一定时间后,
A2 + + (S)
& G2 Q
(放电端)D
5 kW ⑦
100 W
③ OUT

图3:5G555定时器内部电路
放电 管
1. 分压器
分压器由三个等值的电阻串联而成,将电源电压UDD
分为三等份,作用是为比较器提供两个参考电压UR1、UR2,
若控制端S悬空或通过电容接地,则:
U R1

2 3
U
DD
UR2

Q =0, 三极管截止,放电通路被截断。
2.3:555定时器的功能
以单时基双极型国产5G555定时器为例。
表6.1 5G555

脉冲波形发生器与整形电路_555定时器汇总.

脉冲波形发生器与整形电路_555定时器汇总.

压器,为比较器 复位控制 TH 6 C1、C2 提供两 5 k 个参考电压, 置位控制 TR 2 UR1 = 2/3VCC, UR2 UR2 = 1/3VCC。
5 k 放电端 DIS 7 集电极开路输出端
构成电压比 电路符号 较器,比较 TH S 与 U Q和TR 与 4 8 R1 G2 的大小。 VCC RD UR2 6
R
V
Q 2 TR 555
7 DIS
TH
OUT 3 CO 5
1 放电管,其输入为 GND 接地端
脉冲波形发生器与整形电路
下图为:双极型555定时器内部逻辑电路结构图和逻辑符号图。
当VC悬空时, u1+ = 2/3VCC
当u+ > u-时,输出uc为高电平 (1态)。 三个5kΩ电阻构成分压器 当u+ < u-时,输出uc为高电平 (0态)。
u2- = 1/3VCC
脉冲波形发生器与整形电路
6.1.1 555定时器的结构及工作原理
1
不变
不变
脉冲波形发生器与整形电路
555 定时器的工作原理与逻辑功能
定时器 5G555 的功能表 输 入 输 出 TH TR RD OUT = Q V 状态 × × 0 1 1 0 0 1 导通 导通 截止
2 1 VCC VCC 3 3 2 1 VCC VCC 3 3 1 2 VCC VCC 3 3
0 0 1
1
0
导通
1
1
1
截止
不变 不变
脉冲波形发生器与整形电路
555 定时器的工作原理与逻辑功能
定时器 5G555 的功能表 输 入 输 出 TH TR RD OUT = Q V 状态

脉冲信号的产生与整形

脉冲信号的产生与整形
施密特触发器是一种能够把输入波形整形成为适合于数字电路需要的矩形脉冲的电路。而且由于具有滞回特性,所以抗干扰能力也很强。 施密特触发器可以由分立元件构成,也可以由门电路及555定时器构成。 施密特触发器在脉冲的产生和整形电路中应用很广。
1
2
电阻R1、R2的作用是保证两个反相器在静态时都能工作在线性放大区。对TTL反相器,常取R1=R2=R=0.7 kΩ~2kΩ,而对于CMOS门,则常取R1=R2=R=10kΩ~100kΩ;C1=C2=C是耦合电容,它们的容抗在石英晶体谐振频率f0时可以忽略不计;石英晶体构成选频环节。
01
振荡频率等于石英晶体的谐振频率f0。
多谐振荡器可以由门电路构成,也可以由555定时器构成。由门电路构成的多谐振荡器和基本RS触发器在结构上极为相似,只是用于反馈的耦合网络不同。RS触发器具有两个稳态,多谐振荡器没有稳态,所以又称为无稳电路。 在多谐振荡器中,由一个暂稳态过渡到另一个暂稳态,其“触发”信号是由电路内部电容充(放)电提供的,因此无需外加触发脉冲。多谐振荡器的振荡周期与电路的阻容元件有关。
ΔUT= UT+-UT-
回差电压(滞后电压):
前面介绍的施密特触发器的回差电压为: ΔUT=UT+-UT-=UT-(UT-UD)=UD= 0.7V 缺点是回差太小,且不能调整。
下限阈值电压
集成施密特触发器
4.3.2 由555定时器构成的施密特触发器
4.3.3 施密特触发器的应用
本节小结:
01
02
74121的输出脉冲宽度:
TR-A、TR-B是两个下降沿有效的触发信号输入端,TR+A、TR+B是两个上升沿有效的触发信号输入端。Q和是两个状态互补的输出端。Rext/Cext、Cext、Rin3个引出端是供外接定时元件使用的,外接定时电阻R(R=5kΩ~50kΩ)、电容C(无限制)的接法与74121相同。RD为直接复位输入端,低电平有效。 当定时电容C>1000pF时,74122的输出脉冲宽度: tp≈0.32RC

脉冲产生与整形电路概述、结构和功能

脉冲产生与整形电路概述、结构和功能

15
双 4 输入 CT7413
42.5
1.7
0.9 0.8 15
18
与非门 CT74LS13 8.75
1.6
0.8 0.8 18
15
TTL 施密特触发器的特点
(1) 可将变化缓慢的信号变换成上升沿和下降沿都很 陡直的脉冲信号。 (2) 具有阈值电压和回差电压温度补偿。 (3) 具有很强的抗干扰能力。
构成电压比 较器,比较 TH 与 UR1 和TR 与 UR2 的大小。
R C1
R
UR1 R
UR2
S
R C2 V
构成基本 RS 触发 器,决定电路输出。
G1 Q G3
G4 输出 缓冲器
Q G2
MOS 开关管
555 定时器的电路结构与符号
电源端 直接置0端
VDD
RD
8
4
阈值输入端 TH 6
R C1 R G1 Q G3
7.3.3 集成施密特触发器
二、CMOS 集成施密特触发器
CC40106
1A
1Y
2A
2Y
3A
3Y
4A
4Y
5A
5Y
6A
6Y
六施密特反相器输出逻辑 逻辑符号 表达式为 Y=A
CC4093
1A
1Y
1B
2A
2Y
2B
3A
3B
3Y
4A
4B
4Y
四2输入施密特与非门输出逻辑 逻辑符号 表达式为
Y=A·B
CMOS 施密特触发门电路一些重要参数
脉冲产生与整形电路概 述、结构和功能
概述 555 定时器的电路结构及其逻辑功能 施密特触发器 单稳态触发器 多谐振荡器

大学数字电子技术数字电子技术555定时器

大学数字电子技术数字电子技术555定时器

频率: f 1
1
T 0.7(R1 2R2 )C
占空比:D T1 0.7(R1 R2)C R1 R2 T1 T2 0.7(R1 2R2)C R1 2R2
多谐振荡器没有稳态,只有两个暂稳态。两个 暂稳态之间的转换,是由电路内部电容的充、放电 作用自动进行的,所以它不需要外加触发信号,只 要接通电源就能自动产生矩形脉冲信号。
返回
+5V
0
1D
Q1
Q1
2D
Q2
3D
Q2
Q3
4D
Q3
Q4
CLR CP Q4
&3
&1
输出为零发
清零
& 2 光管不亮
抢答前先清零
CP
返回
+5V 开启
D1
Q1
Q1
1
D2
Q2
D3
Q2 Q3
D4
Q3 Q4
CLR CP Q4
& 2 & 1 反相端都为1
清零
&2
1
CP
返回
+5V
D1 = D2 0
=1
Q1
Q1 Q2
UCC 8
R1
5KΩ
5 6
VA
+C1+
01
ui 1 uC
>2/3 UCC
5KΩ 2
VB
7 5KΩ
T
导通 (地)1
+C2+
1
4 (复位端)
稳定状态
1
RD Q
SD Q 0
3uO
Q=0
+UCC R1
0
ui uC

555定时器构成脉冲信号

555定时器构成脉冲信号

555定时器构成脉冲信号555定时器是一种常用的集成电路,用于产生脉冲信号。

它被广泛应用于计时、频率分频、脉冲宽度调制等领域。

本文将介绍555定时器的原理、工作模式以及应用案例。

一、555定时器的原理555定时器是一种集成电路,由内部电路组成。

其基本原理是通过内部电阻、电容和比较器的工作,实现对输入信号的计时和产生相应的输出脉冲。

二、555定时器的工作模式555定时器有三种常用的工作模式:单稳态、多谐振荡和双稳态。

1. 单稳态模式在单稳态模式下,555定时器输出一个固定时间宽度的脉冲信号。

当触发脚接收到一个低电平信号时,输出端会产生一个高电平脉冲,持续一段时间后恢复为低电平。

这个时间宽度由外部电阻和电容决定。

2. 多谐振荡模式在多谐振荡模式下,555定时器可以产生一系列固定频率的脉冲信号。

通过调节电阻和电容的数值,可以实现不同的频率输出。

3. 双稳态模式在双稳态模式下,555定时器的输出状态会保持不变,直到触发脚接收到一个低电平信号。

这种模式常用于触发器、频率分频等应用。

三、555定时器的应用案例555定时器由于其稳定性和可靠性,被广泛应用于各种电子设备和电路中。

1. 计时器555定时器可以用作计时器,通过调节电阻和电容的数值,实现不同的计时功能。

例如,可以将555定时器配置为一个分钟计时器,用于计算时间。

2. 频率分频器555定时器可以用作频率分频器,通过调节电阻和电容的数值,将输入频率分频为所需的频率。

这种应用常用于数字电子设备中的时钟电路。

3. 脉冲宽度调制555定时器可以用作脉冲宽度调制器,通过改变电阻和电容的数值,调节输出脉冲的宽度。

这种应用常用于通信系统中的调制电路。

4. 声音发生器555定时器可以用作声音发生器,通过改变电阻和电容的数值,调节输出波形的频率和幅度。

这种应用常用于电子乐器和音频设备中。

5. PWM调光控制555定时器可以用作PWM调光控制器,通过改变电阻和电容的数值,实现对LED灯的亮度调节。

555定时器,脉冲的产生与整形电路

555定时器,脉冲的产生与整形电路

一个接1状态),同时保持B端状态为1。
(4) 74121 的工作波形
A1
O
t
A2
O
t
B
O
t
Q
tW
tW tW
O
t
(5) 输出脉冲宽度tw
tw ≈ RextCext ln2 = 0.7 RextCext
可用内部电阻Rint(2kΩ)代替Rext 。
2. CMOS集成单稳态触发器(4538)
(1) 4538的符号图
为保证稳态时uO1 = 0,要求:
RP CP≤twI RP≥RON
门3改善输出波形,起反 相和整形的作用。
MOS门输入阻抗高,外接电阻R和RP的大小不会影响其 稳态,它们不再受ROFF和RON的限制。
6.3.2 集成单稳态触发器 TTL系列的有74121、74122、74123等。 CMOS系列的有4098、4528、4538等。
2. 施密特触发器的传输特性
输入和输出为反相关系的称为反相施密特触发器 输入和输出为同相关系的称为同相施密特触发器
6.2.1 门电路构成的施密特触发器
1. CMOS非门电路构成的施密特触发器
R2
uI
R1
1 uO' 1
uI' G1
G2
uO
uO'
设UT≈VDD/2,且R1<R2
2. 施密特触发器的工作原理
O
t
(2) 当uI从高电平下降达到使 = UT时,可求得电路的下
限阈值电压:
UT- = (1-R1/R2) UT
(3) 触发器的回差电压
UT = UT+–UT- = 2 UT R1/R2
R2
uI
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G1
C u I2
+5V
R1 T1
G2
td = tw + tre
上页
下页
返回
输入带微分环节的单稳态触发器 若uI脉冲宽度twI > tw则应通过
微分电路RPCP再输入到与非门1。
为保证稳态时uO1 = 0,要求:
RP CP≤twI
RP≥RON
门3改善输出波形,起反 相和整形的作用。
MOS门输入阻抗高,外接电阻R和RP的大小不会影响其 稳态,它们不再受ROFF和RON的限制。 上页 下页 返回
进行整形。
uO
O
t
t 上页 下页 返回
2. 脉冲变换电路
由于施密特电路状态 转换速度极快,输出矩形
uI VDD
一种变换波形图
UT+
UT– O uO VDD O
波的前后沿总是很陡峭。 利用这一特点,施密
特电路可以把变化比较缓 慢的正弦波、三角波等变 换成矩形脉冲信号 。
t
t
上页
下页
返回
3. 鉴幅电路
(3) 当需要下降沿触发时,则触发脉冲应该从 一个接1状态),同时保持B端状态为1。 上页 下页 或
Q 0 0 0 0
输入(另
返回
(4) 74121 的工作波形
A1
O
t
A2
O
t
B
O
Q
O
tW
tW
tW
t t
上页
下页
返回
(5) 输出脉冲宽度tw
tw ≈ RextCext ln2 = 0.7 RextCext
(4) 波形图
uO
t
O
t
上页
下页
返回
6.2.2 集成施密特触发器 TTL集成施密特触发器有:74LS14,74132,7413等。 TTL集成施密特触发器性能表 型号 7414 74LS132 7413 tpd/ns 15 15 16.5 Pm/mW 25.5 8.8 8.75 ΔUT/V 0.8 0.8 0.8
上页
下页
返回
(2) 74121 的电路符号
(3) 74121 的的功能表
输 入 输出
B A1 A2 0 × 1 × 0 1 × × 0 1 1 × 1 ↓ 1 ↓ 1 1 ↓ ↓ 1 0 × ↑ × 0 ↑
上页 下页
Q 0 0 0 0
返回


输出
B A1 A2 由表可见: 0 × 1 × 0 1 × × 0 1 1 × (1) 稳态 Q=0 1 ↓ 1 ↓ 1 1 (2) 当需要上升沿触发时,触发脉冲从B ↓ ↓ 1 0 × ↑ 端输入,同时 、 当中至少应有1 × 0 ↑ 个为0状态。
下降时间tf ——脉冲从0.9Um下降到0.1Um所需的时间
上页 下页 返回
6.2 施密特触发器
1. 基本概念
施密特触发器是一种重要的脉冲整形电路,施密特触发器 能把变化缓慢的波形变换成矩形脉冲。 输入电压上升的翻转电平为上限阈值电平UT+ 输入电压下降的翻转电平为下限阈值电平UT UT= UT+- UT-称为回差电压
' O
t
R2
uI的波形图
R1
uI
u
' I
1
G1
' uO
1
G2
uO
' uO
uI
UT+ UT– O
t
在极短时间内,电路翻转为uO VDD。此时由
= UT+R2 /( R1+R2)= UT 可求得电路的上限阈值电压
UT+= (1+R1/R2) UT
同理,uI = VDD时,uO VDD
上页 下页 返回
度的矩形波形。
上页
下页
返回
脉冲整形电路
(a) 电路
(b) 波形图 上页 下页 返回
2. 脉冲的定时
由于单稳态电路能产生一定宽度tw的矩形脉冲,利用这 一脉冲去控制某个系统,就能使其在tw时间内动作(或不动
作),起到定时控制的作用。 定时控制的典型例子——塑料成形控制系统
塑料成形一般经历预热、加压、保温、冷却四道工序。 塑料成型顺序加工控制系统可用单稳态触发器来实现。
uI2
R
uO1由低变高
高变低,从而引起如下反馈过程: uI uO1 uI2
uI
由于电容两端电压不会突变,因此uI2亦由低变高,使uO2由 uO2
使电路迅速进入暂稳态:uO1=1 上页 下页 返回
(3) 在暂稳态期间
UOH RO G1 C
uI2
uI2
UOH
&
UT 1.4V G2
R
O t W
t
门1的输出高电平UOH经电容C和电阻R到地的方向给电 容充电,使门2的输入电压uI2以时间常数1 = (R+RO)C (RO为
&
G2
微分型单稳态触发器 uI 电路处于稳态时,uI为高电平,uO1为低电平。
uI2
R
为了使uO2可靠为高电平,应选R< Roff,一般取R<0.7kΩ。 上页 下页 返回
2. 工作原理
(1) uI为高电平,电路处于稳态。
uO1= 0,uO2 =1
G1
uO1
uO2
&
C
&
G2
(2) uI的负跳沿到来时,电路触发翻转。
6
脉冲的产生与整形电路
6.1 概述 6.2 施密特触发器
6.3 单稳态触发器
6.4 多谐振荡器
6.5 555定时器及其应用
上页 下页 返回
6.1
概 述
数字电路中,为了控制和协调整个系统的工作,常常 需要时钟脉冲信号。
获得时钟脉冲的方法有:
1. 利用多谐振荡器直接产生。 2. 通过整形电路变换而成。 整形电路又分为两类:施密特触发器和单稳态触发器。 整形电路可以使脉冲的边沿变陡峭,或形成规定的矩形脉冲。 上页 下页 返回
鉴幅电路 UT+ UT–
在一串幅度不相等的 脉冲信号中,如果要剔除 幅度不够大的脉冲, 此时 可利用施密特触发器。
uI
uO
上页下页返回 Nhomakorabea.3 单稳态触发器
单稳态触发器的特点:
1. 单稳态触发器有一个稳态和一个暂稳态。
2. 在触发脉冲的作用下,单稳态触发器从稳态翻转到暂稳态, 经过时间tw后又自动翻回稳态,并在输出端产一个宽度为tw 的矩形脉冲。
表述矩形脉冲性能指标的主要参数: tr
0.9Um
0.5Um 0.1Um Tw Um
tf
T
周期T——周期性重复的脉冲序列中,两个相邻脉冲间的 时间间隔 频率f = 1/T, 代表单位时间内脉冲重复的次数。 上页 下页 返回
tr
0.9Um 0.5Um 0.1Um Tw
tf
Um
T
脉冲幅度Um——脉冲电压最大变化的幅值 脉冲宽度Tw——从脉冲前沿0.5Um始,到脉冲后沿0.5Um止的 一段时间 上升时间tr ——脉冲从0.1Um上升到0.9Um所需的时间
下页
返回
uI2
UOH RO G1 C
uI2
&
G2
UOH
UT 1.4V
R
O t W
t
根据一阶RC电路的三要素法
实际常用经验公式 tw 0.8RC ( R<Roff )

上页
下页
返回
(2) 恢复时间tre tre (3 ~ 5)(R1//R)C (3) 电路的分辨时间 uO1 ≈0 T3 R
CMOS集成施密特触发器有:CD40106,CD4093和 CD4584等。 上页 下页 返回
6.2.3 施密特触发器应用举例 uI 1. 脉冲整形电路
UT+ UT– O
脉冲整形波形图
uO
t
在数字测量和控制系
统中,由传感器送来的信 号波形边沿较差,利用施
O UT+ UT– O
uI
t
密特电路可以对这些信号
6.3.2 集成单稳态触发器 TTL系列的有74121、74122、74123等。 CMOS系列的有4098、4528、4538等。 这些器件只要外接很少的电阻和电容,就
可构成单稳态触发电路,使用起来非常方便。
上页
下页
返回
1. TTL集成单稳态触发器(74121) (1) 74121 的电路结构
uI
uO t1 tW tW 上页 下页 返回
6.3.3 单稳态触发器的应用举例 1. 脉冲的整形
在实际的数字系统中,由于脉冲的来源不同,波形也相差较大。
例如,从光电检测设备送来的脉冲波形一般不太规则;脉冲信 号在线路中远距离传送,常会导致波形变化或叠加上干扰; 整形电路可以把这些脉冲信号变换成具有一定幅度和宽
上页
下页
返回
2. 施密特触发器的工作原理
R2 R1
' uO
uI的波形图
uI
u
' I
1
G1
1
G2
uO
uI
UT+ UT– O
u
(1) 当uI = 0时,有 随着uI上升, 当uI增加到使
VDD,uO 0 也上升,且有 uI R2 /(R1+R2) = UT时,产生如下正反馈过程: uO 上页 下页 返回
R1
uI
u
' I
1
G1
' uO
1
G2
uO
' uO
uI
UT+ UT– O
t
UT = UT+–UT- = 2 UT R1/R2 可见,电路输出的状态由输入电压的大小决定,
相关文档
最新文档